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1. INTRODUCTION

The shell model is a recognized tool for micro-
scopic studies of nuclear structure. The no-core shell
model (NCSM) [1–3], the version of the shell model
where all A nucleons are spectroscopically active, is
widely used now (see, e.g., [3–6]) for ab initio calcula-
tions of light nuclei (up through A = 16) with modern
realistic nucleon–nucleon and three-nucleon forces.

The NCSM utilizes the basis of Slater determi-
nants of single-particle oscillator states. These basis
functions are known to have spurious contributions
of center-of-mass (CM) excitations. The wave func-
tions of physically acceptable eigenstates of the in-
trinsic NCSM Hamiltonian

HA =
1
A

A∑
i<j

(pi − pj)2

2m
+

A∑
i<j

VNN,ij (1)

+
A∑

i<j<k

VNNN,ijk,

where m is the nucleon mass, VNN,ij is the two-
nucleon interaction (including both strong and elec-
tromagnetic components), and VNNN,ijk is the three-
nucleon interaction, should be arranged as spurious-
free linear combinations of basis states.

To achieve this, the auxiliary Hamiltonian

HNCSM = HA + βQ̃0 (2)

is conventionally diagonalized within the NCSM in-
stead of the Hamiltonian (1). Here,

Q̃0 ≡ HCM − 3
2

�Ω, (3)

HCM = TCM + UCM (4)

∗The text was submitted by the author in English.

is the harmonic oscillator CM Hamiltonian, TCM is
the CM kinetic energy operator, and

UCM =
1
2
AmΩ2R2, (5)

where

R =
1
A

A∑
i=1

ri. (6)

The term βQ̃0 with large enough parameter β has
no effect on the intrinsic states of the A-body system
owing to the translational invariance of the Hamilto-
nian (1); it shifts up in energy spurious CM-excited
states and projects out the spurious contributions in
the low-lying eigenstates. As a result, the physical
low-lying eigenstates of (2) correspond to the 0�Ω
CM excitation and are independent of the choice of β.

I suggest below a projection operator PCM that can
be used to project out spurious CM-excited compo-
nents and to obtain spurious-free linear combinations
of basis Slater determinants that can be used as a
new spurious-free basis for direct diagonalization of
the intrinsic Hamiltonian (1). The complete spurious-
free basis corresponding to the 0�Ω CM excitations
is much smaller than the basis of all Slater deter-
minants including all κ�Ω CM excitations with κ ≤
N , where N is the maximal oscillator quanta of the
N�Ω NCSM model space used in the calculations.
Therefore, it is expected that the use of the projection
operator PCM will significantly simplify the NCSM
studies of nuclear structure, will make it possible to
arrange the calculations in larger N�Ω model spaces
with the same computer facilities and hence to im-
prove the accuracy of the NCSM predictions, etc.

I note also that the so-called m scheme is conven-
tionally utilized in the NCSM applications; i.e., the
basis Slater determinants are used that do not have
definite values of the orbital angular momentum L,
of the total angular momentum J , and of the total
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spin S. The m scheme makes it possible to use well-
developed computational methods and available re-
spective computer codes. However, the basis of the
m-scheme Slater determinants is very large since
it includes all states with all possible values of J ≤
Jmax, L ≤ Lmax, and S ≤ Smax, where the maximal
values Jmax, Lmax, and Smax are large enough in mod-
ern NCSM applications and depend on the particular
nucleus under consideration and on the N�Ω model
space used in the calculations.

I suggest below the projection operators PJ , PL,
and PS on the states with definite J , L, and S values.
These projection operators as well as PCM can be
easily utilized within the existing NCSM codes to
reduce the number of the basis states significantly.

2. CM-PROJECTOR PCM

Let

Ψ =
N∑

κ=0

ακΨκ (7)

be a vector (wave function) defined in the N�Ω model
space; N is the maximal possible CM-excitation
quanta in this model space. Equation (7) represents
an expansion of Ψ in a series of functions Ψκ with
definite CM-excitation quanta κ = 0, 1, . . . , N . The
functions Ψκ are the eigenfunctions of the harmonic
oscillator CM Hamiltonian:

HCMΨκ =
(

κ +
3
2

�Ω
)

Ψκ. (8)

Owing to Eq. (8), the operator Q̃0 defined by
Eq. (3) acts as an antiprojector: it projects out the
spurious-free component Ψsf ≡ Ψ0 of the wave func-
tion:

Q̃0Ψsf = 0. (9)

We can also define antiprojectors

Q̃κ ≡ HCM −
(

κ +
3
2

)
�Ω (10)

which project out components with given values of
the CM excitation quanta κ:

Q̃κΨκ = 0. (11)

We can extract the spurious-free content Ψ̃sf of Ψ
by the subsequent use of the operators (10):

Ψ1 = Q̃1Ψ, (12a)

Ψ2 = Q̃2Ψ1, (12b)

. . .

Ψ̃sf ≡ ΨN = Q̃NΨN−1. (12c)

Equations (12) are equivalent to the following equa-
tion:

Ψ̃sf = P̃Ψ, (13)

where the operator

P̃ =
N∏

κ=1

Q̃κ. (14)

Let us call P̃ a quasi-projector. Mathematically, P̃
is not a projection operator since it does not fit the
standard property of the projection operators

P 2 = P. (15)

The function Ψ is a superposition (7) of the spurious-
free Ψsf ≡ Ψ0 and spurious components Ψκ with κ �
= 0. The standard projection operator property (15)
guarantees that

PΨ = αΨsf. (16)

Instead of (16), the quasi-projector P̃ , when applied
to Ψ, results in

P̃Ψ = Ψ̃sf = DαΨsf. (17)

The constant D can be easily calculated using
Eqs. (8) and (10):

D = (−1)NN !(�Ω)N . (18)

To become a projector, the quasi-projector P̃ should
be normalized:

P =
1
D

P̃ . (19)

In applications, one can use either P̃ or P . Really,
it is usually needed to extract from Ψ its normalized
spurious-free component Ψsf. The multiplier α is usu-
ally unknown. Hence, after using either the quasi-
projector (14) or the projector (19), one needs to nor-
malize either the function DαΨsf or the function αΨsf.
Clearly, the same computational efforts are required to
normalize the functions DαΨsf and αΨsf.

3. OTHER USEFUL PROJECTORS

The same idea can be utilized for the construction
of other useful projectors. As an example, let us con-
struct the projector on the states with a definite value
of the angular momentum.

Let L̂2 = L̂2
x + L̂2

y + L̂2
z be the standard orbital

momentum operator. Its eigenvalues are known to be
L(L + 1). We now define the operators

Q̃L ≡ L̂2 − L(L + 1) (20)
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and

P̃Lmax
L =

L−1∏
κ=0

Q̃κ

Lmax∏
κ=L+1

Q̃κ, (21)

where Lmax is the maximal accessible orbital momen-
tum in the given N�Ω shell model space. The non-
normalized quasi-projector (21) can be used like the
CM nonnormalized quasi-projector (14) to extract
the (nonnormalized) component with a definite value
of the orbital momentum L by the algorithm described
briefly by Eq. (13) or in more detail by Eqs. (12).

The projector PLmax
L can be expressed as

PLmax
L =

1
DLmax

L

P̃Lmax
L , (22)

where

DLmax
L =

L−1∏
κ=0

[κ(κ + 1) − L(L + 1)] (23)

×
Lmax∏

κ=L+1

[κ(κ + 1) − L(L + 1)].

The structure of the projectors P Jmax
J , PSmax

S , and
P Tmax

T on the states with given values of the total
angular momentum J , total spin S, or isospin T is ex-
actly the same. The only difference is that, in the case
of an odd-A system, one should use half-integer J ,
T , or S values and modify, respectively, the products
in Eqs. (21) and (23).

The standard projection operator property (15) is
valid for all projectors (but not quasi-projectors) dis-
cussed above.

4. CONCLUSIONS

Expressions of the projection operators on the
states with a definite value of the angular momentum,
in the form of an expansion in powers of the SU(2)
generators, are known in the literature (see, e.g., [7]).
However, in the general case, this polynomial in-
cludes an infinite number of terms and is inconvenient
for use in nuclear shell model applications. As was
shown above, in the case of the shell model, the pro-
jector can be taken in the form of a finite polynomial in
generators that is much more useful for applications.
The suggested projectors PLmax

L , P Jmax
J , PSmax

S , and
P Tmax

T are of this form.
The CM projector PCM is also suggested as a

finite expansion in powers of a simple CM harmonic
oscillator operator HCM. To the best of my knowledge,
similar expressions for the CM projector were never
discussed in the literature.

The Lanczos iteration approach is utilized in the
modern shell model codes; i.e., the basis vectors are
obtained successively by acting using the Hamilto-
nian on the vector obtained at the previous step. The
intrinsic Hamiltonian (1) and the NCSM Hamilto-
nian (2) cannot produce CM excited states or change
the value of the total angular momentum of the state.
Hence, it is possible to project only the pivot vector
(the initial vector in the Lanczos iteration approach)
on the spurious-free subspace with the given definite
value of the total angular momentum J ; all the rest of
the basis vectors will be produced spurious-free and
with the same value of J by the Lanczos iterations.

Formally, one can use the projected pivot vector
and the intrinsic Hamiltonian (1) instead of the aux-
iliary Hamiltonian (2) in NCSM applications. How-
ever, it is well known that spurious states will be
produced in the Lanczos iteration approach owing to
computer noise (round-off errors). The term βQ̃0 in
Eq. (2) stabilizes the NCSM calculations, reducing
the computer noise if β is sufficiently large. Therefore,
it looks reasonable to utilize the auxiliary Hamilto-
nian (1) in the applications; probably, it is reasonable
to add the term γJ(J + 1) with sufficiently large γ to
the Hamiltonian (2) to reduce the computer noise in
calculations of the states with a definite value J of the
total angular momentum.
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