

7th INTERNATIONAL CONFERENCE ON NEW TRENDS IN CHEMISTRY 25 - 26 SEPTEMBER 2021

7th ICNTC BOOK OF ABSTRACTS

7th International Conference on New Trends in Chemistry September 25-26, 2021

7th INTERNATIONAL CONFERENCE ON NEW TRENDS IN CHEMISTRY

25 – 26 SEPTEMBER 2021

http://www.icntcconference.com/

7th International Conference on New Trends in Chemistry September 25-26, 2021

ICNTC E- Conference 2021

7th International Conference on New Trends in Chemistry

Published by the ICNTC Secretariat Editor: Assoc. Prof. Dr. Dolunay ŞAKAR DAŞDAN

ICNTC Secretariat Büyükdere Cad. Ecza sok. Pol Center 4/1 Levent-İstanbul E-mail: icntcconference@gmail.com <u>http://www.icntcconference.com</u>

Conference organised in collaboration with Monre Academy

ISBN: 978-605-67476-7-0

Copyright @ 2021 ICNTC and Authors All Rights Reserved No part of the material protected by this copyright may be reproduced or utilized in any form or by any means electronic or mechanical, including photocopying, recording or by any storage or retrieval system, without written permission from the copyrights owners

POWDER MIXTURES OF β--TRICALCIUM PHOSPHATE AND POTASSIUM HYDROSULFATE HOMOGENIZED UNDER MECHANICAL ACTIVATION FOR CERAMICS PREPARATION

Tatiana SAFRONOVA¹, Marat AKHMEDOV², Tatiana SHATALOVA³, Snezhana TIKHONOVA⁴, Gilyana KAZAKOVA⁵, Maksim KAIMONOV⁶, Alexander KNOTKO⁷

¹Lomonosov Moscow State University, 119991, Russia, Moscow, Leninskie Gory, 1, <u>t3470641@yandex.ru</u> ²A.N. Kosygin State University of Russia (Technology. Design. Art), 117997, Russia, Moscow, Sadovnicheskaya str., 33, p. 1, <u>akhmedov.mm@yandex.ru</u>

³Lomonosov Moscow State University, 119991, Russia, Moscow, Leninskie Gory, 1, <u>shatalovatb@gmail.com</u> ⁴Lomonosov Moscow State University, 119991, Russia, Moscow, Leninskie Gory, 1,

kurbatova.snezhana@yandex.ru

⁴Lomonosov Moscow State University, 119991, Russia, Moscow, Leninskie Gory, 1, <u>gilyanakk@gmail.com</u> ⁵Lomonosov Moscow State University, 119991, Russia, Moscow, Leninskie Gory, 1, <u>m.r.kaimonov@yandex.ru</u>

⁶Lomonosov Moscow State University, 119991, Russia, Moscow, Leninskie Gory, 1, alknt@mail.ru

Abstract

Powder mixtures of β -tricalcium phosphate β -Ca₃(PO₄)₂ and potassium hydrogen sulfate KHSO₄ homogenized under mechanical activation in acetone medium in planetary mill were used for producing of ceramics in K₂O-CaO-SO₃-P₂O₅ system. Powder mixtures were prepared at molar ratios of Ca₃(PO₄)₂/KHSO₄ established as 7/2, 4/2 and 1/2. The following formal reactions were used for calculation of quantities of starting components to create opportunity of preparation of ceramic composite materials containing calcium sulfate anhydrate CaSO₄ and phases of double calcium potassium phosphates such as potassium-substituted tricalcium phosphate KCa₁₀(PO₄)₇ and potassium rhenanite KCaPO₄ (labeling is given in brackets):

 $7\text{Ca}_3(\text{PO}_4)_2 + 2\text{KHSO}_4 \rightarrow \text{CaSO}_4 + 2\text{KCa}_{10}(\text{PO}_4)_7 + \text{SO}_3 + \text{H}_2\text{O} \; (\ll 7/2 \gg)$

 $4Ca_3(PO_4)_2 + 2KHSO_4 \rightarrow CaSO_4 + KCa_{10}(PO_4)_7 + KCaPO_4 + SO_3 + H_2O(((4/2)))$

 $Ca_3(PO_4)_2 + 2KHSO_4 \rightarrow CaSO_4 + 2KCaPO_4 + SO_3 + H_2O(((1/2)))$

According to XRD analysis data β -tricalcium phosphate β -Ca₃(PO₄)₂ was the main phase in all powder mixtures after treatment in planetary mill in acetone media. Only powder mixture «1/2» has slight quantities of additional phases. K₈H₉(SO₄)₇PO₄ and K₄H₅(SO₄)₃PO₄ were found additionally to β -tricalcium phosphate β -Ca₃(PO₄)₂ in powder mixture «1/2». Presumably phases of syngenite K₂Ca(SO₄)₂H₂O and/or gorgeyite K₂Ca₅(SO₄)₆ H₂O presented in powder mixtures in quasi-amorphous form after treatment in planetary mill.

Compacted ($P_{specific}=100MPa$) powder pre-ceramic items based on prepared mixtures were fired at temperature range of 700-900°C for producing ceramic samples. It was found that phase composition of ceramic samples considerably depends on composition of starting powder mixtures. According XRD analysis after firing at 800°C phase composition of ceramic samples «7/2» and «4/2» contained potassium calcium phosphate Ca₁₀K(PO₄)₇, βcalcium pyrophosphate β-Ca₂P₂O₇ and calciolangbeinite K₂Ca₂(SO₄)₃. Phase composition of ceramic samples «1/2» contained calciolangbeinite K₂Ca₂(SO₄)₃, β-calcium pyrophosphate β-Ca₂P₂O₇ and potassium sulfate K₂SO₄. Up to our knowledge all phases of prepared ceramic samples are biocompatible. It should be noted that potassium sulfate K₂SO₄ presented in ceramics «1/2» is water soluble salt. So additional investigations are required for creation of ceramics in the K₂O-CaO-SO₃-P₂O₅ system for different uses including biomedical purposes.

Acknowledgements: The financial support of RFBR project # 20-03-00550.

Key Words: calciolangbeinite; potassium calcium phosphate; potassium sulfate; calcium pyrophosphate; ceramics