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Abstract: Despite the growing popularity of video super-resolution (VSR), there is still no good way to assess the quality
of the restored details in upscaled frames. Some SR methods may produce the wrong digit or an entirely
different face. Whether a method’s results are trustworthy depends on how well it restores truthful details.
Image super-resolution can use natural distributions to produce a high-resolution image that is only somewhat
similar to the real one. VSR enables exploration of additional information in neighboring frames to restore
details from the original scene. The ERQA metric, which we propose in this paper, aims to estimate a model’s
ability to restore real details using VSR. On the assumption that edges are significant for detail and character
recognition, we chose edge fidelity as the foundation for this metric. Experimental validation of our work is
based on the MSU Video Super-Resolution Benchmark, which includes the most difficult patterns for detail
restoration and verifies the fidelity of details from the original frame. Code for the proposed metric is publicly
available at https://github.com/msu-video-group/ERQA.

1 INTRODUCTION

As a fundamental image- and video-processing task,
super-resolution remains a popular research topic.
It has a wide range of applications, from low-
complexity encoding1 to old-film restoration and
medical-image enhancement. Trends in quality as-
sessment of upscaled videos and images are favoring
estimation of statistical naturalness in combination
with fidelity. But restoration fidelity is much more
important than statistical naturalness for some tasks:
small-object recognition (e.g., license-plate numbers)
in CCTV recordings, text recognition, and medical-
image reconstruction.

With the development of deep-learning-based ap-
proaches, many super-resolution models produce vi-
sually natural frames but lose important details. For
example, the rightmost image in Figure 1 is percep-
tually better than the leftmost one, but the shape of
the shiny thread in the leftmost image is closer to
ground truth (GT, center). Occasionally, such models
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can even change the context in an image by, for exam-
ple, producing an incorrect number, character, or even
human face without decreasing traditional-metric val-
ues. In Figure 2, RPBN (Haris et al., 2019) added
horizontal lines to the bottom-right character, but all
three models score the same on traditional metrics. In
Figure 3, Real-ESRGAN (Wang et al., 2021) mixed
two letters from low-resolution images to form a com-
pletely different letter. In Figure 4, Real-ESRGAN
and RealSR (Ji et al., 2020) produced unnatural faces
that greatly differ from the source one.

Figure 1: Example of upscaled images that vary in detail-
restoration quality. The rightmost image is visually more
natural, but the shape of the details in the leftmost image is
closer to the original.

The examples in Figures 1–4 demonstrate that as-
sessment of detail-restoration quality for image and
video super-resolution is difficult. The best way to
estimate restoration fidelity is to conduct a subjective
comparison; it’s the most precise approach but is time
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Figure 2: Example of changing context in an upscaled video: text restoration has changed a character in the rightmost image.

Figure 3: Example of changing context in an upscaled
video: two characters (left) mix to yield a new one (cen-
ter) during text restoration.

Figure 4: Example of changing context in an upscaled
video: unnatural faces are the result here, differing consid-
erably from the source one (GT).

consuming and expensive. Another way involves ref-
erence quality metrics. Traditional similarity metrics
such as PSNR and SSIM (Wang et al., 2004) are of-
ten used to evaluate super-resolution models, but they
yield poor results and are unstable when dealing with
shifts and other common super-resolution artifacts.
LPIPS (Zhang et al., 2018) is increasingly popular for
this task, but it originally aimed to assess perceptual
similarity rather than fidelity. The new DISTS (Ding
et al., 2020a) metric is an improvement on LPIPS, but
it also focuses on perceptual similarity.

Our research focuses on analyzing super-
resolution algorithms, particularly their restoration
fidelity. When we started working on a benchmark
for video super-resolution, including a test for
restoration-quality assessment, we discovered that
existing metrics work fine for other tests (restoration
naturalness and beauty) but have a low correlation
with subjective detail-quality estimation. In this
paper, therefore, we introduce a new method for
evaluating information fidelity. Experiments reveal
that our metric outperforms other super-resolution
quality metrics in assessing detail restoration. 2

The main contributions of our work are the fol-
lowing:
1. A video-super-resolution benchmark based on a

new dataset containing the most difficult patterns
for detail restoration.

2. A subjective comparison examining the fidelity of
details from the original frame, instead of tradi-
tional statistical naturalness and beauty.

3. A new metric for assessing the detail-restoration
quality of video super-resolution.

2 RELATED WORK

PSNR and SSIM (Wang et al., 2004) are common
metrics for assessing super-resolution quality. We an-
alyzed 378 papers that propose super-resolution meth-
ods and found that since 2008, PSNR and SSIM have
remained the most popular metrics. But both have
been shown to exhibit a low correlation with sub-
jective scores. Only LPIPS (Zhang et al., 2018) has

2https://videoprocessing.ai/benchmarks/
video-super-resolution.html

https://videoprocessing.ai/benchmarks/video-super-resolution.html
https://videoprocessing.ai/benchmarks/video-super-resolution.html


Figure 5: Metrics for estimating super-resolution quality cited in papers proposing new methods, by year. PSNR and SSIM
(Wang et al., 2004) are the most popular; LPIPS saw wide use in 2020 and 2021.

grown in popularity over the last two years; other met-
rics remain less popular (Figure 5).

Several full-reference metrics for assessing super-
resolution visual quality have emerged. (Wan et al.,
2018) used four features (gradient magnitude, phase
congruency, anisotropy, and directionality complex-
ity) to calculate the perceptual structure measure-
ment (PFSM) in both the upscaled and original
high-resolution frames. The authors’ comparison of
PFSMs using a similarity function showed more-
consistent results than previous approaches with re-
gard to visual perception on the SRSED dataset.
(Zhou et al., 2021) calculated structural fidelity and
statistical naturalness, fused these coefficients into a
weighted sum, and achieved good correlation on the
QADS image database. (Zhou et al., 2019) compared
distorted and original images by separately estimat-
ing textural, structural, and high-frequency similarity.
The final score revealed an even better correlation on
QADS.

In a few papers, the authors proposed reduced-
reference metrics, which use low-resolution (LR) im-
ages as a reference. A popular approach is to ex-
tract structure or texture features from LR and up-
scaled (SR) images, compare them separately, and
fuse the resulting similarity indices (Yeganeh et al.,
2015; Tang et al., 2019; Fang et al., 2019). Metrics
based on this idea achieve a Pearson correlation co-
efficient of 0.79 to 0.83 and a Spearman correlation
coefficient of 0.69 to 0.85 on various datasets, de-
pending on the implementation. (Yang et al., 2019a)
trained a regression model using statistical features

extracted from LR and SR images, obtaining a cor-
relation similar to that of other top metrics on the
dataset from (Ma et al., 2017). (Shi et al., 2019) pro-
posed another approach for reduced-reference assess-
ment that uses the visual-content-prediction model to
measure the structure of the reference HR and SR im-
ages. This method outperforms previous ones on the
SISRSet dataset.

A number of no-reference metrics are also used
for video super-resolution. Most of them train regres-
sion models on statistical features extracted from up-
scaled frames (Ma et al., 2017; Zhang et al., 2019;
Beron et al., 2020), achieving a Spearman correlation
of 0.740 to 0.939 and a Pearson correlation of 0.728
to 0.9463, depending on the implementation and test
dataset. Also, many no-reference metrics are based
on features extracted using a pretrained neural net-
work—VGGNet, for example (Zhang et al., 2021).
In a few papers, the authors trained SVM using ex-
tracted features (Qian et al., 2019; Wang et al., 2018)
and obtained results similar to those of other met-
rics. (Greeshma and Bindu, 2018) calculated acu-
tance and spatial-discontinuity features in the gradi-
ent and wavelet domains and then pooled them in the
so-called super-resolution entropy metric (SREM).
They later proposed the SRQC metric (Greeshma and
Bindu, 2020), which estimates structure changes and
quality-aware features by considering fuzzy gradient
points and multiscale energy bands. Their metrics ex-
hibited good results, but they consider only a few im-
ages and four SR methods for the test dataset.

Edges have a strong influence on the human visual



system. Furthermore, edge fidelity is a base criterion
for assessing detail-restoration quality. Several meth-
ods thus consider edge features as the basis for qual-
ity assessment (Table 1). Some calculate edge fea-
tures, including number, length, direction, strength,
contrast, and width, and compare them using the simi-
larity measure to estimate image or video quality (At-
tar et al., 2016; Ni et al., 2017; Yang et al., 2019b).
Nevertheless, these metrics achieve on their datasets
almost the same correlation as traditional PSNR and
SSIM. In (Xue and Mou, 2011), the authors detected
edges in both reference and distorted images and
compared them by calculating recall. (Chen et al.,
2011) used histogram analysis for edge comparison.
These metrics deliver a slightly greater correlation
than PSNR and SSIM. Liu et al. (Liu et al., 2019)
proposed using the F1 score to evaluate edge fidelity,
but they declined to conduct a comparison with other
metrics and kept their code under wraps. Our method
is based on the same edge-comparison idea, but it’s
robust for small local and global edge shifts, which
appear during super-resolution but are unessential for
detail recognition. It yielded much better results than
other quality-assessment approaches.

A number of datasets are used for testing super-
resolution quality assessment (Table 2), but not for
detail restoration, and they lack difficult patterns for
that task. Therefore, we built a dataset for assessing
super-resolution quality that includes the most chal-
lenging content for detail restoration.

Summarizing the above analysis, few metrics
aim to assess and compare detail-restoration quality.
Some that use edge features have emerged, but no one
uses them for super-resolution, which involves pecu-
liar artifacts. Therefore, it’s important to obtain an
objective metric that correlates highly with human es-
timation of detail-restoration quality and that allows
comparison of super-resolution models, not only for
naturalness but also for information fidelity.

3 PROPOSED METHOD

3.1 Dataset Preparation

To analyze a VSR model’s ability to restore real de-
tails, we built a test stand containing patterns that are
difficult for video restoration (Figure 6).

To calculate metrics for particular content types
and to verify how a model works with different inputs,
we divide each output frame into parts by detecting
crosses:

Part 1 “Board” includes a few small objects and pho-

Figure 6: Test stand for the proposed VSR benchmark.

tos of human faces3. Our goal is to obtain re-
sults for the model operating on textures with
small details. The striped fabric and balls of
yarn may produce a Moire pattern (Figure 7).
Restoration of human faces is important for
video surveillance.

Figure 7: Example of a Moire pattern on the “Board.”

Part 2 “QR” comprises multiple QR codes of differ-
ing sizes; the aim is to find the size of the
smallest recognizable one in the model’s out-
put frame. A low-resolution frame may blend
QR-code patterns, so models may have diffi-
culty restoring them.

Part 3 “Text” includes two kinds: handwritten and
typed. Packing all these difficult elements into
the training dataset is a challenge, so they are
each new to the model as it attempts to restore
them.

Part 4 “Metal paper” contains foil that was vigor-
ously crumpled. It’s an interesting example
because of the reflections, which change pe-
riodically between frames.

Part 5 “Color lines” is a printed image with numerous
thin color stripes. This image is difficult be-

3Photos were generated by https://
thispersondoesnotexist.com/
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Table 1: A comparison of metrics based on edge features consideration. The results are taken from the original papers.

Metric Edge comparison Test dataset PLCC SRCC
EBIQA

(Attar et al., 2016)
Similarity measure

of length, number, orientation
A57
WIQ

0.8786
0.8113

0.8603
0.7582

ESIM
(Ni et al., 2017)

Similarity measure
of contrast, width, direction

SIQAD
SCID

0.8788
0.8630

0.8632
0.8478

MSEA
(Yang et al., 2019b)

Similarity measure
of contrast, structure SIQAD 0.8867 0.8773

rNSE
(Xue and Mou, 2011) Recall A57, CSIQ, LIVE,

IVC MICT, TID2008 0.8747 0.8649

EDHSSIM
(Chen et al., 2011) Histogram analysis LIVE — 0.9660

S. Liu et al.
(Liu et al., 2019) F1-score Custom dataset — —

Table 2: A comparison of datasets using for testing super-resolution quality assessment approaches.

Dataset # references # SR images # SR algorithms Subjective type
C. Ma et al.’s (Ma et al., 2017) 30 1620 9 MOS
QADS (Zhou et al., 2019) 20 980 21 Pairwise comparison
SupER (Köhler et al., 2019) 14 3024 20 Pairwise comparison
SRIJ (Beron et al., 2020) 32 608 7 MOS
SISRSet (Shi et al., 2019) 15 360 8 MOS
ECCV (Yang et al., 2014) 10 540 6 MOS
SRID (Wang et al., 2017) 20 480 8 MOS

cause thin lines of similar colors end up mix-
ing in low-resolution frames.

Part 6 “License-plate numbers” consists of a set of
car license plates of varying sizes from differ-
ent countries 4. This content is important for
video surveillance and dashcam development.

Part 7 “Noise” includes difficult noise patterns. Mod-
els cannot restore real ground-truth noise, and
each one produces a unique pattern.

Part 8 “Mira” contains a resolution test chart with
patterns that are difficult to restore: a set of
straight and curved lines of differing thick-
nesses and directions.

We captured the dataset using a Canon EOS 7D cam-
era. We quickly took a series of 100 photos and used
them as a video sequence. The shots were from a fixed
point without a tripod, so the video contains a small
amount of random motion. We stored the video as a
sequence of frames in PNG format, converted from
JPG. The camera’s settings were ISO 4000, aperture
400, and resolution 5,184x3,456.

The source video also has a resolution of
5,184x3,456 and was stored in the sRGB color space.

4The license-plate numbers are generated randomly and
printed on paper.

We degraded it using bicubic interpolation to generate
a ground truth of resolution 1,920x1,280. This step is
essential because many open-source models lack the
code to process a large frame; processing large frames
is also time consuming. We further degraded the in-
put video from ground truth, again using bicubic in-
terpolation, to 480x320 to test the models for 4x up-
scaling. The output of each model is also a sequence
of frames, which we compare with the ground-truth
sequence to verify the model’s performance.

3.2 Subjective Comparison

We used 21 super-resolution algorithms in our quality
assessment. We also added a ground-truth video, so
the experimental validation involves 22 videos. We
cut the sequences to 30 frames and converted them
to 8 frames per second (fps). This length allows sub-
jects to easily consider details and decide which video
is better. We then cropped from each video 10 snip-
pets that cover the most difficult patterns for restora-
tion and conducted a side-by-side pairwise subjective
evaluation using the Subjectify.us service, which en-
ables crowd-sourced comparisons.

To estimate information fidelity, we asked partic-
ipants in the subjective comparison to avoid choos-
ing the most beautiful video, but instead choose the

Subjectify.us


one that shows better detail restoration. Each partic-
ipant was shown 25 paired videos and in each case
had to choose the best video (“indistinguishable” was
also an option). Three of these pairs are for verifi-
cation, so the final results exclude their answers. All
other responses from successful participants are used
to predict subjective scores using the Bradley-Terry
model.

3.3 Edge Restoration Quality
Assessment Method

On the basis of the hypothesis that edges are signif-
icant for detail restoration, we developed the edge-
restoration quality assessment (ERQA) metric, which
estimates how well a model can restore edges in a
high-resolution frame. Our metric compensates for
small global and local edge shifts, assuming they
don’t complicate detail recognition.

First, we find edges in both the output and ground-
truth frames. Our approach uses an OpenCV imple-
mentation5 of the Canny algorithm (Canny, 1986).
The threshold for initially identifying strong edges is
200, and the threshold for linking edges is 100. These
coefficients allow us to highlight the edges of all ob-
jects, even small ones, while skipping lines, which are
unimportant (Figure 8).

Figure 8: Example of edges highlighted by Canny algorithm
(Canny, 1986) with chosen parameters.

Having found the edges in the ground-truth and
distorted frames as binary masks, we compare them
using the F1 score. Some models can generate frames
with a global pixel shift relative to ground truth, so
we checked the integer pixel shifts [−3,3] along both
axes and chose the one with the maximum PSNR
value. Compensating for this global shift aids our
metric considerably (Table 3).

During an upscaling, models may also shift edge
pixels locally, which in many cases is insignificant to
human perception of information. To compensate for
local single-pixel edge shifts, we consider as true pos-
itive any pixels on the output edges, which are not on

5https://docs.opencv.org/3.4/dd/d1a/group imgproc
feature.html#ga04723e007ed888ddf11d9ba04e2232de

the ground-truth edges but are near (on the difference
of one pixel) with the edge of GT (Figure 9).

We then noticed that some models produce a
wider edge compared with the ground truth, and our
method with local compensation (ERQAv1.0) marks
these edges as fully true positive. To correct this
shortcoming, ERQAv1.1 considers each point on a
ground-truth edge as corresponding to true positive
only once (Figure 10).

Figure 9: Visualization of ERQA metric.

Figure 10: A comparison of ERQAv1.0 and ERQAv1.1.
White = true positive, red = false positive.

4 EXPERIMENTAL VALIDATION

4.1 Ablation Study

To verify the significance of the global- and local-
shift compensation, we conducted a basic edge com-
parison without compensation, with only global com-
pensation, with both global and local compensation
(v1.0), and with penalization of wide edges (v1.1).

https://docs.opencv.org/3.4/dd/d1a/group__imgproc__feature.html#ga04723e007ed888ddf11d9ba04e2232de
https://docs.opencv.org/3.4/dd/d1a/group__imgproc__feature.html#ga04723e007ed888ddf11d9ba04e2232de


All consistently increased both the Pearson (PLCC)
and Spearman (SRCC) correlation coefficients (Ta-
ble 3).

4.2 Comparison with Other Metrics

We conducted a study of existing metrics for video-
quality assessment and found that some work well
for naturalness and beauty, but none works well for
restoration. We calculated several well-known met-
rics on a new dataset: PSNR, SSIM (Wang et al.,
2004), MS-SSIM (Wang et al., 2003), VMAF6, the
recently developed LPIPS (Zhang et al., 2018), which
showed good results when assessing super-resolution
imaging, its improvement DISTS (Ding et al., 2020b)
and metric for SR assessment (Ma et al., 2017). Our
metric outperforms all others in both the Pearson and
Spearman correlation coefficients (Figure 13). LPIPS
places second. A popular metric for video-quality
assessment, VMAF, exhibits poor results even com-
pared with the traditional SSIM for this case. Multi-
scale structural similarity (MS-SSIM), which usually
delivers better results than simple structural similarity
(SSIM), ranked last on super-resolution.

We tried our global-shift-compensation scheme in
an attempt to improve the performance of these met-
rics. Nearly all metrics (except VMAF) were better
as a result (Table 4).

Because metrics can work differently on different
content types, we separately considered the correla-
tion of metric values with subjective assessment on
all crops and then calculated the mean correlation.
Despite its simple and straightforward construction,
ERQA delivers more-consistent results with subjec-
tive assessment (Figure 14) and outperforms all other
metrics in both the Pearson (Table 5) and Spearman
(Table 6) coefficients when assessing information fi-
delity.

4.3 QADS Dataset

We also verified our metric on the QADS dataset
(Zhou et al., 2019). Although the mean correlation
is lower than that of a few other metrics, the reason
is that this dataset was developed for another test case
(visual perception). In some situations, an image with
lower visual perception looks more like the original
one than does an image with higher visual perception
(Figure 12). At the same time, working with images
closer to our test-case ERQA yields good results (Fig-
ure 11).

6https://github.com/Netflix/vmaf

Figure 11: Scatterplot of ERQA and subjective scores on
a test using the QADS dataset along with a corresponding
ground-truth image.

5 CONCLUSION AND FUTURE
WORK

In this paper, we proposed a new full-reference ERQA
metric for assessing detail restoration by video super-
resolution. It compares edges in reference and target
videos to analyze how well a VSR model restores the
source structure and details. We also created a spe-
cial dataset for assessing VSR quality and used it to
analyze our metric through subjective comparisons.
ERQA shows a high correlation with human detail
perception and overall better results than traditional
as well as state-of-the-art VQA methods. The con-
cept underlying our metric allows it to serve for simi-
lar restoration tasks, such as deblurring, deinterlacing,
and denoising.

ACKNOWLEDGEMENTS

This work was partially supported by Russian Foun-
dation for Basic Research under Grant 19-01-00785 a
and by Foundation for Assistance to Small Innovative
Enterprises under Grant UMNIK 16310GU/2021.

REFERENCES

Attar, A., Shahbahrami, A., and Rad, R. M. (2016). Image
quality assessment using edge based features. Multi-
media Tools and Applications, 75(12):7407–7422.

Beron, J., Benitez-Restrepo, H. D., and Bovik, A. C. (2020).
Blind image quality assessment for super resolution
via optimal feature selection. IEEE Access, 8:143201–
143218.

Canny, J. (1986). A computational approach to edge de-
tection. IEEE Transactions on Pattern Analysis and
Machine Intelligence, PAMI-8(6):679–698.

Chen, X., Zhang, R., and Zheng, S. (2011). Image quality
assessment based on local edge direction histogram.
In 2011 International Conference on Image Analysis
and Signal Processing, pages 108–112. IEEE.

Ding, K., Ma, K., Wang, S., and Simoncelli, E. P. (2020a).



Table 3: An ablation study of the proposed method.

Stage PLCC SRCC
Without compensation (baseline) 0.5035 0.4745
+ Compensation of global shift 0.7395 (+0.2360) 0.6342 (+0.1597)
+ Compensation of local shift (v1.0) 0.8243 (+0.0848) 0.7383 (+0.1041)
+ Penalize false wide edges (v1.1) 0.8316 (+0.0540) 0.7519 (+0.0486)

Table 4: Performance comparison of all metrics with and without global compensation shifts.

Metric Without compensation With global pixel shift compensation
PLCC SRCC PLCC SRCC

LPIPS 0.8103 0.7077 0.8352 (+0.0249) 0.7377 (+0.0300)
DISTS 0.8094 0.6513 0.8278 (+0.0184) 0.6931 (+0.0418)
MS-SSIM 0.2796 0.4282 0.5992 (+0.3196) 0.5484 (+0.1202)
VMAF 0.2998 0.4692 0.2644 (-0.0354) 0.4572 (-0.012)
VMAF(not clipped) 0.3428 0.4706 0.2999 (-0.0429) 0.4586 (-0.012)

Figure 12: Example of visual perception correlating poorly with restoration quality. The leftmost image looks better, but the
rightmost is closer to the original (center).

Figure 13: Mean Pearson (PLCC) and Spearman (SRCC) correlations between metric values and subjective assessment.
*Denotes metrics calculated using the global-shift compensation scheme.

Image quality assessment: Unifying structure and tex-
ture similarity. arXiv preprint arXiv:2004.07728.

Ding, K., Ma, K., Wang, S., and Simoncelli, E. P. (2020b).
Image quality assessment: Unifying structure and tex-
ture similarity. CoRR, abs/2004.07728.

Fang, Y., Liu, J., Zhang, Y., Lin, W., and Guo, Z. (2019).
Reduced-reference quality assessment of image super-
resolution by energy change and texture variation.

Journal of Visual Communication and Image Repre-
sentation, 60:140–148.

Greeshma, M. and Bindu, V. (2018). Novel quality met-
ric for image super resolution algorithms-super reso-
lution entropy metric (srem). In International Confer-
ence on Recent Trends in Image Processing and Pat-
tern Recognition, pages 151–168. Springer.

Greeshma, M. and Bindu, V. (2020). Super-resolution qual-



Table 5: Pearson correlation of metrics with subjective assessment on all test cases.

Metric Lego Toy Faces Yarn QRs Text-1 Text-2 Car-1 Car-2 Mira Mean
ERQAv1.0 0.88 0.91 0.84 0.90 0.88 0.87 0.91 0.92 0.87 0.70 0.87
ERQAv1.1 0.87 0.92 0.87 0.90 0.91 0.85 0.88 0.95 0.93 0.70 0.88
SSIM* 0.74 0.37 0.76 0.51 0.71 0.62 0.72 0.89 0.88 0.48 0.67
PSNR* 0.45 0.07 0.64 0.05 0.48 0.29 0.57 0.82 0.75 0.20 0.43
LPIPS 0.85 0.87 0.55 0.88 0.85 0.89 0.79 0.85 0.76 0.79 0.81
LPIPS* 0.87 0.89 0.60 0.90 0.87 0.89 0.79 0.88 0.81 0.85 0.84
DISTS 0.77 0.7 0.71 0.81 0.8 0.91 0.93 0.89 0.83 0.75 0.81
DISTS* 0.77 0.7 0.72 0.82 0.83 0.91 0.95 0.93 0.89 0.76 0.83
MS-SSIM 0.32 0.21 0.19 0.13 0.24 0.30 0.43 0.40 0.31 0.27 0.28
MS-SSIM* 0.76 0.27 0.72 0.44 0.59 0.56 0.57 0.86 0.88 0.35 0.60
VMAF 0.19 0.25 0.25 0.14 0.43 0.42 0.54 0.52 0.40 0.28 0.34
VMAF* 0.12 0.22 0.17 0.17 0.42 0.38 0.48 0.46 0.32 0.26 0.30
VMAF (clip) 0.15 0.21 0.20 0.12 0.4 0.4 0.52 0.45 0.31 0.23 0.30
VMAF (clip)* 0.10 0.20 0.13 0.15 0.39 0.36 0.46 0.40 0.25 0.22 0.27
Ma et al. 0.54 0.85 -0.16 0.8 0.73 — — — — — 0.55

Table 6: Spearman correlation of metrics with subjective assessment on all test cases.

Metric Lego Toy Faces Yarn QRs Text-1 Text-2 Car-1 Car-2 Mira Mean
ERQAv1.0 0.87 0.72 0.85 0.85 0.66 0.85 0.89 0.86 0.79 0.38 0.77
ERQAv1.1 0.87 0.66 0.89 0.84 0.65 0.85 0.91 0.92 0.88 0.41 0.79
SSIM* 0.68 0.20 0.81 0.33 0.52 0.57 0.63 0.86 0.86 0.29 0.58
PSNR* 0.36 -0.05 0.66 0.14 0.40 0.40 0.54 0.82 0.72 0.06 0.41
LPIPS 0.70 0.79 0.52 0.79 0.68 0.88 0.63 0.67 0.67 0.75 0.71
LPIPS* 0.78 0.81 0.56 0.84 0.69 0.88 0.65 0.72 0.71 0.75 0.74
DISTS 0.6 0.35 0.69 0.65 0.54 0.84 0.79 0.74 0.72 0.58 0.65
DISTS* 0.6 0.35 0.72 0.71 0.58 0.86 0.88 0.87 0.81 0.56 0.694
MS-SSIM 0.38 0.30 0.59 0.20 0.32 0.48 0.47 0.56 0.59 0.39 0.43
MS-SSIM* 0.77 0.19 0.68 0.35 0.48 0.53 0.6 0.82 0.81 0.25 0.55
VMAF 0.36 0.35 0.61 0.33 0.36 0.52 0.53 0.55 0.60 0.48 0.47
VMAF* 0.33 0.36 0.57 0.38 0.34 0.52 0.48 0.56 0.58 0.47 0.46
VMAF (clip) 0.36 0.35 0.60 0.33 0.36 0.52 0.53 0.55 0.59 0.49 0.47
VMAF (clip)* 0.33 0.36 0.56 0.38 0.34 0.52 0.48 0.56 0.57 0.47 0.46
Ma et al. 0.47 0.88 -0.28 0.62 0.71 — — — — — 0.48

ity criterion (srqc): a super-resolution image quality
assessment metric. Multimedia Tools and Applica-
tions, 79(47):35125–35146.

Haris, M., Shakhnarovich, G., and Ukita, N. (2019).
Recurrent back-projection network for video super-
resolution. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 3897–3906.

Ji, X., Cao, Y., Tai, Y., Wang, C., Li, J., and Huang, F.
(2020). Real-world super-resolution via kernel esti-
mation and noise injection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition Workshops, pages 466–467.
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