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Noether’s theorem on constants of the motion of dynamical systems has recently
been extended to classical dissipative systems (Markovian semi-groups) by Baez
and Fong [J. Math. Phys. 54, 013301 (2013)]. We show how to extend these results
to the fully quantum setting of quantum Markov dynamics. For finite-dimensional
Hilbert spaces, we construct a mapping from observables to completely positive
maps that leads to the natural analogue of their criterion of commutativity with the
infinitesimal generator of the Markov dynamics. Using standard results on the relax-
ation of states to equilibrium under quantum dynamical semi-groups, we are able
to characterise the constants of the motion under quantum Markov evolutions in the
infinite-dimensional setting under the usual assumption of existence of a stationary
strictly positive density matrix. In particular, the Noether constants are identified with
the fixed point of the Heisenberg picture semi-group. C 2015 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4907985]

I. INTRODUCTION

Noether’s Theorem has traditionally been formulated within the framework of closed systems
where it has been of central importance in formulating the concept of constants of the motion
for Lagrangian dynamical systems; however, the widespread belief is that it does not apply to
dissipative systems. Recently, a version of the theorem has been formulated by Baez and Fong1 for
classical Markovian models. Here, a constant of the motion is a random variable on the state space
of a classical Markov process whose probability distribution is time invariant under the Markov
semi-group. While entirely classical, their investigation draws on analogies to closed quantum dy-
namics: indeed, random variables may be identified with the operators of pointwise multiplication
by the random functions, and they establish that constancy of the motion equates with commu-
tativity of these operators with the Markov transition mechanism operators (or their infinitesimal
generator).

In this paper, we extend these results to the setting quantum dynamical semi-groups (QDSs).2

II. CLASSICAL MARKOV PROCESSES WITH FINITE STATE SPACES

This section reviews the results of Baez and Fong.1 Our only contribution in this section is to
present the results in a fashion that makes it easier to see extensions to quantum Markov models in
Secs. III and IV.
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Let Γ be a finite set, say, Γ = {1, . . . ,d} for definiteness. We denote by Σ (Γ) the set of all
probability vectors p, that is, d-tuples p = [px], with px ≥ 0, and


x px = 1.

A classical dynamical semi-group (CDS) with state space Γ is determined by a transition mech-
anism (Tt)t≥0 of the form Tt =

�
Txy(t)� that forms a matrix semi-group: TtTs = Tt+s, with T0 = Id, the

d × d identity matrix, such that T (t) maps Σ (Γ) to itself. The entries Txy(T) give the conditional
probabilities for a transition from state y to state x in time t. An initial probability vector p evolves
under the transition mechanism as p (t) = Tt p. Note that we require the identities

x

Txy (t) = 1, for all y ∈ Γ. (1)

It follows from the semi-group law that

Tt = etM, (2)

where M ∈ Rd×d is called the infinitesimal generator of the transition mechanism. To lowest order
in t, we have 0 ≤ px (t) = px + t


y Mxypk +O

�
t2� and to be true for all t ≥ 0, we require that

Mxy ≥ 0, for all x , y. (3)

We also require that 
x∈Γ

Mxy = 0, for all y ∈ Γ, (4)

which is the infinitesimal form of (1). Requirements (3) and (4) characterise the infinitesimal
generators of Markov transition matrices.

Now, let A be a random variable on Γ, its expectation for a fixed probability vector p ∈ Σ (Γ) is

E [A] =

x∈Γ

A (x) px.

This may be written as E [A] = a aKA(a), where

KA (a) =


{x∈Γ:A(x)=a}
px = Pr {A = a} . (5)

KA is the probability distribution of A determined by p. The probability distribution determined by
p (t) = T (t)p is similarly denoted as KA

t , and for any Borel function f , we have that

Et [ f (A)] =

x, y∈Γ

f (A (x))Txy (t) py ≡

a

f (a) KA
t (a) .

Definition 1. A random variable A with sample space Γ is said to be a constant for the CDS
with Markov mechanism T on Γ if, for each initial p ∈ Σ (Γ), its probability distribution KA

t does not
depend on t ≥ 0.

This means that for each p ∈ Σ (Γ) and any polynomial function f , we have for all t ≥ 0

Et [ f (A)] = E [ f (A)] .
The transition mechanism furnishes an equivalence relation on Γ as follows: we say that x ∼ y

if and only if we have the matrix element [Mn]xy , 0 for some positive integer power n. We shall
denote the σ-algebra3 generated by the equivalence classes determined by transition mechanism by
M.

Theorem (Baez-Fong).1 For each random variable A on Γ, we define the d × d matrix

Â = diag (A (1) , . . . , A (d)) =



A (1) 0 · · · 0
0 A(2) 0
...

. . .
...

0 0 · · · A(d)



. (6)
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Let M be the infinitesimal generator for a Markov transition mechanism on Γ. Then, the following
are equivalent:

1. A is a constant of the CDS;
2. the mean and variance of the probability distribution KA

t are constant in time;
3. A is measurable with respect to the σ-algebra M;
4.

�
Â,M

�
= 0.

The proof can be found in Ref. 1, and we sketch the arguments for completeness in the
Appendix.

More generally, let (Γ,G, µ) be a σ-finite measure space and set

A = L∞(Γ,G, µ).
The space of densities L1(Γ,G, µ) is the dual to A, and a semi-group (Tt)t≥0 on the densities leads to
a dual semi-group (Jt)t≥0 on A given by

Γ

A(x) (TtS)(x) µ[dx] =

Γ

(Jt A)(x) S(x) µ[dx],

for all A ∈ A, S ∈ L1(Γ,G, µ). With an obvious abuse of notation, we write (TtP)[dx] for (Tt ρ)(x) µ
[dx] whenever P is absolutely continuous with respect to µ with Radon-Nikodym derivative ρ.
The probability distribution of a random variable A ∈ A at time t for a given initial distribution
P[dx] = ρ(x) µ[dx] is then

K
A, ρ
t = (TtP) ◦ A−1,

and the random variable A is a constant under the CDS if KA, ρ
t is independent of t for all fixed

probability densities ρ ∈ L1(Γ,G, µ).
Baez and Fong establish the more general result for a continuous CDS (Tt)t≥0 on L1(Γ,G, µ)

that a random variable A satisfies [Â,Tt] = 0 (for all t ≥ 0) if and only if the first two moments of
K

A, ρ
t are independent of t for all fixed probability densities ρ ∈ L1(Γ,G, µ).

It is instructive to express these results in a more algebraic language so as to anticipate the
quantum version. The collection of random variables A = L∞(Γ,G, µ) is, in fact, a commutative von
Neumann algebra. The random variables that are the constants under a given Markovian dynamics
are, in the case of finite sample space Γ at any rate, identified as the M-measurable ones. Mathe-
matically, there is a one-to-one correspondence between σ-algebras M and the algebras of bounded
M-measurable functionsM. In fact,M will then be a commutative von Neumann sub-algebra, so an
alternative statement of the Baez-Fong result is that a bounded random variable will be a constant of
a classical Markov semi-group if and only if it belongs to the von Neumann algebraM determined
by the transition mechanism (this applies to their result on general Markov semi-groups).

III. NOETHER’S THEOREM FOR QUANTUM MARKOV DYNAMICS (FINITE STATE SPACE)

We now move to the setting of a finite-dimensional Hilbert space h = Cd. The space of states
becomes the set Σd of density matrices, that is, matrices ϱ ∈ Cd×d satisfying the properties ϱ ≥ 0
and tr {ϱ} = 1. Each ϱ ∈ Σd determines the expectation (or state)

E [ · ] = tr {ϱ ·} .
Observable quantities are described by observables, that is, Hermitian d × d matrices. Each

observable A admits a spectral decomposition A =


a a Pa, where the sum is over the spectrum
of A and Pa is the orthogonal projection onto the eigenspace corresponding to eigenvalue a.
We find that E [ f (A)] = a f (a)KA(a) where the distribution KA is now given by Born’s rule
KA(a) = tr {ϱPa}.

Let A = B (h) be the algebra of bounded operators on the Hilbert space, here just represented
as d × d complex valued matrices. We are interested in linear maps T : A → A which take density
matrices to density matrices. Furthermore, we impose the standard requirement that the maps are
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completely positive (CP), see, e.g., Ref. 2. They should also be trace-preserving

tr {T (S)} = tr {S} , for all S ∈ A.

As is well-known, such CP maps (also called quantum communication channels) may be repre-
sented as2

T (S) =

k

VkSV ∗k ,

where {Vk}k is a set of operators in A called the Kraus maps. The trace preserving property is
ensured if


k V ∗

k
Vk = Id.

A family (Tt)t≥0 of CP trace-preserving maps forming a semi-group (T0 = id,Tt ◦ Ts = Tt+s) is
said to be a QDS.

Definition 2. An observable A is a constant of QDS if, for any initial state ϱ ∈ Σd, we have
KA

t (a) = tr {Tt(ϱ) Pa} independent of t ≥ 0.

Let A ∈ A be an observable with spectral decomposition


a a Pa. For any polynomial f , we
define a map f (A) : A → A by

f (A) (S) ,

a

f (a) PaSPa. (7)

This will be our quantum mechanical analogue of the Baez-Fong map (6): where they convert
random variables on a d-dimensional sample space into a diagonal matrix, we convert a Hermitian
matrix into a CP map. We, in fact, see that

tr

f (A) (ϱ) =


a

f (a) tr {PaϱPa}

=

a

f (a) tr {ϱPa} = tr { f (A) ϱ}

= E [ f (A)] .
Now, let us consider the criterion


f (A),Tt


= 0, for all t ≥ 0, (8)

where the commutator of maps is now understood as [T1,T2] ≡ T1 ◦ T2 − T2 ◦ T1.
Proposition. Condition (8) implies that A is a constant for the QDS (see Definition 2).

Proof: If condition (8) is satisfied, then we have that

Et [ f (A)] = tr { f (A) Tt(ϱ)}
= tr


f (A) ◦ Tt (ϱ)



= tr

Tt ◦f (A) (ϱ)



= tr

f (A) (ϱ) (as Tt is trace-preserving!)

= E [ f (A)] . �

For the class of quantum Markov dynamics considered here, it is well-known7,8 that they are
generated by infinitesimal mapsM : A → A so that

Tt = etM,

where we have the specific form

M(S) ≡

k


LkSL∗k −

1
2

SL∗kLk −
1
2

L∗kLkS

+ i[S,H], (9)
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with {Lk} a collection of operators in A and H ∈ A Hermitian. The state ϱt = Tt(ϱ) then satisfies
the master equation d

dt
ϱt =M(ϱt).

The infinitesimal form of condition (8) is then

f (A),M

= 0. (10)

We remark that Tt is the Schrödinger picture form of the channel; however, we can also work
with the Heisenberg picture form Jt. These are CP maps determined by the duality tr{Tt(S) A} ≡
tr{S Jt(A)}, for all S, A ∈ A. The trace-preserving property ofTt is equivalent to the propertyJt(Id) =
Id. The generator of the semi-groupJt is then the Gorini-Kossakowski-Sudarshan-Lindblad generator
L adjoint toM which takes the form2

L(A) ≡

k


L∗k ALk −

1
2

AL∗kLk −
1
2

L∗kLk A

− i[A,H]. (11)

An observable A is said to be a fixed point of a quantum Markov dynamics if it is a fixed
point of the corresponding Heisenberg maps, that is, Jt(A) = A for all t ≥ 0. Clearly, if A is a fixed
point of Jt, then tr{Tt(ϱ) A} ≡ tr{ϱJt(A)} = tr{ϱ A}, so it is a constant of the quantum Markov
dynamics.

Proposition. An observable A satisfies condition (8) if and only if it is a fixed point of the
corresponding Heisenberg maps.

Proof: We begin by noting that

tr{[Ef (A),Tt](S)} = tr{ f (A)Tt(S)} − tr{Ef (A)(S)}
= tr{S Jt( f (A))} − tr{S f (A)},

and so if A is a fixed point of Jt, then [Ef (A),Tt] = 0 as S was arbitrary.
Conversely, suppose that condition (8) is satisfied. Let us take the Kraus form for map at time t:

Tt(S) ≡ k Vk(t)SV ∗
k

. (Note that Vk(t) is not required to depend continuously on t.) The Heisenberg
map will then have the adjoint form Jt(A) = k Vk(t)∗AVk(t). Then, the condition implies that

k,a

Vk(t)PaSPaVk(t)∗ f (a) =

k,a

f (a) PaVk(t)SVk(t)∗Pa.

As the choice of f was arbitrary, this implies that
k

Vk(t)PaSPaVk(t)∗ =

k

PaVk(t)SVk(t)∗Pa. (12)

If we set S = Pb where a , b, then we find that (12) reduces to 0 =


k(PaVk(t)Pb)(PbVk(t)∗Pa)
and so we see that PaVk(t)Pb ≡ 0. On the other hand, setting S = Pa leads to the conclusion that if
Ya(t) = k Vk(t)PaVk(t)∗, then Ya(t) = PaYa(t)Pa. It follows that

[Vk(t),Pa] = 0

for each eigenvalue a of A and therefore [Vk(t), A] = 0. As A commutes with all the Kraus operators,
we get that

Jt(A) =

k

Vk(t)∗AVk(t) ≡

k

Vk(t)∗Vk(t) A = A.

So condition (8) implies that A is a fixed point of the quantum Markov dynamics. �

IV. CONSTANTS OF QUANTUM MARKOV SEMI-GROUPS (GENERAL CASE)

In this section, we investigate the question of characterising the constant observables for a
given quantum dynamic semi-group in the general setting where the observables belong to the set
A of bounded operators on a fixed separable Hilbert space h. Let T(h) denote the set of trace-class
operators on h, then the constants of a QDS (Tt)t≥0 are the elements of the set
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M =


A ∈ A : tr{(Ttϱ) f (A)} = tr{ϱ f (A)}, ∀ϱ ∈ T(h), t ≥ 0, f : C → C bounded measurable


.

Note thatM may contain non-self-adjoint elements and may be a non-commuting set of operators.
Transferring to the Heisenberg picture, we likewise define the fixed points of the QDS (Jt)t≥0 to

be the collection of operators

F ,


A ∈ A : Jt(A) = A, ∀ t ≥ 0

.

Intuitively, one suspects for any reasonably defined QDS the constants of the QDS M and the
fixed points of the QDSF are the same. To make any progress in the general case, however, we need
to meet certain technical requirements. The following assumption will turn out to be sufficient.

Postulate (P) There exists a strictly positive density matrix ϱ̂ > 0 on h that is stationary with
respect to QDS, that is, Tt( ϱ̂) = ϱ̂ for all t > 0, where Tt is the Schrödinger picture form of the QDS.

We can now state a Noether theorem for quantum dynamical semi-groups.

Theorem Suppose we are given a QDS of maps (Tt)t≥0 continuous in the trace-norm topology.
If the postulate (P) holds then the collection of fixed pointsF forms a von Neumann algebra and this
is the algebraM of constants for the QDS. Moreover, the infinitesimal generator then takes form (9)
with H,Lk,


k L∗

k
Lk ∈ A and we have

M ≡


A ∈ A : [A,H] = 0, [A,Lk] = 0, [A,L∗k] = 0,∀ k

. (13)

Proof: We first observe that the dual Heisenberg semi-group (Jt)t≥0 will be norm continuous.
For A to be a constant under the QDS, we require that tr{ϱJt( f (A))} = tr{ϱ f (A)} for each t > 0
and each density matrix ϱ, and any bounded continuous function f , say. Consequently, we must
have that f (A) will also be a fixed point of the QDS. What is not immediate at present is the
property that A ∈ F necessarily implies that f (A) ∈ F, or in other words that the fixed points form
an algebra.

However, the existence of ϱ̂, satisfying the conditions of the postulate (P), implies that the state
Ê[ · ] it generates is a normal, faithful stationary state for the QDS.5 This ensures that the fixed
pointsF now form a von Neumann algebra.4 Consequently, if A is a fixed point, then any continuous
bounded function f (A) is also a fixed point, and therefore, A is a constant of the QDS.

The generators of norm-continuous QDS have Lindblad generators of form (9). The character-
isation of the fixed points as given in (13) then follows from Theorem 3.3, p. 281, of Frigerio and
Verri.6 �

Note that M may be non-commutative. The requirement that the Schrödinger semi-group
(Tt)t≥0 be continuous in the trace-norm topology implies that the infinitesimal generator M still
takes form (9). This is the classic result of Lindblad.7 This restriction is not essential, and sufficient
conditions for when form (9) holds but with the operators H,Lk are unbounded have been derived
by Fagnola and Rebolledo,4 see also Ref. 9.

Postulate (P), however, is more essential as it ensures that the fixed points M form a von
Neumann algebra. We may explain characterisation (13) ofM in terms of the infinitesimal generator
as follows: for a closed Hamiltonian evolution, the commutativity requirement with the Hamiltonian
H is straightforward; for A self-adjoint to be a constant, we would require Jt(A2) ≡ Jt(A)2 which
at the infinitesimal level implies L(A2) − L(A) A − AL(A) = 0, but this last expression takes the
form


k[A,Lk]∗[A,Lk] ≡ 0 and this requires [A,Lk] = 0 for each k. Every non-self-adjoint Noether

constant should then be the sum A1 + iA2 with A1, A2 self-adjoint Noether constants.
Postulate (P) deserves some further comment as it implies that M is invariant under the

modular group (σÊt )t ∈R from the Tomita-Takesaki theory, in fact,
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[σÊt ,Jt] = 0,

and moreover that there exists a conditional expectation Ê[·|M] from A onto M. In the present
situation, Ê[·|M] will be the (unique) faithful, normal conditional expectation with Ê[·] as invariant
state,

Ê[MÊ[A|M]] = Ê[M A],
for all M ∈ M. We remark that conditional expectations from a von Neumann algebra onto a
sub-algebra do not generally exist.

The original motivation for quantum dynamical semi-groups was to study convergence to equi-
librium of arbitrary initials states for general quantum open systems. The results in this area may be
rephrased using the Noether theorem as saying that all states converge to the (unique) equilibrium
state ϱ̂ if and only if the only constants of the QDS are multiples of identity, that is,M ≡ C I. More
generally, a non-trivial algebra M of observables that are constant under a QDS implies that we do
not have convergence to a unique stationary state.

A general condition for the existence of a stationary state ϱ̂ > 0 is given by Fagnola and
Rebolledo,4 including their Theorem 4.2 which gives the condition on the infinitesimal generator.

We finally remark that Ê[Jt(A)|M] = Jt(Ê[A|M]) as both sides equal Ê[A|M] due to the invari-
ance and stationarity of the state Ê. This may be written as


Ê[·|M],Jt


= 0, ∀t ≥ 0. (14)

This is the quantum analogue of the criterion established by Baez and Fong for classical Markov
semi-groups.
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APPENDIX: SKETCH OF THE PROOF OF THE BAEZ-FONG THEOREM

(1) implies (2). Clearly constancy of the distribution implies constancy of the first and second
moments.

(2) implies (3). If (2) holds, then the time-derivative of the expectation


x, y A(x)mTxy(t)p(y)
vanishes for every probability vector and for m = 0,1,2. This implies that


x∈Γ A(x)mMxy = 0

for all y ∈ Γ and for m = 0,1,2. In turn (by expanding the bracket), the expression


xy[A(x) −
A(y)]2 Mxy vanishes identically. As Mxy ≥ 0 for x , y , we see that if Mxy , 0 and x , y , then
A(x) − A(y) = 0. By transitivity of the equivalence relation, we get that A(x) = A(y) for all x ∼ y .

(3) implies (4). We note that the matrix C = [Â,M] has components Cxy = A(x) Mxy − Mxy

A(y). Evidently, we have Cxy = 0 whenever x and y belong to different equivalence classes, since
we then have Mxy = 0. If we additionally assume (3) that A(x) = A(y) whenever x ∼ y , we see
immediately that Cxy = [A(x) − A(y)] Mxy ≡ 0 whenever x ∼ y .

(4) implies (1). We see that d
dt


x f (A(x)) px(t) = x, y f (A(x)) Mxy py(t); however, if (4)

holds, then we have the identity f (A(x)) Mxy = Mxy f (A(y)), and so d
dt


x f (A(x)) px(t) =

x, y f (A(y) Mxy py(t), but this will vanish identically due to (4).
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