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Introduction

A well-mixed system undergoing aggregation and fragmentation can be described by
equations
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1
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ck
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Fij, (1)

where ck(t) is the concentraion of clusters composed of k monomers.
Kij = Kji ≥ 0 is the rate of aggregation

[i]⊕ [j]
Kij−−→ [i + j] (2)

Fij = Fji ≥ 0 is the rate of binary fragmentation

[i + j]
Fij−−→ [i] + [j] (3)

For such class of systems steady oscillations were discovered in [2] and in [3] for exchange-
driven aggregation equations.

In the current work (see [1] in detail) we consider a slightly simpler class of processes,
and provide much stronger evidence for never-ending oscillations. We consider systems in
which each aggregation event involves at least one monomer:

[1]⊕ [s]
As−→ [1 + s] (4)

and the shattering is assumed to be spontaneous

[s]
Bs−→ [1] + · · · + [1]︸ ︷︷ ︸

s

(5)

The governing equations read
dcs
dt

= c1[As−1cs−1 − Ascs]−Bscs, s ≥ 2 (6a)

dc1
dt

=

∞∑
s≥2

sBscs − 2A1c
2
1 − c1

∑
s≥2

Ascs (6b)

and total mass is conserved M =
∞∑
s=1

scs(t) ≡ const.

Main Objectives

• Demonstrate persistent oscillations for kinetic equations with spontaneous fragmentation,
• Show that they arise via Hopf bifurcation,
• Descrtibe the transition region in parameter space.

Persistent oscillations and choice of coefficients

In this work we concentrate on case As = s and recast the original equations into
dcs
dt

= c1[(s− 1)cs−1 − scs]−Bscs, s ≥ 2 (7a)

dc1
dt

=

∞∑
s≥2

sBscs − c21 −Mc1 (7b)

We assume that total mass is M = 1, which can be achieved with proper scaling

cs 7→Mcs, Bs 7→MBs, t 7→ 1

M
t (8)

These equations are still too general, so we further specialize to a class of algebraic break-up
rates

Bs = Bsβ, β ≥ 0 (9)

All in all, we find the oscillatory solutions in the of parameters (B, β) and show that they
arise through a Hopf bifurcation.

Steady states, 0 < β < 1

Suppose β > 0 and that the system reaches a steady state.
The stationary size distribution obeys cs = cs−1(s− 1)/(s +Bs/c1), from which

cs
c1

=

s∏
j=2

j − 1

j +Bj/c1
(10)

Then we deduce the asymptotic behavior

cs
c1
∝

{
(c1/B)s(s!)−(β−1) β > 1

s−1 exp[−sβB/βc1] 0 < β < 1
(11)

A qualitative change happens at β = 1 where one can obtain more precise results:

cs
c1

= s−1(1 +B/c1)
1−s, c1 =

√
B2 + 4B −B

2
(12)

Equation (10) asserts that the stationary size distribution is uniquely determined by the den-
sity c1 of monomers. The mass density

M =
∑
s≥1

scs = c1
∑
s≥1

s

s∏
j=2

j − 1

j +Bj/c1
(13)

Hopf bifurcation when β > 1

The stability of the steady state is difficult for theoretical analysis when β > 0. Owing to
mass conservation, the sets of equal-mass size distributions are invariant for (7a)–(7b) and
each of them can be considered as phase space (when we talk about the birth of limit cycles
we always confine the system to distributions of fixed mass).

To preserve the total mass, we take the following perturbations (xs)∞s=1 of the steady state:∑
s≥1

sxs(t) = 0. (14)

Dropping nonlinear terms in the original equations we arrive at the linearized problem
which eigenvalues determine stability of the steady state.

The unstable pairs are present in a certain region in the parameter space

U = {(β,B)| β > 1, 0 < B < Bcrit(β)} (15)

The steady state loses stability via Hopf bifurcation when B crosses the critical value
Bcrit(β) and enters U . This leads to the birth of a stable limit cycle.
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with atomization. Nonlinearity, 33(4):1812, 2020.

Acknowledgements

This work is supported by Russian Science Foundation project 19-11-00338.


