
A Stopwatch Automata-Based Approach to

Schedulability Analysis of Real-Time Systems with

Support for Fault Tolerance Techniques

Alevtina Glonina1[0000-0001-8716-4128] and Vasily Balashov2[0000-0001-5211-805X]

Dept. of Computational Mathematics and Cybernetics, Lomonosov Moscow State University,

119991, Leninskie Gory, MSU, 1, Bldg. 52, Room 764, Moscow, Russia
1 alevtina@lvk.cs.msu.su

2 hbd@cs.msu.su

Abstract. During design of a fault tolerant real-time computer system (RTCS),

it is necessary to guarantee that real-time constraints on system operation are met

(i.e. all jobs are executed within deadlines) despite the increase of workload due

to use of fault tolerance techniques (FTT). Checking these constraints can be re-

duced to schedulability analysis of workload which is modified with respect to

the used set of FTT. In this paper, we propose an approach to such analysis, based

on simulation of RTCS operation in order to produce a time diagram. Simulation

model is automatically constructed from the general RTCS operation model (cor-

responding to a class of systems) and the RTCS configuration description. A gen-

eralization of stopwatch automata networks is chosen as a formal base for RTCS

modeling, allowing to prove correctness properties for the models. The approach

is implemented as an open-source tool system. Results of experimental evalua-

tion are presented, demonstrating applicability of the approach to checking real-

time constraints for solutions of the reliability allocation problem, extending the

applicability of an existing evolutionary algorithm for this problem to a larger

class of systems.

Keywords: real-time systems, schedulability, simulation, stopwatch automata.

1 Introduction

Modern complex technical systems (e.g. airplanes, power plants) are controlled by real-

time computer systems (RTCS). A state-of-the-art RTCS is comprised by a set of stand-

ard computational modules connected by a data transfer network. The RTCS workload

is a set of periodic tasks: for every period, an instance of a task (referred to as job) must

be executed. RTCS must meet real-time constraints: all jobs must be executed within

deadline intervals defined by tasks’ periods. Data exchange between jobs of different

tasks is performed by message passing. Data dependencies may exist between tasks

with same period; in such case, the receiver job must wait for message arrival from the

sender job. Every task is bound to a specific module. Execution of tasks bound to a

module is controlled by the scheduler according to a scheduling scheme, typically a

mailto:alevtina@

2

dynamic one. In this paper, by RTCS configuration we mean the set of computational

resources (set of modules, number and types of CPU cores on the modules), set and

characteristics of the workload (including task periods and worst-case execution times,

durations of message transfers through the network), binding of tasks to modules.

An important property of an RTCS is dependability, meant as probability of failure-

free operation during a specified time interval [1]. RTCS dependability can be im-

proved by use of fault tolerance techniques (FTT). These techniques allow prevention

of RTCS failure in case of fault in some of RTCS components, by means of software

and/or hardware redundancy: adding spare computational modules, using several inde-

pendently developed versions of application tasks (AT), accompanied by service tasks

(ST) such as voters and acceptance tests.

Use of hardware redundancy increases the necessary amount of RTCS computa-

tional resources, and development of several AT versions increases the work effort for

RTCS software development; this leads to increase of RTCS cost, and such increase

must be controlled. Moreover, during RTCS development it is necessary to check that

the real-time constraints are met, with consideration of the set of FTT used in the sys-

tem. Thus, the reliability allocation problem (RAP) arises, stated as follows. Given:

RTCS workload (set and characteristics of the “basic” AT versions, as well as of “al-

ternate” AT versions for use with FTT; set and characteristics of messages to be trans-

ferred between AT), constraints on computational resources (number and types of avail-

able modules), costs of resources; available types of FTT, costs of FTT use; constraint

on the total system cost; Find: set of FTT which maximizes dependability of the RTCS

while meeting real-time constraints and constraint on the total system cost. Besides the

choice of a specific FTT (or no FTT) for every AT, the RAP solution must include

binding of all application and service tasks, including those added due to FTT use, to

the RTCS modules. The RAP statement may vary, e.g. to minimize the cost while

providing minimum required dependability, but the general idea remains the same.

Quite a lot of papers are dedicated to RAP research (see overviews in [2, 3]), but

only few [4–7] propose methods for RAP solving that check real-time constraints on

RTCS operation. Of these papers, only in [4] use of different FTT types is supported

and data dependencies between tasks are taken in account. Checking of real-time con-

straints is performed in [4] with several simplifying assumptions – in particular, it is

assumed that every module executes a single AT (or a group of tasks corresponding to

the same “FTT-enhanced” AT); all ATs are supposed to have the same period.

These assumptions significantly limit the class of RTCS to which the evolutionary

algorithm for RAP solving from [4] is applicable. In this paper, we propose an approach

to checking real-time constraints for RTCS with FTT, which removes these assump-

tions and extends the class of RTCS to which the algorithm from [4] is applicable. The

proposed method is based on [8] and performs schedulability analysis using simulation

models with verified correctness.

3

2 Fault Tolerance Techniques

A number of FTT are used to provide RTCS dependability [9, 10], for instance N-ver-

sion programming (NVP), N self-checking programming (NSCP), Recovery block

(RB). Each of these FTT, applied to a specific AT, assumes execution of several inde-

pendently developed versions of this AT (software redundancy, to tolerate software

faults), as well as service tasks; tolerance to hardware faults is provided by use of ad-

ditional computational modules (hardware redundancy). FTT of a specific TYPE, mak-

ing a specific AT tolerant to X hardware faults and Y software faults, is denoted as

TYPE/X/Y.

The RAP solving algorithm from [4] supports FTT NVP/0/1, NVP/1/1, and RB/1/1.

In the present paper, we consider checking real-time constraints for these FTT, as well

as for general FTT of NVP, RB and NSCP types, in which the original AT is replaced

by a group of several AT versions and service tasks.

Use of NVP-type FTT for a specific AT involves N versions of this AT (N≥3, N is

odd) and two ST: input data receiver and voter; the voter is combined with output data

sender. Receiver ST receives all input messages addressed to the AT and dispatches

them to versions of the AT. Every version of the AT is executed and sends the result to

the voter, which selects the result produced by most of AT versions and sends this result

to the output, as the original AT should do. In NVP/0/1, three AT versions are used,

running on a single module. NVP/1/1 differs from NVP/0/1 by running AT versions on

separate modules, i.e. three modules are used. Data dependency graph for AT versions

and ST in case of NVP/0/1 or NVP/1/1 is shown in Fig. 1.

Use of NSCP-type FTT for a specific AT involves N versions of this AT (N≥2) and

N+2 ST: input data receiver, N acceptance tests (possibly identical), and output data

sender. Receiver ST receives all input messages addressed to the AT and dispatches

them to versions of the AT. Every version of the AT is executed and sends the result to

the corresponding acceptance test, which checks the result for correctness, and in case

of success sends this result with pass mark to the sender (otherwise, a fail mark is sent);

the sender takes the first received successful result and sends it to the output. With

NSCP-type FTT, AT versions usually run concurrently on separate modules, or on one

multi-core module. In NSCP/1/1, two modules and four AT versions are used, two ver-

sions for every module. Data dependency graph for AT versions and ST in case of

NSCP/1/1 is shown in Fig. 1.

Use of RB-type FTT for a specific AT involves N versions of this AT (N≥2) and

N+2 ST, with roles similar to those in NSCP. Main difference of RB from NSCP is that

AT versions are executed sequentially (as a chain) and conditionally, so that the next

AT version is started only in case the result of the previous version failed the acceptance

test. There can be several such chains, each running on a separate module. In RB/1/1,

two modules and two AT versions are used, both modules running the same AT chain.

Data dependency graph for AT versions and ST in case of RB/1/1 is shown in Fig. 1. It

should be noted that real-time constraints must be checked in the worst case, in which

all tasks in all chains are executed.

A particular solution for the RAP problem described in Introduction corresponds to

an RTCS configuration, which includes a set of modules with redundancy required by

4

the set of FTT, a set of tasks with respect to the set of FTT (including service tasks and

versions of application tasks, with necessary data dependencies); binding of tasks to

modules is also specified. As real-time constraints are checked for the worst case, in

which all versions of AT and all ST are executed (this is important for RB-type FTT),

all information on FTT significant for checking these constraints is present in the RTCS

configuration in form of computational resources and workload description. Thus,

checking real-time constraints for a RAP solution amounts to checking these constraints

for the corresponding RTCS configuration in which the used FTT are taken in account

but are not explicitly present. The method for real-time constraints checking must per-

form schedulability analysis (as several tasks, possibly with different periods, can be

bound to the same module), as well as account for data dependencies between tasks

(both initially present between different AT, and emerging with use of FTT).

Fig. 1. Replacing an application task with a group of its versions and service tasks with introduc-

tion of FTT (AT: application task, V: voter, R: receiver, S: sender, T: acceptance test)

3 Related Work on Schedulability Analysis

In Section 2 we concluded that to check real-time constraints for an RTCS with FTT

(e.g. obtained as a RAP solution), it is necessary to perform schedulability analysis for

an RTCS configuration, the set of modules and the workload of which are specified

with respect to the set of used FTT. During this analysis, both the scheduling scheme

and data dependencies between tasks must be taken in account.

A group of analytical methods for schedulability analysis is known, based on classi-

cal approaches [11, 12]. These methods have a number of modern modifications [13–

15]. A common disadvantage of these methods is significant over-estimation of tasks’

worst case response times in case of task sets with data dependencies. This leads to

false negative assessment of schedulability.

Another approach to schedulability analysis is construction and formal verification

(e.g. by model checking) of RTCS model [16, 17]. This approach produces exact worst

S

T2

T2

AT2

AT2

T1

T1

AT1

AT1

R

AT R V/SAT2

AT3

AT1

...

... ...

...NVP/0/1
NVP/1/1

R SAT2

AT3

AT1

... ...

N
SC
P
/1
/1

T1

T2

T3

5

case response times of tasks, but severely limits the scale of analyzed systems (no more

than several dozens of tasks), as its complexity is exponential by the number of tasks.

A more flexible and scalable approach to schedulability analysis for RTCS with a

given configuration is construction of a time diagram for RTCS operation with job ex-

ecution times equal to worst-case execution times (WCET) of tasks [18, 19]. Time

diagram is constructed by running a simulation model of RTCS and contains intervals

of job execution on CPU cores. With time diagram available, it is possible to check

real-time constraints by direct comparison of job finish times to their deadlines.

RTCS simulation model must account for all aspects of RTCS operation significant

for checking real-time constraints (e.g. task scheduling schemes, task preemption, data

dependencies). Correctness of the model must be verified, as it is impossible during

RTCS design to experimentally compare behavior of the model to behavior of actual

RTCS. Since modern RTCS use different task scheduling schemes, integration of user-

developed models of schedulers must be supported, in case correctness of these models

was verified. Analysis of freely available RTCS simulation tools such as Cheddar,

HSSim, MAST, DYANA, MASIW led the authors to the conclusion that none of them

completely meets these requirements. Thus, it is reasonable to use the new method for

checking real-time constraints for RTCS configurations, developed by the authors [8]

along with supporting tools. According to this method, an RTCS simulation model is

constructed from verified models of RTCS components (including scheduler models)

and used to produce the time diagram of RTCS operation. In this paper, we present an

adaptation of this method for use with algorithms for solving RAP.

4 The Approach to Checking Real-Time Constraints

4.1 Problem statement

Let us introduce informally the problem of checking real-time constraints for an RTCS

configuration; formal statement of this problem is given in [8]. Checking these con-

straints for a RAP solution, i.e. for an RTCS with a specific set of FTT, is reduced to

this problem.

Given the RTCS configuration: set of computational modules, workload (set of tasks,

set of messages), binding of tasks to modules; for every module – number and types of

CPU cores, as well as the scheduling scheme (e.g. fixed priority preemptive); for every

task – its period, WCETs for different CPU core types, priority unique within a module;

for every message – sender task, receiver task, maximum durations of transfer through

module’s memory and through the network.

Construct the time diagram of RTCS operation and check the time diagram for meet-

ing the real-time constraints (these constraints are formulated below in terms of time

diagram).

While checking the real-time constraints, RTCS operation is analyzed on the sched-

uling interval, duration of which equals to the least common multiple of all tasks’ peri-

ods. For every task 𝑇𝑖 with period 𝑝𝑖 , on the scheduling interval of duration 𝐿 a job set

𝑊𝑖 = {𝑤𝑖𝑗}
𝑗=1

𝐿 𝑝𝑖⁄
 is defined.

6

Event in the RTCS is a tuple 〈𝐸𝑇𝑦𝑝𝑒, 𝑆𝑟𝑐, 𝑡〉, where 𝐸𝑇𝑦𝑝𝑒 is the event type (𝐸𝑋 –

starting or resuming job execution; 𝑃𝑅 – job preemption; 𝐹𝐼𝑁 – finishing job execu-

tion); 𝑆𝑟𝑐 ∈ ⋃ 𝑊𝑖𝑖 – event source job; 𝑡 ∈ 1, 𝐿̅̅ ̅̅̅ – event time. The time is considered

discrete, time unit can be chosen equal to RTCS CPU clock cycle.

Time diagram of RTCS operation is a set of events during the (real or simulated)

RTCS operation. In practice during RTCS design it is assumed that execution time of

every job is fixed and equals to WCET of corresponding task, message transfer times

are fixed and equal to maximum possible ones, and all schedulers operate determinis-

tically. Under these assumptions, a time diagram unambiguously corresponds to an

RTCS configuration. RTCS simulation model is used for construction of this unambig-

uously defined time diagram.

Execution intervals for a job 𝑤𝑖𝑗 are intervals between the events 〈𝑤𝑖𝑗 , 𝐸𝑋, 𝑡1〉 and

〈𝑤𝑖𝑗 , 𝑃𝑅, 𝑡2〉, or between the events 〈𝑤𝑖𝑗 , 𝐸𝑋, 𝑡1〉 and 〈𝑤𝑖𝑗 , 𝐹𝐼𝑁, 𝑡2〉, in the time diagram.

Such intervals must not contain other events of types 𝐸𝑋, 𝑃𝑅, 𝐹𝐼𝑁 with source job 𝑤𝑖𝑗.

Real-time constraints are formulated in terms of time diagram as follows: for every

job, total duration of its execution intervals equals duration of this job (i.e. WCET of

corresponding task). If this condition is not met for some job, it indicates that execution

of this job was terminated before completion, solely due to reaching the job’s deadline.

In other words, the job execution was not completed before its deadline. To check this

condition for a specific RTCS configuration, it is necessary to construct time diagram

of RTCS operation with this configuration. Since every task is bound to some module,

it is correct to formulate the real-time constraints as such condition only if all CPU

cores in a module have the same type, i.e. for every core of the same module a task has

the same WCET. Real-time computer systems with modular structure, which are known

to the authors, meet this assumption.

4.2 General Networks of Stopwatch Automata

Networks of stopwatch automata [20] were chosen as the basic formalism for modeling

RTCS operation, aimed at time diagram construction via simulation. A stopwatch au-

tomaton (farther referred to as automaton) is a finite state machine with integer varia-

bles and special timer variables. A network of such automata is a set of co-operating

automata, interacting via shared variables and synchronization through channels. Pa-

rameterized automaton is an automaton, expressions in which (e.g. for variable assign-

ment, for transition conditions) include integer parameters, besides variables and nu-

meric constants. By assigning values to all parameters, an instance of a parametrized

automaton is created, which is a “normal” automaton.

To construct a general (i.e. abstract) model of RTCS operation, with support for

modeling different (in particular, user-developed) schedulers, and to prove the correct-

ness of this model, we propose a new abstraction level of automata networks: general

networks of stopwatch automata. Main concepts of this abstraction level are introduced

below.

Set of variables and synchronization actions, by which the automaton interacts with

other automata in a network, is called interface of the automaton. Base automata type

is described only by parameters and interface; no locations or transitions are specified

7

for it. A parametrized automaton implements a base automata type if the interface and

the set of parameters of the parametrized automaton match those of the base automata

type. A set of base automata types is called general automata network, set of para-

metrized automata – parametrized automata network, network of instances of para-

metrized automata – instance of automata network.

These concepts can be explained by the example of scheduler modeling. A scheduler

model, abstract from the specific scheduling scheme used in the module, is a base au-

tomata type. A model of a fixed priority preemptive scheduler is a parametrized autom-

aton. A model of a scheduler operating in a specific module of an RTCS with a given

configuration (including the set of tasks to schedule) is an instance of automaton, i.e. a

“normal” automaton without parameters.

4.3 General Model of Real-Time System Operation

In [8] a general model for operation of a time-partitioned RTCS with modular structure

was proposed, in form of a general automata network. In the present paper the RAP

problem is considered for RTCS without time partitioning, thus an RTCS is modeled

using following base automata types from [8]: base type T, modeling a task (with re-

spect to its interaction with a scheduler); base type TS, modeling a scheduler operating

in an RTCS module; base type L, modeling a virtual link (as means for message transfer

with limited duration).

General model of RTCS operation specifies the interface for every base automata

type comprising it. For instance, automata of base type L send signals through sendij

and receiveij channels, where channel (i,j) corresponds to the j-th task of the i-th

module. Structure of the general RTCS operation model is shown in Fig. 2; arrows

represent directed channels, shared variables are not shown for brevity.

Fig. 2. Base automata types comprising the general model of RTCS operation

Only uniprocessor dynamic schedulers are modeled in [8], thus at present our capa-

bilities for modeling RTCS with FTT are limited to systems in which every module

contains only one CPU core (e.g. the central computer system of MC-21 airplane), or

systems with multicore modules in which every task is bound to a specific CPU core.

4.4 Constructing a Simulation Model for Schedulability Analysis

Parameterized automata network implementing the general automata network de-

scribed in Section 4.3, is a parameterized model of RTCS operation. Such model pro-

TSi Tij Lhreceiveij

execij
preemtij
readyi
finishedi

sendij

8

posed in this paper contains following parameterized automata developed by the au-

thors: task model, virtual link model, and models of three schedulers (fixed priority

preemptive, fixed priority non-preemptive, preemptive EDF). Parameter values specify

the set of computational resources, set and characteristics of the workload, binding of

workload to computational resources.

According to values of parameters, defined by RTCS configuration, an instance of

parametrized automata network (i.e. an instance of RTCS model) is constructed: chan-

nels and variables for automata interaction are created, for every RTCS component a

parametrized automaton of corresponding type is created, and values are assigned to its

parameters (e.g. period is set for a task model). An instance of RTCS model unambig-

uously corresponds to an RTCS configuration by construction. The result of running

the RTCS model instance is the time diagram of RTCS operation. Running of the

model, i.e. simulation of RTCS operation, is supported by stopwatch automata runtime

library developed by the authors.

In [21] a set of correctness requirements was formulated for models of scheduler,

task, virtual link, and RTCS as a whole. Using formal properties of general network of

stopwatch automata, the authors proved that the developed parametrized models and

the RTCS model constructed from them meet these requirements. E.g. for a fixed-pri-

ority preemptive scheduler model we proved that it always selects for execution a ready

job of the task with highest priority.

5 Case Study

The proposed approach to checking real-time constraints for configurations of RTCS

with FTT was implemented as an open-source tool system [22]. An experimental eval-

uation was performed to assess applicability of the approach to RTCS of realistic scale.

We analyzed dependency of simulation time (RTCS model construction and execution

time) on RTCS configuration scale and share of application tasks with FTT. The exper-

iments were performed on AMD Ryzen 5 2600 3.4 GHz CPU, using one core.

In the first group or experiments, for an RTCS configuration with realistic scale (10

modules, around 150 ATs, more than 160 messages [18]), the share of AT with FTT

was gradually increased (from 0% to 100% with 10% step); following FTT were used

in equal numbers: NVP/0/1, NVP/1/1, RB/1/1. In the second group of experiments, for

an RTCS configuration with 50% of AT using FTT, such quantitative characteristics

were consistently increased as number of AT, messages and modules. Results of exper-

iments are shown in Fig. 3.

RTCS considered in [18] is an avionics system with architecture described in patent

RU2014115662A. According to this architecture, modules are connected by a switched

network with support for virtual links, providing predictable message transfer times.

The architecture is scalable, as it supports adding new computational modules grouped

in crates by up to five; this allows using FTT that require hardware redundancy. Every

crate has its own network switch module, which connects computational modules of

the crate to each other and to other crates.

9

Fig. 3. Dependency of simulation time on share of AT with FTT (a), on configuration scale (b)

The experiments demonstrated quadratic dependency of simulation time on variation

of selected characteristics of RTCS configuration. We can conclude that the developed

tool system can be used with algorithms for RAP solving that enumerate hundreds of

solutions (or thousands, if solutions are analyzed concurrently on a multicore CPU),

including the evolutionary algorithm from [4].

6 Conclusion

In this paper, we proposed an approach to checking real-time constraints for configura-

tions of RTCS with fault tolerance techniques, e.g. obtained as solutions of the reliabil-

ity allocation problem. The approach is based on automatic construction of RTCS sim-

ulation model, and its running to obtain a time diagram of RTCS operation, taking in

account the scheduling scheme(s) used in the RTCS modules. Choice of generalized

stopwatch automata networks allowed formal proof of correctness for the RTCS mod-

els. The proposed approach significantly extends applicability of RAP solution algo-

rithm from [4] and can be used with other RAP solution algorithms.

Future research is aimed at development of multiprocessor dynamic scheduler mod-

els and proof of their correctness, in order to extend the supported class of RTCS. Sup-

port for time-partitioned fault tolerant RTCS is another possible goal.

Acknowledgements. This work is partially supported by the Russian Foundation for

Basic Research under grant №19-07-00614.

References

1. Laprie, J. C., Coste, A.: Dependability: A unifying concept for reliable computing. Proceed-

ings of the 12th Fault Tolerant Computing Symposium, 18–21 (1982).

2. Kuo, W., Wan, R.: Recent advances in optimal reliability allocation. IEEE Trans. on Sys-

tems, Man, and Cybernetics - Part A: Systems and Humans 2(37), 143–156 (2007).

3. Coit, D. W., Zio, E.: The evolution of system reliability optimization. Reliability Engineer-

ing & System Safety 192 (2019).

0

20

40

60

80

0 20 40 60 80 100

se
co
n
d
s

(a)

0

50

100

150

200

250

300

x1 x2 x3 x4 x5

se
co
n
d
s

(b)

10

4. Volkanov, D. Yu. et al: Simulation modeling based method for choosing an effective set of

fault tolerance mechanisms for real-time avionics systems. Progress in Flight Dynamics,

GNC, and Avionics 6, 487–500 (2013).

5. Jha, P. C. et al: Optimal component selection of COTS based software system under con-

sensus recovery block scheme incorporating execution time. International Journal of Relia-

bility, Quality and Safety Engineering 3(17), 209–222 (2010).

6. Attiya, G., Hamam, Y.: Reliability oriented task allocation in heterogeneous distributed

computing systems. In: 9th International Symposium on Computers And Communications

Proceedings, pp.68–73. IEEE, Alexandria, Egypt (2004).

7. Kang, Q., He, H., Wei. J.: An effective iterated greedy algorithm for reliability-oriented task

allocation in distributed computing systems. Journal of Parallel and Distributed Computing

8(73), 1106–1115 (2013).

8. Glonina, A. B., Bahmurov, A. G.: Stopwatch automata-based model for efficient schedula-

bility analysis of modular computer systems. In: Malyshkin, V. (ed) PACT 2017, LNCS,

vol. 10421, pp. 289–300. Springer, Cham (2017).

9. Laprie J.C. et al: Definition and analysis of hardware and software-fault-tolerant architec-

tures. IEEE Computer 23(7), 39–51 (1990).

10. Wattanapongsakorn, N., Levitan, S.: Reliability optimization models for fault-tolerant dis-

tributed systems. In: International Symposium on Product Quality and Integrity Proceedings,

pp. 193–199. IEEE, Philadelphia, USA (2001).

11. Liu, C. L., Layland, J. W.: Scheduling algorithms for multiprogramming in a hard-real-time

environment. Journal of the ACM 20(1), 46–61 (1973).

12. Audsley, N. et al: Applying new scheduling theory to static priority preemptive scheduling.

Software Engineering Journal 8(5), 284–292 (1993).

13. Kim, J. et al.: A novel analytical method for worst case response time estimation of distrib-

uted embedded systems. In: 50th Annual Design Automation Conference Proceedings, pp.

1–10. ACM, New York, NY, USA (2017).

14. Palencia, J. C. et al: Response-time analysis in hierarchically-scheduled time-partitioned

distributed systems. IEEE Trans. on Parallel and Distributed Systems 28(7), 2017–2030

(2017).

15. Amurrio, A.: Response-time analysis of multipath flows in hierarchically-scheduled time-

partitioned distributed real-time systems. IEEE Access 8, 196700–196711 (2020).

16. Han, P. et al: Schedulability analysis of distributed multicore avionics systems with

UPPAAL. Journal of Aerospace Information Systems 16(11), 473–499 (2019).

17. André, É. et al: Parametric schedulability analysis of a launcher flight control system under

reactivity constraints. In: 19th International Conference on Application of Concurrency to

System Design Proceedings, pp. 13–22. IEEE, Aachen, Germany (2010).

18. Balashov, V. V., Balakhanov, V. A., Kostenko, V. A.: Scheduling of computational tasks in

switched network-based IMA systems. In: OPTI’2014 International Conference Proceed-

ings, pp. 1001–1014. NTUA, Athens, Greece (2014).

19. Cheramy, M. et al: Simulation of real-time scheduling with various execution time models.

In: 9th International Symposium on Industrial Embedded Systems, pp.1–4. IEEE, Pise, Italy

(2014).

20. Cassez, F., Larsen, K.: The impressive power of stopwatches. In: Palamidessi, C. (ed)

CONCUR 2000, LNCS, vol. 1877, pp. 138–152. Springer, Berlin (2000).

21. Glonina, A. B., Balashov, V. V.: On the correctness of real-time modular computer systems

modeling with stopwatch automata networks. Automatic Control and Computer Sciences

7(52), 817–827 (2018).

22. https://github.com/AlevtinaGlonina/MCSSim, last accessed 2021/02/27.

https://github.com/AlevtinaGlonina/MCSSim

