computer-generated feedback and the possibility of transferring these abilities to daily activities.

F38. Effect of Using a Special Program of Balance Training in Stroke Patients

K. I. Ustinova, L. A. Chernikova, and M. E. Ioffe*
Institute of Neurology, Russian Academy of Medical Sciences, Russia; *Institute of Higher Nervous Activity & Neurophysiology, Russian Academy of Sciences, Russia

The goal of this study was to estimate the effect of using a special training program for balance recovery functional ability in stroke patients. This program aimed to correct postural disturbances in the patients after stroke.

Subjects: Eighty-two patients with hemiparesis after cerebrovascular accident in the MCA were investigated in this study. The mean age of the patients was 53.9 ± 11 years, and the period after was stroke 10.4 ± 8.8 months. Main and control groups of the patients were separated. The patients were sex- and age-matched in both groups. Forty patients of control group were treated only by a traditional program of physical therapy, which included exercise therapy, massage, electromiostimulation, and applications of paraffin. Forty-two patients of the main group, besides the traditional rehabilitation program, received the special program of balance training with using visual feedback for postural sway.

Procedure: The program of balance training was based on learning voluntary postural control by several computer games. The patients stood on a force platform and were trained to shift some figures (circles, triangles, etc.) on the screen in a definite direction by changing their center of pressure (CP) position. The training program included the following steps: learning symmetric weight bearing between affected and unaffected legs; learning symmetric weight bearing between toe and heel of the affected leg; training precise shift of CP, and increasing amplitude and velocity of the CP shift. The games were different by the following criteria: amplitude of requested CP shift, predominant direction of CP shift (medio-lateral or antero-posterior), and level of precision of CP shift.

The list of games used was based on the stabilometrical peculiarities of postural disturbances in patients after stroke. Particularly, the patients with sensory deficit were trained mainly by the games with higher level of precision of the task. The patients with spasticity used games with greater amplitude of CP shift.

The training program consisted of 6 to 8 games of 2-minute duration per training session, 5 session per a week for a period of 4 weeks.

Also, the technology of control of current reaction on the loading was applied during the training program. This technology was based on comparison of the data of performance-computer stabilometrical games by patients at the beginning, middle, and finishing parts of the each training session.

The motor and sensory deficit, level of spasticity, and functional abilities were scored with using Fugl-Meyer scale and Bartel Index in all patients before and after the training program. Besides, force platform testing was done as assessment of balance ability in all patients.

Results: The patients of the main group that used this program balance training showed significantly better postural symmetry and stability than the patients of the control group. Also, they improved motor functions and such functional abilities as level of independence for walking and gait velocity. That may be a result of the elimination of stereotype to disuse the parietic leg by using visual feedback or/and of organization of new postural coordination in patients.

Conclusions: The data of the study suggest that the program of physical therapy can be more efficient after including the special program of balance training. However, this program did not increase sensor deficit and level of spasticity in patients.

F39. Expression: Illustrating the Experience of Aphasia

C. Kelly (artist) and L. Hunter
Centre for Brain Injury Rehabilitation, Dundee, United Kingdom

Objectives: Language impairment constrains storytelling and other activities that help people with aphasia to communicate and to make sense of their predicament. This project aims to construct new representations of aphasia in order to make it visible and more understandable, to increase awareness of what it means to have aphasia, to show the wide-ranging capabilities of people with aphasia, and to address aspects of personal, social, and collective identity.

Methods: Six people with aphasia were enabled through a program of workshops to generate prints as