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Abstract

Modern video codecs have many compression-tuning parameters from which numerous con-
figurations (presets) can be constructed. The large number of presets complicates the search
for one that delivers optimal encoding time, quality, and compressed-video size. This paper
presents a machine-learning-based method that helps to solve this problem. We applied the
method to the x264 video codec: it searches for optimal presets that demonstrate 9-20%
bitrate savings relative to standard x264 presets with comparable compressed-video quality
and encoding time. Our method is faster upto 10 times than existing solutions.

Introduction

The popularity of video-hosting services (e.g., YouTube, Netflix, and Twitch) and
the broad distribution of mobile video cameras have contributed to the recent expo-
nential growth of video data. This massive amount of data stimulates demand for
more-efficient video-compression methods to better enable storage and transmission.
Therefore, this domain is advancing on all fronts: new compression standards are
emerging periodically (e.g., HEVC, VVC, and AV1), dozens of companies are devel-
oping video codecs, and researchers are constantly producing new video compression
approaches, including ones based on machine learning. In this paper we propose a
machine-learning-based method for finding video-codec settings that provide optimal
encoding time, quality, and compressed-video size.

Modern video codecs have a wide range of encoding and decoding parameters.
Because of this wide range and the many different parameter values, numerous video-
codec configurations (presets) are possible. As a result, the main encoding challenge
lies in configuring the codec to meet the user’s requirements for encoding time and
video-quality loss during compression. The problem of finding a suitable configura-
tion can be formulated as a multicriterion-optimization problem, where these indi-
cators are minimized in parallel on some set of codec configurations. Note that the
compressed-video size is known and is determined by the bitrate parameter, so it is
absent in the list of indicators.

Problem Definition

In this work we solve the abovementioned problem for the x264 video codec on P , a
subset of all configurations. Because x264 has more than 40 parameters, it has too



many possible configurations to address in their entirety. We therefore consider only
major ones that see frequent use in practice. For instance, the following parameters
affect the compressed-video quality and the encoding time: --partitions (block sizes
for motion estimation), --bframes (the number of B-frames between I-frames and
P-frames), --ref (the number of reference frames used for motion estimation), --me
(the motion estimation algorithm). Varying these parameter values creates the set
P which includes 1306 configurations. Note that only the encoder parameters are
configured; the default decoder parameter values are unchanged.

Let us introduce auxiliary mathematical objects for the problem definition. gp,v(c)
is a bitrate function that depends on the compression quality when encoding video
v using configuration p. The function fp,v(b) is the time required to encode video
v with bitrate b using configuration p. We use structural similarity index (SSIM)
[1] to measure compressed-video quality v′ with respect to the original video v. Let
pdef ∈ P be a default configuration that is --preset medium in x264. The objective
optimization functions are the relative average bitrate required to encode a quality
unit and the relative average time needed to encode a bitrate unit:

Qv(p) =
∫ c2
c1

gp,v(c)dc∫ c2
c1

gpdef ,v(c)dc
and Tv(p) =

∫ b2
b1

fp,v(b)db∫ b2
b1

fpdef ,v(b)db
. Therefore the following optimization

problem is considered for input video sequence v:

(Qv(p), Tv(p))→ min, p ∈ P. (1)

The optimization problem (1) would be more complete if decoding time appeared in
the criteria list, but we chose to skip it for this work. The known solution to the
multicriterion-optimization problem is the Pareto set P ∗(v) = {p ∈ P |∀p′ ∈ P ∧ p′ 6=
p : Qv(p) < Qv(p

′) ∨ Tv(p) < Tv(p
′)}.

In fact, both criteria in the problem have disadvantages because they guarantee an
optimal result on average across all bitrates. In the meantime, hovewer, it is helpful
to avoid unstable presets that fail to provide monotonic compression quality with
increasing bitrate.

We normalized the objectives in problem (1) using values that correspond to the
default preset pdef , that is --preset medium, to avoid hardware dependence and to
enable better interpretation of the results. For example, Qv(p) = 0.7 means that
changing the configuration from pdef to p will decrease bitrate by 30%. Or in case of
Tv(p) = 0.8, the configuration p will accelerate pdef by 20%.

Our work have established that the Pareto sets can vary for different input video
sequences. For that reason, it makes sense to solve the problem individually for each
video sequence as given in the problem definition (1). For example, as Fig. 1 shows,
the Pareto set for the ”Sea Cost” video (109321182 2428 26911) performs poorly on
the ”Samsung NX500 4K Test Video: Focus Tests” video (128948492 7246 7501).

Problem (1) is relevant because frequently used standard configurations of x264
(ultrafast, superfast, veryfast, faster, fast, medium, slow, slower, veryslow,
placebo) can perform poorly and be far from optimal. Fig. 2 illustrates a breach
between standard configurations and the Pareto set for ”Sea Coast”.

1the video name has a format id start count where id is vimeo.com video identifier, start is a
start-frame index, and count is a number of frames. The video appears at the URL vimeo.com/id.



Figure 1: The performance of the Pareto set of ”Sea Coast” video (and other presets)
on ”Samsung NX500 4K Test Video: Focus Tests” video

We now propose our machine-learning-based method for searching the Pareto set
of x264 configurations for a given video sequence.

Related Works

A dozen algorithms that solve problem (1) breaking down into two groups: classical
algorithms and machine-learning based algorithms.

Note that among the classical algorithms, Popov’s [2] and NSGA-II [3] are based on
a gradient descent and a genetic approach respectively. The genetic approach gener-
ates candidates for the Pareto set by mutating some subset of configuration-parameter
values in accordance with a rule specific to the algorithm. These algorithms can also
solve more-general multiobjective optimization problems. Evaluating candidate’s per-
formance, however, requires calculating objective-function values for that candidate.
This process is time-consuming in our case because we must launch a codec. Thus,
multiple runs are necessary to solve the problem for each video sequence. These
classical algorithms are unable to apply to the current problem knowledge gained by
solving earlier problems involving other videos.

For the past 10 years, machine-learning-based approaches (Zvezdakov’s [4] and
Murashko’s [5]) have become increasingly popular. They employ knowledge accumu-
lated while solving a problem using video sequences in a training dataset. Depending
on the algorithm, this accumulated knowledge can represent various statistics, for
example, the average objective-function change when shifting from one configuration
to other. These statistics describe some regularity in the data and summarize results
for arbitrary videos, helping to reduce problem-solving time and to avoid launching
the codec. In Murashko’s algorithm [5], for example, a codec launch is unneces-



Figure 2: The performance of the Pareto optimal and standard presets for ”Sea
Coast” video

sary. Instead the algorithm calculates input-video features (descriptor) in a less time-
consuming manner and predicts the results. But it solves a more particular problem:
namely, how to find the optimal video resolution and predict compressed-video size
for a given preset.

Computing physical video features is cheaper than running a codec multiple times.
Therefore, we propose a machine-learning-based algorithm that predicts the Pareto-
optimal set of configurations using specifically designed physical video features while
avoiding the need to launch a codec.

Dataset Creation

No public datasets are available to solve the optimization problem using machine
learning. For that reason we created our own. Our first step was to select 351 video
sequences and 1,306 x264 configurations. The video sequences come from vimeo.

com in UltraHD resolution with high bitrates. The codec configurations are partly
constructed on the basis of a preliminary x264-options analysis [6]. For each pair
of sequence v and configuration p, we have computed the relative average bitrate
required to encode a quality unit Qv(p) and the relative average time needed to
encode a bitrate unit Tv(p). This computation took three weeks on a cluster of 145
computers running Intel Xeon E3-1125v3 CPU with 16GB RAM.

Different types of videos have their own peculiarities. For example, cartoons char-
acteristically exhibit a sparse color distribution in each frame, simple object shapes,
and contrast transitions on boundaries. Video games also have a sparse color distri-
bution, but they may be more realistic in the complexity of object shapes and smooth
boundary transitions. Videos captured by drones display a specific type of movement



in a certain direction. The main distinguishing characteristic of sports content is the
numerous moving objects of different sizes. On the basis of such characteristics, we
manually crafted nine physical features constituting a video descriptor. Computing
these features for all 351 video sequences took two days on two computers with Intel
Core i7-4770R CPU running at 3.20GHz with 16GB RAM.

Video Physical Features

The following is a description of the physical video features we employed in our
investigation.

SI (Spatial perceptual Information) [7] measures the amount of spatial detail in a
frame; it is the standard deviation over the pixels of Sobel-filtered frame. It is usually
higher for more-spatially-complex scenes. The formula SI = stdspace[Sobel(Fn(i, j))]
yields the spatial complexity of the n-th frame, where Fn(i, j) is the luminance of
pixel (i, j).

TI (Temporal perceptual Information) [7] indicates the amount of temporal changes
in a frame; it is the standard deviation over differences between pixel values (in the
luminance plane) at the same location for successive frames. It is usually higher
for high-motion frames. The formula TI = stdspace[Fn(i, j) − Fn−1(i, j)] yields the
temporal complexity of the n-th frame.

TI ME (Temporal perceptual Information with Motion Estimation) [8] esti-
mates the temporal complexity of a frame after motion compensation. Its formula
is TI ME = stdspace[mink,l(Fn(i, j) − Fn−1(k, l))]. For motion estimation and com-
pensation, we use the algorithm from [9] with the parameters min block size = 8,
max block size = 8, precision = QuaterP ixel, and loss metric = SAD.

Blur estimates frame’s acutance of a frame and is based on the blur effect [10].
The feature of the effect is that the luminance of a blurred image exhibits little change
after repeated appliations. The metric is higher for sharper frames.

Blur Lap accesses the acutance of a frame using the Laplace operator [11]. It is
the standard deviation over frame’s responses to the Laplace operator: Blur Lap =
stdspace[L(m,n)−L], where L(m,n) is the frame’s response of at location (m,n) and
L is an absolute mean of the responses.

Mean Y, Mean U, and Mean V are the average values for each color compo-
nent of the n-th frame in YUV space and are calculated as follows:
Mean Y = 1

width×height
∑width

i=1

∑height
j=1 Fn(i, j)

Var Y, Var U, and Var V are the standard deviations for each color compo-
nent of the n-th frame in YUV space.

Color3D Hist [12] is the three-dimensional color histogram for a frame; it mod-
els the color distribution of pixel values in RGB space. Each color channel is evenly
divided into four parts. Thus, the size of the histogram is 64 = 4× 4× 4.

Motion Hist is the two-dimensional motion histogram that estimates the length
and direction (angle) distributions of frame’s motion vectors. It contains five bins for
length and five bins for direction. Moreover, it uses a logarithm of the length value to
better estimate short motion vectors. To find the motion vectors, we use a block-based
motion estimation algorithm [9] with the following parameters: min block size = 8,
max block size = 8, precision = QuaterP ixel, loss metric = SAD.



We have already applied these features effectively when solving the video-genre-
classification problem in [13].

Our dataset is split into two parts, yielding a 3 : 1 ratio of training to validation
data. In the next section we describe a method that predicts Pareto front of x264
configurations for a given video sequence using its video physical features.

Proposed Method

Before we describe the method, let us introduce the concept of the Pareto frontier
structure SP (v) built from presets P for video sequence v. We designate the Pareto
frontier Pi(v) with rank i as the solution to the problem: (Qv(p), Tv(p)) → min, p ∈
P\ ∪i−1

k=0 Pk(v) , where i = 0, 1, ..., l and l is the rank of the farthest Pareto frontier.
Note that P0(v) is simply the solution of problem (1). The Pareto frontiers appear
in the calculation of the Pareto-frontier structure: SP (v) = (x1, x2, ..., x|P |), where
xk is the rank of the Pareto frontier to which the k-th preset from ordered set P
belongs. We calculated the Pareto-frontier structure for each video sequence in our
dataset. Using an agglomerative clustering method, we clustered all videos from the
dataset according to similarity of their Pareto-frontier structures. For two videos v1
and v2 with the structures SP (v1) = (x1, x2, ..., x|P |) and SP (v2) = (y1, y2, ..., y|P |),
respectively, we define their similarity ρ(v1, v2) on the basis of the Spearman’s rank-

correlation coefficient: ρ(v1, v2) = 1− 6
|P |(|P |−1)(|P |+1)

∑|P |
i=1(xi−yi)2. The pair of v1 and

v2 map to the same cluster if ρ(v1, v2) ≥ θ, where the optimal value of the threshold θ
is experimentally determined to be 0.9. Therefore, we obtained four clusters (classes):

• C1, a scene with slight foreground and background movement.
Examples: 157797521 0 250, 150984258 474 724, 138590264 4244 4494.

• C2, a scene with camera movement.
Examples: 160359830 3282 3532, 160474708 6703 6953, 143092229 4316 4567.

• C3, a (nearly) static scene.
Examples: 136832821 4099 4349, 127865290 0 250, 146523627 10195 10445.

• C4, a (nearly) static scene with a blurred background.
Examples: 137292905 1543 1793, 136972283 515 765, 130202285 7062 7312.

Since videos from the same cluster have similar Pareto-frontier structures, we
assume that solutions of problem (1) for these videos will be similar; that is, P ∗(v1) ≈
P ∗(v2) for videos v1 and v2 from a given cluster. We assign to a cluster C the Pareto-
optimal set P ∗(vC) of some arbitrarily selected video vC from this cluster and call
it the cluster’s Pareto set P ∗C . Moreover, we assign each cluster C a configuration-
enhancement function (CEF) EC(p) that outputs a preset p∗ ∈ P ∗C . This preset
outperforms the input preset from P \ P ∗C ; that is, EC(p) = p∗ so that QvC (p∗) ≤
QvC (p)∧TvC (p∗) < TvC (p)∨QvC (p∗) < QvC (p)∧TvC (p∗) ≤ TvC (p). Therefore, we can
reduce the original problem (1) to a classification problem where the model should
predict a cluster index using the physical features of input video v. The cluster



Table 1: Class error metrics

C, a class err(C),% errstandard(C),%
C1 22.69 22.76
C2 24.70 24.76
C3 26.37 26.45
C4 27.99 27.95

Table 2: Average cluster-preset bitrate and encoding time gains relative to standard
configurations, along with average bitrate loss relative to the optimal preset

pstd bitrate gain against pstd, %
bitrate loss

against optimal preset, %
encoding time gain

against pstd, %
ultrafast 0.0 0.0 0.0
superfast 0.0 0.0 0.0
veryfast -2.3 4.7 9.7

fast 16.5 2.9 5.0
faster 6.4 2.5 -0.2

medium 21.1 2.8 9.1
slower 19.3 1.4 15.0
slow 22.3 1.3 2.8

veryslow 13.0 1.9 26.4
placebo 15.9 2.0 80.1

Pareto set and CEF assigned to the predicted cluster will be a solution of the original
problem (1) for video v.

During inference the method returns two outputs: the cluster Pareto set and the
cluster CEF. In practice, if someone uses a preset from P , the CEF can produce a
configuration that outperforms the input configuration.

To validate the clustering and to estimate the cluster Pareto sets, we compute
for each class C the maximum ratio of configurations that outperform one config-
uration from the cluster Pareto set P ∗C averaged over all videos from that cluster

as follows: err(C) = 1
|C|

∑
v∈C maxp∈P ∗

C

|F (p,v)|
|P | , where F (p, v) = {p′ ∈ P : Qv(p

′) <

Qv(p)∧Tv(p′) < Tv(p)}. Also, the maximum ratio of standard configurations that out-
perform a given configuration from the cluster Pareto set P ∗C averaged over all videos is

computed by the following formula: errstandard(C) = 1
|C|

∑
v∈C maxp∈P ∗

C

|F standard(p,v)|
|P | ,

where F standard(p, v) = {p′ ∈ P standard : Qv(p
′) < Qv(p)∧Tv(p′) < Tv(p)} and P standard

includes all the standard configurations of x264 codec such as ultrafast, superfast,
veryfast, faster, fast, medium, slow, slower, veryslow, placebo. Table 1 shows
these error metrics for each class.

Additionally, we tested the cluster Pareto sets and the corresponding CEFs in
a more practical way. We calculated the average percentage of bitrate and time-
encoding savings for configurations that the CEF returned for the standard config-
urations versus the standard and optimal configurations themselves. Table 2 shows
these results.



Figure 3: Comparison of relative average bitrates obtained using the optimal preset,
cluster preset, and medium preset for each video in the clusters

In addition, we analyzed the distributions of these metrics over all videos in each
class. Fig. 3 shows the distribution of bitrate saving for configurations that the
CEF returned: specifically, a medium standard configuration and the CEF returned
configuration for medium fails for, at most, only 1% of video per class.

To solve the classification problem, we trained an ensemble of decision trees us-
ing gradient boosting from XGBoost library. The training uses the following opti-
mal gradient-boosting parameters: booster = gbtree,max depth = 3, reg alpha =
1, learning rate = 0.001, gamma = 1, subsample = 0.6, num round = 222. We em-
ployed cross-validation to evaluate the model accuracy; yielding a result of 75.2%.

The decision-tree ensemble allows to easily estimate feature importance, that is,
the average gain (or tree purity) that a feature brings when using it to prune the tree.
We estimated the most relevant features to be Blur Lap and TI. They have also
proven useful in the video-genre-classification model from [13].

Experimental Results and Comparisons

We have tested the proposed method on some JVET and Xiph.org video sequences
that are not a part of our dataset. The selected sequences are in the FullHD for-
mat and have different motion, color, and content characteristics. The results about
bitrate savings and time-encoding savings for each sequence are presented in Table 3.

We did performance comparison for our method with alternative methods (Popov’s,
NSGA-II, Zvezdakov’s). Table 4 shows the average bitrate savings obtained with the
Pareto optimal presets versus the standard presets and execution time on average over



Table 3: Bitrate savings [%] obtained using the CEF returned presets versus the
standard presets on JVET and Xiph.org sequences

Sequence Faster Fast Medium Slow Slower Veryslow Placebo
Cactus 6.0 16.5 17.5 15.0 13.3 8.0 15.7

DugsAndLegs 17.2 27.9 26.5 21.0 15.4 1.3 11.5
KristenAndSara 4.5 12.3 16.0 24.7 25.1 0.0 9.0

ParkScene 12.6 17.5 29.0 22.8 19.0 14.1 16.3
PeopleOnStreet 16.8 21.9 27.6 33.7 31.4 20.2 29.8

Average 11.4 19.2 23.3 23.4 20.8 8.7 16.4

Table 4: Average bitrate savings [%] of the Pareto optimal presets versus standard
presets and execution time obtained using each method on the validation set

Method Faster Fast Medium Slow Slower Veryslow Placebo Time, sec.
Popov’s 8.0 29.0 28.4 34.9 32.2 28.3 29.0 10039.7
NSGA-II 15.9 30.2 29.7 34.9 32.2 29.0 28.3 13686.4

Zvezdakov’s 11.0 30.2 29.8 34.9 32.2 28.7 29.4 7705.2
Ours 15.8 21.3 21.8 27.7 24.9 9.7 10.5 735.5

all the validation set for each method. As we can see our method underperforms the
alternative solutions in terms of bitrate savings. However, the alternative methods
are slower upto 10 times.

Conclusions

In the paper we proposed the method for finding optimal presets that demonstrate
9-20% bitrate savings against the x264 standard presets with comparable compressed
video quality and encoding time. The method is faster upto 10 times than alternative
solutions. This method can be applied to other video codecs but it will require to
create new dataset.

As a drawback we have not managed to enhance a couple of fast standard presets
(ultrafast, superfast) due to the created dataset that poorly covers these cases.
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