
IOP Conference Series: Materials Science and Engineering

PAPER • OPEN ACCESS

Calculation of elastic-creeping characteristics of a beam made of a
layered composite material
To cite this article: T N Bobyleva and A S Shamaev 2021 IOP Conf. Ser.: Mater. Sci. Eng. 1030 012025

 

View the article online for updates and enhancements.

This content was downloaded from IP address 46.39.228.167 on 15/01/2021 at 12:15

https://doi.org/10.1088/1757-899X/1030/1/012025


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

IPICSE 2020
IOP Conf. Series: Materials Science and Engineering 1030  (2021) 012025

IOP Publishing
doi:10.1088/1757-899X/1030/1/012025

1

 

 

 

 

 

 

Calculation of elastic-creeping characteristics of a beam made 

of a layered composite material 

T N Bobyleva
1
 and A S Shamaev

2,3
  

1
 Moscow State University of Civil Engineering, (NRU MGSU), 26, Yaroslavskoye 

Shosse, 129337, Moscow, Russian Federation 
2
 Ishlinsky Institute for Problems in Mechanics of  the   Russian Academy of Sciences, 

101-1, Pr. Vernadskogo, 119526, Moscow, Russian Federation 

 
3
 Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991, 

Russian Federation 

E-mail: tatyana2211@outlook.com 

Abstract. Multilayer composite materials are often used in building structures. The direct 

calculation of layered structures requires large expenditures of computer time. Therefore, the 

homogenization method is used. This method reduces the problem of a layered material with 

isotropic layers to the problem of a homogeneous transversely isotropic medium. The material 

considered in the article is also elastic-creeping. In the equations of state of such a material, 

terms of the convolution type with difference creep (relaxation) kernels are added to the terms 

of the usual theory of elasticity. The creep (relaxation) kernels are represented by decreasing 

exponential functions depending on two parameters. This problem becomes a problem of the 

theory of elasticity with a parameter after applying the Laplace transform in time to it. The 

inverse Laplace transform can be done in a computer algebra package, for example, Wolfram 

Mathematica, Wolfram-alpha. The obtained characteristics of the material are used to solve the 

problem of a layered elastic-creeping beam with hinge support.  Formulas are given for 

determining displacements in the case of layers parallel to the beam axis. 

1. Introduction 

In the construction of industrial and residential buildings, a structure such as a beam plays an 

important role. This element bears the main loads of the building in the vertical direction. Therefore, a 

very important point in the construction process is the calculation and selection of building materials 

for this building part. Such complex service life will depend on its reliability. 

By the method of fastening, the construction beam acts as a horizontal or inclined beam, more often 

working in bending. An additional important function of the horizontal beam is the distribution of the 

distributed load under the action of a vertically directed moment of force. It is this orientation that 

allows the product to significantly reduce the pressure on vertical structures (columns, posts) and to 

firmly strengthen them. Composite materials play an important role in the design of such building 

elements. The well-known homogenization theory can be used to calculate them [1,2]. In addition, 

such materials have the property of creep, that is, changes in time of the stress-strain state under 

constant loads. For example, to these questions are devoted the following works [4-6], the theory of 

the hereditary Boltzmann-Volterra mechanics are presented. In [7] the problem of bending 

deformation of layered metal-composite beams-walls, operating under conditions of steady creep of 

materials of all layers, was solved. Equations are obtained that allow describing the stress-strain state 
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in a beam with varying degrees of accuracy. It is shown that in the case of a copper-steel metal 

composition, neither the classical theory nor the first version of Timoshenko's theory guarantee 

reliable results on the compliance of the structure even within the 20% accuracy, which is considered 

acceptable when studying the mechanical behavior of structural elements under creep conditions. 

In the modern world, the industrial and construction sectors are constantly developing and 

improving. There is a continuous tightening of standards, reconstruction of buildings and structures, 

where it is often necessary to strengthen the supporting structures and their elements. 

Composite reinforcement systems perform excellently in both normal and harsh environments. The 

most commonly used external reinforcement using carbon fiber composites. At the same time, the 

materials are selected in such a way that, in the optimal combination, they give a qualitatively new 

type of design. Or, in other words, in composite structures, composites are arranged so that under 

operational conditions they better correspond to their functional purpose.  

The homogenization problems of elastic-creeping media were considered in [8-11]. 

Effective (averaged) modules of a layered elastic-creeping medium were obtained in paper [12]. 

The paper [13] considers the problem of a heterogeneous pipe consisting of a layered material. The 

elastic properties of this material depend only on the distance from the section center. The two 

approaches presented in this article. They allow to obtain a solution in an analytical form.  

This article examines an elastic-creeping layered beam with longitudinal, pairwise alternating 

isotropic layers on two hinged supports. The creep kernels of the layers are exponential functions 

depending on two parameters.  

2. Problem specification and decision 

We consider an inhomogeneous beam of length l, consisting of pairwise alternating layers parallel to 

its axis. The layers of elastic-creeping materials are assumed to be isotropic therefore the stiffness 

tensor ijklc  and relaxation tensor ijklR ( , , , 1 4)i j k l   , respectively, have the form [5]: 

 ( ),ijkh ij kh ik jh ih jkc           (1) 

 
1 1

( ( ) ( )) ( )( )
3 2

ijkh v sh ij kh sh ik jh ih jkR D t D t D t          , (2) 

In (1, 2) ,   are Lame parameters, ( )shD t  and ( )vD t  are the regular parts of the shear and the bulk 

relaxation respectively, ij   is Kronecker symbol. We admit ( ( )) ( ( ))v s s sh sD t k D t , sk is a constant, 

0,( 1,2)sk s  . Further, ( )shD t  is denoted by ( )D t . Further, the relaxation kernels are decreasing 

exponential functions. 

Equilibrium equations in the theory of elasticity have the form [3]: 

 
( , )

( , )
ij

i

j

x t
f x t

x





. (3) 

In (3) we designated: 1 2 3( , , )x x x x , ( , )ij x t  - are deformation components, ( , )if x t  are components 

of a vector of external forces, , 1,2,3i j   and variable t specifies time. The beam axis coincides with 

the 3x - axis. For our problem the stress tensor components for each layer have the following form:  

 ( ) ( ) ( )*s s s

ij ijkh khm e  . (4) 

 ( )ijkh ijkh ijkhm c t R  . (5) 

( 1,2s   is the layer number, ( )s

khe are deformation components for each layer, ( )t  is Dirac-delta, 

Einstein convention for repeated indices is used). The * means the next convolution operation 

 
0

( ) ( )

t

ijkh kh ijkh khR e R t e d     . (6) 
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We assume the values of the stress components ij  are invariants with respect to the origin of the time 

reference, therefore the relaxation kernels ijkhR  depend on the difference t  . Ideal contact 

conditions are assumed to be satisfied on the horizontal surfaces of the layers. 
Since this beam is a layered medium all elastic modulus and relaxation kernels are periodic functions 

of the coordinate 
y




   (  is the relative cell period) and are piecewise constant functions of this 

variable, i.e., elastic modulus and relaxation kernels have the form [9]: 

 
1

2

1 1 1

2 2 2

, [0; ] , [0; ] , [0; ]
( ) ( ) ( , )

, [1 ;1] , [1 ;1] , [1 ;1]

t

t

h h d e h
D t

h h d e h





    
    

    





    
    

       
. (7) 

In (7) 
1 1 2 2, , ,     are Lame parameters for each layer, 

1 1 2 2, , ,d d   are positive constants, t is the 

variable that specifies time, h is the constant that determines the layers thickness ratio of different 

materials.  

The Laplace transform in the time domain is applied to (3) taking into account (4) 

 
0

( ) ( ) ptf p f t e dt



  . (8) 

After this we have a system of equations of elasticity theory with a complex parameter p. The 

homogenization method [1, 2] is applied to this system.  As a result, we obtain a homogeneous beam 

consisting of a transversely isotropic material.  

Let us show how the elastic compliance of the obtained material is calculated in Laplace images, 

that is, they will be functions depending on the parameter p.  

Further, the designations of elastic compliance components with two indices, which are more 

common in the technical literature, are used.  

The equations of state written with elastic compliance ( , 1 3)ija i j    are as follows 

 

11 11 11 12 22 13 33

22 12 11 11 22 13 33

33 13 11 13 22 33 33

a a a

a a a

a a a

   

   

   

  


  
   

. (9) 

In [11] expressions for the elastic compliance components are obtained using the inverse of the 

elastic moduli matrix: 

 

 
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, (10) 
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 


 
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

. (13) 

В (10-(13) brackets   denote averaging operation: 

 
1

0

( )f f d   . (14) 

As a result, we get  

 1311 12
11 12 13

11 12 13

, , ,
AA A

a a a
B B B

    (15) 

 
11 2 2 2 2 1 1 1 1 1 1 1 1

1
( )[ ( ) ][2 ( ) ] 2( )( ) 2

3
A h p L p G p g p g k      

  
            

  
(16) 

 
1 1 1 1 2 2 2 2 2 2 2 2

1
(1 )( )[ ( ) ][2 ( ) ] 2( )( ) 2 ,

3
h p L p G p g p g k      

  
            

  
 

 
12 2 1 1 1 2 2 2 1 1 1( )[ ( ) ][ ( ) ][ 2 ( )]A h p p j L p G g p               (17) 

 1 2 2 2 1 1 1 2 2 2(1 )( )[ ( ) ][ ( ) ][ 2 ( )],h p p j L p G g p                

 13 1 1 1 2 2 2{ [ ( ) ][ ( ) ]A h p j L p G         (18) 

 2 2 2 1 1 1 1 2(1 )[ ( ) ][ ( ) ]}( )( ),h p j L p G p p              

 11 12 2 2 2 2 1 1 1 1 1 1 1 1( )[ ( ) ][2 ( ) ][2( )( ) 3 ]B B h p L p G p g p k g                  (19) 

 1 1 1 1 2 2 2 2 2 2 2 2(1 )( )[ ( ) ][2 ( ) ][2( )( ) 3 ],h p L p G p g p k g                  

 13 2 2 2 2 1 1 1 1 1 1 1 1( )[ ( ) ][2 ( ) ][(3 2 )( ) 3 ]B h p L p G p g p k g                 (20) 

 1 1 1 1 2 2 2 2 2 2 2 2(1 )( )[ ( ) ][2 ( ) ][(3 2 )( ) 3 ].h p L p G p g p k g                  

In (16)-(20) the following notation was introduced  

2 1
2 , , , ( 1,2).

3 3
s s s s s s s s sL G g k j g k s 

   
         

   
 

It follows from the physical meaning of the problem that roots of the polynomials 11 12 13, ,B B B  in the 

denominators of (15) must be different real negative numbers. Otherwise, in the relation a  ,  

where a is an elastic compliance matrix, for fixed   and for t   exponentially growing or 

oscillating components of the strain tensor would be obtained. 

We decompose the polynomials 11 12 13, ,B B B  (19), (20), into linear factors and use for example the 

symbolic mathematics software package Wolfram Mathematica to perform the inverse Laplace 

transform. We obtain the coefficients 11 12 13, ,a a a  as sums of some constants multiplied by the delta-

function and decreasing exponential functions which depend on time. Their exponents have 

coefficients equal to the given values 1 2,    and coefficients equal to the roots of denominators 

polynomials of the corresponding fraction.    
The obtained expressions for the components of elastic compliance can be used to calculate the 

displacements of an elastic-creeping layered beam for example, for the following fixing conditions. At 

the ends of the beam, forces are applied, resulting in bending moments acting in a plane passing 



IPICSE 2020
IOP Conf. Series: Materials Science and Engineering 1030  (2021) 012025

IOP Publishing
doi:10.1088/1757-899X/1030/1/012025

5

 

 

 

 

 

 

through the beam axis z and one of the main axes of inertia y of the cross section. Let M  is the 

bending moment, and  I  is the moment of inertia of the beam cross-section relative to the main x axis. 

As is known, in this case for a transversely isotropic body, the distribution of nonzero stresses and 

strains has the form [15]: 

 
33 2 ,

M
x

I
   (21) 

 
11 13 2 22 12 2 33 11 2, , .

M M M
a x a x a x

I I I
      (22) 

The displacements u, v, w are determined from equations (22) by integration. Arbitrary constants that 

will be included in the obtained expressions are determined from the conditions for fixing the ends.  

Let there be hinged supports at the ends, then the displacements must satisfy the conditions for 

1 2 3 0x x x    and 1 2 30,x x x l    conditions 0u v w   , and in addition, the condition that the 

axis element near one of the supports cannot rotate, that is, when 
1 2 3 0x x x    

 
1 2

0
v u

x x

 
 

 
. (23) 

Then we will have 

 

13 1 2

2 2 2

13 1 21 2 11 3 3

11 2 3

[ ( )]
2

(2 )
2

M
u a x x

I

M
v a x a x a lx x

I

M
w a x x l

I







    



 


. (24) 

We can also write the equation of the curved beam axis 

 211
2 3 3( )

2

Ma
x lx x

I
  . (25) 

From equation (25), the largest deflection of the beam (in the middle of the span) can be 

determined. 

3. Conclusion  

In the article formulas are obtained, according to which one can learn the values of the elastic 

compliance of a layered composite beam with the arrangement of layers along its axis. In this case, in 

the calculations, you can use a computer algebra package Wolfram Mathematica. The material 

obtained using the averaging method is transversely isotropic, as a result of which the formulas of the 

mechanics of an anisotropic body are used to find the displacement components.  
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