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Advanced Course in Classical Logic

The Course consists of two parts:

1 Classical Propositional Logic

2 Classical Predicate Logic
It contains topics that are usually not in the standard courses on
Mathematical Logic.

This lecture is on Classical propositional logic:
syntax, semantics,
axiomatization, completeness,
compactness,
decidability,
interpolation,
peculiar properties.
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Classical Propositional Logic: Syntax

Propositional variables: Var = {p0, p1, . . .} — a countable set.

Connectives:
¬ ‘not’, negation
∧ ‘and’, conjunction (sometimes denoted by &)
∨ ‘or’, disjunction
→ ‘if...then...’, implication
↔ ‘if and only if’, ‘iff’, equivalence (usually not a primitive symbol)

¬ is a unary connective, ∧,∨,→,↔ are binary connectives.

Constants (nullary connectives):
⊤ (true)
⊥ (false).

In formulas, we also use parentheses: ( and ).
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Classical Propositional Logic: Syntax

Definition
Formulas are defined by induction:

the symbols ⊥ and ⊤ are formulas,
every variable pi is a formula,
if A is a formula, then ¬A is a formula,
if A,B are formulas, then (A ∧ B), (A ∨ B), (A→ B) are formulas.

This definition can be written concisely:

A,B ::= ⊥ | ⊤ | pi | ¬A | (A ∧ B) | (A ∨ B) | (A→ B).

Definitions (grammars) like this are in Backus–Naur form.

The set of all formulas is denoted by Fm.
Fm is a countable set. Why?
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Classical Propositional Logic: Semantics

Definition
A valuation is any function v : Var→ {0, 1}.

So, to every variable pi the valuation v assigns a digit (bit) 0 or 1.

We extend v from Var to all formulas v : Fm→ {0, 1} by induction:

v(⊤) = 1, v(⊥) = 0, v(¬A) = 1− v(A),
v(A ⋆ B) = according to the truth tables

A B A ∧ B A ∨ B A→ B

0 0 0 0 1
0 1 0 1 1
1 0 0 1 0
1 1 1 1 1

If v(A) = 1, we write v |= A and say: “A is true under the valuation v ”.
If v(A) = 0, we write v |̸= A and say: “A is false under the valuation v ”.
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Theorem (Functional completeness)
Every Boolean function f (x1, . . . , xn) : {0, 1}n → {0, 1}
is expressed by some propositional formula A(p1, . . . , pn),
i.e. the truth table for A is exactly f .

Moreover, {¬,∧} are sufficient.
Other complete sets of connectives: {¬,∨}, {⊥,→}, {1,&,⊕}, {|}, {↓}.

Sheffer stroke: A | B := ¬(A&B). Also called NAND.
Peirce’s arrow: A ↓ B := ¬(A ∨ B). Also called NOR.

Theorem (Post’s criterion)
A system Σ of Boolean functions is functionally complete ⇔ Σ ̸⊆ classes:

1 T0 (false-preserving): functions f such that f (0, . . . , 0) = 0,
2 T1 (truth-preserving): functions f such that f (1, . . . , 1) = 1,
3 L (linear): functions f whose polynomial over {1,&,⊕} is linear,
4 M (monotone): functions f : if xi 6 yi for all i , then f (x⃗) 6 f (y⃗ ),
5 S (self-dual): functions f such that f (¬x1, . . . ,¬xn) = ¬f (x⃗).
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4 M (monotone): functions f : if xi 6 yi for all i , then f (x⃗) 6 f (y⃗ ),
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Valid and Satisfiable formulas / sets

Definition
A formula A is called valid if ∀v v(A) = 1.

Another name: tautology.

A formula A is called satisfiable if ∃v v(A) = 1.

Fact. A is a tautology ⇐⇒ ¬A is not satisfiable.

Let Γ ⊆ Fm. We write v |= Γ if, for every formula A ∈ Γ, we have v |= A.
In this case we say that Γ is true under the valuation v .

Definition
A set Γ is satisfiable if ∃v : v |= Γ.

A set Γ implies (or entails) a formula A, in symbols: Γ |= A, if

for every valuation v such that v |= Γ, we have v |= A.

Fact. Γ |= A ⇐⇒ Γ ∪ {¬A} is not satisfiable.
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Examples

Example 1. Is the formula (p → q) ∨ (q → p) a tautology?

Yes.

Example 2. Is the set Γ = {¬p ∨ r , p ∨ ¬s, s → ¬r } satisfiable? Yes.

Example 3. Does the same set Γ imply ¬s? Yes.

Example 4. Does the same set Γ imply p? No: p, r , s ↦→ 0, 1, 0.

There is an algorithm for checking satisfiability of formulas:

Input: a formula A

Output:
{︂
Yes, if A is satisfiable,
No, otherwise.

If you find a polynomial algorithm for this, you’ll get $ 1 000 000.
If you prove that no polynomial algorithm exists, you’ll get $ 1 000 000.
This is one of the 7 millennium problems: P = NP?
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Axiomatization

Classical propositional calculus:
Axioms (more exactly: axiom schemata):

1 A→ (B → A),
2 [A→ (B → C )] → [(A→ B)→ (A→ C )],
3 (A ∧ B)→ A, (A ∧ B)→ B ,
4 A→ (B → (A ∧ B)),
5 A→ (A ∨ B), B → (A ∨ B),
6 (A→ C ) → [(B → C ) → (A ∨ B)→ C ],
7 (A→ B) → [(A→ ¬B) → ¬A],
8 A→ (¬A→ B)

9 A ∨ ¬A (alternative: ¬¬A→ A)
10 ⊤, ⊥ → A.

Rule of inference: modus ponens (MP)
A A→ B

B
.

Remark. Without A ∨ ¬A, we obtain the Intuitionistic propositional logic.

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 9 / 24



Axiomatization

Classical propositional calculus:
Axioms (more exactly: axiom schemata):

1 A→ (B → A),
2 [A→ (B → C )] → [(A→ B)→ (A→ C )],
3 (A ∧ B)→ A, (A ∧ B)→ B ,
4 A→ (B → (A ∧ B)),
5 A→ (A ∨ B), B → (A ∨ B),
6 (A→ C ) → [(B → C ) → (A ∨ B)→ C ],
7 (A→ B) → [(A→ ¬B) → ¬A],
8 A→ (¬A→ B)

9 A ∨ ¬A (alternative: ¬¬A→ A)
10 ⊤, ⊥ → A.

Rule of inference: modus ponens (MP)
A A→ B

B
.

Remark. Without A ∨ ¬A, we obtain the Intuitionistic propositional logic.

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 9 / 24



Axiomatization

Classical propositional calculus:
Axioms (more exactly: axiom schemata):

1 A→ (B → A),
2 [A→ (B → C )] → [(A→ B)→ (A→ C )],
3 (A ∧ B)→ A, (A ∧ B)→ B ,
4 A→ (B → (A ∧ B)),
5 A→ (A ∨ B), B → (A ∨ B),
6 (A→ C ) → [(B → C ) → (A ∨ B)→ C ],
7 (A→ B) → [(A→ ¬B) → ¬A],
8 A→ (¬A→ B)

9 A ∨ ¬A (alternative: ¬¬A→ A)
10 ⊤, ⊥ → A.

Rule of inference: modus ponens (MP)
A A→ B

B
.

Remark. Without A ∨ ¬A, we obtain the Intuitionistic propositional logic.
Evgeny Zolin, MSU Classical propositional logic 24.02.2021 9 / 24



Derivations

Definition
A formula A is called derivable, or provable, or a theorem of the CPC

if
there is a derivation, or a proof, or inference in CPC in which A is the last
formula.

Notation: ⊢ A.

Definition
A derivation, or proof, or inference is a finite sequence (list) of formulas

C1, . . . ,Cn

such that each formula Ck

either is an axiom of CPC,
or is obtained by the rule MP from some previous formulas Ci and Cj ,
where i , j < k .
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Example of a derivation

Here we derive the formula (A ∧ B)→ (A ∨ B).

1 A ∧ B → A axiom
2 A→ A ∨ B axiom
3 [A→ A ∨ B] → [(A ∧ B) → (A→ A ∨ B)] axiom
4 (A ∧ B) → (A→ A ∨ B) rule MP
5 [(A ∧ B) → (A→ A ∨ B)] → [(A ∧ B → A)→ (A ∧ B → A ∨ B)]

6 (A ∧ B → A)→ (A ∧ B → A ∨ B)

7 A ∧ B → A ∨ B
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Completeness of CPC

Theorem (Completeness)
A is a theorem ⇐⇒ A is a tautology.

⊢ A ⇐⇒ |= A

Corollary
CPC is decidable.
This means: there is an algorithm that takes any formula A and returns{︂

Yes, if A is provable in CPC,
No, otherwise.
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Derivation from hypotheses
Let A ∈ Fm be a formula and Γ ⊆ Fm some set of formulas.

Definition
A formula A is called derivable in CPC from a set of formulas Γ if there is a
derivation from Γ in which A is the last formula.

Notation: Γ ⊢ A.

Definition
A derivation in CPC from Γ is a finite sequence (list) of formulas

C1, . . . ,Cn

such that each formula Ck

either is an axiom of CPC,
or belongs to Γ,
or is obtained by the rule MP from some previous formulas Ci and Cj ,
where i , j < k .
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Completeness

Theorem (Completeness of CPC)
A is a theorem ⇐⇒ A is a tautology:

⊢ A ⇐⇒ |= A

Theorem (Strong completeness of CPC)
A is derivable from Γ ⇐⇒ Γ implies A:

Γ ⊢ A ⇐⇒ Γ |= A
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Compactness

Theorem (Compactness)
If Γ |= A, then there is a finite subset Δ ⊆ Γ such that Δ |= A.

Proof: Γ |= A

⇒ Γ ⊢ A. But proofs are finite!
⇒ ∃ finite Δ ⊆ Γ: Δ ⊢ A. ⇒ Δ |= A.

Theorem (Compactness)
If every finite subset Δ ⊆ Γ is satisfiable, then Γ is satisfiable.

Follows from Theorem 1. Indeed: Γ is unsatisfiable ⇐⇒ Γ |= ⊥.

Task
Prove Compactness without using axiomatization of CPC.

Let Γ = {A0,A1, . . .} be an infinite set of formulas.
For each Δn = {A0, . . . ,An} there is a valuation vn |= Δn.
How can we combine all valuations vn into a single valuation v |= Γ?
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Craig interpolation

Theorem (Craig interpolation theorem)
If ⊢ A→ C then there exists a formula B (called an interpolant) such that

(1) ⊢ A→ B and ⊢ B → C ,

(2) Var(B) ⊆ Var(A) ∩ Var(C ).

Proof. Due to Completeness, we prove for |= instead of ⊢.
Let A = A(p⃗, q⃗), C = C (q⃗, s), where p⃗ = (p1, . . . , pk), q⃗ = (q1, . . . , qℓ).
Suppose that A→ C (q⃗, s) is a tautology. In particular,
A→ C (q⃗,⊥) and A→ C (q⃗,⊤) are tautologies. Then
A→

[︀
C (q⃗,⊥) ∧ C (q⃗,⊤)

]︀⏟  ⏞  
B(q⃗)

is a tautology.

So, A→ B is a tautology. Why is B(q⃗)→ C (q⃗, s) a tautology?
∙ for s := ⊥ we obtain a tautology [C (q⃗,⊥) ∧ C (q⃗,⊤)]→ C (q⃗,⊥).
∙ for s := ⊤ we obtain a tautology (similarly).

In general, if s⃗ = (s1, . . . , sm), then B(q⃗) :=
⋀︀

a⃗∈{⊥,⊤}m
C (q⃗, a⃗).
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Stronger interpolation theorems

Craig interpolation

←− Lyndon interpolation

↑ ↑

Uniform Craig interpolation ←− Uniform Lyndon interpolation
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Lyndon interpolation: Polarity of variables

Recall that Var(A) is the set of variables in the formula A.

Definition (Variables occurring positively and negatively)

The sets Var+(A) and Var−(A) are defined by joint induction:
Var+(⊥) = Var−(⊥) = Var+(⊤) = Var−(⊤) = ∅,
Var+(pi ) = {pi}, Var−(pi ) = ∅,
Var+(¬A) = Var−(A), Var−(¬A) = Var+(A),
Var+(A ∧ B) = Var+(A) ∪ Var+(B), similarly for Var−.
similarly for ∨,
Var+(A→ B) = Var−(A) ∪ Var+(B), similarly for Var−.

Example. Let A be the formula (p → (q → p))→ s. Then
Var+(A) = {p, q, s},
Var−(A) = {p}.

(
+
p→ (

+
q→

−
p))→+

s
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Lyndon interpolation

Theorem (Lyndon interpolation theorem)
If ⊢ A→ C then there exists a formula B (called an interpolant) such that

(1) ⊢ A→ B and ⊢ B → C ,

(2+) Var+(B) ⊆ Var+(A) ∩ Var+(C ),

(2−) Var−(B) ⊆ Var−(A) ∩ Var−(C ).

The proof is more subtle.
To prove it, one can use the sequent calculus.
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Uniform Craig interpolation

Theorem (Uniform Craig interpolation theorem)
For any formula A = A(p⃗, q⃗) (and any choice of variables q⃗ ⊆ Var(A))
there is a formula B(q⃗) (a uniform interpolant of A w.r.t. q⃗) such that

(1) ⊢ A(p⃗, q⃗)→ B(q⃗),
(2) for any formula C (q⃗, s⃗) such that ⊢ A→ C and Var(A) ∩ Var(C ) ⊆ q⃗,
we have ⊢ B → C .

Proof.
Take the conjunction of all formulas with variables q⃗ that follow from A:

B(q⃗) :=
⋀︀
{D(q⃗) | A→ D is a tautology }.

There are infinitely many such formulas D!
But only 622n pairwise non-equivalent formulas, where q⃗ = (q1, . . . , qn).
Please give the remainder of the proof.
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Axiomatization

Classical propositional calculus:
Axioms (more exactly: axiom schemata):

1 A→ (B → A),
2 [A→ (B → C )] → [(A→ B)→ (A→ C )],
3 (A ∧ B)→ A, (A ∧ B)→ B ,
4 A→ (B → (A ∧ B)),
5 A→ (A ∨ B), B → (A ∨ B),
6 (A→ C ) → [(B → C ) → (A ∨ B)→ C ],
7 (A→ B) → [(A→ ¬B) → ¬A],
8 A ∨ ¬A (alternative: ¬¬A→ A)
9 ⊤, ⊥ → A.

Rule of inference: modus ponens (MP)
A A→ B

B
.
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Interesting facts

Without the axiom A ∨ ¬A we obtain the Intuitionistic logic.

It is decidable, it has compactness, interpolation.

The axioms for {¬,∧,→} axiomatize all tautologies built from
{¬,∧,→}.

The axioms for {¬,∨,→} axiomatize all tautologies built from
{¬,∨,→}.

The axioms for {¬,→} axiomatize all tautologies built from {¬,→}.

What are the axioms for all tautologies over {→}?
Axioms (1) and (2) are not enough!
We also need Peirce’s Law: ((A→ B)→ A)→ A.
Without it we obtain all {→}-theorems of Intuitionistic logic.
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Axiomatizations with just one axiom

Can we axiomatize all {→}-tautologies with just one axiom?

[(A→ B)→ C ] → [(C → A)→ (D → A)] ( Lukasiewicz, 1948)
Meredith (1953) did the same for all Intuitionistic {→}-theorems:
[(A→ B)→ C ] → [D →

(︀
(B → (C → E ))→ (B → E )

)︀
]

We can also find a single axiom for {¬,→}, for {¬,∧,→}, etc.
Can we do the same for Sheffer stroke | in the Classical logic? Yes:
Axiom: (A | (B | C )) | {[D | (D | D)] | [(E | B) | ((A | E ) | (A | E ))]}

Rule:
A A | (B | C )

C
The same can be done for Peirce’s arrow ↓, too!
Alfred Tarski gave a sufficient condition under which a calculus can
be axiomatized by just one axiom.
Ted Ulrich — collects shortest single axioms for many logics with only
{→} or {↔}.
https://web.ics.purdue.edu/~dulrich/Home-page.htm
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Questions for further thinking

Try to build an algorithm such that

Input: finitely many tautologies A1, . . . ,Ak

Output: Yes ⇐⇒ the formulas A1, . . . ,Ak

axiomatize all tautologies (with the rule MP).
The same question for just one tautology A.

Imagine that we can write countable conjunctions: (A1 ∧ A2 ∧ . . .).

How many formulas do we get then?
Countably many? Continuum? Hyper-continuum?
Can we express every function f (x1, x2, . . .) : {0, 1}𝜔 → {0, 1}?
What are the axioms and rules for tautologies?

The end of lecture 1. Thank you!
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