
ACCL Lecture 1:
Classical Propositional Logic:

main notions and results & more

Evgeny Zolin

Department of Mathematical Logic and Theory of Algorithms
Faculty of Mechanics and Mathematics

Moscow State University

Advanced Course in Classical Logic
24.02.2021

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 1 / 24

Advanced Course in Classical Logic

The Course consists of two parts:

1 Classical Propositional Logic

2 Classical Predicate Logic
It contains topics that are usually not in the standard courses on
Mathematical Logic.

This lecture is on Classical propositional logic:
syntax, semantics,
axiomatization, completeness,
compactness,
decidability,
interpolation,
peculiar properties.

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 2 / 24

Advanced Course in Classical Logic

The Course consists of two parts:
1 Classical Propositional Logic

2 Classical Predicate Logic
It contains topics that are usually not in the standard courses on
Mathematical Logic.

This lecture is on Classical propositional logic:
syntax, semantics,
axiomatization, completeness,
compactness,
decidability,
interpolation,
peculiar properties.

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 2 / 24

Advanced Course in Classical Logic

The Course consists of two parts:
1 Classical Propositional Logic

2 Classical Predicate Logic

It contains topics that are usually not in the standard courses on
Mathematical Logic.

This lecture is on Classical propositional logic:
syntax, semantics,
axiomatization, completeness,
compactness,
decidability,
interpolation,
peculiar properties.

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 2 / 24

Advanced Course in Classical Logic

The Course consists of two parts:
1 Classical Propositional Logic

2 Classical Predicate Logic
It contains topics that are usually not in the standard courses on
Mathematical Logic.

This lecture is on Classical propositional logic:
syntax, semantics,
axiomatization, completeness,
compactness,
decidability,
interpolation,
peculiar properties.

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 2 / 24

Advanced Course in Classical Logic

The Course consists of two parts:
1 Classical Propositional Logic

2 Classical Predicate Logic
It contains topics that are usually not in the standard courses on
Mathematical Logic.

This lecture is on Classical propositional logic:
syntax, semantics,
axiomatization, completeness,
compactness,
decidability,
interpolation,
peculiar properties.
Evgeny Zolin, MSU Classical propositional logic 24.02.2021 2 / 24

Classical Propositional Logic: Syntax

Propositional variables: Var = {p0, p1, . . .} — a countable set.

Connectives:
¬ ‘not’, negation
∧ ‘and’, conjunction (sometimes denoted by &)
∨ ‘or’, disjunction
→ ‘if...then...’, implication
↔ ‘if and only if’, ‘iff’, equivalence (usually not a primitive symbol)

¬ is a unary connective, ∧,∨,→,↔ are binary connectives.

Constants (nullary connectives):
⊤ (true)
⊥ (false).

In formulas, we also use parentheses: (and).

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 3 / 24

Classical Propositional Logic: Syntax

Propositional variables: Var = {p0, p1, . . .} — a countable set.

Connectives:

¬ ‘not’, negation
∧ ‘and’, conjunction (sometimes denoted by &)
∨ ‘or’, disjunction
→ ‘if...then...’, implication
↔ ‘if and only if’, ‘iff’, equivalence (usually not a primitive symbol)

¬ is a unary connective, ∧,∨,→,↔ are binary connectives.

Constants (nullary connectives):
⊤ (true)
⊥ (false).

In formulas, we also use parentheses: (and).

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 3 / 24

Classical Propositional Logic: Syntax

Propositional variables: Var = {p0, p1, . . .} — a countable set.

Connectives:
¬ ‘not’, negation

∧ ‘and’, conjunction (sometimes denoted by &)
∨ ‘or’, disjunction
→ ‘if...then...’, implication
↔ ‘if and only if’, ‘iff’, equivalence (usually not a primitive symbol)

¬ is a unary connective, ∧,∨,→,↔ are binary connectives.

Constants (nullary connectives):
⊤ (true)
⊥ (false).

In formulas, we also use parentheses: (and).

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 3 / 24

Classical Propositional Logic: Syntax

Propositional variables: Var = {p0, p1, . . .} — a countable set.

Connectives:
¬ ‘not’, negation
∧ ‘and’, conjunction (sometimes denoted by &)

∨ ‘or’, disjunction
→ ‘if...then...’, implication
↔ ‘if and only if’, ‘iff’, equivalence (usually not a primitive symbol)

¬ is a unary connective, ∧,∨,→,↔ are binary connectives.

Constants (nullary connectives):
⊤ (true)
⊥ (false).

In formulas, we also use parentheses: (and).

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 3 / 24

Classical Propositional Logic: Syntax

Propositional variables: Var = {p0, p1, . . .} — a countable set.

Connectives:
¬ ‘not’, negation
∧ ‘and’, conjunction (sometimes denoted by &)
∨ ‘or’, disjunction

→ ‘if...then...’, implication
↔ ‘if and only if’, ‘iff’, equivalence (usually not a primitive symbol)

¬ is a unary connective, ∧,∨,→,↔ are binary connectives.

Constants (nullary connectives):
⊤ (true)
⊥ (false).

In formulas, we also use parentheses: (and).

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 3 / 24

Classical Propositional Logic: Syntax

Propositional variables: Var = {p0, p1, . . .} — a countable set.

Connectives:
¬ ‘not’, negation
∧ ‘and’, conjunction (sometimes denoted by &)
∨ ‘or’, disjunction
→ ‘if...then...’, implication

↔ ‘if and only if’, ‘iff’, equivalence (usually not a primitive symbol)

¬ is a unary connective, ∧,∨,→,↔ are binary connectives.

Constants (nullary connectives):
⊤ (true)
⊥ (false).

In formulas, we also use parentheses: (and).

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 3 / 24

Classical Propositional Logic: Syntax

Propositional variables: Var = {p0, p1, . . .} — a countable set.

Connectives:
¬ ‘not’, negation
∧ ‘and’, conjunction (sometimes denoted by &)
∨ ‘or’, disjunction
→ ‘if...then...’, implication
↔ ‘if and only if’, ‘iff’, equivalence (usually not a primitive symbol)

¬ is a unary connective, ∧,∨,→,↔ are binary connectives.

Constants (nullary connectives):
⊤ (true)
⊥ (false).

In formulas, we also use parentheses: (and).

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 3 / 24

Classical Propositional Logic: Syntax

Propositional variables: Var = {p0, p1, . . .} — a countable set.

Connectives:
¬ ‘not’, negation
∧ ‘and’, conjunction (sometimes denoted by &)
∨ ‘or’, disjunction
→ ‘if...then...’, implication
↔ ‘if and only if’, ‘iff’, equivalence (usually not a primitive symbol)

¬ is a unary connective, ∧,∨,→,↔ are binary connectives.

Constants (nullary connectives):
⊤ (true)
⊥ (false).

In formulas, we also use parentheses: (and).

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 3 / 24

Classical Propositional Logic: Syntax

Propositional variables: Var = {p0, p1, . . .} — a countable set.

Connectives:
¬ ‘not’, negation
∧ ‘and’, conjunction (sometimes denoted by &)
∨ ‘or’, disjunction
→ ‘if...then...’, implication
↔ ‘if and only if’, ‘iff’, equivalence (usually not a primitive symbol)

¬ is a unary connective, ∧,∨,→,↔ are binary connectives.

Constants (nullary connectives):
⊤ (true)
⊥ (false).

In formulas, we also use parentheses: (and).

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 3 / 24

Classical Propositional Logic: Syntax

Propositional variables: Var = {p0, p1, . . .} — a countable set.

Connectives:
¬ ‘not’, negation
∧ ‘and’, conjunction (sometimes denoted by &)
∨ ‘or’, disjunction
→ ‘if...then...’, implication
↔ ‘if and only if’, ‘iff’, equivalence (usually not a primitive symbol)

¬ is a unary connective, ∧,∨,→,↔ are binary connectives.

Constants (nullary connectives):
⊤ (true)
⊥ (false).

In formulas, we also use parentheses: (and).
Evgeny Zolin, MSU Classical propositional logic 24.02.2021 3 / 24

Classical Propositional Logic: Syntax

Definition
Formulas are defined by induction:

the symbols ⊥ and ⊤ are formulas,
every variable pi is a formula,
if A is a formula, then ¬A is a formula,
if A,B are formulas, then (A ∧ B), (A ∨ B), (A→ B) are formulas.

This definition can be written concisely:

A,B ::= ⊥ | ⊤ | pi | ¬A | (A ∧ B) | (A ∨ B) | (A→ B).

Definitions (grammars) like this are in Backus–Naur form.

The set of all formulas is denoted by Fm.
Fm is a countable set. Why?

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 4 / 24

Classical Propositional Logic: Syntax

Definition
Formulas are defined by induction:

the symbols ⊥ and ⊤ are formulas,

every variable pi is a formula,
if A is a formula, then ¬A is a formula,
if A,B are formulas, then (A ∧ B), (A ∨ B), (A→ B) are formulas.

This definition can be written concisely:

A,B ::= ⊥ | ⊤ | pi | ¬A | (A ∧ B) | (A ∨ B) | (A→ B).

Definitions (grammars) like this are in Backus–Naur form.

The set of all formulas is denoted by Fm.
Fm is a countable set. Why?

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 4 / 24

Classical Propositional Logic: Syntax

Definition
Formulas are defined by induction:

the symbols ⊥ and ⊤ are formulas,
every variable pi is a formula,

if A is a formula, then ¬A is a formula,
if A,B are formulas, then (A ∧ B), (A ∨ B), (A→ B) are formulas.

This definition can be written concisely:

A,B ::= ⊥ | ⊤ | pi | ¬A | (A ∧ B) | (A ∨ B) | (A→ B).

Definitions (grammars) like this are in Backus–Naur form.

The set of all formulas is denoted by Fm.
Fm is a countable set. Why?

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 4 / 24

Classical Propositional Logic: Syntax

Definition
Formulas are defined by induction:

the symbols ⊥ and ⊤ are formulas,
every variable pi is a formula,
if A is a formula, then ¬A is a formula,

if A,B are formulas, then (A ∧ B), (A ∨ B), (A→ B) are formulas.

This definition can be written concisely:

A,B ::= ⊥ | ⊤ | pi | ¬A | (A ∧ B) | (A ∨ B) | (A→ B).

Definitions (grammars) like this are in Backus–Naur form.

The set of all formulas is denoted by Fm.
Fm is a countable set. Why?

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 4 / 24

Classical Propositional Logic: Syntax

Definition
Formulas are defined by induction:

the symbols ⊥ and ⊤ are formulas,
every variable pi is a formula,
if A is a formula, then ¬A is a formula,
if A,B are formulas, then (A ∧ B), (A ∨ B), (A→ B) are formulas.

This definition can be written concisely:

A,B ::= ⊥ | ⊤ | pi | ¬A | (A ∧ B) | (A ∨ B) | (A→ B).

Definitions (grammars) like this are in Backus–Naur form.

The set of all formulas is denoted by Fm.
Fm is a countable set. Why?

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 4 / 24

Classical Propositional Logic: Syntax

Definition
Formulas are defined by induction:

the symbols ⊥ and ⊤ are formulas,
every variable pi is a formula,
if A is a formula, then ¬A is a formula,
if A,B are formulas, then (A ∧ B), (A ∨ B), (A→ B) are formulas.

This definition can be written concisely:

A,B ::= ⊥ | ⊤ | pi | ¬A | (A ∧ B) | (A ∨ B) | (A→ B).

Definitions (grammars) like this are in Backus–Naur form.

The set of all formulas is denoted by Fm.
Fm is a countable set. Why?

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 4 / 24

Classical Propositional Logic: Syntax

Definition
Formulas are defined by induction:

the symbols ⊥ and ⊤ are formulas,
every variable pi is a formula,
if A is a formula, then ¬A is a formula,
if A,B are formulas, then (A ∧ B), (A ∨ B), (A→ B) are formulas.

This definition can be written concisely:

A,B ::= ⊥ | ⊤ | pi | ¬A | (A ∧ B) | (A ∨ B) | (A→ B).

Definitions (grammars) like this are in Backus–Naur form.

The set of all formulas is denoted by Fm.
Fm is a countable set. Why?

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 4 / 24

Classical Propositional Logic: Syntax

Definition
Formulas are defined by induction:

the symbols ⊥ and ⊤ are formulas,
every variable pi is a formula,
if A is a formula, then ¬A is a formula,
if A,B are formulas, then (A ∧ B), (A ∨ B), (A→ B) are formulas.

This definition can be written concisely:

A,B ::= ⊥ | ⊤ | pi | ¬A | (A ∧ B) | (A ∨ B) | (A→ B).

Definitions (grammars) like this are in Backus–Naur form.

The set of all formulas is denoted by Fm.

Fm is a countable set. Why?

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 4 / 24

Classical Propositional Logic: Syntax

Definition
Formulas are defined by induction:

the symbols ⊥ and ⊤ are formulas,
every variable pi is a formula,
if A is a formula, then ¬A is a formula,
if A,B are formulas, then (A ∧ B), (A ∨ B), (A→ B) are formulas.

This definition can be written concisely:

A,B ::= ⊥ | ⊤ | pi | ¬A | (A ∧ B) | (A ∨ B) | (A→ B).

Definitions (grammars) like this are in Backus–Naur form.

The set of all formulas is denoted by Fm.
Fm is a countable set. Why?

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 4 / 24

Classical Propositional Logic: Semantics

Definition
A valuation is any function v : Var→ {0, 1}.

So, to every variable pi the valuation v assigns a digit (bit) 0 or 1.

We extend v from Var to all formulas v : Fm→ {0, 1} by induction:

v(⊤) = 1, v(⊥) = 0, v(¬A) = 1− v(A),
v(A ⋆ B) = according to the truth tables

A B A ∧ B A ∨ B A→ B

0 0 0 0 1
0 1 0 1 1
1 0 0 1 0
1 1 1 1 1

If v(A) = 1, we write v |= A and say: “A is true under the valuation v ”.
If v(A) = 0, we write v |̸= A and say: “A is false under the valuation v ”.

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 5 / 24

Classical Propositional Logic: Semantics

Definition
A valuation is any function v : Var→ {0, 1}.

So, to every variable pi the valuation v assigns a digit (bit) 0 or 1.
We extend v from Var to all formulas v : Fm→ {0, 1} by induction:

v(⊤) = 1, v(⊥) = 0, v(¬A) = 1− v(A),
v(A ⋆ B) = according to the truth tables

A B A ∧ B A ∨ B A→ B

0 0 0 0 1
0 1 0 1 1
1 0 0 1 0
1 1 1 1 1

If v(A) = 1, we write v |= A and say: “A is true under the valuation v ”.
If v(A) = 0, we write v |̸= A and say: “A is false under the valuation v ”.

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 5 / 24

Classical Propositional Logic: Semantics

Definition
A valuation is any function v : Var→ {0, 1}.

So, to every variable pi the valuation v assigns a digit (bit) 0 or 1.
We extend v from Var to all formulas v : Fm→ {0, 1} by induction:

v(⊤) = 1, v(⊥) = 0,

v(¬A) = 1− v(A),
v(A ⋆ B) = according to the truth tables

A B A ∧ B A ∨ B A→ B

0 0 0 0 1
0 1 0 1 1
1 0 0 1 0
1 1 1 1 1

If v(A) = 1, we write v |= A and say: “A is true under the valuation v ”.
If v(A) = 0, we write v |̸= A and say: “A is false under the valuation v ”.

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 5 / 24

Classical Propositional Logic: Semantics

Definition
A valuation is any function v : Var→ {0, 1}.

So, to every variable pi the valuation v assigns a digit (bit) 0 or 1.
We extend v from Var to all formulas v : Fm→ {0, 1} by induction:

v(⊤) = 1, v(⊥) = 0, v(¬A) = 1− v(A),
v(A ⋆ B) = according to the truth tables

A B A ∧ B A ∨ B A→ B

0 0 0 0 1
0 1 0 1 1
1 0 0 1 0
1 1 1 1 1

If v(A) = 1, we write v |= A and say: “A is true under the valuation v ”.
If v(A) = 0, we write v |̸= A and say: “A is false under the valuation v ”.

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 5 / 24

Classical Propositional Logic: Semantics

Definition
A valuation is any function v : Var→ {0, 1}.

So, to every variable pi the valuation v assigns a digit (bit) 0 or 1.
We extend v from Var to all formulas v : Fm→ {0, 1} by induction:

v(⊤) = 1, v(⊥) = 0, v(¬A) = 1− v(A),
v(A ⋆ B) = according to the truth tables

A B A ∧ B A ∨ B A→ B

0 0 0 0 1
0 1 0 1 1
1 0 0 1 0
1 1 1 1 1

If v(A) = 1, we write v |= A and say: “A is true under the valuation v ”.
If v(A) = 0, we write v |̸= A and say: “A is false under the valuation v ”.

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 5 / 24

Classical Propositional Logic: Semantics

Definition
A valuation is any function v : Var→ {0, 1}.

So, to every variable pi the valuation v assigns a digit (bit) 0 or 1.
We extend v from Var to all formulas v : Fm→ {0, 1} by induction:

v(⊤) = 1, v(⊥) = 0, v(¬A) = 1− v(A),
v(A ⋆ B) = according to the truth tables

A B A ∧ B A ∨ B A→ B

0 0 0 0 1
0 1 0 1 1
1 0 0 1 0
1 1 1 1 1

If v(A) = 1, we write v |= A and say: “A is true under the valuation v ”.

If v(A) = 0, we write v |̸= A and say: “A is false under the valuation v ”.

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 5 / 24

Classical Propositional Logic: Semantics

Definition
A valuation is any function v : Var→ {0, 1}.

So, to every variable pi the valuation v assigns a digit (bit) 0 or 1.
We extend v from Var to all formulas v : Fm→ {0, 1} by induction:

v(⊤) = 1, v(⊥) = 0, v(¬A) = 1− v(A),
v(A ⋆ B) = according to the truth tables

A B A ∧ B A ∨ B A→ B

0 0 0 0 1
0 1 0 1 1
1 0 0 1 0
1 1 1 1 1

If v(A) = 1, we write v |= A and say: “A is true under the valuation v ”.
If v(A) = 0, we write v |̸= A and say: “A is false under the valuation v ”.

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 5 / 24

Theorem (Functional completeness)
Every Boolean function f (x1, . . . , xn) : {0, 1}n → {0, 1}
is expressed by some propositional formula A(p1, . . . , pn),
i.e. the truth table for A is exactly f .

Moreover, {¬,∧} are sufficient.
Other complete sets of connectives: {¬,∨}, {⊥,→}, {1,&,⊕}, {|}, {↓}.

Sheffer stroke: A | B := ¬(A&B). Also called NAND.
Peirce’s arrow: A ↓ B := ¬(A ∨ B). Also called NOR.

Theorem (Post’s criterion)
A system Σ of Boolean functions is functionally complete ⇔ Σ ̸⊆ classes:

1 T0 (false-preserving): functions f such that f (0, . . . , 0) = 0,
2 T1 (truth-preserving): functions f such that f (1, . . . , 1) = 1,
3 L (linear): functions f whose polynomial over {1,&,⊕} is linear,
4 M (monotone): functions f : if xi 6 yi for all i , then f (x⃗) 6 f (y⃗),
5 S (self-dual): functions f such that f (¬x1, . . . ,¬xn) = ¬f (x⃗).

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 6 / 24

Theorem (Functional completeness)
Every Boolean function f (x1, . . . , xn) : {0, 1}n → {0, 1}
is expressed by some propositional formula A(p1, . . . , pn),
i.e. the truth table for A is exactly f .

Moreover, {¬,∧} are sufficient.

Other complete sets of connectives: {¬,∨}, {⊥,→}, {1,&,⊕}, {|}, {↓}.
Sheffer stroke: A | B := ¬(A&B). Also called NAND.
Peirce’s arrow: A ↓ B := ¬(A ∨ B). Also called NOR.

Theorem (Post’s criterion)
A system Σ of Boolean functions is functionally complete ⇔ Σ ̸⊆ classes:

1 T0 (false-preserving): functions f such that f (0, . . . , 0) = 0,
2 T1 (truth-preserving): functions f such that f (1, . . . , 1) = 1,
3 L (linear): functions f whose polynomial over {1,&,⊕} is linear,
4 M (monotone): functions f : if xi 6 yi for all i , then f (x⃗) 6 f (y⃗),
5 S (self-dual): functions f such that f (¬x1, . . . ,¬xn) = ¬f (x⃗).

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 6 / 24

Theorem (Functional completeness)
Every Boolean function f (x1, . . . , xn) : {0, 1}n → {0, 1}
is expressed by some propositional formula A(p1, . . . , pn),
i.e. the truth table for A is exactly f .

Moreover, {¬,∧} are sufficient.
Other complete sets of connectives: {¬,∨}, {⊥,→}, {1,&,⊕}, {|}, {↓}.

Sheffer stroke: A | B := ¬(A&B). Also called NAND.
Peirce’s arrow: A ↓ B := ¬(A ∨ B). Also called NOR.

Theorem (Post’s criterion)
A system Σ of Boolean functions is functionally complete ⇔ Σ ̸⊆ classes:

1 T0 (false-preserving): functions f such that f (0, . . . , 0) = 0,
2 T1 (truth-preserving): functions f such that f (1, . . . , 1) = 1,
3 L (linear): functions f whose polynomial over {1,&,⊕} is linear,
4 M (monotone): functions f : if xi 6 yi for all i , then f (x⃗) 6 f (y⃗),
5 S (self-dual): functions f such that f (¬x1, . . . ,¬xn) = ¬f (x⃗).

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 6 / 24

Theorem (Functional completeness)
Every Boolean function f (x1, . . . , xn) : {0, 1}n → {0, 1}
is expressed by some propositional formula A(p1, . . . , pn),
i.e. the truth table for A is exactly f .

Moreover, {¬,∧} are sufficient.
Other complete sets of connectives: {¬,∨}, {⊥,→}, {1,&,⊕}, {|}, {↓}.

Sheffer stroke: A | B := ¬(A&B). Also called NAND.
Peirce’s arrow: A ↓ B := ¬(A ∨ B). Also called NOR.

Theorem (Post’s criterion)
A system Σ of Boolean functions is functionally complete ⇔ Σ ̸⊆ classes:

1 T0 (false-preserving): functions f such that f (0, . . . , 0) = 0,
2 T1 (truth-preserving): functions f such that f (1, . . . , 1) = 1,
3 L (linear): functions f whose polynomial over {1,&,⊕} is linear,
4 M (monotone): functions f : if xi 6 yi for all i , then f (x⃗) 6 f (y⃗),
5 S (self-dual): functions f such that f (¬x1, . . . ,¬xn) = ¬f (x⃗).

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 6 / 24

Theorem (Functional completeness)
Every Boolean function f (x1, . . . , xn) : {0, 1}n → {0, 1}
is expressed by some propositional formula A(p1, . . . , pn),
i.e. the truth table for A is exactly f .

Moreover, {¬,∧} are sufficient.
Other complete sets of connectives: {¬,∨}, {⊥,→}, {1,&,⊕}, {|}, {↓}.

Sheffer stroke: A | B := ¬(A&B). Also called NAND.
Peirce’s arrow: A ↓ B := ¬(A ∨ B). Also called NOR.

Theorem (Post’s criterion)
A system Σ of Boolean functions is functionally complete ⇔ Σ ̸⊆ classes:

1 T0 (false-preserving): functions f such that f (0, . . . , 0) = 0,

2 T1 (truth-preserving): functions f such that f (1, . . . , 1) = 1,
3 L (linear): functions f whose polynomial over {1,&,⊕} is linear,
4 M (monotone): functions f : if xi 6 yi for all i , then f (x⃗) 6 f (y⃗),
5 S (self-dual): functions f such that f (¬x1, . . . ,¬xn) = ¬f (x⃗).

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 6 / 24

Theorem (Functional completeness)
Every Boolean function f (x1, . . . , xn) : {0, 1}n → {0, 1}
is expressed by some propositional formula A(p1, . . . , pn),
i.e. the truth table for A is exactly f .

Moreover, {¬,∧} are sufficient.
Other complete sets of connectives: {¬,∨}, {⊥,→}, {1,&,⊕}, {|}, {↓}.

Sheffer stroke: A | B := ¬(A&B). Also called NAND.
Peirce’s arrow: A ↓ B := ¬(A ∨ B). Also called NOR.

Theorem (Post’s criterion)
A system Σ of Boolean functions is functionally complete ⇔ Σ ̸⊆ classes:

1 T0 (false-preserving): functions f such that f (0, . . . , 0) = 0,
2 T1 (truth-preserving): functions f such that f (1, . . . , 1) = 1,

3 L (linear): functions f whose polynomial over {1,&,⊕} is linear,
4 M (monotone): functions f : if xi 6 yi for all i , then f (x⃗) 6 f (y⃗),
5 S (self-dual): functions f such that f (¬x1, . . . ,¬xn) = ¬f (x⃗).

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 6 / 24

Theorem (Functional completeness)
Every Boolean function f (x1, . . . , xn) : {0, 1}n → {0, 1}
is expressed by some propositional formula A(p1, . . . , pn),
i.e. the truth table for A is exactly f .

Moreover, {¬,∧} are sufficient.
Other complete sets of connectives: {¬,∨}, {⊥,→}, {1,&,⊕}, {|}, {↓}.

Sheffer stroke: A | B := ¬(A&B). Also called NAND.
Peirce’s arrow: A ↓ B := ¬(A ∨ B). Also called NOR.

Theorem (Post’s criterion)
A system Σ of Boolean functions is functionally complete ⇔ Σ ̸⊆ classes:

1 T0 (false-preserving): functions f such that f (0, . . . , 0) = 0,
2 T1 (truth-preserving): functions f such that f (1, . . . , 1) = 1,
3 L (linear): functions f whose polynomial over {1,&,⊕} is linear,

4 M (monotone): functions f : if xi 6 yi for all i , then f (x⃗) 6 f (y⃗),
5 S (self-dual): functions f such that f (¬x1, . . . ,¬xn) = ¬f (x⃗).

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 6 / 24

Theorem (Functional completeness)
Every Boolean function f (x1, . . . , xn) : {0, 1}n → {0, 1}
is expressed by some propositional formula A(p1, . . . , pn),
i.e. the truth table for A is exactly f .

Moreover, {¬,∧} are sufficient.
Other complete sets of connectives: {¬,∨}, {⊥,→}, {1,&,⊕}, {|}, {↓}.

Sheffer stroke: A | B := ¬(A&B). Also called NAND.
Peirce’s arrow: A ↓ B := ¬(A ∨ B). Also called NOR.

Theorem (Post’s criterion)
A system Σ of Boolean functions is functionally complete ⇔ Σ ̸⊆ classes:

1 T0 (false-preserving): functions f such that f (0, . . . , 0) = 0,
2 T1 (truth-preserving): functions f such that f (1, . . . , 1) = 1,
3 L (linear): functions f whose polynomial over {1,&,⊕} is linear,
4 M (monotone): functions f : if xi 6 yi for all i , then f (x⃗) 6 f (y⃗),

5 S (self-dual): functions f such that f (¬x1, . . . ,¬xn) = ¬f (x⃗).

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 6 / 24

Theorem (Functional completeness)
Every Boolean function f (x1, . . . , xn) : {0, 1}n → {0, 1}
is expressed by some propositional formula A(p1, . . . , pn),
i.e. the truth table for A is exactly f .

Moreover, {¬,∧} are sufficient.
Other complete sets of connectives: {¬,∨}, {⊥,→}, {1,&,⊕}, {|}, {↓}.

Sheffer stroke: A | B := ¬(A&B). Also called NAND.
Peirce’s arrow: A ↓ B := ¬(A ∨ B). Also called NOR.

Theorem (Post’s criterion)
A system Σ of Boolean functions is functionally complete ⇔ Σ ̸⊆ classes:

1 T0 (false-preserving): functions f such that f (0, . . . , 0) = 0,
2 T1 (truth-preserving): functions f such that f (1, . . . , 1) = 1,
3 L (linear): functions f whose polynomial over {1,&,⊕} is linear,
4 M (monotone): functions f : if xi 6 yi for all i , then f (x⃗) 6 f (y⃗),
5 S (self-dual): functions f such that f (¬x1, . . . ,¬xn) = ¬f (x⃗).

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 6 / 24

Valid and Satisfiable formulas / sets

Definition
A formula A is called valid if ∀v v(A) = 1.

Another name: tautology.

A formula A is called satisfiable if ∃v v(A) = 1.

Fact. A is a tautology ⇐⇒ ¬A is not satisfiable.

Let Γ ⊆ Fm. We write v |= Γ if, for every formula A ∈ Γ, we have v |= A.
In this case we say that Γ is true under the valuation v .

Definition
A set Γ is satisfiable if ∃v : v |= Γ.

A set Γ implies (or entails) a formula A, in symbols: Γ |= A, if

for every valuation v such that v |= Γ, we have v |= A.

Fact. Γ |= A ⇐⇒ Γ ∪ {¬A} is not satisfiable.

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 7 / 24

Valid and Satisfiable formulas / sets

Definition
A formula A is called valid if ∀v v(A) = 1. Another name: tautology.

A formula A is called satisfiable if ∃v v(A) = 1.

Fact. A is a tautology ⇐⇒ ¬A is not satisfiable.

Let Γ ⊆ Fm. We write v |= Γ if, for every formula A ∈ Γ, we have v |= A.
In this case we say that Γ is true under the valuation v .

Definition
A set Γ is satisfiable if ∃v : v |= Γ.

A set Γ implies (or entails) a formula A, in symbols: Γ |= A, if

for every valuation v such that v |= Γ, we have v |= A.

Fact. Γ |= A ⇐⇒ Γ ∪ {¬A} is not satisfiable.

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 7 / 24

Valid and Satisfiable formulas / sets

Definition
A formula A is called valid if ∀v v(A) = 1. Another name: tautology.

A formula A is called satisfiable if ∃v v(A) = 1.

Fact. A is a tautology ⇐⇒ ¬A is not satisfiable.

Let Γ ⊆ Fm. We write v |= Γ if, for every formula A ∈ Γ, we have v |= A.
In this case we say that Γ is true under the valuation v .

Definition
A set Γ is satisfiable if ∃v : v |= Γ.

A set Γ implies (or entails) a formula A, in symbols: Γ |= A, if

for every valuation v such that v |= Γ, we have v |= A.

Fact. Γ |= A ⇐⇒ Γ ∪ {¬A} is not satisfiable.

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 7 / 24

Valid and Satisfiable formulas / sets

Definition
A formula A is called valid if ∀v v(A) = 1. Another name: tautology.

A formula A is called satisfiable if ∃v v(A) = 1.

Fact. A is a tautology ⇐⇒ ¬A is not satisfiable.

Let Γ ⊆ Fm. We write v |= Γ if, for every formula A ∈ Γ, we have v |= A.
In this case we say that Γ is true under the valuation v .

Definition
A set Γ is satisfiable if ∃v : v |= Γ.

A set Γ implies (or entails) a formula A, in symbols: Γ |= A, if

for every valuation v such that v |= Γ, we have v |= A.

Fact. Γ |= A ⇐⇒ Γ ∪ {¬A} is not satisfiable.

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 7 / 24

Valid and Satisfiable formulas / sets

Definition
A formula A is called valid if ∀v v(A) = 1. Another name: tautology.

A formula A is called satisfiable if ∃v v(A) = 1.

Fact. A is a tautology ⇐⇒ ¬A is not satisfiable.

Let Γ ⊆ Fm.

We write v |= Γ if, for every formula A ∈ Γ, we have v |= A.
In this case we say that Γ is true under the valuation v .

Definition
A set Γ is satisfiable if ∃v : v |= Γ.

A set Γ implies (or entails) a formula A, in symbols: Γ |= A, if

for every valuation v such that v |= Γ, we have v |= A.

Fact. Γ |= A ⇐⇒ Γ ∪ {¬A} is not satisfiable.

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 7 / 24

Valid and Satisfiable formulas / sets

Definition
A formula A is called valid if ∀v v(A) = 1. Another name: tautology.

A formula A is called satisfiable if ∃v v(A) = 1.

Fact. A is a tautology ⇐⇒ ¬A is not satisfiable.

Let Γ ⊆ Fm. We write v |= Γ if, for every formula A ∈ Γ, we have v |= A.

In this case we say that Γ is true under the valuation v .

Definition
A set Γ is satisfiable if ∃v : v |= Γ.

A set Γ implies (or entails) a formula A, in symbols: Γ |= A, if

for every valuation v such that v |= Γ, we have v |= A.

Fact. Γ |= A ⇐⇒ Γ ∪ {¬A} is not satisfiable.

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 7 / 24

Valid and Satisfiable formulas / sets

Definition
A formula A is called valid if ∀v v(A) = 1. Another name: tautology.

A formula A is called satisfiable if ∃v v(A) = 1.

Fact. A is a tautology ⇐⇒ ¬A is not satisfiable.

Let Γ ⊆ Fm. We write v |= Γ if, for every formula A ∈ Γ, we have v |= A.
In this case we say that Γ is true under the valuation v .

Definition
A set Γ is satisfiable if ∃v : v |= Γ.

A set Γ implies (or entails) a formula A, in symbols: Γ |= A, if

for every valuation v such that v |= Γ, we have v |= A.

Fact. Γ |= A ⇐⇒ Γ ∪ {¬A} is not satisfiable.

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 7 / 24

Valid and Satisfiable formulas / sets

Definition
A formula A is called valid if ∀v v(A) = 1. Another name: tautology.

A formula A is called satisfiable if ∃v v(A) = 1.

Fact. A is a tautology ⇐⇒ ¬A is not satisfiable.

Let Γ ⊆ Fm. We write v |= Γ if, for every formula A ∈ Γ, we have v |= A.
In this case we say that Γ is true under the valuation v .

Definition
A set Γ is satisfiable if ∃v : v |= Γ.

A set Γ implies (or entails) a formula A, in symbols: Γ |= A, if

for every valuation v such that v |= Γ, we have v |= A.

Fact. Γ |= A ⇐⇒ Γ ∪ {¬A} is not satisfiable.

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 7 / 24

Valid and Satisfiable formulas / sets

Definition
A formula A is called valid if ∀v v(A) = 1. Another name: tautology.

A formula A is called satisfiable if ∃v v(A) = 1.

Fact. A is a tautology ⇐⇒ ¬A is not satisfiable.

Let Γ ⊆ Fm. We write v |= Γ if, for every formula A ∈ Γ, we have v |= A.
In this case we say that Γ is true under the valuation v .

Definition
A set Γ is satisfiable if ∃v : v |= Γ.

A set Γ implies (or entails) a formula A, in symbols: Γ |= A, if

for every valuation v such that v |= Γ, we have v |= A.

Fact. Γ |= A ⇐⇒ Γ ∪ {¬A} is not satisfiable.

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 7 / 24

Valid and Satisfiable formulas / sets

Definition
A formula A is called valid if ∀v v(A) = 1. Another name: tautology.

A formula A is called satisfiable if ∃v v(A) = 1.

Fact. A is a tautology ⇐⇒ ¬A is not satisfiable.

Let Γ ⊆ Fm. We write v |= Γ if, for every formula A ∈ Γ, we have v |= A.
In this case we say that Γ is true under the valuation v .

Definition
A set Γ is satisfiable if ∃v : v |= Γ.

A set Γ implies (or entails) a formula A, in symbols: Γ |= A, if

for every valuation v such that v |= Γ, we have v |= A.

Fact. Γ |= A ⇐⇒ Γ ∪ {¬A} is not satisfiable.
Evgeny Zolin, MSU Classical propositional logic 24.02.2021 7 / 24

Examples

Example 1. Is the formula (p → q) ∨ (q → p) a tautology?

Yes.

Example 2. Is the set Γ = {¬p ∨ r , p ∨ ¬s, s → ¬r } satisfiable? Yes.

Example 3. Does the same set Γ imply ¬s? Yes.

Example 4. Does the same set Γ imply p? No: p, r , s ↦→ 0, 1, 0.

There is an algorithm for checking satisfiability of formulas:

Input: a formula A

Output:
{︂
Yes, if A is satisfiable,
No, otherwise.

If you find a polynomial algorithm for this, you’ll get $ 1 000 000.
If you prove that no polynomial algorithm exists, you’ll get $ 1 000 000.
This is one of the 7 millennium problems: P = NP?

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 8 / 24

Examples

Example 1. Is the formula (p → q) ∨ (q → p) a tautology? Yes.

Example 2. Is the set Γ = {¬p ∨ r , p ∨ ¬s, s → ¬r } satisfiable? Yes.

Example 3. Does the same set Γ imply ¬s? Yes.

Example 4. Does the same set Γ imply p? No: p, r , s ↦→ 0, 1, 0.

There is an algorithm for checking satisfiability of formulas:

Input: a formula A

Output:
{︂
Yes, if A is satisfiable,
No, otherwise.

If you find a polynomial algorithm for this, you’ll get $ 1 000 000.
If you prove that no polynomial algorithm exists, you’ll get $ 1 000 000.
This is one of the 7 millennium problems: P = NP?

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 8 / 24

Examples

Example 1. Is the formula (p → q) ∨ (q → p) a tautology? Yes.

Example 2. Is the set Γ = {¬p ∨ r , p ∨ ¬s, s → ¬r } satisfiable?

Yes.

Example 3. Does the same set Γ imply ¬s? Yes.

Example 4. Does the same set Γ imply p? No: p, r , s ↦→ 0, 1, 0.

There is an algorithm for checking satisfiability of formulas:

Input: a formula A

Output:
{︂
Yes, if A is satisfiable,
No, otherwise.

If you find a polynomial algorithm for this, you’ll get $ 1 000 000.
If you prove that no polynomial algorithm exists, you’ll get $ 1 000 000.
This is one of the 7 millennium problems: P = NP?

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 8 / 24

Examples

Example 1. Is the formula (p → q) ∨ (q → p) a tautology? Yes.

Example 2. Is the set Γ = {¬p ∨ r , p ∨ ¬s, s → ¬r } satisfiable? Yes.

Example 3. Does the same set Γ imply ¬s? Yes.

Example 4. Does the same set Γ imply p? No: p, r , s ↦→ 0, 1, 0.

There is an algorithm for checking satisfiability of formulas:

Input: a formula A

Output:
{︂
Yes, if A is satisfiable,
No, otherwise.

If you find a polynomial algorithm for this, you’ll get $ 1 000 000.
If you prove that no polynomial algorithm exists, you’ll get $ 1 000 000.
This is one of the 7 millennium problems: P = NP?

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 8 / 24

Examples

Example 1. Is the formula (p → q) ∨ (q → p) a tautology? Yes.

Example 2. Is the set Γ = {¬p ∨ r , p ∨ ¬s, s → ¬r } satisfiable? Yes.

Example 3. Does the same set Γ imply ¬s?

Yes.

Example 4. Does the same set Γ imply p? No: p, r , s ↦→ 0, 1, 0.

There is an algorithm for checking satisfiability of formulas:

Input: a formula A

Output:
{︂
Yes, if A is satisfiable,
No, otherwise.

If you find a polynomial algorithm for this, you’ll get $ 1 000 000.
If you prove that no polynomial algorithm exists, you’ll get $ 1 000 000.
This is one of the 7 millennium problems: P = NP?

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 8 / 24

Examples

Example 1. Is the formula (p → q) ∨ (q → p) a tautology? Yes.

Example 2. Is the set Γ = {¬p ∨ r , p ∨ ¬s, s → ¬r } satisfiable? Yes.

Example 3. Does the same set Γ imply ¬s? Yes.

Example 4. Does the same set Γ imply p? No: p, r , s ↦→ 0, 1, 0.

There is an algorithm for checking satisfiability of formulas:

Input: a formula A

Output:
{︂
Yes, if A is satisfiable,
No, otherwise.

If you find a polynomial algorithm for this, you’ll get $ 1 000 000.
If you prove that no polynomial algorithm exists, you’ll get $ 1 000 000.
This is one of the 7 millennium problems: P = NP?

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 8 / 24

Examples

Example 1. Is the formula (p → q) ∨ (q → p) a tautology? Yes.

Example 2. Is the set Γ = {¬p ∨ r , p ∨ ¬s, s → ¬r } satisfiable? Yes.

Example 3. Does the same set Γ imply ¬s? Yes.

Example 4. Does the same set Γ imply p?

No: p, r , s ↦→ 0, 1, 0.

There is an algorithm for checking satisfiability of formulas:

Input: a formula A

Output:
{︂
Yes, if A is satisfiable,
No, otherwise.

If you find a polynomial algorithm for this, you’ll get $ 1 000 000.
If you prove that no polynomial algorithm exists, you’ll get $ 1 000 000.
This is one of the 7 millennium problems: P = NP?

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 8 / 24

Examples

Example 1. Is the formula (p → q) ∨ (q → p) a tautology? Yes.

Example 2. Is the set Γ = {¬p ∨ r , p ∨ ¬s, s → ¬r } satisfiable? Yes.

Example 3. Does the same set Γ imply ¬s? Yes.

Example 4. Does the same set Γ imply p? No: p, r , s ↦→ 0, 1, 0.

There is an algorithm for checking satisfiability of formulas:

Input: a formula A

Output:
{︂
Yes, if A is satisfiable,
No, otherwise.

If you find a polynomial algorithm for this, you’ll get $ 1 000 000.
If you prove that no polynomial algorithm exists, you’ll get $ 1 000 000.
This is one of the 7 millennium problems: P = NP?

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 8 / 24

Examples

Example 1. Is the formula (p → q) ∨ (q → p) a tautology? Yes.

Example 2. Is the set Γ = {¬p ∨ r , p ∨ ¬s, s → ¬r } satisfiable? Yes.

Example 3. Does the same set Γ imply ¬s? Yes.

Example 4. Does the same set Γ imply p? No: p, r , s ↦→ 0, 1, 0.

There is an algorithm for checking satisfiability of formulas:

Input: a formula A

Output:
{︂
Yes, if A is satisfiable,
No, otherwise.

If you find a polynomial algorithm for this, you’ll get $ 1 000 000.
If you prove that no polynomial algorithm exists, you’ll get $ 1 000 000.
This is one of the 7 millennium problems: P = NP?

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 8 / 24

Examples

Example 1. Is the formula (p → q) ∨ (q → p) a tautology? Yes.

Example 2. Is the set Γ = {¬p ∨ r , p ∨ ¬s, s → ¬r } satisfiable? Yes.

Example 3. Does the same set Γ imply ¬s? Yes.

Example 4. Does the same set Γ imply p? No: p, r , s ↦→ 0, 1, 0.

There is an algorithm for checking satisfiability of formulas:

Input: a formula A

Output:
{︂
Yes, if A is satisfiable,
No, otherwise.

If you find a polynomial algorithm for this, you’ll get $ 1 000 000.

If you prove that no polynomial algorithm exists, you’ll get $ 1 000 000.
This is one of the 7 millennium problems: P = NP?

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 8 / 24

Examples

Example 1. Is the formula (p → q) ∨ (q → p) a tautology? Yes.

Example 2. Is the set Γ = {¬p ∨ r , p ∨ ¬s, s → ¬r } satisfiable? Yes.

Example 3. Does the same set Γ imply ¬s? Yes.

Example 4. Does the same set Γ imply p? No: p, r , s ↦→ 0, 1, 0.

There is an algorithm for checking satisfiability of formulas:

Input: a formula A

Output:
{︂
Yes, if A is satisfiable,
No, otherwise.

If you find a polynomial algorithm for this, you’ll get $ 1 000 000.
If you prove that no polynomial algorithm exists, you’ll get $ 1 000 000.

This is one of the 7 millennium problems: P = NP?

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 8 / 24

Examples

Example 1. Is the formula (p → q) ∨ (q → p) a tautology? Yes.

Example 2. Is the set Γ = {¬p ∨ r , p ∨ ¬s, s → ¬r } satisfiable? Yes.

Example 3. Does the same set Γ imply ¬s? Yes.

Example 4. Does the same set Γ imply p? No: p, r , s ↦→ 0, 1, 0.

There is an algorithm for checking satisfiability of formulas:

Input: a formula A

Output:
{︂
Yes, if A is satisfiable,
No, otherwise.

If you find a polynomial algorithm for this, you’ll get $ 1 000 000.
If you prove that no polynomial algorithm exists, you’ll get $ 1 000 000.
This is one of the 7 millennium problems: P = NP?

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 8 / 24

Axiomatization

Classical propositional calculus:
Axioms (more exactly: axiom schemata):

1 A→ (B → A),
2 [A→ (B → C)] → [(A→ B)→ (A→ C)],
3 (A ∧ B)→ A, (A ∧ B)→ B ,
4 A→ (B → (A ∧ B)),
5 A→ (A ∨ B), B → (A ∨ B),
6 (A→ C) → [(B → C) → (A ∨ B)→ C],
7 (A→ B) → [(A→ ¬B) → ¬A],
8 A→ (¬A→ B)

9 A ∨ ¬A (alternative: ¬¬A→ A)
10 ⊤, ⊥ → A.

Rule of inference: modus ponens (MP)
A A→ B

B
.

Remark. Without A ∨ ¬A, we obtain the Intuitionistic propositional logic.

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 9 / 24

Axiomatization

Classical propositional calculus:
Axioms (more exactly: axiom schemata):

1 A→ (B → A),
2 [A→ (B → C)] → [(A→ B)→ (A→ C)],
3 (A ∧ B)→ A, (A ∧ B)→ B ,
4 A→ (B → (A ∧ B)),
5 A→ (A ∨ B), B → (A ∨ B),
6 (A→ C) → [(B → C) → (A ∨ B)→ C],
7 (A→ B) → [(A→ ¬B) → ¬A],
8 A→ (¬A→ B)

9 A ∨ ¬A (alternative: ¬¬A→ A)
10 ⊤, ⊥ → A.

Rule of inference: modus ponens (MP)
A A→ B

B
.

Remark. Without A ∨ ¬A, we obtain the Intuitionistic propositional logic.

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 9 / 24

Axiomatization

Classical propositional calculus:
Axioms (more exactly: axiom schemata):

1 A→ (B → A),
2 [A→ (B → C)] → [(A→ B)→ (A→ C)],
3 (A ∧ B)→ A, (A ∧ B)→ B ,
4 A→ (B → (A ∧ B)),
5 A→ (A ∨ B), B → (A ∨ B),
6 (A→ C) → [(B → C) → (A ∨ B)→ C],
7 (A→ B) → [(A→ ¬B) → ¬A],
8 A→ (¬A→ B)

9 A ∨ ¬A (alternative: ¬¬A→ A)
10 ⊤, ⊥ → A.

Rule of inference: modus ponens (MP)
A A→ B

B
.

Remark. Without A ∨ ¬A, we obtain the Intuitionistic propositional logic.
Evgeny Zolin, MSU Classical propositional logic 24.02.2021 9 / 24

Derivations

Definition
A formula A is called derivable, or provable, or a theorem of the CPC

if
there is a derivation, or a proof, or inference in CPC in which A is the last
formula.

Notation: ⊢ A.

Definition
A derivation, or proof, or inference is a finite sequence (list) of formulas

C1, . . . ,Cn

such that each formula Ck

either is an axiom of CPC,
or is obtained by the rule MP from some previous formulas Ci and Cj ,
where i , j < k .

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 10 / 24

Derivations

Definition
A formula A is called derivable, or provable, or a theorem of the CPC if
there is a derivation, or a proof, or inference in CPC in which A is the last
formula.

Notation: ⊢ A.

Definition
A derivation, or proof, or inference is a finite sequence (list) of formulas

C1, . . . ,Cn

such that each formula Ck

either is an axiom of CPC,
or is obtained by the rule MP from some previous formulas Ci and Cj ,
where i , j < k .

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 10 / 24

Derivations

Definition
A formula A is called derivable, or provable, or a theorem of the CPC if
there is a derivation, or a proof, or inference in CPC in which A is the last
formula.

Notation: ⊢ A.

Definition
A derivation, or proof, or inference is a finite sequence (list) of formulas

C1, . . . ,Cn

such that each formula Ck

either is an axiom of CPC,
or is obtained by the rule MP from some previous formulas Ci and Cj ,
where i , j < k .

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 10 / 24

Derivations

Definition
A formula A is called derivable, or provable, or a theorem of the CPC if
there is a derivation, or a proof, or inference in CPC in which A is the last
formula.

Notation: ⊢ A.

Definition
A derivation, or proof, or inference is a finite sequence (list) of formulas

C1, . . . ,Cn

such that each formula Ck

either is an axiom of CPC,

or is obtained by the rule MP from some previous formulas Ci and Cj ,
where i , j < k .

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 10 / 24

Derivations

Definition
A formula A is called derivable, or provable, or a theorem of the CPC if
there is a derivation, or a proof, or inference in CPC in which A is the last
formula.

Notation: ⊢ A.

Definition
A derivation, or proof, or inference is a finite sequence (list) of formulas

C1, . . . ,Cn

such that each formula Ck

either is an axiom of CPC,
or is obtained by the rule MP from some previous formulas Ci and Cj ,
where i , j < k .

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 10 / 24

Example of a derivation

Here we derive the formula (A ∧ B)→ (A ∨ B).

1 A ∧ B → A axiom
2 A→ A ∨ B axiom
3 [A→ A ∨ B] → [(A ∧ B) → (A→ A ∨ B)] axiom
4 (A ∧ B) → (A→ A ∨ B) rule MP
5 [(A ∧ B) → (A→ A ∨ B)] → [(A ∧ B → A)→ (A ∧ B → A ∨ B)]

6 (A ∧ B → A)→ (A ∧ B → A ∨ B)

7 A ∧ B → A ∨ B

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 11 / 24

Example of a derivation

Here we derive the formula (A ∧ B)→ (A ∨ B).
1 A ∧ B → A axiom

2 A→ A ∨ B axiom
3 [A→ A ∨ B] → [(A ∧ B) → (A→ A ∨ B)] axiom
4 (A ∧ B) → (A→ A ∨ B) rule MP
5 [(A ∧ B) → (A→ A ∨ B)] → [(A ∧ B → A)→ (A ∧ B → A ∨ B)]

6 (A ∧ B → A)→ (A ∧ B → A ∨ B)

7 A ∧ B → A ∨ B

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 11 / 24

Example of a derivation

Here we derive the formula (A ∧ B)→ (A ∨ B).
1 A ∧ B → A axiom
2 A→ A ∨ B axiom

3 [A→ A ∨ B] → [(A ∧ B) → (A→ A ∨ B)] axiom
4 (A ∧ B) → (A→ A ∨ B) rule MP
5 [(A ∧ B) → (A→ A ∨ B)] → [(A ∧ B → A)→ (A ∧ B → A ∨ B)]

6 (A ∧ B → A)→ (A ∧ B → A ∨ B)

7 A ∧ B → A ∨ B

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 11 / 24

Example of a derivation

Here we derive the formula (A ∧ B)→ (A ∨ B).
1 A ∧ B → A axiom
2 A→ A ∨ B axiom
3 [A→ A ∨ B] → [(A ∧ B) → (A→ A ∨ B)] axiom

4 (A ∧ B) → (A→ A ∨ B) rule MP
5 [(A ∧ B) → (A→ A ∨ B)] → [(A ∧ B → A)→ (A ∧ B → A ∨ B)]

6 (A ∧ B → A)→ (A ∧ B → A ∨ B)

7 A ∧ B → A ∨ B

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 11 / 24

Example of a derivation

Here we derive the formula (A ∧ B)→ (A ∨ B).
1 A ∧ B → A axiom
2 A→ A ∨ B axiom
3 [A→ A ∨ B] → [(A ∧ B) → (A→ A ∨ B)] axiom
4 (A ∧ B) → (A→ A ∨ B) rule MP

5 [(A ∧ B) → (A→ A ∨ B)] → [(A ∧ B → A)→ (A ∧ B → A ∨ B)]

6 (A ∧ B → A)→ (A ∧ B → A ∨ B)

7 A ∧ B → A ∨ B

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 11 / 24

Example of a derivation

Here we derive the formula (A ∧ B)→ (A ∨ B).
1 A ∧ B → A axiom
2 A→ A ∨ B axiom
3 [A→ A ∨ B] → [(A ∧ B) → (A→ A ∨ B)] axiom
4 (A ∧ B) → (A→ A ∨ B) rule MP
5 [(A ∧ B) → (A→ A ∨ B)] → [(A ∧ B → A)→ (A ∧ B → A ∨ B)]

6 (A ∧ B → A)→ (A ∧ B → A ∨ B)

7 A ∧ B → A ∨ B

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 11 / 24

Example of a derivation

Here we derive the formula (A ∧ B)→ (A ∨ B).
1 A ∧ B → A axiom
2 A→ A ∨ B axiom
3 [A→ A ∨ B] → [(A ∧ B) → (A→ A ∨ B)] axiom
4 (A ∧ B) → (A→ A ∨ B) rule MP
5 [(A ∧ B) → (A→ A ∨ B)] → [(A ∧ B → A)→ (A ∧ B → A ∨ B)]

6 (A ∧ B → A)→ (A ∧ B → A ∨ B)

7 A ∧ B → A ∨ B

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 11 / 24

Example of a derivation

Here we derive the formula (A ∧ B)→ (A ∨ B).
1 A ∧ B → A axiom
2 A→ A ∨ B axiom
3 [A→ A ∨ B] → [(A ∧ B) → (A→ A ∨ B)] axiom
4 (A ∧ B) → (A→ A ∨ B) rule MP
5 [(A ∧ B) → (A→ A ∨ B)] → [(A ∧ B → A)→ (A ∧ B → A ∨ B)]

6 (A ∧ B → A)→ (A ∧ B → A ∨ B)

7 A ∧ B → A ∨ B

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 11 / 24

Completeness of CPC

Theorem (Completeness)
A is a theorem ⇐⇒ A is a tautology.

⊢ A ⇐⇒ |= A

Corollary
CPC is decidable.
This means: there is an algorithm that takes any formula A and returns{︂

Yes, if A is provable in CPC,
No, otherwise.

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 12 / 24

Completeness of CPC

Theorem (Completeness)
A is a theorem ⇐⇒ A is a tautology.

⊢ A ⇐⇒ |= A

Corollary
CPC is decidable.

This means: there is an algorithm that takes any formula A and returns{︂
Yes, if A is provable in CPC,
No, otherwise.

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 12 / 24

Completeness of CPC

Theorem (Completeness)
A is a theorem ⇐⇒ A is a tautology.

⊢ A ⇐⇒ |= A

Corollary
CPC is decidable.
This means: there is an algorithm that takes any formula A and returns{︂

Yes, if A is provable in CPC,
No, otherwise.

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 12 / 24

Derivation from hypotheses
Let A ∈ Fm be a formula and Γ ⊆ Fm some set of formulas.

Definition
A formula A is called derivable in CPC from a set of formulas Γ if there is a
derivation from Γ in which A is the last formula.

Notation: Γ ⊢ A.

Definition
A derivation in CPC from Γ is a finite sequence (list) of formulas

C1, . . . ,Cn

such that each formula Ck

either is an axiom of CPC,
or belongs to Γ,
or is obtained by the rule MP from some previous formulas Ci and Cj ,
where i , j < k .

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 13 / 24

Derivation from hypotheses
Let A ∈ Fm be a formula and Γ ⊆ Fm some set of formulas.

Definition
A formula A is called derivable in CPC from a set of formulas Γ if there is a
derivation from Γ in which A is the last formula.

Notation: Γ ⊢ A.

Definition
A derivation in CPC from Γ is a finite sequence (list) of formulas

C1, . . . ,Cn

such that each formula Ck

either is an axiom of CPC,
or belongs to Γ,
or is obtained by the rule MP from some previous formulas Ci and Cj ,
where i , j < k .

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 13 / 24

Derivation from hypotheses
Let A ∈ Fm be a formula and Γ ⊆ Fm some set of formulas.

Definition
A formula A is called derivable in CPC from a set of formulas Γ if there is a
derivation from Γ in which A is the last formula.

Notation: Γ ⊢ A.

Definition
A derivation in CPC from Γ is a finite sequence (list) of formulas

C1, . . . ,Cn

such that each formula Ck

either is an axiom of CPC,

or belongs to Γ,
or is obtained by the rule MP from some previous formulas Ci and Cj ,
where i , j < k .

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 13 / 24

Derivation from hypotheses
Let A ∈ Fm be a formula and Γ ⊆ Fm some set of formulas.

Definition
A formula A is called derivable in CPC from a set of formulas Γ if there is a
derivation from Γ in which A is the last formula.

Notation: Γ ⊢ A.

Definition
A derivation in CPC from Γ is a finite sequence (list) of formulas

C1, . . . ,Cn

such that each formula Ck

either is an axiom of CPC,
or belongs to Γ,

or is obtained by the rule MP from some previous formulas Ci and Cj ,
where i , j < k .

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 13 / 24

Derivation from hypotheses
Let A ∈ Fm be a formula and Γ ⊆ Fm some set of formulas.

Definition
A formula A is called derivable in CPC from a set of formulas Γ if there is a
derivation from Γ in which A is the last formula.

Notation: Γ ⊢ A.

Definition
A derivation in CPC from Γ is a finite sequence (list) of formulas

C1, . . . ,Cn

such that each formula Ck

either is an axiom of CPC,
or belongs to Γ,
or is obtained by the rule MP from some previous formulas Ci and Cj ,
where i , j < k .
Evgeny Zolin, MSU Classical propositional logic 24.02.2021 13 / 24

Completeness

Theorem (Completeness of CPC)
A is a theorem ⇐⇒ A is a tautology:

⊢ A ⇐⇒ |= A

Theorem (Strong completeness of CPC)
A is derivable from Γ ⇐⇒ Γ implies A:

Γ ⊢ A ⇐⇒ Γ |= A

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 14 / 24

Completeness

Theorem (Completeness of CPC)
A is a theorem ⇐⇒ A is a tautology:

⊢ A ⇐⇒ |= A

Theorem (Strong completeness of CPC)
A is derivable from Γ ⇐⇒ Γ implies A:

Γ ⊢ A ⇐⇒ Γ |= A

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 14 / 24

Compactness

Theorem (Compactness)
If Γ |= A, then there is a finite subset Δ ⊆ Γ such that Δ |= A.

Proof: Γ |= A

⇒ Γ ⊢ A. But proofs are finite!
⇒ ∃ finite Δ ⊆ Γ: Δ ⊢ A. ⇒ Δ |= A.

Theorem (Compactness)
If every finite subset Δ ⊆ Γ is satisfiable, then Γ is satisfiable.

Follows from Theorem 1. Indeed: Γ is unsatisfiable ⇐⇒ Γ |= ⊥.

Task
Prove Compactness without using axiomatization of CPC.

Let Γ = {A0,A1, . . .} be an infinite set of formulas.
For each Δn = {A0, . . . ,An} there is a valuation vn |= Δn.
How can we combine all valuations vn into a single valuation v |= Γ?

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 15 / 24

Compactness

Theorem (Compactness)
If Γ |= A, then there is a finite subset Δ ⊆ Γ such that Δ |= A.

Proof: Γ |= A ⇒ Γ ⊢ A.

But proofs are finite!
⇒ ∃ finite Δ ⊆ Γ: Δ ⊢ A. ⇒ Δ |= A.

Theorem (Compactness)
If every finite subset Δ ⊆ Γ is satisfiable, then Γ is satisfiable.

Follows from Theorem 1. Indeed: Γ is unsatisfiable ⇐⇒ Γ |= ⊥.

Task
Prove Compactness without using axiomatization of CPC.

Let Γ = {A0,A1, . . .} be an infinite set of formulas.
For each Δn = {A0, . . . ,An} there is a valuation vn |= Δn.
How can we combine all valuations vn into a single valuation v |= Γ?

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 15 / 24

Compactness

Theorem (Compactness)
If Γ |= A, then there is a finite subset Δ ⊆ Γ such that Δ |= A.

Proof: Γ |= A ⇒ Γ ⊢ A. But proofs are finite!

⇒ ∃ finite Δ ⊆ Γ: Δ ⊢ A. ⇒ Δ |= A.

Theorem (Compactness)
If every finite subset Δ ⊆ Γ is satisfiable, then Γ is satisfiable.

Follows from Theorem 1. Indeed: Γ is unsatisfiable ⇐⇒ Γ |= ⊥.

Task
Prove Compactness without using axiomatization of CPC.

Let Γ = {A0,A1, . . .} be an infinite set of formulas.
For each Δn = {A0, . . . ,An} there is a valuation vn |= Δn.
How can we combine all valuations vn into a single valuation v |= Γ?

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 15 / 24

Compactness

Theorem (Compactness)
If Γ |= A, then there is a finite subset Δ ⊆ Γ such that Δ |= A.

Proof: Γ |= A ⇒ Γ ⊢ A. But proofs are finite!
⇒ ∃ finite Δ ⊆ Γ: Δ ⊢ A.

⇒ Δ |= A.

Theorem (Compactness)
If every finite subset Δ ⊆ Γ is satisfiable, then Γ is satisfiable.

Follows from Theorem 1. Indeed: Γ is unsatisfiable ⇐⇒ Γ |= ⊥.

Task
Prove Compactness without using axiomatization of CPC.

Let Γ = {A0,A1, . . .} be an infinite set of formulas.
For each Δn = {A0, . . . ,An} there is a valuation vn |= Δn.
How can we combine all valuations vn into a single valuation v |= Γ?

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 15 / 24

Compactness

Theorem (Compactness)
If Γ |= A, then there is a finite subset Δ ⊆ Γ such that Δ |= A.

Proof: Γ |= A ⇒ Γ ⊢ A. But proofs are finite!
⇒ ∃ finite Δ ⊆ Γ: Δ ⊢ A. ⇒ Δ |= A.

Theorem (Compactness)
If every finite subset Δ ⊆ Γ is satisfiable, then Γ is satisfiable.

Follows from Theorem 1. Indeed: Γ is unsatisfiable ⇐⇒ Γ |= ⊥.

Task
Prove Compactness without using axiomatization of CPC.

Let Γ = {A0,A1, . . .} be an infinite set of formulas.
For each Δn = {A0, . . . ,An} there is a valuation vn |= Δn.
How can we combine all valuations vn into a single valuation v |= Γ?

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 15 / 24

Compactness

Theorem (Compactness)
If Γ |= A, then there is a finite subset Δ ⊆ Γ such that Δ |= A.

Proof: Γ |= A ⇒ Γ ⊢ A. But proofs are finite!
⇒ ∃ finite Δ ⊆ Γ: Δ ⊢ A. ⇒ Δ |= A.

Theorem (Compactness)
If every finite subset Δ ⊆ Γ is satisfiable, then Γ is satisfiable.

Follows from Theorem 1. Indeed: Γ is unsatisfiable ⇐⇒ Γ |= ⊥.

Task
Prove Compactness without using axiomatization of CPC.

Let Γ = {A0,A1, . . .} be an infinite set of formulas.
For each Δn = {A0, . . . ,An} there is a valuation vn |= Δn.
How can we combine all valuations vn into a single valuation v |= Γ?

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 15 / 24

Compactness

Theorem (Compactness)
If Γ |= A, then there is a finite subset Δ ⊆ Γ such that Δ |= A.

Proof: Γ |= A ⇒ Γ ⊢ A. But proofs are finite!
⇒ ∃ finite Δ ⊆ Γ: Δ ⊢ A. ⇒ Δ |= A.

Theorem (Compactness)
If every finite subset Δ ⊆ Γ is satisfiable, then Γ is satisfiable.

Follows from Theorem 1. Indeed: Γ is unsatisfiable ⇐⇒ Γ |= ⊥.

Task
Prove Compactness without using axiomatization of CPC.

Let Γ = {A0,A1, . . .} be an infinite set of formulas.
For each Δn = {A0, . . . ,An} there is a valuation vn |= Δn.
How can we combine all valuations vn into a single valuation v |= Γ?

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 15 / 24

Compactness

Theorem (Compactness)
If Γ |= A, then there is a finite subset Δ ⊆ Γ such that Δ |= A.

Proof: Γ |= A ⇒ Γ ⊢ A. But proofs are finite!
⇒ ∃ finite Δ ⊆ Γ: Δ ⊢ A. ⇒ Δ |= A.

Theorem (Compactness)
If every finite subset Δ ⊆ Γ is satisfiable, then Γ is satisfiable.

Follows from Theorem 1. Indeed: Γ is unsatisfiable ⇐⇒ Γ |= ⊥.

Task
Prove Compactness without using axiomatization of CPC.

Let Γ = {A0,A1, . . .} be an infinite set of formulas.
For each Δn = {A0, . . . ,An} there is a valuation vn |= Δn.
How can we combine all valuations vn into a single valuation v |= Γ?

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 15 / 24

Compactness

Theorem (Compactness)
If Γ |= A, then there is a finite subset Δ ⊆ Γ such that Δ |= A.

Proof: Γ |= A ⇒ Γ ⊢ A. But proofs are finite!
⇒ ∃ finite Δ ⊆ Γ: Δ ⊢ A. ⇒ Δ |= A.

Theorem (Compactness)
If every finite subset Δ ⊆ Γ is satisfiable, then Γ is satisfiable.

Follows from Theorem 1. Indeed: Γ is unsatisfiable ⇐⇒ Γ |= ⊥.

Task
Prove Compactness without using axiomatization of CPC.

Let Γ = {A0,A1, . . .} be an infinite set of formulas.

For each Δn = {A0, . . . ,An} there is a valuation vn |= Δn.
How can we combine all valuations vn into a single valuation v |= Γ?

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 15 / 24

Compactness

Theorem (Compactness)
If Γ |= A, then there is a finite subset Δ ⊆ Γ such that Δ |= A.

Proof: Γ |= A ⇒ Γ ⊢ A. But proofs are finite!
⇒ ∃ finite Δ ⊆ Γ: Δ ⊢ A. ⇒ Δ |= A.

Theorem (Compactness)
If every finite subset Δ ⊆ Γ is satisfiable, then Γ is satisfiable.

Follows from Theorem 1. Indeed: Γ is unsatisfiable ⇐⇒ Γ |= ⊥.

Task
Prove Compactness without using axiomatization of CPC.

Let Γ = {A0,A1, . . .} be an infinite set of formulas.
For each Δn = {A0, . . . ,An} there is a valuation vn |= Δn.

How can we combine all valuations vn into a single valuation v |= Γ?

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 15 / 24

Compactness

Theorem (Compactness)
If Γ |= A, then there is a finite subset Δ ⊆ Γ such that Δ |= A.

Proof: Γ |= A ⇒ Γ ⊢ A. But proofs are finite!
⇒ ∃ finite Δ ⊆ Γ: Δ ⊢ A. ⇒ Δ |= A.

Theorem (Compactness)
If every finite subset Δ ⊆ Γ is satisfiable, then Γ is satisfiable.

Follows from Theorem 1. Indeed: Γ is unsatisfiable ⇐⇒ Γ |= ⊥.

Task
Prove Compactness without using axiomatization of CPC.

Let Γ = {A0,A1, . . .} be an infinite set of formulas.
For each Δn = {A0, . . . ,An} there is a valuation vn |= Δn.
How can we combine all valuations vn into a single valuation v |= Γ?

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 15 / 24

Craig interpolation

Theorem (Craig interpolation theorem)
If ⊢ A→ C then there exists a formula B (called an interpolant) such that

(1) ⊢ A→ B and ⊢ B → C ,

(2) Var(B) ⊆ Var(A) ∩ Var(C).

Proof. Due to Completeness, we prove for |= instead of ⊢.
Let A = A(p⃗, q⃗), C = C (q⃗, s), where p⃗ = (p1, . . . , pk), q⃗ = (q1, . . . , qℓ).
Suppose that A→ C (q⃗, s) is a tautology. In particular,
A→ C (q⃗,⊥) and A→ C (q⃗,⊤) are tautologies. Then
A→

[︀
C (q⃗,⊥) ∧ C (q⃗,⊤)

]︀⏟ ⏞
B(q⃗)

is a tautology.

So, A→ B is a tautology. Why is B(q⃗)→ C (q⃗, s) a tautology?
∙ for s := ⊥ we obtain a tautology [C (q⃗,⊥) ∧ C (q⃗,⊤)]→ C (q⃗,⊥).
∙ for s := ⊤ we obtain a tautology (similarly).

In general, if s⃗ = (s1, . . . , sm), then B(q⃗) :=
⋀︀

a⃗∈{⊥,⊤}m
C (q⃗, a⃗).

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 16 / 24

Craig interpolation

Theorem (Craig interpolation theorem)
If ⊢ A→ C then there exists a formula B (called an interpolant) such that

(1) ⊢ A→ B and ⊢ B → C , (2) Var(B) ⊆ Var(A) ∩ Var(C).

Proof. Due to Completeness, we prove for |= instead of ⊢.
Let A = A(p⃗, q⃗), C = C (q⃗, s), where p⃗ = (p1, . . . , pk), q⃗ = (q1, . . . , qℓ).
Suppose that A→ C (q⃗, s) is a tautology. In particular,
A→ C (q⃗,⊥) and A→ C (q⃗,⊤) are tautologies. Then
A→

[︀
C (q⃗,⊥) ∧ C (q⃗,⊤)

]︀⏟ ⏞
B(q⃗)

is a tautology.

So, A→ B is a tautology. Why is B(q⃗)→ C (q⃗, s) a tautology?
∙ for s := ⊥ we obtain a tautology [C (q⃗,⊥) ∧ C (q⃗,⊤)]→ C (q⃗,⊥).
∙ for s := ⊤ we obtain a tautology (similarly).

In general, if s⃗ = (s1, . . . , sm), then B(q⃗) :=
⋀︀

a⃗∈{⊥,⊤}m
C (q⃗, a⃗).

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 16 / 24

Craig interpolation

Theorem (Craig interpolation theorem)
If ⊢ A→ C then there exists a formula B (called an interpolant) such that

(1) ⊢ A→ B and ⊢ B → C , (2) Var(B) ⊆ Var(A) ∩ Var(C).

Proof. Due to Completeness, we prove for |= instead of ⊢.
Let A = A(p⃗, q⃗), C = C (q⃗, s), where p⃗ = (p1, . . . , pk), q⃗ = (q1, . . . , qℓ).
Suppose that A→ C (q⃗, s) is a tautology.

In particular,
A→ C (q⃗,⊥) and A→ C (q⃗,⊤) are tautologies. Then
A→

[︀
C (q⃗,⊥) ∧ C (q⃗,⊤)

]︀⏟ ⏞
B(q⃗)

is a tautology.

So, A→ B is a tautology. Why is B(q⃗)→ C (q⃗, s) a tautology?
∙ for s := ⊥ we obtain a tautology [C (q⃗,⊥) ∧ C (q⃗,⊤)]→ C (q⃗,⊥).
∙ for s := ⊤ we obtain a tautology (similarly).

In general, if s⃗ = (s1, . . . , sm), then B(q⃗) :=
⋀︀

a⃗∈{⊥,⊤}m
C (q⃗, a⃗).

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 16 / 24

Craig interpolation

Theorem (Craig interpolation theorem)
If ⊢ A→ C then there exists a formula B (called an interpolant) such that

(1) ⊢ A→ B and ⊢ B → C , (2) Var(B) ⊆ Var(A) ∩ Var(C).

Proof. Due to Completeness, we prove for |= instead of ⊢.
Let A = A(p⃗, q⃗), C = C (q⃗, s), where p⃗ = (p1, . . . , pk), q⃗ = (q1, . . . , qℓ).
Suppose that A→ C (q⃗, s) is a tautology. In particular,
A→ C (q⃗,⊥) and A→ C (q⃗,⊤) are tautologies.

Then
A→

[︀
C (q⃗,⊥) ∧ C (q⃗,⊤)

]︀⏟ ⏞
B(q⃗)

is a tautology.

So, A→ B is a tautology. Why is B(q⃗)→ C (q⃗, s) a tautology?
∙ for s := ⊥ we obtain a tautology [C (q⃗,⊥) ∧ C (q⃗,⊤)]→ C (q⃗,⊥).
∙ for s := ⊤ we obtain a tautology (similarly).

In general, if s⃗ = (s1, . . . , sm), then B(q⃗) :=
⋀︀

a⃗∈{⊥,⊤}m
C (q⃗, a⃗).

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 16 / 24

Craig interpolation

Theorem (Craig interpolation theorem)
If ⊢ A→ C then there exists a formula B (called an interpolant) such that

(1) ⊢ A→ B and ⊢ B → C , (2) Var(B) ⊆ Var(A) ∩ Var(C).

Proof. Due to Completeness, we prove for |= instead of ⊢.
Let A = A(p⃗, q⃗), C = C (q⃗, s), where p⃗ = (p1, . . . , pk), q⃗ = (q1, . . . , qℓ).
Suppose that A→ C (q⃗, s) is a tautology. In particular,
A→ C (q⃗,⊥) and A→ C (q⃗,⊤) are tautologies. Then
A→

[︀
C (q⃗,⊥) ∧ C (q⃗,⊤)

]︀⏟ ⏞
B(q⃗)

is a tautology.

So, A→ B is a tautology.

Why is B(q⃗)→ C (q⃗, s) a tautology?
∙ for s := ⊥ we obtain a tautology [C (q⃗,⊥) ∧ C (q⃗,⊤)]→ C (q⃗,⊥).
∙ for s := ⊤ we obtain a tautology (similarly).

In general, if s⃗ = (s1, . . . , sm), then B(q⃗) :=
⋀︀

a⃗∈{⊥,⊤}m
C (q⃗, a⃗).

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 16 / 24

Craig interpolation

Theorem (Craig interpolation theorem)
If ⊢ A→ C then there exists a formula B (called an interpolant) such that

(1) ⊢ A→ B and ⊢ B → C , (2) Var(B) ⊆ Var(A) ∩ Var(C).

Proof. Due to Completeness, we prove for |= instead of ⊢.
Let A = A(p⃗, q⃗), C = C (q⃗, s), where p⃗ = (p1, . . . , pk), q⃗ = (q1, . . . , qℓ).
Suppose that A→ C (q⃗, s) is a tautology. In particular,
A→ C (q⃗,⊥) and A→ C (q⃗,⊤) are tautologies. Then
A→

[︀
C (q⃗,⊥) ∧ C (q⃗,⊤)

]︀⏟ ⏞
B(q⃗)

is a tautology.

So, A→ B is a tautology. Why is B(q⃗)→ C (q⃗, s) a tautology?

∙ for s := ⊥ we obtain a tautology [C (q⃗,⊥) ∧ C (q⃗,⊤)]→ C (q⃗,⊥).
∙ for s := ⊤ we obtain a tautology (similarly).

In general, if s⃗ = (s1, . . . , sm), then B(q⃗) :=
⋀︀

a⃗∈{⊥,⊤}m
C (q⃗, a⃗).

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 16 / 24

Craig interpolation

Theorem (Craig interpolation theorem)
If ⊢ A→ C then there exists a formula B (called an interpolant) such that

(1) ⊢ A→ B and ⊢ B → C , (2) Var(B) ⊆ Var(A) ∩ Var(C).

Proof. Due to Completeness, we prove for |= instead of ⊢.
Let A = A(p⃗, q⃗), C = C (q⃗, s), where p⃗ = (p1, . . . , pk), q⃗ = (q1, . . . , qℓ).
Suppose that A→ C (q⃗, s) is a tautology. In particular,
A→ C (q⃗,⊥) and A→ C (q⃗,⊤) are tautologies. Then
A→

[︀
C (q⃗,⊥) ∧ C (q⃗,⊤)

]︀⏟ ⏞
B(q⃗)

is a tautology.

So, A→ B is a tautology. Why is B(q⃗)→ C (q⃗, s) a tautology?
∙ for s := ⊥ we obtain a tautology [C (q⃗,⊥) ∧ C (q⃗,⊤)]→ C (q⃗,⊥).

∙ for s := ⊤ we obtain a tautology (similarly).

In general, if s⃗ = (s1, . . . , sm), then B(q⃗) :=
⋀︀

a⃗∈{⊥,⊤}m
C (q⃗, a⃗).

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 16 / 24

Craig interpolation

Theorem (Craig interpolation theorem)
If ⊢ A→ C then there exists a formula B (called an interpolant) such that

(1) ⊢ A→ B and ⊢ B → C , (2) Var(B) ⊆ Var(A) ∩ Var(C).

Proof. Due to Completeness, we prove for |= instead of ⊢.
Let A = A(p⃗, q⃗), C = C (q⃗, s), where p⃗ = (p1, . . . , pk), q⃗ = (q1, . . . , qℓ).
Suppose that A→ C (q⃗, s) is a tautology. In particular,
A→ C (q⃗,⊥) and A→ C (q⃗,⊤) are tautologies. Then
A→

[︀
C (q⃗,⊥) ∧ C (q⃗,⊤)

]︀⏟ ⏞
B(q⃗)

is a tautology.

So, A→ B is a tautology. Why is B(q⃗)→ C (q⃗, s) a tautology?
∙ for s := ⊥ we obtain a tautology [C (q⃗,⊥) ∧ C (q⃗,⊤)]→ C (q⃗,⊥).
∙ for s := ⊤ we obtain a tautology (similarly).

In general, if s⃗ = (s1, . . . , sm), then B(q⃗) :=
⋀︀

a⃗∈{⊥,⊤}m
C (q⃗, a⃗).

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 16 / 24

Craig interpolation

Theorem (Craig interpolation theorem)
If ⊢ A→ C then there exists a formula B (called an interpolant) such that

(1) ⊢ A→ B and ⊢ B → C , (2) Var(B) ⊆ Var(A) ∩ Var(C).

Proof. Due to Completeness, we prove for |= instead of ⊢.
Let A = A(p⃗, q⃗), C = C (q⃗, s), where p⃗ = (p1, . . . , pk), q⃗ = (q1, . . . , qℓ).
Suppose that A→ C (q⃗, s) is a tautology. In particular,
A→ C (q⃗,⊥) and A→ C (q⃗,⊤) are tautologies. Then
A→

[︀
C (q⃗,⊥) ∧ C (q⃗,⊤)

]︀⏟ ⏞
B(q⃗)

is a tautology.

So, A→ B is a tautology. Why is B(q⃗)→ C (q⃗, s) a tautology?
∙ for s := ⊥ we obtain a tautology [C (q⃗,⊥) ∧ C (q⃗,⊤)]→ C (q⃗,⊥).
∙ for s := ⊤ we obtain a tautology (similarly).

In general, if s⃗ = (s1, . . . , sm), then B(q⃗) :=
⋀︀

a⃗∈{⊥,⊤}m
C (q⃗, a⃗).

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 16 / 24

Stronger interpolation theorems

Craig interpolation

←− Lyndon interpolation

↑ ↑

Uniform Craig interpolation ←− Uniform Lyndon interpolation

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 17 / 24

Stronger interpolation theorems

Craig interpolation ←− Lyndon interpolation

↑ ↑

Uniform Craig interpolation ←− Uniform Lyndon interpolation

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 17 / 24

Stronger interpolation theorems

Craig interpolation ←− Lyndon interpolation

↑ ↑

Uniform Craig interpolation ←− Uniform Lyndon interpolation

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 17 / 24

Lyndon interpolation: Polarity of variables

Recall that Var(A) is the set of variables in the formula A.

Definition (Variables occurring positively and negatively)

The sets Var+(A) and Var−(A) are defined by joint induction:
Var+(⊥) = Var−(⊥) = Var+(⊤) = Var−(⊤) = ∅,
Var+(pi) = {pi}, Var−(pi) = ∅,
Var+(¬A) = Var−(A), Var−(¬A) = Var+(A),
Var+(A ∧ B) = Var+(A) ∪ Var+(B), similarly for Var−.
similarly for ∨,
Var+(A→ B) = Var−(A) ∪ Var+(B), similarly for Var−.

Example. Let A be the formula (p → (q → p))→ s. Then
Var+(A) = {p, q, s},
Var−(A) = {p}.

(
+
p→ (

+
q→

−
p))→+

s

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 18 / 24

Lyndon interpolation: Polarity of variables

Recall that Var(A) is the set of variables in the formula A.

Definition (Variables occurring positively and negatively)

The sets Var+(A) and Var−(A) are defined by joint induction:

Var+(⊥) = Var−(⊥) = Var+(⊤) = Var−(⊤) = ∅,
Var+(pi) = {pi}, Var−(pi) = ∅,
Var+(¬A) = Var−(A), Var−(¬A) = Var+(A),
Var+(A ∧ B) = Var+(A) ∪ Var+(B), similarly for Var−.
similarly for ∨,
Var+(A→ B) = Var−(A) ∪ Var+(B), similarly for Var−.

Example. Let A be the formula (p → (q → p))→ s. Then
Var+(A) = {p, q, s},
Var−(A) = {p}.

(
+
p→ (

+
q→

−
p))→+

s

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 18 / 24

Lyndon interpolation: Polarity of variables

Recall that Var(A) is the set of variables in the formula A.

Definition (Variables occurring positively and negatively)

The sets Var+(A) and Var−(A) are defined by joint induction:
Var+(⊥) = Var−(⊥) = Var+(⊤) = Var−(⊤) = ∅,

Var+(pi) = {pi}, Var−(pi) = ∅,
Var+(¬A) = Var−(A), Var−(¬A) = Var+(A),
Var+(A ∧ B) = Var+(A) ∪ Var+(B), similarly for Var−.
similarly for ∨,
Var+(A→ B) = Var−(A) ∪ Var+(B), similarly for Var−.

Example. Let A be the formula (p → (q → p))→ s. Then
Var+(A) = {p, q, s},
Var−(A) = {p}.

(
+
p→ (

+
q→

−
p))→+

s

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 18 / 24

Lyndon interpolation: Polarity of variables

Recall that Var(A) is the set of variables in the formula A.

Definition (Variables occurring positively and negatively)

The sets Var+(A) and Var−(A) are defined by joint induction:
Var+(⊥) = Var−(⊥) = Var+(⊤) = Var−(⊤) = ∅,
Var+(pi) = {pi}, Var−(pi) = ∅,

Var+(¬A) = Var−(A), Var−(¬A) = Var+(A),
Var+(A ∧ B) = Var+(A) ∪ Var+(B), similarly for Var−.
similarly for ∨,
Var+(A→ B) = Var−(A) ∪ Var+(B), similarly for Var−.

Example. Let A be the formula (p → (q → p))→ s. Then
Var+(A) = {p, q, s},
Var−(A) = {p}.

(
+
p→ (

+
q→

−
p))→+

s

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 18 / 24

Lyndon interpolation: Polarity of variables

Recall that Var(A) is the set of variables in the formula A.

Definition (Variables occurring positively and negatively)

The sets Var+(A) and Var−(A) are defined by joint induction:
Var+(⊥) = Var−(⊥) = Var+(⊤) = Var−(⊤) = ∅,
Var+(pi) = {pi}, Var−(pi) = ∅,
Var+(¬A) = Var−(A), Var−(¬A) = Var+(A),

Var+(A ∧ B) = Var+(A) ∪ Var+(B), similarly for Var−.
similarly for ∨,
Var+(A→ B) = Var−(A) ∪ Var+(B), similarly for Var−.

Example. Let A be the formula (p → (q → p))→ s. Then
Var+(A) = {p, q, s},
Var−(A) = {p}.

(
+
p→ (

+
q→

−
p))→+

s

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 18 / 24

Lyndon interpolation: Polarity of variables

Recall that Var(A) is the set of variables in the formula A.

Definition (Variables occurring positively and negatively)

The sets Var+(A) and Var−(A) are defined by joint induction:
Var+(⊥) = Var−(⊥) = Var+(⊤) = Var−(⊤) = ∅,
Var+(pi) = {pi}, Var−(pi) = ∅,
Var+(¬A) = Var−(A), Var−(¬A) = Var+(A),
Var+(A ∧ B) = Var+(A) ∪ Var+(B), similarly for Var−.

similarly for ∨,
Var+(A→ B) = Var−(A) ∪ Var+(B), similarly for Var−.

Example. Let A be the formula (p → (q → p))→ s. Then
Var+(A) = {p, q, s},
Var−(A) = {p}.

(
+
p→ (

+
q→

−
p))→+

s

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 18 / 24

Lyndon interpolation: Polarity of variables

Recall that Var(A) is the set of variables in the formula A.

Definition (Variables occurring positively and negatively)

The sets Var+(A) and Var−(A) are defined by joint induction:
Var+(⊥) = Var−(⊥) = Var+(⊤) = Var−(⊤) = ∅,
Var+(pi) = {pi}, Var−(pi) = ∅,
Var+(¬A) = Var−(A), Var−(¬A) = Var+(A),
Var+(A ∧ B) = Var+(A) ∪ Var+(B), similarly for Var−.
similarly for ∨,

Var+(A→ B) = Var−(A) ∪ Var+(B), similarly for Var−.

Example. Let A be the formula (p → (q → p))→ s. Then
Var+(A) = {p, q, s},
Var−(A) = {p}.

(
+
p→ (

+
q→

−
p))→+

s

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 18 / 24

Lyndon interpolation: Polarity of variables

Recall that Var(A) is the set of variables in the formula A.

Definition (Variables occurring positively and negatively)

The sets Var+(A) and Var−(A) are defined by joint induction:
Var+(⊥) = Var−(⊥) = Var+(⊤) = Var−(⊤) = ∅,
Var+(pi) = {pi}, Var−(pi) = ∅,
Var+(¬A) = Var−(A), Var−(¬A) = Var+(A),
Var+(A ∧ B) = Var+(A) ∪ Var+(B), similarly for Var−.
similarly for ∨,
Var+(A→ B) = Var−(A) ∪ Var+(B), similarly for Var−.

Example. Let A be the formula (p → (q → p))→ s. Then
Var+(A) = {p, q, s},
Var−(A) = {p}.

(
+
p→ (

+
q→

−
p))→+

s

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 18 / 24

Lyndon interpolation: Polarity of variables

Recall that Var(A) is the set of variables in the formula A.

Definition (Variables occurring positively and negatively)

The sets Var+(A) and Var−(A) are defined by joint induction:
Var+(⊥) = Var−(⊥) = Var+(⊤) = Var−(⊤) = ∅,
Var+(pi) = {pi}, Var−(pi) = ∅,
Var+(¬A) = Var−(A), Var−(¬A) = Var+(A),
Var+(A ∧ B) = Var+(A) ∪ Var+(B), similarly for Var−.
similarly for ∨,
Var+(A→ B) = Var−(A) ∪ Var+(B), similarly for Var−.

Example. Let A be the formula (p → (q → p))→ s. Then
Var+(A) =

{p, q, s},
Var−(A) = {p}.

(
+
p→ (

+
q→

−
p))→+

s

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 18 / 24

Lyndon interpolation: Polarity of variables

Recall that Var(A) is the set of variables in the formula A.

Definition (Variables occurring positively and negatively)

The sets Var+(A) and Var−(A) are defined by joint induction:
Var+(⊥) = Var−(⊥) = Var+(⊤) = Var−(⊤) = ∅,
Var+(pi) = {pi}, Var−(pi) = ∅,
Var+(¬A) = Var−(A), Var−(¬A) = Var+(A),
Var+(A ∧ B) = Var+(A) ∪ Var+(B), similarly for Var−.
similarly for ∨,
Var+(A→ B) = Var−(A) ∪ Var+(B), similarly for Var−.

Example. Let A be the formula (p → (q → p))→ s. Then
Var+(A) = {p, q, s},

Var−(A) = {p}.

(
+
p→ (

+
q→

−
p))→+

s

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 18 / 24

Lyndon interpolation: Polarity of variables

Recall that Var(A) is the set of variables in the formula A.

Definition (Variables occurring positively and negatively)

The sets Var+(A) and Var−(A) are defined by joint induction:
Var+(⊥) = Var−(⊥) = Var+(⊤) = Var−(⊤) = ∅,
Var+(pi) = {pi}, Var−(pi) = ∅,
Var+(¬A) = Var−(A), Var−(¬A) = Var+(A),
Var+(A ∧ B) = Var+(A) ∪ Var+(B), similarly for Var−.
similarly for ∨,
Var+(A→ B) = Var−(A) ∪ Var+(B), similarly for Var−.

Example. Let A be the formula (p → (q → p))→ s. Then
Var+(A) = {p, q, s},
Var−(A) =

{p}.

(
+
p→ (

+
q→

−
p))→+

s

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 18 / 24

Lyndon interpolation: Polarity of variables

Recall that Var(A) is the set of variables in the formula A.

Definition (Variables occurring positively and negatively)

The sets Var+(A) and Var−(A) are defined by joint induction:
Var+(⊥) = Var−(⊥) = Var+(⊤) = Var−(⊤) = ∅,
Var+(pi) = {pi}, Var−(pi) = ∅,
Var+(¬A) = Var−(A), Var−(¬A) = Var+(A),
Var+(A ∧ B) = Var+(A) ∪ Var+(B), similarly for Var−.
similarly for ∨,
Var+(A→ B) = Var−(A) ∪ Var+(B), similarly for Var−.

Example. Let A be the formula (p → (q → p))→ s. Then
Var+(A) = {p, q, s},
Var−(A) = {p}.

(
+
p→ (

+
q→

−
p))→+

s

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 18 / 24

Lyndon interpolation: Polarity of variables

Recall that Var(A) is the set of variables in the formula A.

Definition (Variables occurring positively and negatively)

The sets Var+(A) and Var−(A) are defined by joint induction:
Var+(⊥) = Var−(⊥) = Var+(⊤) = Var−(⊤) = ∅,
Var+(pi) = {pi}, Var−(pi) = ∅,
Var+(¬A) = Var−(A), Var−(¬A) = Var+(A),
Var+(A ∧ B) = Var+(A) ∪ Var+(B), similarly for Var−.
similarly for ∨,
Var+(A→ B) = Var−(A) ∪ Var+(B), similarly for Var−.

Example. Let A be the formula (p → (q → p))→ s. Then
Var+(A) = {p, q, s},
Var−(A) = {p}.

(
+
p→ (

+
q→

−
p))→+

s

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 18 / 24

Lyndon interpolation

Theorem (Lyndon interpolation theorem)
If ⊢ A→ C then there exists a formula B (called an interpolant) such that

(1) ⊢ A→ B and ⊢ B → C ,

(2+) Var+(B) ⊆ Var+(A) ∩ Var+(C),

(2−) Var−(B) ⊆ Var−(A) ∩ Var−(C).

The proof is more subtle.
To prove it, one can use the sequent calculus.

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 19 / 24

Lyndon interpolation

Theorem (Lyndon interpolation theorem)
If ⊢ A→ C then there exists a formula B (called an interpolant) such that

(1) ⊢ A→ B and ⊢ B → C ,

(2+) Var+(B) ⊆ Var+(A) ∩ Var+(C),

(2−) Var−(B) ⊆ Var−(A) ∩ Var−(C).

The proof is more subtle.
To prove it, one can use the sequent calculus.

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 19 / 24

Lyndon interpolation

Theorem (Lyndon interpolation theorem)
If ⊢ A→ C then there exists a formula B (called an interpolant) such that

(1) ⊢ A→ B and ⊢ B → C ,

(2+) Var+(B) ⊆ Var+(A) ∩ Var+(C),

(2−) Var−(B) ⊆ Var−(A) ∩ Var−(C).

The proof is more subtle.
To prove it, one can use the sequent calculus.

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 19 / 24

Lyndon interpolation

Theorem (Lyndon interpolation theorem)
If ⊢ A→ C then there exists a formula B (called an interpolant) such that

(1) ⊢ A→ B and ⊢ B → C ,

(2+) Var+(B) ⊆ Var+(A) ∩ Var+(C),

(2−) Var−(B) ⊆ Var−(A) ∩ Var−(C).

The proof is more subtle.
To prove it, one can use the sequent calculus.

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 19 / 24

Uniform Craig interpolation

Theorem (Uniform Craig interpolation theorem)
For any formula A = A(p⃗, q⃗) (and any choice of variables q⃗ ⊆ Var(A))
there is a formula B(q⃗) (a uniform interpolant of A w.r.t. q⃗) such that

(1) ⊢ A(p⃗, q⃗)→ B(q⃗),
(2) for any formula C (q⃗, s⃗) such that ⊢ A→ C and Var(A) ∩ Var(C) ⊆ q⃗,
we have ⊢ B → C .

Proof.
Take the conjunction of all formulas with variables q⃗ that follow from A:

B(q⃗) :=
⋀︀
{D(q⃗) | A→ D is a tautology }.

There are infinitely many such formulas D!
But only 622n pairwise non-equivalent formulas, where q⃗ = (q1, . . . , qn).
Please give the remainder of the proof.

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 20 / 24

Uniform Craig interpolation

Theorem (Uniform Craig interpolation theorem)
For any formula A = A(p⃗, q⃗) (and any choice of variables q⃗ ⊆ Var(A))
there is a formula B(q⃗) (a uniform interpolant of A w.r.t. q⃗) such that
(1) ⊢ A(p⃗, q⃗)→ B(q⃗),

(2) for any formula C (q⃗, s⃗) such that ⊢ A→ C and Var(A) ∩ Var(C) ⊆ q⃗,
we have ⊢ B → C .

Proof.
Take the conjunction of all formulas with variables q⃗ that follow from A:

B(q⃗) :=
⋀︀
{D(q⃗) | A→ D is a tautology }.

There are infinitely many such formulas D!
But only 622n pairwise non-equivalent formulas, where q⃗ = (q1, . . . , qn).
Please give the remainder of the proof.

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 20 / 24

Uniform Craig interpolation

Theorem (Uniform Craig interpolation theorem)
For any formula A = A(p⃗, q⃗) (and any choice of variables q⃗ ⊆ Var(A))
there is a formula B(q⃗) (a uniform interpolant of A w.r.t. q⃗) such that
(1) ⊢ A(p⃗, q⃗)→ B(q⃗),
(2) for any formula C (q⃗, s⃗) such that ⊢ A→ C and Var(A) ∩ Var(C) ⊆ q⃗,
we have ⊢ B → C .

Proof.
Take the conjunction of all formulas with variables q⃗ that follow from A:

B(q⃗) :=
⋀︀
{D(q⃗) | A→ D is a tautology }.

There are infinitely many such formulas D!
But only 622n pairwise non-equivalent formulas, where q⃗ = (q1, . . . , qn).
Please give the remainder of the proof.

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 20 / 24

Uniform Craig interpolation

Theorem (Uniform Craig interpolation theorem)
For any formula A = A(p⃗, q⃗) (and any choice of variables q⃗ ⊆ Var(A))
there is a formula B(q⃗) (a uniform interpolant of A w.r.t. q⃗) such that
(1) ⊢ A(p⃗, q⃗)→ B(q⃗),
(2) for any formula C (q⃗, s⃗) such that ⊢ A→ C and Var(A) ∩ Var(C) ⊆ q⃗,
we have ⊢ B → C .

Proof.
Take the conjunction of all formulas with variables q⃗ that follow from A:

B(q⃗) :=
⋀︀
{D(q⃗) | A→ D is a tautology }.

There are infinitely many such formulas D!
But only 622n pairwise non-equivalent formulas, where q⃗ = (q1, . . . , qn).
Please give the remainder of the proof.

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 20 / 24

Uniform Craig interpolation

Theorem (Uniform Craig interpolation theorem)
For any formula A = A(p⃗, q⃗) (and any choice of variables q⃗ ⊆ Var(A))
there is a formula B(q⃗) (a uniform interpolant of A w.r.t. q⃗) such that
(1) ⊢ A(p⃗, q⃗)→ B(q⃗),
(2) for any formula C (q⃗, s⃗) such that ⊢ A→ C and Var(A) ∩ Var(C) ⊆ q⃗,
we have ⊢ B → C .

Proof.
Take the conjunction of all formulas with variables q⃗ that follow from A:

B(q⃗) :=
⋀︀
{D(q⃗) | A→ D is a tautology }.

There are infinitely many such formulas D!

But only 622n pairwise non-equivalent formulas, where q⃗ = (q1, . . . , qn).
Please give the remainder of the proof.

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 20 / 24

Uniform Craig interpolation

Theorem (Uniform Craig interpolation theorem)
For any formula A = A(p⃗, q⃗) (and any choice of variables q⃗ ⊆ Var(A))
there is a formula B(q⃗) (a uniform interpolant of A w.r.t. q⃗) such that
(1) ⊢ A(p⃗, q⃗)→ B(q⃗),
(2) for any formula C (q⃗, s⃗) such that ⊢ A→ C and Var(A) ∩ Var(C) ⊆ q⃗,
we have ⊢ B → C .

Proof.
Take the conjunction of all formulas with variables q⃗ that follow from A:

B(q⃗) :=
⋀︀
{D(q⃗) | A→ D is a tautology }.

There are infinitely many such formulas D!
But only 622n pairwise non-equivalent formulas, where q⃗ = (q1, . . . , qn).

Please give the remainder of the proof.

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 20 / 24

Uniform Craig interpolation

Theorem (Uniform Craig interpolation theorem)
For any formula A = A(p⃗, q⃗) (and any choice of variables q⃗ ⊆ Var(A))
there is a formula B(q⃗) (a uniform interpolant of A w.r.t. q⃗) such that
(1) ⊢ A(p⃗, q⃗)→ B(q⃗),
(2) for any formula C (q⃗, s⃗) such that ⊢ A→ C and Var(A) ∩ Var(C) ⊆ q⃗,
we have ⊢ B → C .

Proof.
Take the conjunction of all formulas with variables q⃗ that follow from A:

B(q⃗) :=
⋀︀
{D(q⃗) | A→ D is a tautology }.

There are infinitely many such formulas D!
But only 622n pairwise non-equivalent formulas, where q⃗ = (q1, . . . , qn).
Please give the remainder of the proof.

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 20 / 24

Axiomatization

Classical propositional calculus:
Axioms (more exactly: axiom schemata):

1 A→ (B → A),
2 [A→ (B → C)] → [(A→ B)→ (A→ C)],
3 (A ∧ B)→ A, (A ∧ B)→ B ,
4 A→ (B → (A ∧ B)),
5 A→ (A ∨ B), B → (A ∨ B),
6 (A→ C) → [(B → C) → (A ∨ B)→ C],
7 (A→ B) → [(A→ ¬B) → ¬A],
8 A ∨ ¬A (alternative: ¬¬A→ A)
9 ⊤, ⊥ → A.

Rule of inference: modus ponens (MP)
A A→ B

B
.

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 21 / 24

Interesting facts

Without the axiom A ∨ ¬A we obtain the Intuitionistic logic.

It is decidable, it has compactness, interpolation.

The axioms for {¬,∧,→} axiomatize all tautologies built from
{¬,∧,→}.

The axioms for {¬,∨,→} axiomatize all tautologies built from
{¬,∨,→}.

The axioms for {¬,→} axiomatize all tautologies built from {¬,→}.

What are the axioms for all tautologies over {→}?
Axioms (1) and (2) are not enough!
We also need Peirce’s Law: ((A→ B)→ A)→ A.
Without it we obtain all {→}-theorems of Intuitionistic logic.

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 22 / 24

Interesting facts

Without the axiom A ∨ ¬A we obtain the Intuitionistic logic.
It is decidable, it has compactness, interpolation.

The axioms for {¬,∧,→} axiomatize all tautologies built from
{¬,∧,→}.

The axioms for {¬,∨,→} axiomatize all tautologies built from
{¬,∨,→}.

The axioms for {¬,→} axiomatize all tautologies built from {¬,→}.

What are the axioms for all tautologies over {→}?
Axioms (1) and (2) are not enough!
We also need Peirce’s Law: ((A→ B)→ A)→ A.
Without it we obtain all {→}-theorems of Intuitionistic logic.

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 22 / 24

Interesting facts

Without the axiom A ∨ ¬A we obtain the Intuitionistic logic.
It is decidable, it has compactness, interpolation.

The axioms for {¬,∧,→} axiomatize all tautologies built from
{¬,∧,→}.

The axioms for {¬,∨,→} axiomatize all tautologies built from
{¬,∨,→}.

The axioms for {¬,→} axiomatize all tautologies built from {¬,→}.

What are the axioms for all tautologies over {→}?
Axioms (1) and (2) are not enough!
We also need Peirce’s Law: ((A→ B)→ A)→ A.
Without it we obtain all {→}-theorems of Intuitionistic logic.

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 22 / 24

Interesting facts

Without the axiom A ∨ ¬A we obtain the Intuitionistic logic.
It is decidable, it has compactness, interpolation.

The axioms for {¬,∧,→} axiomatize all tautologies built from
{¬,∧,→}.

The axioms for {¬,∨,→} axiomatize all tautologies built from
{¬,∨,→}.

The axioms for {¬,→} axiomatize all tautologies built from {¬,→}.

What are the axioms for all tautologies over {→}?
Axioms (1) and (2) are not enough!
We also need Peirce’s Law: ((A→ B)→ A)→ A.
Without it we obtain all {→}-theorems of Intuitionistic logic.

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 22 / 24

Interesting facts

Without the axiom A ∨ ¬A we obtain the Intuitionistic logic.
It is decidable, it has compactness, interpolation.

The axioms for {¬,∧,→} axiomatize all tautologies built from
{¬,∧,→}.

The axioms for {¬,∨,→} axiomatize all tautologies built from
{¬,∨,→}.

The axioms for {¬,→} axiomatize all tautologies built from {¬,→}.

What are the axioms for all tautologies over {→}?
Axioms (1) and (2) are not enough!
We also need Peirce’s Law: ((A→ B)→ A)→ A.
Without it we obtain all {→}-theorems of Intuitionistic logic.

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 22 / 24

Interesting facts

Without the axiom A ∨ ¬A we obtain the Intuitionistic logic.
It is decidable, it has compactness, interpolation.

The axioms for {¬,∧,→} axiomatize all tautologies built from
{¬,∧,→}.

The axioms for {¬,∨,→} axiomatize all tautologies built from
{¬,∨,→}.

The axioms for {¬,→} axiomatize all tautologies built from {¬,→}.

What are the axioms for all tautologies over {→}?

Axioms (1) and (2) are not enough!
We also need Peirce’s Law: ((A→ B)→ A)→ A.
Without it we obtain all {→}-theorems of Intuitionistic logic.

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 22 / 24

Interesting facts

Without the axiom A ∨ ¬A we obtain the Intuitionistic logic.
It is decidable, it has compactness, interpolation.

The axioms for {¬,∧,→} axiomatize all tautologies built from
{¬,∧,→}.

The axioms for {¬,∨,→} axiomatize all tautologies built from
{¬,∨,→}.

The axioms for {¬,→} axiomatize all tautologies built from {¬,→}.

What are the axioms for all tautologies over {→}?
Axioms (1) and (2) are not enough!

We also need Peirce’s Law: ((A→ B)→ A)→ A.
Without it we obtain all {→}-theorems of Intuitionistic logic.

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 22 / 24

Interesting facts

Without the axiom A ∨ ¬A we obtain the Intuitionistic logic.
It is decidable, it has compactness, interpolation.

The axioms for {¬,∧,→} axiomatize all tautologies built from
{¬,∧,→}.

The axioms for {¬,∨,→} axiomatize all tautologies built from
{¬,∨,→}.

The axioms for {¬,→} axiomatize all tautologies built from {¬,→}.

What are the axioms for all tautologies over {→}?
Axioms (1) and (2) are not enough!
We also need Peirce’s Law: ((A→ B)→ A)→ A.

Without it we obtain all {→}-theorems of Intuitionistic logic.

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 22 / 24

Interesting facts

Without the axiom A ∨ ¬A we obtain the Intuitionistic logic.
It is decidable, it has compactness, interpolation.

The axioms for {¬,∧,→} axiomatize all tautologies built from
{¬,∧,→}.

The axioms for {¬,∨,→} axiomatize all tautologies built from
{¬,∨,→}.

The axioms for {¬,→} axiomatize all tautologies built from {¬,→}.

What are the axioms for all tautologies over {→}?
Axioms (1) and (2) are not enough!
We also need Peirce’s Law: ((A→ B)→ A)→ A.
Without it we obtain all {→}-theorems of Intuitionistic logic.

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 22 / 24

Axiomatizations with just one axiom

Can we axiomatize all {→}-tautologies with just one axiom?

[(A→ B)→ C] → [(C → A)→ (D → A)] (Lukasiewicz, 1948)
Meredith (1953) did the same for all Intuitionistic {→}-theorems:
[(A→ B)→ C] → [D →

(︀
(B → (C → E))→ (B → E)

)︀
]

We can also find a single axiom for {¬,→}, for {¬,∧,→}, etc.
Can we do the same for Sheffer stroke | in the Classical logic? Yes:
Axiom: (A | (B | C)) | {[D | (D | D)] | [(E | B) | ((A | E) | (A | E))]}

Rule:
A A | (B | C)

C
The same can be done for Peirce’s arrow ↓, too!
Alfred Tarski gave a sufficient condition under which a calculus can
be axiomatized by just one axiom.
Ted Ulrich — collects shortest single axioms for many logics with only
{→} or {↔}.
https://web.ics.purdue.edu/~dulrich/Home-page.htm

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 23 / 24

https://web.ics.purdue.edu/~dulrich/Home-page.htm

Axiomatizations with just one axiom

Can we axiomatize all {→}-tautologies with just one axiom?
[(A→ B)→ C] → [(C → A)→ (D → A)] (Lukasiewicz, 1948)

Meredith (1953) did the same for all Intuitionistic {→}-theorems:
[(A→ B)→ C] → [D →

(︀
(B → (C → E))→ (B → E)

)︀
]

We can also find a single axiom for {¬,→}, for {¬,∧,→}, etc.
Can we do the same for Sheffer stroke | in the Classical logic? Yes:
Axiom: (A | (B | C)) | {[D | (D | D)] | [(E | B) | ((A | E) | (A | E))]}

Rule:
A A | (B | C)

C
The same can be done for Peirce’s arrow ↓, too!
Alfred Tarski gave a sufficient condition under which a calculus can
be axiomatized by just one axiom.
Ted Ulrich — collects shortest single axioms for many logics with only
{→} or {↔}.
https://web.ics.purdue.edu/~dulrich/Home-page.htm

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 23 / 24

https://web.ics.purdue.edu/~dulrich/Home-page.htm

Axiomatizations with just one axiom

Can we axiomatize all {→}-tautologies with just one axiom?
[(A→ B)→ C] → [(C → A)→ (D → A)] (Lukasiewicz, 1948)
Meredith (1953) did the same for all Intuitionistic {→}-theorems:

[(A→ B)→ C] → [D →
(︀
(B → (C → E))→ (B → E)

)︀
]

We can also find a single axiom for {¬,→}, for {¬,∧,→}, etc.
Can we do the same for Sheffer stroke | in the Classical logic? Yes:
Axiom: (A | (B | C)) | {[D | (D | D)] | [(E | B) | ((A | E) | (A | E))]}

Rule:
A A | (B | C)

C
The same can be done for Peirce’s arrow ↓, too!
Alfred Tarski gave a sufficient condition under which a calculus can
be axiomatized by just one axiom.
Ted Ulrich — collects shortest single axioms for many logics with only
{→} or {↔}.
https://web.ics.purdue.edu/~dulrich/Home-page.htm

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 23 / 24

https://web.ics.purdue.edu/~dulrich/Home-page.htm

Axiomatizations with just one axiom

Can we axiomatize all {→}-tautologies with just one axiom?
[(A→ B)→ C] → [(C → A)→ (D → A)] (Lukasiewicz, 1948)
Meredith (1953) did the same for all Intuitionistic {→}-theorems:
[(A→ B)→ C] → [D →

(︀
(B → (C → E))→ (B → E)

)︀
]

We can also find a single axiom for {¬,→}, for {¬,∧,→}, etc.
Can we do the same for Sheffer stroke | in the Classical logic? Yes:
Axiom: (A | (B | C)) | {[D | (D | D)] | [(E | B) | ((A | E) | (A | E))]}

Rule:
A A | (B | C)

C
The same can be done for Peirce’s arrow ↓, too!
Alfred Tarski gave a sufficient condition under which a calculus can
be axiomatized by just one axiom.
Ted Ulrich — collects shortest single axioms for many logics with only
{→} or {↔}.
https://web.ics.purdue.edu/~dulrich/Home-page.htm

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 23 / 24

https://web.ics.purdue.edu/~dulrich/Home-page.htm

Axiomatizations with just one axiom

Can we axiomatize all {→}-tautologies with just one axiom?
[(A→ B)→ C] → [(C → A)→ (D → A)] (Lukasiewicz, 1948)
Meredith (1953) did the same for all Intuitionistic {→}-theorems:
[(A→ B)→ C] → [D →

(︀
(B → (C → E))→ (B → E)

)︀
]

We can also find a single axiom for {¬,→}, for {¬,∧,→}, etc.

Can we do the same for Sheffer stroke | in the Classical logic? Yes:
Axiom: (A | (B | C)) | {[D | (D | D)] | [(E | B) | ((A | E) | (A | E))]}

Rule:
A A | (B | C)

C
The same can be done for Peirce’s arrow ↓, too!
Alfred Tarski gave a sufficient condition under which a calculus can
be axiomatized by just one axiom.
Ted Ulrich — collects shortest single axioms for many logics with only
{→} or {↔}.
https://web.ics.purdue.edu/~dulrich/Home-page.htm

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 23 / 24

https://web.ics.purdue.edu/~dulrich/Home-page.htm

Axiomatizations with just one axiom

Can we axiomatize all {→}-tautologies with just one axiom?
[(A→ B)→ C] → [(C → A)→ (D → A)] (Lukasiewicz, 1948)
Meredith (1953) did the same for all Intuitionistic {→}-theorems:
[(A→ B)→ C] → [D →

(︀
(B → (C → E))→ (B → E)

)︀
]

We can also find a single axiom for {¬,→}, for {¬,∧,→}, etc.
Can we do the same for Sheffer stroke | in the Classical logic?

Yes:
Axiom: (A | (B | C)) | {[D | (D | D)] | [(E | B) | ((A | E) | (A | E))]}

Rule:
A A | (B | C)

C
The same can be done for Peirce’s arrow ↓, too!
Alfred Tarski gave a sufficient condition under which a calculus can
be axiomatized by just one axiom.
Ted Ulrich — collects shortest single axioms for many logics with only
{→} or {↔}.
https://web.ics.purdue.edu/~dulrich/Home-page.htm

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 23 / 24

https://web.ics.purdue.edu/~dulrich/Home-page.htm

Axiomatizations with just one axiom

Can we axiomatize all {→}-tautologies with just one axiom?
[(A→ B)→ C] → [(C → A)→ (D → A)] (Lukasiewicz, 1948)
Meredith (1953) did the same for all Intuitionistic {→}-theorems:
[(A→ B)→ C] → [D →

(︀
(B → (C → E))→ (B → E)

)︀
]

We can also find a single axiom for {¬,→}, for {¬,∧,→}, etc.
Can we do the same for Sheffer stroke | in the Classical logic? Yes:
Axiom: (A | (B | C)) | {[D | (D | D)] | [(E | B) | ((A | E) | (A | E))]}

Rule:
A A | (B | C)

C

The same can be done for Peirce’s arrow ↓, too!
Alfred Tarski gave a sufficient condition under which a calculus can
be axiomatized by just one axiom.
Ted Ulrich — collects shortest single axioms for many logics with only
{→} or {↔}.
https://web.ics.purdue.edu/~dulrich/Home-page.htm

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 23 / 24

https://web.ics.purdue.edu/~dulrich/Home-page.htm

Axiomatizations with just one axiom

Can we axiomatize all {→}-tautologies with just one axiom?
[(A→ B)→ C] → [(C → A)→ (D → A)] (Lukasiewicz, 1948)
Meredith (1953) did the same for all Intuitionistic {→}-theorems:
[(A→ B)→ C] → [D →

(︀
(B → (C → E))→ (B → E)

)︀
]

We can also find a single axiom for {¬,→}, for {¬,∧,→}, etc.
Can we do the same for Sheffer stroke | in the Classical logic? Yes:
Axiom: (A | (B | C)) | {[D | (D | D)] | [(E | B) | ((A | E) | (A | E))]}

Rule:
A A | (B | C)

C
The same can be done for Peirce’s arrow ↓, too!

Alfred Tarski gave a sufficient condition under which a calculus can
be axiomatized by just one axiom.
Ted Ulrich — collects shortest single axioms for many logics with only
{→} or {↔}.
https://web.ics.purdue.edu/~dulrich/Home-page.htm

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 23 / 24

https://web.ics.purdue.edu/~dulrich/Home-page.htm

Axiomatizations with just one axiom

Can we axiomatize all {→}-tautologies with just one axiom?
[(A→ B)→ C] → [(C → A)→ (D → A)] (Lukasiewicz, 1948)
Meredith (1953) did the same for all Intuitionistic {→}-theorems:
[(A→ B)→ C] → [D →

(︀
(B → (C → E))→ (B → E)

)︀
]

We can also find a single axiom for {¬,→}, for {¬,∧,→}, etc.
Can we do the same for Sheffer stroke | in the Classical logic? Yes:
Axiom: (A | (B | C)) | {[D | (D | D)] | [(E | B) | ((A | E) | (A | E))]}

Rule:
A A | (B | C)

C
The same can be done for Peirce’s arrow ↓, too!
Alfred Tarski gave a sufficient condition under which a calculus can
be axiomatized by just one axiom.

Ted Ulrich — collects shortest single axioms for many logics with only
{→} or {↔}.
https://web.ics.purdue.edu/~dulrich/Home-page.htm

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 23 / 24

https://web.ics.purdue.edu/~dulrich/Home-page.htm

Axiomatizations with just one axiom

Can we axiomatize all {→}-tautologies with just one axiom?
[(A→ B)→ C] → [(C → A)→ (D → A)] (Lukasiewicz, 1948)
Meredith (1953) did the same for all Intuitionistic {→}-theorems:
[(A→ B)→ C] → [D →

(︀
(B → (C → E))→ (B → E)

)︀
]

We can also find a single axiom for {¬,→}, for {¬,∧,→}, etc.
Can we do the same for Sheffer stroke | in the Classical logic? Yes:
Axiom: (A | (B | C)) | {[D | (D | D)] | [(E | B) | ((A | E) | (A | E))]}

Rule:
A A | (B | C)

C
The same can be done for Peirce’s arrow ↓, too!
Alfred Tarski gave a sufficient condition under which a calculus can
be axiomatized by just one axiom.
Ted Ulrich — collects shortest single axioms for many logics with only
{→} or {↔}.
https://web.ics.purdue.edu/~dulrich/Home-page.htm

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 23 / 24

https://web.ics.purdue.edu/~dulrich/Home-page.htm

Questions for further thinking

Try to build an algorithm such that

Input: finitely many tautologies A1, . . . ,Ak

Output: Yes ⇐⇒ the formulas A1, . . . ,Ak

axiomatize all tautologies (with the rule MP).
The same question for just one tautology A.

Imagine that we can write countable conjunctions: (A1 ∧ A2 ∧ . . .).

How many formulas do we get then?
Countably many? Continuum? Hyper-continuum?
Can we express every function f (x1, x2, . . .) : {0, 1}𝜔 → {0, 1}?
What are the axioms and rules for tautologies?

The end of lecture 1. Thank you!

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 24 / 24

Questions for further thinking

Try to build an algorithm such that
Input: finitely many tautologies A1, . . . ,Ak

Output: Yes ⇐⇒ the formulas A1, . . . ,Ak

axiomatize all tautologies (with the rule MP).
The same question for just one tautology A.

Imagine that we can write countable conjunctions: (A1 ∧ A2 ∧ . . .).

How many formulas do we get then?
Countably many? Continuum? Hyper-continuum?
Can we express every function f (x1, x2, . . .) : {0, 1}𝜔 → {0, 1}?
What are the axioms and rules for tautologies?

The end of lecture 1. Thank you!

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 24 / 24

Questions for further thinking

Try to build an algorithm such that
Input: finitely many tautologies A1, . . . ,Ak

Output: Yes ⇐⇒ the formulas A1, . . . ,Ak

axiomatize all tautologies (with the rule MP).

The same question for just one tautology A.

Imagine that we can write countable conjunctions: (A1 ∧ A2 ∧ . . .).

How many formulas do we get then?
Countably many? Continuum? Hyper-continuum?
Can we express every function f (x1, x2, . . .) : {0, 1}𝜔 → {0, 1}?
What are the axioms and rules for tautologies?

The end of lecture 1. Thank you!

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 24 / 24

Questions for further thinking

Try to build an algorithm such that
Input: finitely many tautologies A1, . . . ,Ak

Output: Yes ⇐⇒ the formulas A1, . . . ,Ak

axiomatize all tautologies (with the rule MP).
The same question for just one tautology A.

Imagine that we can write countable conjunctions: (A1 ∧ A2 ∧ . . .).

How many formulas do we get then?
Countably many? Continuum? Hyper-continuum?
Can we express every function f (x1, x2, . . .) : {0, 1}𝜔 → {0, 1}?
What are the axioms and rules for tautologies?

The end of lecture 1. Thank you!

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 24 / 24

Questions for further thinking

Try to build an algorithm such that
Input: finitely many tautologies A1, . . . ,Ak

Output: Yes ⇐⇒ the formulas A1, . . . ,Ak

axiomatize all tautologies (with the rule MP).
The same question for just one tautology A.

Imagine that we can write countable conjunctions: (A1 ∧ A2 ∧ . . .).

How many formulas do we get then?
Countably many? Continuum? Hyper-continuum?
Can we express every function f (x1, x2, . . .) : {0, 1}𝜔 → {0, 1}?
What are the axioms and rules for tautologies?

The end of lecture 1. Thank you!

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 24 / 24

Questions for further thinking

Try to build an algorithm such that
Input: finitely many tautologies A1, . . . ,Ak

Output: Yes ⇐⇒ the formulas A1, . . . ,Ak

axiomatize all tautologies (with the rule MP).
The same question for just one tautology A.

Imagine that we can write countable conjunctions: (A1 ∧ A2 ∧ . . .).

How many formulas do we get then?

Countably many? Continuum? Hyper-continuum?
Can we express every function f (x1, x2, . . .) : {0, 1}𝜔 → {0, 1}?
What are the axioms and rules for tautologies?

The end of lecture 1. Thank you!

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 24 / 24

Questions for further thinking

Try to build an algorithm such that
Input: finitely many tautologies A1, . . . ,Ak

Output: Yes ⇐⇒ the formulas A1, . . . ,Ak

axiomatize all tautologies (with the rule MP).
The same question for just one tautology A.

Imagine that we can write countable conjunctions: (A1 ∧ A2 ∧ . . .).

How many formulas do we get then?
Countably many? Continuum? Hyper-continuum?

Can we express every function f (x1, x2, . . .) : {0, 1}𝜔 → {0, 1}?
What are the axioms and rules for tautologies?

The end of lecture 1. Thank you!

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 24 / 24

Questions for further thinking

Try to build an algorithm such that
Input: finitely many tautologies A1, . . . ,Ak

Output: Yes ⇐⇒ the formulas A1, . . . ,Ak

axiomatize all tautologies (with the rule MP).
The same question for just one tautology A.

Imagine that we can write countable conjunctions: (A1 ∧ A2 ∧ . . .).

How many formulas do we get then?
Countably many? Continuum? Hyper-continuum?
Can we express every function f (x1, x2, . . .) : {0, 1}𝜔 → {0, 1}?

What are the axioms and rules for tautologies?

The end of lecture 1. Thank you!

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 24 / 24

Questions for further thinking

Try to build an algorithm such that
Input: finitely many tautologies A1, . . . ,Ak

Output: Yes ⇐⇒ the formulas A1, . . . ,Ak

axiomatize all tautologies (with the rule MP).
The same question for just one tautology A.

Imagine that we can write countable conjunctions: (A1 ∧ A2 ∧ . . .).

How many formulas do we get then?
Countably many? Continuum? Hyper-continuum?
Can we express every function f (x1, x2, . . .) : {0, 1}𝜔 → {0, 1}?
What are the axioms and rules for tautologies?

The end of lecture 1. Thank you!

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 24 / 24

Questions for further thinking

Try to build an algorithm such that
Input: finitely many tautologies A1, . . . ,Ak

Output: Yes ⇐⇒ the formulas A1, . . . ,Ak

axiomatize all tautologies (with the rule MP).
The same question for just one tautology A.

Imagine that we can write countable conjunctions: (A1 ∧ A2 ∧ . . .).

How many formulas do we get then?
Countably many? Continuum? Hyper-continuum?
Can we express every function f (x1, x2, . . .) : {0, 1}𝜔 → {0, 1}?
What are the axioms and rules for tautologies?

The end of lecture 1. Thank you!

Evgeny Zolin, MSU Classical propositional logic 24.02.2021 24 / 24

