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Abstract. The paper considers the principles of constructing a mathematical model of water 

treatment based on the use of a biologically active layer, the bacteria of which absorb harmful 

impurities contained in water. A system of equations is presented on the basis of which a 

model of water purification is constructed in the simplest element, which is a rod covered with 

a biofilm. The system of equations is a system that includes a parabolic equation in a three-

dimensional domain and a hyperbolic equation on a part of the surface of this domain, 

connected to each other through a boundary condition and a potential in an equation of 

hyperbolic type. Next, an asymptotic analysis of this system is carried out, which allows us to 

reduce the model of an individual element to the solution of a simple ordinary differential 

equation. On this basis, a model of the entire water treatment device is proposed.  

1.  Introduction 

The problem of water purification from undesirable impurities is of great practical importance. It has 

been reviewed by many authors [1-4]. The aim of paper [5] is to find a model of hybrid biofilm reactor 

under aerobic and anoxic conditions and to simulate the decontamination of petrochemical 

wastewater. This problem also raises a number of interesting mathematical problems [6-11]. 

Comparison of multi-dimensional modelling results with those obtained using one-dimensional 

approaches is made in [12]. In this paper, the authors conclude that it is necessary to use 

multidimensional modeling to predict the properties that arise from the spatial structure of a biofilm. 

The model for a multispecies biofilm growth is in [13]. As a numerical application, simulations for 

a heterotrophic-autotrophic competition are developed by the method of characteristics. The 

mathematical model in the work [14] connects the dynamics of biofilm and bulk liquid compartments 

through which the substrate flow passes. In [15] the authors present a numerical solution of a 

mathematical model obtained by combining the reactor mass balance for suspended substrates with 

one-dimensional model of a Wanner-Guger type biofilm. 

In this paper, we propose a model of water purification using biologically active films in which 

bacteria multiply and die. In a special tank of cylindrical shape with a height of about one meter and a 

diameter of about 20 cm, parallelepipeds consisting of thin pressed polymer fibers are placed. The 
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volume of such a parallelepiped is about 15-20 cubic centimeters, individual fibers can be considered 

as rods of a length of about 1 cm. A thin biofilm covers the surface of each such rod, its thickness is 

about a tenth of a millimeter. Water enters the upper section of the purification device, then water 

drops flow down on the said rods, wetting the biofilm. Undesirable impurities in water are the food for 

bacteria in the biofilm, therefore impurities penetrate through the film. The penetration intensity 

depends on both concentration of bacteria and concentration of undesirable impurities at the film 

boundary. The average water velocity, which “oozes” over the surface of the biofilm, also affects the 

absorption rate. Thus, a rod of length l (about a centimeter) is, as it were, an elementary element of a 

water treatment device. In total, there are several million such elements in the cylinder. If we could 

build an adequate model of water treatment (i.e., the process of absorption of impurities) for one such 

element and computer implementation of such a model would take a short time, then we could 

simulate the entire process of water treatment by quantifying the drop in the level of water pollution 

during passage through the cleaning device. Similar models were considered in a number of works, in 

particular, in [16-20]. First, we describe the basic principles of the mathematical model that we use in 

this paper.  

2.  Description of the general principle of the mathematical model 

We replace the structure of the cleaning elements with a set of rods of length l covered with a cleaning 

layer of thickness  . An infinitely thin layer adjoins this layer, through which air and water with 

undesirable impurities are transported. An absorbing cleaning layer (biofilm) receives impurities in its 

volume from a surface adjacent to it at a rate that depends on the concentration of bacteria on the 

surface of the biofilm and impurities in the liquid being cleaned on the same surface, for example, 

proportional to the difference in concentration in the cleaning layer and on the surface. Inside the 

cleaning layer, the equation describing the evolution of the concentration of bacteria over time is a 

diffusion equation with a nonlinear term that models the absorption of harmful impurities by bacteria. 

At low concentrations, this law can be considered linear. With increasing concentration, the rate of 

absorption of impurities tends to a constant, since at a high concentration of bacteria they begin to 

"interfere" with each other. Sometimes this behavior of bacteria in the literature is called the "Mono 

law." The influx of unwanted impurities is modeled by the condition of contact with the surface 

adjacent to the biofilm, along which water with undesirable impurities, mixed with air, is transported 

along the cleaning layer. The field of transportation speeds is considered to be predefined. Its value is 

calculated for each cleaning element, based on the total consumption of contaminated liquid and the 

inclination of the element to a horizontal plane (it is clear that water flows off on a vertical surface as 

quickly as possible, but does not flow on a horizontal surface). The equation of motion of the mixture: 

water-air-harmful impurities is a hyperbolic type equation (transfer equation) with a potential that 

describes the removal of harmful impurities into the cleaning layer (this is the amount of “removal” of 

harmful impurities from water, which determines the potential in this equation, depends on the 

concentration on the surface bioactive layer of bacteria and harmful impurities, in the simplest case 

this dependence is linear, for example, the potential value is proportional to the difference in the 

concentrations of impurities on the surface and in the cleaning layer). The system describing the 

absorption of harmful impurities in one element is a combination of the diffusion equation in a three-

dimensional cylindrical region and the transport equation on an adjacent cylindrical two-dimensional 

surface. Such a task has no analytical solution. However, it is quite obvious that it is not difficult to 

build a calculation program. After calculating the degree of absorption of one cleaning element, 

depending on the concentration of the incoming impurity, the speed of transportation, the thickness of 

the cleaning layer, the law of absorption of harmful impurities by bacteria and the dependence of the 

flow of harmful impurities on the difference in concentration in the cleaning layer and on the transport 

surface, it will be easy to build a model of the entire filter, consisting of thousand of such elements. 

This is an arithmetic calculation. The most difficult is to build a model and the corresponding 

calculation programs for one element.  
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The entire cylindrical tank is divided into separate layers along the height of the tank, and a 

computer program is built that allows you to calculate the concentration change on each of the layers, 

from top to bottom, using the model of an elementary cleaning element.  

3.  System of equations for a mathematical model 

Further, we consider the concentration of bacteria in the biofilm and the concentration of impurities at 

the boundary of the biofilm depend only on the radial variable r and the variable z along the length of 

the rod. We neglect the dependence on the angular variable.  

We introduce the following notation. 0

  is one rod inside the cube (one fiber of which the cube 

consists),   is the diameter of this rod, 1

  is the surface   thick layer (biofilm) on the 0

 , S  is the 

part of the 1

  lateral border that is not in contact with 0

 ,   is the rest of the 1

  lateral border. 

( , )C x t  denotes the concentration of impurities in 1

 , ( , )x r z , t is the time variable, ( , )M x t  

denotes the concentration of impurities on S (on a two-dimensional surface), ( , )v x t  is a velocity 

vector tangential to the surface S . We also denote by 
1 2,D D  the upper and lower "covers" of the 

cylinder (or rod) under consideration. 

Functions ( , )C x t  and ( )M x,t  must satisfy the following equations in 1

  and on S ,  : 

 1( , ) inC D C F t C 

      , (1) 

 0 1 0
0, ( ) , 0

S t
S

C C
k C k M C C

n n 

 

 
    



 
     

 
. (2) 

In addition, the homogeneous Neumann condition must also be satisfied on 
1 2,D D . 

The equation (1) describes the diffusion of bacteria in a layer with the death of bacteria when their 

concentration increases. The Laplace operator   is the Laplace operator in cylindrical variables, r is 

the radial variable. A non-linear function ( , )F t C  models the above Mono law, D is diffusion 

coefficient, 
0 1,k k  are some constants, 

C

n




 is the derivative in the direction of the external normal n to 

the surface S .  

Functions ( , )C x t  and ( )M x,t  must satisfy the following equations in 1

  and on S ,  : 
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 (3) 

describes the transport of impurities, the content of which we want to reduce, over the surface S  with 

the transition of impurities into 1

 . Destructible impurities serve as food for bacteria. As ( , )F t C  we 

have designated a nonlinear, generally speaking, function that describes a decrease in the number of 

bacteria in a biofilm at their high concentration, S
  is a part of the edge S at the upper end of the 

rod, where the field v   “enters” into it. In this particular case 
dM

M
dz


  , as  r  is constant on the 

surface S , 2 0, ,k k C  are some constants.  

It is easy to construct a direct difference scheme for the posed boundary value problem. However, 

it should be noted here that this system does not have a specific type, it consists of two equations, the 

first of which is parabolic and the second hyperbolic. In addition, these systems are defined in domains 

of various dimensions, system (1) - (2) in a three-dimensional domain, and system (3) in a two-

dimensional one. This system is nonlinear, generally speaking, and its correctness raises questions. 
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Mathematically, this is a new and rather interesting object. We assume that the steady-state regime 

that the solution reaches for large values of time does not depend on the initial distribution of the 

density of bacteria, but depends on the density of impurities falling on the upper part of the water 

treatment device. This is a fairly natural assumption, but as a mathematical statement, it requires 

proof. 

In the statement of the problem given in this paragraph, the dependence in the boundary conditions 

on the concentration of bacteria and harmful impurities is linear. In this case, it is possible to exclude 

the value of the density of impurities from the system by solving the linear equation for the density of 

impurities M at a given value of the concentration density of bacteria C and substituting the resulting 

expression in the boundary condition for function C. It is obtained by a nonlocal condition of the 

aftereffect of the integral type, and the past concentration values at various spatial points will affect 

the flow through the boundary. This is a statement of a boundary value problem with integral 

“aftereffect”, which is interesting from a mathematical point of view. Currently, such tasks have not 

yet been adequately studied. 

To circumvent these mathematical difficulties, we simplify our model using the additional 

assumption that the length of an individual cleaning element is significantly greater (about 100 times) 

the thickness of the biologically active film. This assumption is actually fulfilled for the method of 

water treatment considered in this paper. Then we can apply the asymptotic method for analyzing the 

solutions of boundary value problems in the so-called “thin” domains, see, for example [21, 22].Using 

this method, with the passage to the limit in thickness, the dimension of the space of independent 

variables decreases, and the boundary-value problem considered by us for the stationary distribution 

mode of impurities reduces to solving an ordinary differential equation. The only independent variable 

is the directional variable along the bar. Such an equation is solved numerically almost instantly on a 

modern computer, and therefore, the solution of several millions of such equations modeling 

individual elementary elements of water purification becomes a simple task. The initial conditions for 

such equations are modeled depending on the layer in height at which such an element is located. 

Namely, we divide the water treatment device into layers with a thickness of about one centimeter in 

height. The initial conditions for the equations corresponding to the elements of water treatment in the 

upper layer are determined by the mode of flow of water into the water purifier. They are predefined. 

Water may also flow unevenly over the surface area. The distribution of the intensity of water intake 

with impurities is the initial condition for the model. On the layers of the next level in height, the 

initial conditions at the upper point of the element will be determined by the group of lower points of 

elements adjacent to this upper point from the upper layer. Neighboring - means located at a certain 

distance not exceeding a given value of d. Each element of the upper layer divides in a certain way, for 

example, evenly, the fraction of impurities still untreated (and these are the values of the concentration 

of impurities at its lower end) between the input upper points of neighboring elements of the next 

(lower) layer height.  

The slopes of the water treatment elements with respect to the vertical can be modeled as uniformly 

distributed, and the speeds of movement of the mixture of water and air over individual elements can 

be selected depending on the slope of the element to the vertical axis. 

Now we describe in more detail the procedure of the limiting transition over the film thickness in 

the original boundary-value problem given in this section, which simplifies the model by reducing it to 

a system of ordinary differential equations. 

4.  Asymptotic limit on the water treatment element thickness  

This approach, which greatly simplifies the solution of the problem, consists in constructing for the 

solution of our system in the stationary case an asymptotic approximation with respect to a small 

parameter 0h R r   characterizing the thickness of the rod. It turns out that the first approximation in 

the parameter 0h  is easy to construct, and the diffusion value and potential in equation (1) are not 

significant for it, and the boundary condition on the surface S plays the main role. The role of diffusion 

coefficients appears only in the next approximation with respect to the parameter h. Indeed, we 
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consider the equation of system (4) in the stationary version (when the time derivatives are equal to 

zero) with the boundary condition on S 

 0 1( ) ( )
r R

C
k k C x

r


 
   

 
. (4) 

It can be shown that for ( , )C r z  if 0h  we have the asymptotic approximation 

 

0

(1)

0 1 0 1

( ) ( )
( , ) ( ), ( ) 1, 0r

r r

x x I
C r z I r L I r

k k k k r 

  
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  
. (5) 

Here 
rL  is the radial component of the Laplace operator in cylindrical variables, ( )I r  is an auxiliary 

function satisfying the above conditions. 

Note that for (1)C  approximation, the boundary condition on S is fulfilled with ( )O h  accuracy, the 

condition on   is satisfied exactly, the conditions on the 
1 2,D D  “covers” are not satisfied, but the 

order areas 
1 2,D D  is ( )O h , and the flow through these surfaces will not affect the solution by more 

than a ( )O h  value, this statement can be proved strictly by mathematical methods. The equation for 
(1)C  holds exactly (we consider here 0F   for simplicity, but it is not difficult to consider the more 

general case when the function F is not identically equal to zero). The term 
0 1

( )
( )

x
I r

k k




 in the 

expression for (1)C  is of 
2( )O h  order , therefore with ( )O h  accuracy we will have  

 
(1)

0 1

( )
( , )

x
C r z

k k




. (6) 

Thus, if we substitute the indicated approximate value (6) for ( , )C r z  into differential equation (1), 

then for the proposed approximation for a small value h of the ( )M z  solution component, from 

equation (3) we obtain a simple ordinary differential equation 

 
1

0 1

( ( ))
( ),

dM f M z
v g M z

dz k k

  
   

 
 (7) 

with the initial condition 
0(0)M m . Here f, g are explicitly defined functions whose specific form is 

determined by the initial statement of the problem. If f and g are linear functions, then this equation (7) 

is solved explicitly, and if f and g are functions of a general form, then it can be solved quickly and 

with high accuracy on a computer. 

5. Conclusion 

In this work, we propose a model of the water purification process using biologically active elements 

that is simply implemented as a program. Such a model can help in calculating the parameters of the 

water treatment device, so that a certain water treatment performance is achieved, and at the same 

time, the level of harmful impurities in the water at the outlet of the water treatment device does not 

exceed a predetermined value. Thus, this model can be used to solve the optimization problem of 

choosing various parameters of a water treatment device with corresponding restrictions on the 

productivity and quality of water treatment. 

This work was out as as part the agreement of Institute of Problem in Mechanics AAAA-A20-

120011690138-6 and with the support of the Moscow Center for Fundamental and Applied 

Mathematics.   
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