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First-order formulas and models
We consider the following logical system S = (ℒ,ℳ, |=):

ℒ — closed formulas over a signature Σ = (Pred,Func,Const).

ℳ — the class of all interpretations or models of signature Σ

|= — the truth relation: a formula A is true in a model M (M |= A)

Example
1 Signature: Σ = ({<,=},∅,∅), with ar(<) = 2.

Example of a closed formula: ∀x∀z (x < z → ∃y (x < y & y < z)).
Interpretations have the form (D,R), where R ⊆ D × D (relation).
Examples: partially (or linearly) ordered sets, lattices, well-orders...

2 Signature: Σ = ({=}, {·},∅), with ar(·) = 2.
Example of a closed formula: ∃t∀z

(︀
t · z = z & ∀x∃y (x · y = t)

)︀
.

Interpretations have the form (D, ∘), where ∘ : D ×D → D (function).
Examples: groups, semigroups, monoids, etc.
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Finitely axiomatizable class

Definition
A class of models K is called finitely axiomatizable (FIN-AX), if K is
definable by a single formula A ∈ ℒ (or by finitely many formulas):

K = Models(A).

So, for all M: M ∈ K ⇔ M |= A.

Lemma
1 K is FIN-AX ⇐⇒ K is FIN-AX.
2 FIN-AX is closed under intersection (of two classes):

classes K1 and K2 are FIN-AX =⇒ K1 ∩K2 is FIN-AX.
3 FIN-AX is closed under union (of two classes):

classes K1 and K2 are FIN-AX =⇒ K1 ∪K2 is FIN-AX.

Proof.
(1) K = Models(¬A). (2) K1 ∩K2 = Models(A ∧ B). (3) Take ∨.
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(infinitely) axiomatizable class

Definition
A class of models K is called axiomatizable (AX), if K is definable by some
set of formulas Γ ⊆ ℒ (or by finitely many formulas):

K = Models(Γ).

So, for all M: M ∈ K ⇔ M |= Γ.

Lemma
1 AX is closed under infinite intersections:

classes Ki are AX, for all i ∈ ℐ =⇒ the class K =
⋂︀
i∈ℐ

Ki is AX.

Proof.
If Ki = Models(Γi ), then K = Models(

⋃︀
i∈ℐ

Γi ).
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Example
The class of infinite groups, the class of infinite fields, the class of infinite
linear orders, the class of algebraically closed fields, etc.
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(Finite) axiomatizability criterion

Theorem (Keisler, 1961)
Let K be any class of first-order models (of a fixed signature).

K is axiomatizable ⇐⇒
K is closed under ≡ and ultraproducts
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both K and its complement K are closed under ≡ and ultraproducts

Closure conditions
Both K and K K K

K is axiomatizable ≡ uProd
K is finitely axiomatizable ≡ uProd uProd

Why non-symmetric?
Because this is not the whole story!
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The hierarchy starts growing

Definition
A class of models K is called finitely axiomatizable (FIN-AX), if K is
definable by a single formula A ∈ ℒ: K = Models(A).

Definition
A class of models K is called axiomatizable (AX), if K is definable by some
set of formulas Γ ⊆ ℒ (or by finitely many formulas): K = Models(Γ).
Equivalently, K is representable as the intersection of some FIN-AX classes.

Definition
A class of models K is called co-axiomatizable (co-AX),
if K is representable as the union of some FIN-AX classes.

Definition
A class of models K is called quasi-axiomatizable (Q-AX),
if K is representable as the union of some AX classes.
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The hierarchy starts growing
Let us use special notation for the 4 “species” of classes:

we write K ∈ E if K is finitely axiomatizable (FIN-AX)

we write K ∈ eE if K is axiomatizable (AX)
we write K ∈ dE if K is co-axiomatizable (co-AX)
we write K ∈ deE if K is quasi-axiomatizable (Q-AX)

Should we continue? edE ? dedE ? edeE ? . . . No!

deE = edE
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The hierarchy of 4 “species” of classes

quasi-axiomatizable classes

axiomatizable classes co-axiomatizable classes

finitely axiomatizable classes

deE = edE

eE dE

E
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Criterion for quasi-axiomatizability

Theorem (Criterion for deE)
For any class of models K, the following statements are equivalent:

(1a) K ∈ deE (K is the union of intersections of AX classes)

(1b) K ∈ edE (K is the intersection of unions of AX classes)
(2) K is closed under elementary equivalence (≡).

Proof.
(1a)⇒(2): Assume K =

⋃︀
i∈I

⋂︀
j∈Ji

Models(Aij), for some formulas Aij . Take

any M ≡ N. Then:

M ∈ K ⇐⇒ ∃i ∈ I ∀j ∈ Ji M |= Aij

⇐⇒ ∃i ∈ I ∀j ∈ Ji N |= Aij ⇐⇒ N ∈ K.

(1b)⇒(2): Similarly.
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Criterion for quasi-axiomatizability

Theorem (Criterion for deE)
For any class of models K, the following statements are equivalent:
(1a) K ∈ deE (K is the union of intersections of AX classes)
(1b) K ∈ edE (K is the intersection of unions of AX classes)
(2) K is closed under elementary equivalence (≡).

Proof.
(2)⇒(1a):

Assume that K is closed under ≡. Then we prove the following:

K =
⋃︀

M∈K
[M], where [M] = {N | M ≡ N }.

Exercise. [M] = Models(Theory(M)). And so [M] is an AX class.

(⊆) If M ∈ K, then (since M ∈ [M]) the model M belongs to the right
hand side of the equality.

(⊇) For every M ∈ K we have [M] ⊆ K, and so
⋃︀

M∈K
[M] ⊆ K.
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More properties
E means FIN-AX, eE means AX, dE means co-AX, deE means Q-AX

Lemma
1 E is closed under finite ∩ and ∪:

K1 and K2 are FIN-AX =⇒ K1 ∩K2 and K1 ∩K2 are FIN-AX.
2 eE is closed under arbitrary ∩.

classes Ki are AX, for all i ∈ ℐ =⇒ the class K =
⋂︀
i∈ℐ

Ki is AX.

3 dE is closed under arbitrary ∪.
4 deE = edE is closed under arbitrary ∩ and ∪.

Lemma
1 K is in eE ⇐⇒ K is in dE.
2 K is in deE ⇐⇒ K is in edE = deE.
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Criteria for all 4 “species”

Theorem (Keisler, 1961)
Let K be any class of first-order models (of a fixed signature).

K is axiomatizable ⇐⇒
K is closed under ≡ and ultraproducts

K is finitely axiomatizable ⇐⇒
both K and its complement K are closed under ≡ and ultraproducts

Both K K
K ∈ deE ≡
K ∈ eE ≡ uProd
K ∈ dE ≡ uProd
K ∈ E ≡ uProd uProd

The table is symmetric now!
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Examples
1 The class of fields — is finitely axiomatizable.

2 The class of finite fields — is co-axiomatizable,
but not FIN-AX, because it is not compact: take Γ = {∃=nx | n > 1}.

3 The class of infinite fields — is axiomatizable.
But not FIN-AX: because its complement is not compact.

4 The class of infinite fields of characteristic p, where p > 0 is fixed — is
axiomatizable.

5 The class of infinite fields of all positive characteristics ch(F ) > 0 — it
is Q-AX (deE = edE).
But it is not AX. And it is not co-AX.
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Further thinking

Tasks for students:
Take the minimal signature Σ = ({P,=},∅,∅), where ar(P) = 1.
So we have one unary predicate symbol.

Build classes of models that are FIN-AX, AX, co-AX, Q-AX.

Now try a smaller signature: Σ = ({=},∅,∅).
Build classes of models that are FIN-AX, AX, co-AX.
Show that we cannot build a Q-AX class of models!

What about the signature without equality?
Σ = ({=},∅,∅), where ar(P) = 1.

Can we build classes of models that are FIN-AX, AX, co-AX.

End of lecture 12. Thank you!
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