ACCL Lecture 10:

Representation of finite Boolean algebras. Ultrafilters in Boolean algebras.
Representation of arbitrary Boolean algebras (Stone's representation theorem)

Evgeny Zolin

Department of Mathematical Logic and Theory of Algorithms
Faculty of Mechanics and Mathematics Moscow State University

Advanced Course in Classical Logic April 28th, 2021

Abstract Boolean algebras

Definition

Boolean algebra: $\mathcal{B}=(D, \wedge, \vee,-, 0,1)$, where $D \neq \varnothing$ is a set, $0,1 \in D$, the operations $\wedge, \vee: D \times D \rightarrow D$ and $-: D \rightarrow D$ satisfy the laws:

Abstract Boolean algebras

Definition

Boolean algebra: $\mathcal{B}=(D, \wedge, \vee,-, 0,1)$, where $D \neq \varnothing$ is a set, $0,1 \in D$, the operations $\wedge, \vee: D \times D \rightarrow D$ and $-: D \rightarrow D$ satisfy the laws:
$a \wedge b=b \wedge a \quad a \vee b=b \vee a$
(commutativity laws)

Abstract Boolean algebras

Definition

Boolean algebra: $\mathcal{B}=(D, \wedge, \vee,-, 0,1)$, where $D \neq \varnothing$ is a set, $0,1 \in D$, the operations $\wedge, \vee: D \times D \rightarrow D$ and $-: D \rightarrow D$ satisfy the laws:

Abstract Boolean algebras

Definition

Boolean algebra: $\mathcal{B}=(D, \wedge, \vee,-, 0,1)$, where $D \neq \varnothing$ is a set, $0,1 \in D$, the operations $\wedge, \vee: D \times D \rightarrow D$ and $-: D \rightarrow D$ satisfy the laws:

$a \wedge b=b \wedge a \quad a \vee b=b \vee a$	(commutativity laws)
$(a \wedge b) \wedge c=a \wedge(b \wedge c)$	
$(a \vee b) \vee c=a \vee(b \vee c)$	(associativity laws)
$(a \wedge b) \vee c=(a \vee c) \wedge(b \vee c)$	
$(a \vee b) \wedge c=(a \wedge c) \vee(b \wedge c)$	(distributivity laws)

Abstract Boolean algebras

Definition

Boolean algebra: $\mathcal{B}=(D, \wedge, \vee,-, 0,1)$, where $D \neq \varnothing$ is a set, $0,1 \in D$, the operations $\wedge, \vee: D \times D \rightarrow D$ and $-: D \rightarrow D$ satisfy the laws:

$a \wedge b=b \wedge a \quad a \vee b=b \vee a$	(commutativity laws)
$(a \wedge b) \wedge c=a \wedge(b \wedge c)$	
$(a \vee b) \vee c=a \vee(b \vee c)$	(associativity laws)
$(a \wedge b) \vee c=(a \vee c) \wedge(b \vee c)$	
$(a \vee b) \wedge c=(a \wedge c) \vee(b \wedge c)$	(distributivity laws)
$a \wedge a=a \quad a \vee a=a$	(idempotent laws)

Abstract Boolean algebras

Definition

Boolean algebra: $\mathcal{B}=(D, \wedge, \vee,-, 0,1)$, where $D \neq \varnothing$ is a set, $0,1 \in D$, the operations $\wedge, \vee: D \times D \rightarrow D$ and $-: D \rightarrow D$ satisfy the laws:

$a \wedge b=b \wedge a \quad a \vee b=b \vee a$	(commutativity laws)
$(a \wedge b) \wedge c=a \wedge(b \wedge c)$	
$(a \vee b) \vee c=a \vee(b \vee c)$	(associativity laws)
$(a \wedge b) \vee c=(a \vee c) \wedge(b \vee c)$	(distributivity laws)
$(a \vee b) \wedge c=(a \wedge c) \vee(b \wedge c)$	(idempotent laws)
$a \wedge a=a \quad a \vee a=a$	(absorption laws)

Abstract Boolean algebras

Definition

Boolean algebra: $\mathcal{B}=(D, \wedge, \vee,-, 0,1)$, where $D \neq \varnothing$ is a set, $0,1 \in D$, the operations $\wedge, \vee: D \times D \rightarrow D$ and $-: D \rightarrow D$ satisfy the laws:

$a \wedge b=b \wedge a \quad a \vee b=b \vee a$	(commutativity laws)
$(a \wedge b) \wedge c=a \wedge(b \wedge c)$	(associativity laws)
$(a \vee b) \vee c=a \vee(b \vee c)$	(distributivity laws)
$(a \wedge b) \vee c=(a \vee c) \wedge(b \vee c)$	(idempotent laws)
$(a \vee b) \wedge c=(a \wedge c) \vee(b \wedge c)$	(absorption laws)
$a \wedge a=a \quad a \vee a=a$	(complement laws)

Abstract Boolean algebras

Definition

Boolean algebra: $\mathcal{B}=(D, \wedge, \vee,-, 0,1)$, where $D \neq \varnothing$ is a set, $0,1 \in D$, the operations $\wedge, \vee: D \times D \rightarrow D$ and $-: D \rightarrow D$ satisfy the laws:

$a \wedge b=b \wedge a \quad a \vee b=b \vee a$	(commutativity laws)
$(a \wedge b) \wedge c=a \wedge(b \wedge c)$	(associativity laws)
$(a \vee b) \vee c=a \vee(b \vee c)$	(distributivity laws)
$(a \wedge b) \vee c=(a \vee c) \wedge(b \vee c)$	(idempotent laws)
$(a \vee b) \wedge c=(a \wedge c) \vee(b \wedge c)$	(absorption laws)
$a \wedge a=a \quad a \vee a=a$	(complement laws)
$a \wedge(a \vee b)=a \quad a \vee(a \wedge b)=a$	(de Morgan laws)

Abstract Boolean algebras

Definition

Boolean algebra: $\mathcal{B}=(D, \wedge, \vee,-, 0,1)$, where $D \neq \varnothing$ is a set, $0,1 \in D$, the operations $\wedge, \vee: D \times D \rightarrow D$ and $-: D \rightarrow D$ satisfy the laws:

$a \wedge b=b \wedge a \quad a \vee b=b \vee a$	(commutativity laws)
$(a \wedge b) \wedge c=a \wedge(b \wedge c)$	(associativity laws)
$(a \vee b) \vee c=a \vee(b \vee c)$	(distributivity laws)
$(a \wedge b) \vee c=(a \vee c) \wedge(b \vee c)$	(idempotent laws)
$(a \vee b) \wedge c=(a \wedge c) \vee(b \wedge c)$	(absorption laws)
$a \wedge a=a \quad a \vee a=a$	(complement laws)
$a \wedge(a \vee b)=a \quad a \vee(a \wedge b)=a$	(de Morgan laws)
$a \wedge \bar{a}=0 \quad a \vee \bar{a}=1 \quad \overline{\bar{a}}=a$	(zero-one laws)
$\overline{a \wedge c}=\bar{a} \vee \bar{c} \quad \overline{a \vee c}=\bar{a} \wedge \bar{c}$	
$a \wedge 0=0 \quad a \wedge 1=a \quad a \vee 0=a \quad a \vee 1=1$	

Abstract Boolean algebras

Definition

Boolean algebra: $\mathcal{B}=(D, \wedge, \vee,-, 0,1)$, where $D \neq \varnothing$ is a set, $0,1 \in D$, the operations $\wedge, \vee: D \times D \rightarrow D$ and $-: D \rightarrow D$ satisfy the laws:

$a \wedge b=b \wedge a \quad a \vee b=b \vee a$	(commutativity laws)
$(a \wedge b) \wedge c=a \wedge(b \wedge c)$	(associativity laws)
$(a \vee b) \vee c=a \vee(b \vee c)$	(distributivity laws)
$(a \wedge b) \vee c=(a \vee c) \wedge(b \vee c)$	(idempotent laws)
$(a \vee b) \wedge c=(a \wedge c) \vee(b \wedge c)$	(absorption laws)
$a \wedge a=a \quad a \vee a=a$	(complement laws)
$a \wedge(a \vee b)=a \quad a \vee(a \wedge b)=a$	(de Morgan laws)
$a \wedge \bar{a}=0 \quad a \vee \bar{a}=1 \quad \overline{\bar{a}}=a$	(zero-one laws)
$\overline{a \wedge c}=\bar{a} \vee \bar{c} \quad \overline{a \vee c}=\bar{a} \wedge \bar{c}$	
$a \wedge 0=0 \quad a \wedge 1=a \quad a \vee 0=a$	$a \vee 1=1$

Terminology: \wedge meet, \vee join, - complement.

Concrete Boolean algebra: $\wp(\{x, y, z\})$

Concrete Boolean algebras

Example ((a) Boolean algebra of all subsets)

$\mathcal{B}=\left(2^{W}, \cap, \cup,-, \varnothing, W\right)$ is a Boolean algebra. Here $\bar{X}:=W \backslash X$.

Concrete Boolean algebras

Example ((a) Boolean algebra of all subsets)
$\mathcal{B}=\left(2^{W}, \cap, \cup,-, \varnothing, W\right)$ is a Boolean algebra. Here $\bar{X}:=W \backslash X$.
Example ((b) Boolean algebra of some subsets)
Assume that $S \subseteq 2^{W}$ is closed under $\cup, \cap,-$. Clearly, $\varnothing, W \in S$.

Concrete Boolean algebras

Example ((a) Boolean algebra of all subsets)
$\mathcal{B}=\left(2^{W}, \cap, \cup,-, \varnothing, W\right)$ is a Boolean algebra. Here $\bar{X}:=W \backslash X$.
Example ((b) Boolean algebra of some subsets)
Assume that $S \subseteq 2^{W}$ is closed under $\cup, \cap,-$. Clearly, $\varnothing, W \in S$. Then $(S, \cap, \cup,-, \varnothing, W)$ is a Boolean algebra, it is called a field of sets.

Concrete Boolean algebras

Example ((a) Boolean algebra of all subsets)
$\mathcal{B}=\left(2^{W}, \cap, \cup,-, \varnothing, W\right)$ is a Boolean algebra. Here $\bar{X}:=W \backslash X$.

Example ((b) Boolean algebra of some subsets)

Assume that $S \subseteq 2^{W}$ is closed under $\cup, \cap,-$. Clearly, $\varnothing, W \in S$. Then $(S, \cap, \cup,-, \varnothing, W)$ is a Boolean algebra, it is called a field of sets.

Question. Is every "abstract" Boolean algebra isomorphic to some "concrete" Boolean algebra?

Concrete Boolean algebras

Example ((a) Boolean algebra of all subsets)
$\mathcal{B}=\left(2^{W}, \cap, \cup,-, \varnothing, W\right)$ is a Boolean algebra. Here $\bar{X}:=W \backslash X$.

Example ((b) Boolean algebra of some subsets)

Assume that $S \subseteq 2^{W}$ is closed under $\cup, \cap,-$. Clearly, $\varnothing, W \in S$.
Then $(S, \cap, \cup,-, \varnothing, W)$ is a Boolean algebra, it is called a field of sets.
Question. Is every "abstract" Boolean algebra isomorphic to some "concrete" Boolean algebra? Of the form (a) or (b)?

Concrete Boolean algebras

Example ((a) Boolean algebra of all subsets)
$\mathcal{B}=\left(2^{W}, \cap, \cup,-, \varnothing, W\right)$ is a Boolean algebra. Here $\bar{X}:=W \backslash X$.
Example ((b) Boolean algebra of some subsets)
Assume that $S \subseteq 2^{W}$ is closed under $\cup, \cap,-$. Clearly, $\varnothing, W \in S$. Then $(S, \cap, \cup,-, \varnothing, W)$ is a Boolean algebra, it is called a field of sets.

Question. Is every "abstract" Boolean algebra isomorphic to some "concrete" Boolean algebra? Of the form (a) or (b)?

Today we will prove 2 theorems:

- any finite Boolean algebra is isomorphic to an algebra of the form (a).

Concrete Boolean algebras

Example ((a) Boolean algebra of all subsets)
 $\mathcal{B}=\left(2^{W}, \cap, \cup,-, \varnothing, W\right)$ is a Boolean algebra. Here $\bar{X}:=W \backslash X$.

Example ((b) Boolean algebra of some subsets)

Assume that $S \subseteq 2^{W}$ is closed under $\cup, \cap,-$. Clearly, $\varnothing, W \in S$.
Then $(S, \cap, \cup,-, \varnothing, W)$ is a Boolean algebra, it is called a field of sets.
Question. Is every "abstract" Boolean algebra isomorphic to some "concrete" Boolean algebra? Of the form (a) or (b)?

Today we will prove 2 theorems:

- any finite Boolean algebra is isomorphic to an algebra of the form (a).
- any Boolean algebra is isomorphic to an algebra of the form (b),

Isomorphism of Boolean algebras

Definition

Boolean algebras \mathcal{B} and \mathcal{B}^{\prime} are isomorphic ($\left.\mathcal{B} \cong \mathcal{B}^{\prime}\right)$ if there is an isomorphism $h: \mathcal{B} \rightarrow \mathcal{B}^{\prime}$, i.e., a bijection that preserves $\vee,^{-}($and $\wedge, 0,1)$.

Isomorphism of Boolean algebras

Definition

Boolean algebras \mathcal{B} and \mathcal{B}^{\prime} are isomorphic ($\left.\mathcal{B} \cong \mathcal{B}^{\prime}\right)$ if there is an isomorphism $h: \mathcal{B} \rightarrow \mathcal{B}^{\prime}$, i.e., a bijection that preserves $\vee,^{-}($and $\wedge, 0,1)$.

Theorem 1 (Representation of finite Boolean algebras)
For any finite Boolean algebra \mathcal{B} there exists a set W such that $\mathcal{B} \cong\left(2^{W}, \cap, \cup,-, \varnothing, W\right)$.

Isomorphism of Boolean algebras

Definition

Boolean algebras \mathcal{B} and \mathcal{B}^{\prime} are isomorphic ($\left.\mathcal{B} \cong \mathcal{B}^{\prime}\right)$ if there is an isomorphism $h: \mathcal{B} \rightarrow \mathcal{B}^{\prime}$, i.e., a bijection that preserves $\vee,^{-}($and $\wedge, 0,1)$.

Theorem 1 (Representation of finite Boolean algebras)
For any finite Boolean algebra \mathcal{B} there exists a set W such that $\mathcal{B} \cong\left(2^{W}, \cap, \cup,-, \varnothing, W\right)$.

Example (Not every Boolean algebra is isomorphic to 2^{W})
$S=\{X \subseteq \mathbb{N} \mid X$ is finite or co-finite $\}$ is a Boolean algebra.

Isomorphism of Boolean algebras

Definition

Boolean algebras \mathcal{B} and \mathcal{B}^{\prime} are isomorphic ($\left.\mathcal{B} \cong \mathcal{B}^{\prime}\right)$ if there is an isomorphism $h: \mathcal{B} \rightarrow \mathcal{B}^{\prime}$, i.e., a bijection that preserves $\vee,^{-}($and $\wedge, 0,1)$.

Theorem 1 (Representation of finite Boolean algebras)
For any finite Boolean algebra \mathcal{B} there exists a set W such that $\mathcal{B} \cong\left(2^{W}, \cap, \cup,-, \varnothing, W\right)$.

Example (Not every Boolean algebra is isomorphic to 2^{W})
$S=\{X \subseteq \mathbb{N} \mid X$ is finite or co-finite $\}$ is a Boolean algebra. Countable!

Isomorphism of Boolean algebras

Definition

Boolean algebras \mathcal{B} and \mathcal{B}^{\prime} are isomorphic ($\left.\mathcal{B} \cong \mathcal{B}^{\prime}\right)$ if there is an isomorphism $h: \mathcal{B} \rightarrow \mathcal{B}^{\prime}$, i.e., a bijection that preserves $\vee,^{-}($and $\wedge, 0,1)$.

Theorem 1 (Representation of finite Boolean algebras)
For any finite Boolean algebra \mathcal{B} there exists a set W such that $\mathcal{B} \cong\left(2^{W}, \cap, \cup,-, \varnothing, W\right)$.

Example (Not every Boolean algebra is isomorphic to 2^{W})
$S=\{X \subseteq \mathbb{N} \mid X$ is finite or co-finite $\}$ is a Boolean algebra. Countable! But any algebra of all subsets 2^{W} is either finite or at least continual.

Isomorphism of Boolean algebras

Definition

Boolean algebras \mathcal{B} and \mathcal{B}^{\prime} are isomorphic ($\mathcal{B} \cong \mathcal{B}^{\prime}$) if there is an isomorphism $h: \mathcal{B} \rightarrow \mathcal{B}^{\prime}$, i.e., a bijection that preserves $\vee,^{-}($and $\wedge, 0,1)$.

Theorem 1 (Representation of finite Boolean algebras)
For any finite Boolean algebra \mathcal{B} there exists a set W such that $\mathcal{B} \cong\left(2^{W}, \cap, \cup,-, \varnothing, W\right)$.

Example (Not every Boolean algebra is isomorphic to 2^{W})
$S=\{X \subseteq \mathbb{N} \mid X$ is finite or co-finite $\}$ is a Boolean algebra. Countable! But any algebra of all subsets 2^{W} is either finite or at least continual. Hence our algebra is not isomorphic to any algebra of the form 2^{W}.

Partial order \leqslant in Boolean algebras

In a Boolean algebra $\mathcal{B}=(D, \wedge, \vee,-, 0,1)$, we introduce inequality:

$$
a \leqslant b \quad \leftrightharpoons \quad a \wedge b=a
$$

Partial order \leqslant in Boolean algebras

In a Boolean algebra $\mathcal{B}=(D, \wedge, \vee,-, 0,1)$, we introduce inequality:

$$
a \leqslant b \quad \leftrightharpoons \quad a \wedge b=a \quad \Leftrightarrow \quad a \vee b=b
$$

Partial order \leqslant in Boolean algebras

In a Boolean algebra $\mathcal{B}=(D, \wedge, \vee,-, 0,1)$, we introduce inequality:

$$
a \leqslant b \quad \leftrightharpoons \quad a \wedge b=a \quad \Leftrightarrow \quad a \vee b=b \quad \Leftrightarrow \quad \bar{a} \vee b=1
$$

Partial order \leqslant in Boolean algebras

In a Boolean algebra $\mathcal{B}=(D, \wedge, \vee,-, 0,1)$, we introduce inequality:

$$
a \leqslant b \leftrightharpoons a \wedge b=a \Leftrightarrow a \vee b=b \Leftrightarrow \bar{a} \vee b=1 \quad \Leftrightarrow \quad a \wedge \bar{b}=0 .
$$

Partial order \leqslant in Boolean algebras

In a Boolean algebra $\mathcal{B}=(D, \wedge, \vee,-, 0,1)$, we introduce inequality:

$$
a \leqslant b \leftrightharpoons a \wedge b=a \Leftrightarrow a \vee b=b \Leftrightarrow \bar{a} \vee b=1 \quad \Leftrightarrow \quad a \wedge \bar{b}=0 .
$$

Exercise. Prove these equivalences, using the axioms of Boolean algebras.

Partial order \leqslant in Boolean algebras

In a Boolean algebra $\mathcal{B}=(D, \wedge, \vee,-, 0,1)$, we introduce inequality:

$$
a \leqslant b \leftrightharpoons a \wedge b=a \Leftrightarrow a \vee b=b \Leftrightarrow \bar{a} \vee b=1 \Leftrightarrow a \wedge \bar{b}=0 .
$$

Exercise. Prove these equivalences, using the axioms of Boolean algebras.
Exercise. Prove that $a \wedge b \leqslant a, a \leqslant a \vee b, 0 \leqslant a \leqslant 1$.

Partial order \leqslant in Boolean algebras

In a Boolean algebra $\mathcal{B}=(D, \wedge, \vee,-, 0,1)$, we introduce inequality:

$$
a \leqslant b \leftrightharpoons a \wedge b=a \Leftrightarrow a \vee b=b \Leftrightarrow \bar{a} \vee b=1 \Leftrightarrow a \wedge \bar{b}=0 .
$$

Exercise. Prove these equivalences, using the axioms of Boolean algebras.
Exercise. Prove that $a \wedge b \leqslant a, a \leqslant a \vee b, 0 \leqslant a \leqslant 1$.

Proposition

The relation \leqslant is a partial order on D, i.e., it is:
reflexive

$$
\forall a(a \leqslant a)
$$

$$
\text { transitive } \quad \forall a, b, c(a \leqslant b \leqslant c \Rightarrow a \leqslant c)
$$

$$
\text { antisymmetric } \quad \forall a, b(a \leqslant b \leqslant a \Rightarrow a=b)
$$

Partial order \leqslant in Boolean algebras

 In a Boolean algebra $\mathcal{B}=(D, \wedge, \vee,-, 0,1)$, we introduce inequality:$$
a \leqslant b \leftrightharpoons a \wedge b=a \Leftrightarrow a \vee b=b \Leftrightarrow \bar{a} \vee b=1 \Leftrightarrow a \wedge \bar{b}=0 .
$$

Exercise. Prove these equivalences, using the axioms of Boolean algebras.
Exercise. Prove that $a \wedge b \leqslant a, a \leqslant a \vee b, 0 \leqslant a \leqslant 1$.

Proposition

The relation \leqslant is a partial order on D, i.e., it is:

$$
\begin{array}{ll}
\text { reflexive } & \forall a(a \leqslant a) \\
\text { transitive } & \forall a, b, c(a \leqslant b \leqslant c \Rightarrow a \leqslant c) \\
\text { antisymmetric } & \forall a, b(a \leqslant b \leqslant a \Rightarrow a=b)
\end{array}
$$

Example

In the field of sets $(S, \cap, \cup,-, \varnothing, W)$, where $S \subseteq 2^{W}$, the relation \leqslant is \subseteq.

Partial order \leqslant in Boolean algebras

 In a Boolean algebra $\mathcal{B}=(D, \wedge, \vee,-, 0,1)$, we introduce inequality:$$
a \leqslant b \leftrightharpoons a \wedge b=a \Leftrightarrow a \vee b=b \Leftrightarrow \bar{a} \vee b=1 \Leftrightarrow a \wedge \bar{b}=0 .
$$

Exercise. Prove these equivalences, using the axioms of Boolean algebras.
Exercise. Prove that $a \wedge b \leqslant a, a \leqslant a \vee b, 0 \leqslant a \leqslant 1$.

Proposition

The relation \leqslant is a partial order on D, i.e., it is:

$$
\begin{array}{ll}
\text { reflexive } & \forall a(a \leqslant a) \\
\text { transitive } & \forall a, b, c(a \leqslant b \leqslant c \Rightarrow a \leqslant c) \\
\text { antisymmetric } & \forall a, b(a \leqslant b \leqslant a \Rightarrow a=b)
\end{array}
$$

Example

In the field of sets $(S, \cap, \cup,-, \varnothing, W)$, where $S \subseteq 2^{W}$, the relation \leqslant is \subseteq. For this reason, we read " $a \leqslant b$ " as " a is contained in b " or " b contains a ".

Atoms in Boolean algebras

Definition

An atom in a Boolean algebra \mathcal{B} is a minimal non-zero element.

Atoms in Boolean algebras

Definition

An atom in a Boolean algebra \mathcal{B} is a minimal non-zero element. So, it is an element $s \neq 0$ such that between 0 and s there are no elements:

$$
\forall a \in D \quad(a \leqslant s \Rightarrow(a=0 \vee a=s)) .
$$

Atoms in Boolean algebras

Definition

An atom in a Boolean algebra \mathcal{B} is a minimal non-zero element. So, it is an element $s \neq 0$ such that between 0 and s there are no elements:

$$
\forall a \in D \quad(a \leqslant s \Rightarrow(a=0 \vee a=s))
$$

Denote the set of atoms by $\operatorname{At}(\mathcal{B}):=\{s \in D \mid s$ is an atom $\}$.

Atoms in Boolean algebras

Definition

An atom in a Boolean algebra \mathcal{B} is a minimal non-zero element.
So, it is an element $s \neq 0$ such that between 0 and s there are no elements:

$$
\forall a \in D \quad(a \leqslant s \Rightarrow(a=0 \vee a=s))
$$

Denote the set of atoms by $\operatorname{At}(\mathcal{B}):=\{s \in D \mid s$ is an atom $\}$.
A Boolean algebra is atomic if every non-zero element contains an atom:

$$
\forall a \in D \backslash\{0\} \quad \exists s \in \operatorname{At}(\mathcal{B}):(s \leqslant a) .
$$

Atoms in Boolean algebras

Definition

An atom in a Boolean algebra \mathcal{B} is a minimal non-zero element.
So, it is an element $s \neq 0$ such that between 0 and s there are no elements:

$$
\forall a \in D \quad(a \leqslant s \Rightarrow(a=0 \vee a=s))
$$

Denote the set of atoms by $\operatorname{At}(\mathcal{B}):=\{s \in D \mid s$ is an atom $\}$.
A Boolean algebra is atomic if every non-zero element contains an atom:

$$
\forall a \in D \backslash\{0\} \quad \exists s \in \operatorname{At}(\mathcal{B}):(s \leqslant a) .
$$

Proposition. Any finite Boolean algebra is atomic.

Atoms in Boolean algebras

Definition

An atom in a Boolean algebra \mathcal{B} is a minimal non-zero element.
So, it is an element $s \neq 0$ such that between 0 and s there are no elements:

$$
\forall a \in D \quad(a \leqslant s \Rightarrow(a=0 \vee a=s))
$$

Denote the set of atoms by $\operatorname{At}(\mathcal{B}):=\{s \in D \mid s$ is an atom $\}$.
A Boolean algebra is atomic if every non-zero element contains an atom:

$$
\forall a \in D \backslash\{0\} \quad \exists s \in \operatorname{At}(\mathcal{B}):(s \leqslant a)
$$

Proposition. Any finite Boolean algebra is atomic.

Proof.

If $a \neq 0$ is not an atom, then there is $0 \neq b<a$. Repeat with b.

Atoms in Boolean algebras

Definition

An atom in a Boolean algebra \mathcal{B} is a minimal non-zero element.
So, it is an element $s \neq 0$ such that between 0 and s there are no elements:

$$
\forall a \in D \quad(a \leqslant s \Rightarrow(a=0 \vee a=s))
$$

Denote the set of atoms by $\operatorname{At}(\mathcal{B}):=\{s \in D \mid s$ is an atom $\}$.
A Boolean algebra is atomic if every non-zero element contains an atom:

$$
\forall a \in D \backslash\{0\} \quad \exists s \in \operatorname{At}(\mathcal{B}):(s \leqslant a) .
$$

Proposition. Any finite Boolean algebra is atomic.

Proof.

If $a \neq 0$ is not an atom, then there is $0 \neq b<a$. Repeat with b.
This process is finite. When it stops, we get an atom $s \leqslant a$.

Properties of atoms

Lemma (Disjunction property for atoms)
Let s be an atom and a, b be elements of a Boolean algebra \mathcal{B}.

$$
s \leqslant(a \vee b) \quad \Rightarrow \quad s \leqslant a \text { or } s \leqslant b
$$

Properties of atoms

Lemma (Disjunction property for atoms)
Let s be an atom and a, b be elements of a Boolean algebra \mathcal{B}.

$$
s \leqslant(a \vee b) \Rightarrow s \leqslant a \text { or } s \leqslant b \text {. }
$$

Proof.

By definition of \leqslant, we have: $s=s \wedge(a \vee b)=(s \wedge a) \vee(s \wedge b)$.

Properties of atoms

Lemma (Disjunction property for atoms)
Let s be an atom and a, b be elements of a Boolean algebra \mathcal{B}.

$$
s \leqslant(a \vee b) \Rightarrow s \leqslant a \text { or } s \leqslant b \text {. }
$$

Proof.

By definition of \leqslant, we have: $s=s \wedge(a \vee b)=(s \wedge a) \vee(s \wedge b)$. Then two cases are possible:

Properties of atoms

Lemma (Disjunction property for atoms)
Let s be an atom and a, b be elements of a Boolean algebra \mathcal{B}.

$$
s \leqslant(a \vee b) \Rightarrow s \leqslant a \text { or } s \leqslant b \text {. }
$$

Proof.

By definition of \leqslant, we have: $s=s \wedge(a \vee b)=(s \wedge a) \vee(s \wedge b)$.
Then two cases are possible:
(1) if $(s \wedge a)=0$,

Properties of atoms

Lemma (Disjunction property for atoms)
Let s be an atom and a, b be elements of a Boolean algebra \mathcal{B}.

$$
s \leqslant(a \vee b) \Rightarrow s \leqslant a \text { or } s \leqslant b \text {. }
$$

Proof.

By definition of \leqslant, we have: $s=s \wedge(a \vee b)=(s \wedge a) \vee(s \wedge b)$.
Then two cases are possible:
(1) if $(s \wedge a)=0$, then $s=(s \wedge b)$ and thus $s \leqslant b$;

Properties of atoms

Lemma (Disjunction property for atoms)
Let s be an atom and a, b be elements of a Boolean algebra \mathcal{B}.

$$
s \leqslant(a \vee b) \Rightarrow s \leqslant a \text { or } s \leqslant b \text {. }
$$

Proof.

By definition of \leqslant, we have: $s=s \wedge(a \vee b)=(s \wedge a) \vee(s \wedge b)$.
Then two cases are possible:
(1) if $(s \wedge a)=0$, then $s=(s \wedge b)$ and thus $s \leqslant b$;
(2) if $(s \wedge a) \neq 0$,

Properties of atoms

Lemma (Disjunction property for atoms)
Let s be an atom and a, b be elements of a Boolean algebra \mathcal{B}.

$$
s \leqslant(a \vee b) \Rightarrow s \leqslant a \text { or } s \leqslant b \text {. }
$$

Proof.

By definition of \leqslant, we have: $s=s \wedge(a \vee b)=(s \wedge a) \vee(s \wedge b)$.
Then two cases are possible:
(1) if $(s \wedge a)=0$, then $s=(s \wedge b)$ and thus $s \leqslant b$;
(2) if $(s \wedge a) \neq 0$, then since $(s \wedge a) \leqslant s$ and s is an atom, we have $(s \wedge a)=s$ and thus $s \leqslant a$.

Properties of atoms

Denote $\operatorname{At}(a):=\{s \in \operatorname{At}(\mathcal{B}) \mid s \leqslant a\}$ - the set of all atoms below $a \in D$.

Properties of atoms

Denote $\operatorname{At}(a):=\{s \in \operatorname{At}(\mathcal{B}) \mid s \leqslant a\}$ - the set of all atoms below $a \in D$.
Lemma (Atomic decomposition of an element)
Let \mathcal{B} be a finite Boolean algebra. Then for any element $a \in D$

$$
a=\bigvee_{s \in \operatorname{At}(a)} s
$$

Properties of atoms

Denote $\operatorname{At}(a):=\{s \in \operatorname{At}(\mathcal{B}) \mid s \leqslant a\}$ - the set of all atoms below $a \in D$.
Lemma (Atomic decomposition of an element)
Let \mathcal{B} be a finite Boolean algebra. Then for any element $a \in D$

$$
a=\bigvee_{s \in \operatorname{At}(a)} s
$$

Ex. 1) $a \geqslant b$ and $a \geqslant c \Rightarrow a \geqslant(b \vee c)$.

Properties of atoms

Denote $\operatorname{At}(a):=\{s \in \operatorname{At}(\mathcal{B}) \mid s \leqslant a\}$ - the set of all atoms below $a \in D$.
Lemma (Atomic decomposition of an element)
Let \mathcal{B} be a finite Boolean algebra. Then for any element $a \in D$

$$
a=\bigvee_{s \in \operatorname{At}(a)} s
$$

Ex. 1) $a \geqslant b$ and $a \geqslant c \Rightarrow a \geqslant(b \vee c)$. 2) $a \leqslant b$ and $a \leqslant c \Rightarrow a \leqslant(b \wedge c)$.

Properties of atoms

Denote $\operatorname{At}(a):=\{s \in \operatorname{At}(\mathcal{B}) \mid s \leqslant a\}$ - the set of all atoms below $a \in D$.
Lemma (Atomic decomposition of an element)
Let \mathcal{B} be a finite Boolean algebra. Then for any element $a \in D$

$$
a=\bigvee_{s \in \operatorname{At}(a)} s
$$

Ex. 1) $a \geqslant b$ and $a \geqslant c \Rightarrow a \geqslant(b \vee c)$. 2) $a \leqslant b$ and $a \leqslant c \Rightarrow a \leqslant(b \wedge c)$.
Proof of lemma.
Denote this disjunction by b.

Properties of atoms

Denote $\operatorname{At}(a):=\{s \in \operatorname{At}(\mathcal{B}) \mid s \leqslant a\}$ - the set of all atoms below $a \in D$.
Lemma (Atomic decomposition of an element)
Let \mathcal{B} be a finite Boolean algebra. Then for any element $a \in D$

$$
a=\bigvee_{s \in \operatorname{At}(a)} s
$$

Ex. 1) $a \geqslant b$ and $a \geqslant c \Rightarrow a \geqslant(b \vee c)$. 2) $a \leqslant b$ and $a \leqslant c \Rightarrow a \leqslant(b \wedge c)$.
Proof of lemma.
Denote this disjunction by b.
(\geqslant) Since $a \geqslant s$ for each atom $s \in \operatorname{At}(a)$, we have $a \geqslant b$ (by Exercise 1).

Properties of atoms

Denote $\operatorname{At}(a):=\{s \in \operatorname{At}(\mathcal{B}) \mid s \leqslant a\}$ - the set of all atoms below $a \in D$.
Lemma (Atomic decomposition of an element)
Let \mathcal{B} be a finite Boolean algebra. Then for any element $a \in D$

$$
a=\bigvee_{s \in \operatorname{At}(a)} s
$$

Ex. 1) $a \geqslant b$ and $a \geqslant c \Rightarrow a \geqslant(b \vee c)$. 2) $a \leqslant b$ and $a \leqslant c \Rightarrow a \leqslant(b \wedge c)$.
Proof of lemma.
Denote this disjunction by b.
(\geqslant) Since $a \geqslant s$ for each atom $s \in \operatorname{At}(a)$, we have $a \geqslant b$ (by Exercise 1).
(\leqslant) Let us prove that $a \leqslant b$, that is $a \wedge \bar{b}=0$.

Properties of atoms

Denote $\operatorname{At}(a):=\{s \in \operatorname{At}(\mathcal{B}) \mid s \leqslant a\}$ - the set of all atoms below $a \in D$.
Lemma (Atomic decomposition of an element)
Let \mathcal{B} be a finite Boolean algebra. Then for any element $a \in D$

$$
a=\bigvee_{s \in \operatorname{At}(a)} s
$$

Ex. 1) $a \geqslant b$ and $a \geqslant c \Rightarrow a \geqslant(b \vee c)$. 2) $a \leqslant b$ and $a \leqslant c \Rightarrow a \leqslant(b \wedge c)$.
Proof of lemma.
Denote this disjunction by b.
(\geqslant) Since $a \geqslant s$ for each atom $s \in \operatorname{At}(a)$, we have $a \geqslant b$ (by Exercise 1).
(\leqslant) Let us prove that $a \leqslant b$, that is $a \wedge \bar{b}=0$. Assume that: $a \wedge \bar{b} \neq 0$.

Properties of atoms

Denote $\operatorname{At}(a):=\{s \in \operatorname{At}(\mathcal{B}) \mid s \leqslant a\}$ - the set of all atoms below $a \in D$.
Lemma (Atomic decomposition of an element)
Let \mathcal{B} be a finite Boolean algebra. Then for any element $a \in D$

$$
a=\bigvee_{s \in \operatorname{At}(a)} s
$$

Ex. 1) $a \geqslant b$ and $a \geqslant c \Rightarrow a \geqslant(b \vee c)$. 2) $a \leqslant b$ and $a \leqslant c \Rightarrow a \leqslant(b \wedge c)$.
Proof of lemma.
Denote this disjunction by b.
(\geqslant) Since $a \geqslant s$ for each atom $s \in \operatorname{At}(a)$, we have $a \geqslant b$ (by Exercise 1).
(\leqslant) Let us prove that $a \leqslant b$, that is $a \wedge \bar{b}=0$. Assume that: $a \wedge \bar{b} \neq 0$.
Since the algebra \mathcal{B} is atomic, there is an atom $s \leqslant(a \wedge \bar{b})$.

Properties of atoms

Denote $\operatorname{At}(a):=\{s \in \operatorname{At}(\mathcal{B}) \mid s \leqslant a\}$ - the set of all atoms below $a \in D$.
Lemma (Atomic decomposition of an element)
Let \mathcal{B} be a finite Boolean algebra. Then for any element $a \in D$

$$
a=\bigvee_{s \in \operatorname{At}(a)} s
$$

Ex. 1) $a \geqslant b$ and $a \geqslant c \Rightarrow a \geqslant(b \vee c)$. 2) $a \leqslant b$ and $a \leqslant c \Rightarrow a \leqslant(b \wedge c)$.

Proof of lemma.

Denote this disjunction by b.
(\geqslant) Since $a \geqslant s$ for each atom $s \in \operatorname{At}(a)$, we have $a \geqslant b$ (by Exercise 1).
(\leqslant) Let us prove that $a \leqslant b$, that is $a \wedge \bar{b}=0$. Assume that: $a \wedge \bar{b} \neq 0$.
Since the algebra \mathcal{B} is atomic, there is an atom $s \leqslant(a \wedge \bar{b})$. Hence $s \leqslant \bar{b}$ and $s \leqslant a$

Properties of atoms

Denote $\operatorname{At}(a):=\{s \in \operatorname{At}(\mathcal{B}) \mid s \leqslant a\}$ - the set of all atoms below $a \in D$.
Lemma (Atomic decomposition of an element)
Let \mathcal{B} be a finite Boolean algebra. Then for any element $a \in D$

$$
a=\bigvee_{s \in \operatorname{At}(a)} s
$$

Ex. 1) $a \geqslant b$ and $a \geqslant c \Rightarrow a \geqslant(b \vee c)$. 2) $a \leqslant b$ and $a \leqslant c \Rightarrow a \leqslant(b \wedge c)$.

Proof of lemma.

Denote this disjunction by b.
(\geqslant) Since $a \geqslant s$ for each atom $s \in \operatorname{At}(a)$, we have $a \geqslant b$ (by Exercise 1).
(\leqslant) Let us prove that $a \leqslant b$, that is $a \wedge \bar{b}=0$. Assume that: $a \wedge \bar{b} \neq 0$.
Since the algebra \mathcal{B} is atomic, there is an atom $s \leqslant(a \wedge \bar{b})$. Hence $s \leqslant \bar{b}$ and $s \leqslant a \leqslant b$, thus $s \leqslant b$.

Properties of atoms

Denote $\operatorname{At}(a):=\{s \in \operatorname{At}(\mathcal{B}) \mid s \leqslant a\}$ - the set of all atoms below $a \in D$.
Lemma (Atomic decomposition of an element)
Let \mathcal{B} be a finite Boolean algebra. Then for any element $a \in D$

$$
a=\bigvee_{s \in \operatorname{At}(a)} s
$$

Ex. 1) $a \geqslant b$ and $a \geqslant c \Rightarrow a \geqslant(b \vee c)$. 2) $a \leqslant b$ and $a \leqslant c \Rightarrow a \leqslant(b \wedge c)$.

Proof of lemma.

Denote this disjunction by b.
(\geqslant) Since $a \geqslant s$ for each atom $s \in \operatorname{At}(a)$, we have $a \geqslant b$ (by Exercise 1).
(\leqslant) Let us prove that $a \leqslant b$, that is $a \wedge \bar{b}=0$. Assume that: $a \wedge \bar{b} \neq 0$.
Since the algebra \mathcal{B} is atomic, there is an atom $s \leqslant(a \wedge \bar{b})$. Hence $s \leqslant \bar{b}$ and $s \leqslant a \leqslant b$, thus $s \leqslant b$. Then, by Exercise 2, $s \leqslant(b \wedge \bar{b})=0$,

Properties of atoms

Denote $\operatorname{At}(a):=\{s \in \operatorname{At}(\mathcal{B}) \mid s \leqslant a\}$ - the set of all atoms below $a \in D$.
Lemma (Atomic decomposition of an element)
Let \mathcal{B} be a finite Boolean algebra. Then for any element $a \in D$

$$
a=\bigvee_{s \in \operatorname{At}(a)} s
$$

Ex. 1) $a \geqslant b$ and $a \geqslant c \Rightarrow a \geqslant(b \vee c)$. 2) $a \leqslant b$ and $a \leqslant c \Rightarrow a \leqslant(b \wedge c)$.

Proof of lemma.

Denote this disjunction by b.
(\geqslant) Since $a \geqslant s$ for each atom $s \in \operatorname{At}(a)$, we have $a \geqslant b$ (by Exercise 1).
(\leqslant) Let us prove that $a \leqslant b$, that is $a \wedge \bar{b}=0$. Assume that: $a \wedge \bar{b} \neq 0$.
Since the algebra \mathcal{B} is atomic, there is an atom $s \leqslant(a \wedge \bar{b})$. Hence $s \leqslant \bar{b}$ and $s \leqslant a \leqslant b$, thus $s \leqslant b$. Then, by Exercise 2, $s \leqslant(b \wedge \bar{b})=0$, which is impossible, since any atom is non-zero.

Theorem (Finite Stone's theorem (Marshall H. Stone (1903-1989))) Any finite Boolean algebra \mathcal{B} is isomorphic to 2^{W}, for some set W.

Theorem (Finite Stone's theorem (Marshall H. Stone (1903-1989))) Any finite Boolean algebra \mathcal{B} is isomorphic to 2^{W}, for some set W.

Proof.
Put $W=\operatorname{At}(\mathcal{B})$. We show that the following function is an isomorphism:

Theorem (Finite Stone's theorem (Marshall H. Stone (1903-1989))) Any finite Boolean algebra \mathcal{B} is isomorphic to 2^{W}, for some set W.

Proof.
Put $W=\operatorname{At}(\mathcal{B})$. We show that the following function is an isomorphism:

$$
f: \mathcal{B} \rightarrow 2^{W} \text { defined by: } f(a)=\operatorname{At}(a) \quad \text { for any } a \in \mathcal{B} .
$$

$$
f: \mathcal{B} \rightarrow 2^{W} \text { defined by: } \quad f(a)=\operatorname{At}(a) \quad \text { for any } a \in \mathcal{B} .
$$

It suffices to show that f is a bijection and preserves - and V.

- $f(\bar{a})=\overline{f(a)}$?

Proof.

Put $W=\operatorname{At}(\mathcal{B})$. We show that the following function is an isomorphism:

$$
f: \mathcal{B} \rightarrow 2^{W} \text { defined by: } f(a)=\operatorname{At}(a) \text { for any } a \in \mathcal{B} .
$$

It suffices to show that f is a bijection and preserves - and V.

- $f(\bar{a})=\overline{f(a)}$? Let us show that $W=\operatorname{At}(a) \uplus \operatorname{At}(\bar{a})$ (disjoint union).

Proof.

Put $W=\operatorname{At}(\mathcal{B})$. We show that the following function is an isomorphism:

$$
f: \mathcal{B} \rightarrow 2^{W} \text { defined by: } f(a)=\operatorname{At}(a) \text { for any } a \in \mathcal{B} .
$$

It suffices to show that f is a bijection and preserves - and V.

- $f(\bar{a})=\overline{f(a)}$? Let us show that $W=\operatorname{At}(a) \uplus \operatorname{At}(\bar{a})$ (disjoint union). For any atom s, we have $s \leqslant 1=a \vee \bar{a}$, so $s \leqslant a$ or $s \leqslant \bar{a}$.

Proof.

Put $W=\operatorname{At}(\mathcal{B})$. We show that the following function is an isomorphism:

$$
f: \mathcal{B} \rightarrow 2^{W} \text { defined by: } f(a)=\operatorname{At}(a) \text { for any } a \in \mathcal{B} .
$$

It suffices to show that f is a bijection and preserves - and V.

- $f(\bar{a})=\overline{f(a)}$? Let us show that $W=\operatorname{At}(a) \uplus \operatorname{At}(\bar{a})$ (disjoint union).

For any atom s, we have $s \leqslant 1=a \vee \bar{a}$, so $s \leqslant a$ or $s \leqslant \bar{a}$.
Thus $s \in \operatorname{At}(a)$ or $s \in \operatorname{At}(\bar{a})$.

Theorem (Finite Stone's theorem (Marshall H. Stone (1903-1989)))

Any finite Boolean algebra \mathcal{B} is isomorphic to 2^{W}, for some set W.

Proof.

Put $W=\operatorname{At}(\mathcal{B})$. We show that the following function is an isomorphism:

$$
f: \mathcal{B} \rightarrow 2^{W} \text { defined by: } f(a)=\operatorname{At}(a) \text { for any } a \in \mathcal{B} .
$$

It suffices to show that f is a bijection and preserves - and V.

- $f(\bar{a})=\overline{f(a)}$? Let us show that $W=\operatorname{At}(a) \uplus \operatorname{At}(\bar{a})$ (disjoint union).

For any atom s, we have $s \leqslant 1=a \vee \bar{a}$, so $s \leqslant a$ or $s \leqslant \bar{a}$. Thus $s \in \operatorname{At}(a)$ or $s \in \operatorname{At}(\bar{a})$. Not both, otherwise $s \leqslant(a \wedge \bar{a})=0$.

Theorem (Finite Stone's theorem (Marshall H. Stone (1903-1989)))

Any finite Boolean algebra \mathcal{B} is isomorphic to 2^{W}, for some set W.

Proof.

Put $W=\operatorname{At}(\mathcal{B})$. We show that the following function is an isomorphism:

$$
f: \mathcal{B} \rightarrow 2^{W} \text { defined by: } f(a)=\operatorname{At}(a) \text { for any } a \in \mathcal{B} .
$$

It suffices to show that f is a bijection and preserves - and V.

- $f(\bar{a})=\overline{f(a)}$? Let us show that $W=\operatorname{At}(a) \uplus \operatorname{At}(\bar{a})$ (disjoint union).

For any atom s, we have $s \leqslant 1=a \vee \bar{a}$, so $s \leqslant a$ or $s \leqslant \bar{a}$.
Thus $s \in \operatorname{At}(a)$ or $s \in \operatorname{At}(\bar{a})$. Not both, otherwise $s \leqslant(a \wedge \bar{a})=0$.

- $f(a \vee b)=f(a) \cup f(b)$?

Theorem (Finite Stone's theorem (Marshall H. Stone (1903-1989)))

Any finite Boolean algebra \mathcal{B} is isomorphic to 2^{W}, for some set W.

Proof.

Put $W=\operatorname{At}(\mathcal{B})$. We show that the following function is an isomorphism:

$$
f: \mathcal{B} \rightarrow 2^{W} \text { defined by: } f(a)=\operatorname{At}(a) \text { for any } a \in \mathcal{B} .
$$

It suffices to show that f is a bijection and preserves - and V.

- $f(\bar{a})=\overline{f(a)}$? Let us show that $W=\operatorname{At}(a) \uplus \operatorname{At}(\bar{a})$ (disjoint union).

For any atom s, we have $s \leqslant 1=a \vee \bar{a}$, so $s \leqslant a$ or $s \leqslant \bar{a}$.
Thus $s \in \operatorname{At}(a)$ or $s \in \operatorname{At}(\bar{a})$. Not both, otherwise $s \leqslant(a \wedge \bar{a})=0$.

- $f(a \vee b)=f(a) \cup f(b)$?

$$
s \in \operatorname{At}(a \vee b)
$$

Theorem (Finite Stone's theorem (Marshall H. Stone (1903-1989)))

Any finite Boolean algebra \mathcal{B} is isomorphic to 2^{W}, for some set W.

Proof.

Put $W=\operatorname{At}(\mathcal{B})$. We show that the following function is an isomorphism:

$$
f: \mathcal{B} \rightarrow 2^{W} \text { defined by: } f(a)=\operatorname{At}(a) \text { for any } a \in \mathcal{B} .
$$

It suffices to show that f is a bijection and preserves - and V.

- $f(\bar{a})=\overline{f(a)}$? Let us show that $W=\operatorname{At}(a) \uplus \operatorname{At}(\bar{a})$ (disjoint union).

For any atom s, we have $s \leqslant 1=a \vee \bar{a}$, so $s \leqslant a$ or $s \leqslant \bar{a}$.
Thus $s \in \operatorname{At}(a)$ or $s \in \operatorname{At}(\bar{a})$. Not both, otherwise $s \leqslant(a \wedge \bar{a})=0$.

- $f(a \vee b)=f(a) \cup f(b)$?

$$
s \in \operatorname{At}(a \vee b) \quad \Longleftrightarrow \quad s \leqslant a \vee b
$$

Theorem (Finite Stone's theorem (Marshall H. Stone (1903-1989)))

Any finite Boolean algebra \mathcal{B} is isomorphic to 2^{W}, for some set W.

Proof.

Put $W=\operatorname{At}(\mathcal{B})$. We show that the following function is an isomorphism:

$$
f: \mathcal{B} \rightarrow 2^{W} \text { defined by: } f(a)=\operatorname{At}(a) \text { for any } a \in \mathcal{B} .
$$

It suffices to show that f is a bijection and preserves - and V.

- $f(\bar{a})=\overline{f(a)}$? Let us show that $W=\operatorname{At}(a) \uplus \operatorname{At}(\bar{a})$ (disjoint union).

For any atom s, we have $s \leqslant 1=a \vee \bar{a}$, so $s \leqslant a$ or $s \leqslant \bar{a}$.
Thus $s \in \operatorname{At}(a)$ or $s \in \operatorname{At}(\bar{a})$. Not both, otherwise $s \leqslant(a \wedge \bar{a})=0$.

- $f(a \vee b)=f(a) \cup f(b)$?

$$
\underset{s \in \operatorname{At}(a \vee b)}{s \leqslant a \text { or } s \leqslant b} \mathbf{s} \quad \Longleftrightarrow \quad s \leqslant a \vee b
$$

Theorem (Finite Stone's theorem (Marshall H. Stone (1903-1989)))

 Any finite Boolean algebra \mathcal{B} is isomorphic to 2^{W}, for some set W.
Proof.

Put $W=\operatorname{At}(\mathcal{B})$. We show that the following function is an isomorphism:

$$
f: \mathcal{B} \rightarrow 2^{W} \text { defined by: } f(a)=\operatorname{At}(a) \text { for any } a \in \mathcal{B} .
$$

It suffices to show that f is a bijection and preserves - and V.

- $f(\bar{a})=\overline{f(a)}$? Let us show that $W=\operatorname{At}(a) \uplus \operatorname{At}(\bar{a})$ (disjoint union).

For any atom s, we have $s \leqslant 1=a \vee \bar{a}$, so $s \leqslant a$ or $s \leqslant \bar{a}$.
Thus $s \in \operatorname{At}(a)$ or $s \in \operatorname{At}(\bar{a})$. Not both, otherwise $s \leqslant(a \wedge \bar{a})=0$.

- $f(a \vee b)=f(a) \cup f(b)$?

$$
\begin{gathered}
s \in \operatorname{At}(a \vee b) \Longleftrightarrow s \leqslant a \vee b \quad \Longleftrightarrow \\
s \leqslant a \text { or } s \leqslant b \quad \Longleftrightarrow \\
s \in \operatorname{At}(a) \text { or } s \in \operatorname{At}(b) .
\end{gathered}
$$

$$
f: \mathcal{B} \rightarrow 2^{W} \text { defined by: } \quad f(a)=\operatorname{At}(a) \quad \text { for any } a \in \mathcal{B} .
$$

It suffices to show that f is a bijection and preserves - and V.

- f is injective?

Proof.

Put $W=\operatorname{At}(\mathcal{B})$. We show that the following function is an isomorphism:

$$
f: \mathcal{B} \rightarrow 2^{W} \text { defined by: } f(a)=\operatorname{At}(a) \text { for any } a \in \mathcal{B} .
$$

It suffices to show that f is a bijection and preserves - and V.

- f is injective?

1) First let us prove: if $f(a)=\varnothing$ then $a=0$, for all $a \in \mathcal{B}$.

Proof.

Put $W=\operatorname{At}(\mathcal{B})$. We show that the following function is an isomorphism:

$$
f: \mathcal{B} \rightarrow 2^{W} \text { defined by: } f(a)=\operatorname{At}(a) \text { for any } a \in \mathcal{B} .
$$

It suffices to show that f is a bijection and preserves - and V.

- f is injective?

1) First let us prove: if $f(a)=\varnothing$ then $a=0$, for all $a \in \mathcal{B}$.

If $a \neq 0$, then there is an atom $s \leqslant a$. So $s \in \operatorname{At}(a)$

Proof.

Put $W=\operatorname{At}(\mathcal{B})$. We show that the following function is an isomorphism:

$$
f: \mathcal{B} \rightarrow 2^{W} \text { defined by: } f(a)=\operatorname{At}(a) \text { for any } a \in \mathcal{B} .
$$

It suffices to show that f is a bijection and preserves - and V.

- f is injective?

1) First let us prove: if $f(a)=\varnothing$ then $a=0$, for all $a \in \mathcal{B}$.

If $a \neq 0$, then there is an atom $s \leqslant a$. So $s \in \operatorname{At}(a)=f(a)$

Proof.

Put $W=\operatorname{At}(\mathcal{B})$. We show that the following function is an isomorphism:

$$
f: \mathcal{B} \rightarrow 2^{W} \text { defined by: } f(a)=\operatorname{At}(a) \text { for any } a \in \mathcal{B} .
$$

It suffices to show that f is a bijection and preserves - and V.

- f is injective?

1) First let us prove: if $f(a)=\varnothing$ then $a=0$, for all $a \in \mathcal{B}$.

If $a \neq 0$, then there is an atom $s \leqslant a$. So $s \in \operatorname{At}(a)=f(a) \neq \varnothing$.

Theorem (Finite Stone's theorem (Marshall H. Stone (1903-1989)))

Any finite Boolean algebra \mathcal{B} is isomorphic to 2^{W}, for some set W.

Proof.

Put $W=\operatorname{At}(\mathcal{B})$. We show that the following function is an isomorphism:

$$
f: \mathcal{B} \rightarrow 2^{W} \text { defined by: } f(a)=\operatorname{At}(a) \text { for any } a \in \mathcal{B} .
$$

It suffices to show that f is a bijection and preserves - and V.

- f is injective?

1) First let us prove: if $f(a)=\varnothing$ then $a=0$, for all $a \in \mathcal{B}$.

If $a \neq 0$, then there is an atom $s \leqslant a$. So $s \in \operatorname{At}(a)=f(a) \neq \varnothing$.
2) Now let us prove: if $f(a)=f(b)$ then $a=b$.

Theorem (Finite Stone's theorem (Marshall H. Stone (1903-1989)))

Any finite Boolean algebra \mathcal{B} is isomorphic to 2^{W}, for some set W.

Proof.

Put $W=\operatorname{At}(\mathcal{B})$. We show that the following function is an isomorphism:

$$
f: \mathcal{B} \rightarrow 2^{W} \text { defined by: } f(a)=\operatorname{At}(a) \text { for any } a \in \mathcal{B} .
$$

It suffices to show that f is a bijection and preserves - and V.

- f is injective?

1) First let us prove: if $f(a)=\varnothing$ then $a=0$, for all $a \in \mathcal{B}$.

If $a \neq 0$, then there is an atom $s \leqslant a$. So $s \in \operatorname{At}(a)=f(a) \neq \varnothing$.
2) Now let us prove: if $f(a)=f(b)$ then $a=b$.

If $f(a)=f(b)$, then $\varnothing=f(a) \cap \bar{f}(b)=f(a \wedge \bar{b})$ and so $a \wedge \bar{b}=0$.

Theorem (Finite Stone's theorem (Marshall H. Stone (1903-1989)))

Any finite Boolean algebra \mathcal{B} is isomorphic to 2^{W}, for some set W.

Proof.

Put $W=\operatorname{At}(\mathcal{B})$. We show that the following function is an isomorphism:

$$
f: \mathcal{B} \rightarrow 2^{W} \text { defined by: } f(a)=\operatorname{At}(a) \text { for any } a \in \mathcal{B} .
$$

It suffices to show that f is a bijection and preserves - and V.

- f is injective?

1) First let us prove: if $f(a)=\varnothing$ then $a=0$, for all $a \in \mathcal{B}$.

If $a \neq 0$, then there is an atom $s \leqslant a$. So $s \in \operatorname{At}(a)=f(a) \neq \varnothing$.
2) Now let us prove: if $f(a)=f(b)$ then $a=b$.

If $f(a)=f(b)$, then $\varnothing=f(a) \cap \overline{f(b)}=f(a \wedge \bar{b})$ and so $a \wedge \bar{b}=0$.
Hence $a \leqslant b$. similarly $b \leqslant a$, thus $a=b$.

Theorem (Finite Stone's theorem (Marshall H. Stone (1903-1989))) Any finite Boolean algebra \mathcal{B} is isomorphic to 2^{W}, for some set W.

Proof.

Put $W=\operatorname{At}(\mathcal{B})$. We show that the following function is an isomorphism:

$$
f: \mathcal{B} \rightarrow 2^{W} \text { defined by: } f(a)=\operatorname{At}(a) \text { for any } a \in \mathcal{B} .
$$

It suffices to show that f is a bijection and preserves - and V.

- f is surjective?

Theorem (Finite Stone's theorem (Marshall H. Stone (1903-1989))) Any finite Boolean algebra \mathcal{B} is isomorphic to 2^{W}, for some set W.

Proof.

Put $W=\operatorname{At}(\mathcal{B})$. We show that the following function is an isomorphism:

$$
f: \mathcal{B} \rightarrow 2^{W} \text { defined by: } f(a)=\operatorname{At}(a) \quad \text { for any } a \in \mathcal{B} .
$$

It suffices to show that f is a bijection and preserves - and V.

- f is surjective? Given $X \subseteq W$, put $a:=\bigvee_{t \in X} t$ and show: $f(a)=X$,

Any finite Boolean algebra \mathcal{B} is isomorphic to 2^{W}, for some set W.

Proof.

Put $W=\operatorname{At}(\mathcal{B})$. We show that the following function is an isomorphism:

$$
f: \mathcal{B} \rightarrow 2^{W} \text { defined by: } f(a)=\operatorname{At}(a) \quad \text { for any } a \in \mathcal{B} .
$$

It suffices to show that f is a bijection and preserves - and V.

- f is surjective? Given $X \subseteq W$, put $a:=\bigvee_{t \in X} t$ and show: $f(a)=X$, in other words: $\operatorname{At}(a)=X$, or more explicitly:

$$
\forall s \in \operatorname{At}(\mathcal{B}) \quad(s \leqslant a \Leftrightarrow s \in X) .
$$

Any finite Boolean algebra \mathcal{B} is isomorphic to 2^{W}, for some set W.

Proof.

Put $W=\operatorname{At}(\mathcal{B})$. We show that the following function is an isomorphism:

$$
f: \mathcal{B} \rightarrow 2^{W} \text { defined by: } f(a)=\operatorname{At}(a) \text { for any } a \in \mathcal{B} .
$$

It suffices to show that f is a bijection and preserves - and V.

- f is surjective? Given $X \subseteq W$, put $a:=\bigvee_{t \in X} t$ and show: $f(a)=X$, in other words: $\operatorname{At}(a)=X$, or more explicitly:

$$
\forall s \in \operatorname{At}(\mathcal{B}) \quad(s \leqslant a \Leftrightarrow s \in X) .
$$

(\Leftarrow) Trivial.

Any finite Boolean algebra \mathcal{B} is isomorphic to 2^{W}, for some set W.

Proof.

Put $W=\operatorname{At}(\mathcal{B})$. We show that the following function is an isomorphism:

$$
f: \mathcal{B} \rightarrow 2^{W} \text { defined by: } f(a)=\operatorname{At}(a) \quad \text { for any } a \in \mathcal{B} .
$$

It suffices to show that f is a bijection and preserves - and V.

- f is surjective? Given $X \subseteq W$, put $a:=\bigvee_{t \in X} t$ and show: $f(a)=X$, in other words: $\operatorname{At}(a)=X$, or more explicitly:

$$
\forall s \in \operatorname{At}(\mathcal{B}) \quad(s \leqslant a \Leftrightarrow s \in X) .
$$

(\Leftarrow) Trivial. (\Rightarrow) Assume $s \leqslant a$, which means $s=s \wedge a$. Any finite Boolean algebra \mathcal{B} is isomorphic to 2^{W}, for some set W.

Proof.

Put $W=\operatorname{At}(\mathcal{B})$. We show that the following function is an isomorphism:

$$
f: \mathcal{B} \rightarrow 2^{W} \text { defined by: } f(a)=\operatorname{At}(a) \quad \text { for any } a \in \mathcal{B} .
$$

It suffices to show that f is a bijection and preserves - and V.

- f is surjective? Given $X \subseteq W$, put $a:=\bigvee_{t \in X} t$ and show: $f(a)=X$, in other words: $\operatorname{At}(a)=X$, or more explicitly:

$$
\forall s \in \operatorname{At}(\mathcal{B}) \quad(s \leqslant a \Leftrightarrow s \in X) .
$$

(\Leftrightarrow) Trivial. (\Rightarrow) Assume $s \leqslant a$, which means $s=s \wedge a$. Then

$$
0 \neq s=s \wedge a=s \wedge\left(\bigvee_{t \in X} t\right)=\bigvee_{t \in X}(s \wedge t) .
$$ Any finite Boolean algebra \mathcal{B} is isomorphic to 2^{W}, for some set W.

Proof.

Put $W=\operatorname{At}(\mathcal{B})$. We show that the following function is an isomorphism:

$$
f: \mathcal{B} \rightarrow 2^{W} \text { defined by: } f(a)=\operatorname{At}(a) \quad \text { for any } a \in \mathcal{B} .
$$

It suffices to show that f is a bijection and preserves - and V.

- f is surjective? Given $X \subseteq W$, put $a:=\bigvee_{t \in X} t$ and show: $f(a)=X$, in other words: $\operatorname{At}(a)=X$, or more explicitly:

$$
\forall s \in \operatorname{At}(\mathcal{B}) \quad(s \leqslant a \Leftrightarrow s \in X) .
$$

(\Leftrightarrow) Trivial. (\Rightarrow) Assume $s \leqslant a$, which means $s=s \wedge a$. Then

$$
0 \neq s=s \wedge a=s \wedge\left(\bigvee_{t \in X} t\right)=\bigvee_{t \in X}(s \wedge t) .
$$

Hence there is a non-zero disjunct: $(s \wedge t) \neq 0$ for some $t \in X$.

Any finite Boolean algebra \mathcal{B} is isomorphic to 2^{W}, for some set W.

Proof.

Put $W=\operatorname{At}(\mathcal{B})$. We show that the following function is an isomorphism:

$$
f: \mathcal{B} \rightarrow 2^{W} \text { defined by: } f(a)=\operatorname{At}(a) \quad \text { for any } a \in \mathcal{B} .
$$

It suffices to show that f is a bijection and preserves - and V.

- f is surjective? Given $X \subseteq W$, put $a:=\bigvee_{t \in X} t$ and show: $f(a)=X$, in other words: $\operatorname{At}(a)=X$, or more explicitly:

$$
\forall s \in \operatorname{At}(\mathcal{B}) \quad(s \leqslant a \Leftrightarrow s \in X) .
$$

(\Leftarrow) Trivial. (\Rightarrow) Assume $s \leqslant a$, which means $s=s \wedge a$. Then

$$
0 \neq s=s \wedge a=s \wedge\left(\bigvee_{t \in X} t\right)=\bigvee_{t \in X}(s \wedge t) .
$$

Hence there is a non-zero disjunct: $(s \wedge t) \neq 0$ for some $t \in X$. So we have: $(s \wedge t) \leqslant s, t$ and s, t are atoms Any finite Boolean algebra \mathcal{B} is isomorphic to 2^{W}, for some set W.

Proof.

Put $W=\operatorname{At}(\mathcal{B})$. We show that the following function is an isomorphism:

$$
f: \mathcal{B} \rightarrow 2^{W} \text { defined by: } f(a)=\operatorname{At}(a) \quad \text { for any } a \in \mathcal{B} .
$$

It suffices to show that f is a bijection and preserves - and V.

- f is surjective? Given $X \subseteq W$, put $a:=\bigvee_{t \in X} t$ and show: $f(a)=X$, in other words: $\operatorname{At}(a)=X$, or more explicitly:

$$
\forall s \in \operatorname{At}(\mathcal{B}) \quad(s \leqslant a \Leftrightarrow s \in X) .
$$

(\Leftrightarrow) Trivial. (\Rightarrow) Assume $s \leqslant a$, which means $s=s \wedge a$. Then

$$
0 \neq s=s \wedge a=s \wedge\left(\bigvee_{t \in X} t\right)=\bigvee_{t \in X}(s \wedge t) .
$$

Hence there is a non-zero disjunct: $(s \wedge t) \neq 0$ for some $t \in X$. So we have: $(s \wedge t) \leqslant s, t$ and s, t are atoms
$\Longrightarrow \quad(s \wedge t)=s$ and $(s \wedge t)=t$.

Any finite Boolean algebra \mathcal{B} is isomorphic to 2^{W}, for some set W.

Proof.

Put $W=\operatorname{At}(\mathcal{B})$. We show that the following function is an isomorphism:

$$
f: \mathcal{B} \rightarrow 2^{W} \text { defined by: } f(a)=\operatorname{At}(a) \quad \text { for any } a \in \mathcal{B} .
$$

It suffices to show that f is a bijection and preserves - and V.

- f is surjective? Given $X \subseteq W$, put $a:=\bigvee_{t \in X} t$ and show: $f(a)=X$, in other words: $\operatorname{At}(a)=X$, or more explicitly:

$$
\forall s \in \operatorname{At}(\mathcal{B}) \quad(s \leqslant a \Leftrightarrow s \in X) .
$$

(\Leftarrow) Trivial. (\Rightarrow) Assume $s \leqslant a$, which means $s=s \wedge a$. Then

$$
0 \neq s=s \wedge a=s \wedge\left(\bigvee_{t \in X} t\right)=\bigvee_{t \in X}(s \wedge t)
$$

Hence there is a non-zero disjunct: $(s \wedge t) \neq 0$ for some $t \in X$. So we have: $(s \wedge t) \leqslant s, t$ and s, t are atoms
$\Longrightarrow \quad(s \wedge t)=s$ and $(s \wedge t)=t . \Longrightarrow s=t$

Any finite Boolean algebra \mathcal{B} is isomorphic to 2^{W}, for some set W.

Proof.

Put $W=\operatorname{At}(\mathcal{B})$. We show that the following function is an isomorphism:

$$
f: \mathcal{B} \rightarrow 2^{W} \text { defined by: } f(a)=\operatorname{At}(a) \quad \text { for any } a \in \mathcal{B} .
$$

It suffices to show that f is a bijection and preserves - and V.

- f is surjective? Given $X \subseteq W$, put $a:=\bigvee_{t \in X} t$ and show: $f(a)=X$, in other words: $\operatorname{At}(a)=X$, or more explicitly:

$$
\forall s \in \operatorname{At}(\mathcal{B}) \quad(s \leqslant a \Leftrightarrow s \in X) .
$$

(\Leftarrow) Trivial. (\Rightarrow) Assume $s \leqslant a$, which means $s=s \wedge a$. Then

$$
0 \neq s=s \wedge a=s \wedge\left(\bigvee_{t \in X} t\right)=\bigvee_{t \in X}(s \wedge t)
$$

Hence there is a non-zero disjunct: $(s \wedge t) \neq 0$ for some $t \in X$. So we have: $(s \wedge t) \leqslant s, t$ and s, t are atoms
\qquad

$$
(s \wedge t)=s \text { and }(s \wedge t)=t . \Longrightarrow s=t \quad \Longrightarrow \quad s \in X .
$$

Infinite Boolean algebras?

We cannot extend the finite theorem to infinite Boolean algebras.

Infinite Boolean algebras?

We cannot extend the finite theorem to infinite Boolean algebras.

- Even for atomic Boolean algebras this is theorem fails!

Infinite Boolean algebras?

We cannot extend the finite theorem to infinite Boolean algebras.

- Even for atomic Boolean algebras this is theorem fails! The algebra $S=\{X \subseteq \mathbb{N} \mid X$ is finite or co-finite $\}$ is atomic:

Infinite Boolean algebras?

We cannot extend the finite theorem to infinite Boolean algebras.

- Even for atomic Boolean algebras this is theorem fails! The algebra $S=\{X \subseteq \mathbb{N} \mid X$ is finite or co-finite $\}$ is atomic: because every non-empty set $X \in S$ contains a singleton.

Infinite Boolean algebras?

We cannot extend the finite theorem to infinite Boolean algebras.

- Even for atomic Boolean algebras this is theorem fails! The algebra $S=\{X \subseteq \mathbb{N} \mid X$ is finite or co-finite $\}$ is atomic: because every non-empty set $X \in S$ contains a singleton. However, S is countable, hence not isomorphic to any 2^{W}.

Infinite Boolean algebras?

We cannot extend the finite theorem to infinite Boolean algebras.

- Even for atomic Boolean algebras this is theorem fails! The algebra $S=\{X \subseteq \mathbb{N} \mid X$ is finite or co-finite $\}$ is atomic: because every non-empty set $X \in S$ contains a singleton. However, S is countable, hence not isomorphic to any $2{ }^{W}$.
- There are algebras without atoms!

Infinite Boolean algebras?

We cannot extend the finite theorem to infinite Boolean algebras.

- Even for atomic Boolean algebras this is theorem fails! The algebra $S=\{X \subseteq \mathbb{N} \mid X$ is finite or co-finite $\}$ is atomic: because every non-empty set $X \in S$ contains a singleton. However, S is countable, hence not isomorphic to any $2{ }^{W}$.
- There are algebras without atoms!

Example

The Lindenbaum algebra of the Classical Propositional Logic is atomless.
This algebra is Fm/ \equiv, where $A \equiv B$ means: $(A \leftrightarrow B)$ is a tautology.

Infinite Boolean algebras?

We cannot extend the finite theorem to infinite Boolean algebras.

- Even for atomic Boolean algebras this is theorem fails! The algebra $S=\{X \subseteq \mathbb{N} \mid X$ is finite or co-finite $\}$ is atomic: because every non-empty set $X \in S$ contains a singleton. However, S is countable, hence not isomorphic to any $2{ }^{W}$.
- There are algebras without atoms!

Example

The Lindenbaum algebra of the Classical Propositional Logic is atomless.
This algebra is Fm/ \equiv, where $A \equiv B$ means: $(A \leftrightarrow B)$ is a tautology. $[A] \wedge[B]=[A \wedge B], \quad-[A]=[\neg A]$ and so on.

Infinite Boolean algebras?

We cannot extend the finite theorem to infinite Boolean algebras.

- Even for atomic Boolean algebras this is theorem fails! The algebra $S=\{X \subseteq \mathbb{N} \mid X$ is finite or co-finite $\}$ is atomic: because every non-empty set $X \in S$ contains a singleton. However, S is countable, hence not isomorphic to any $2{ }^{W}$.
- There are algebras without atoms!

Example

The Lindenbaum algebra of the Classical Propositional Logic is atomless.
This algebra is Fm / \equiv, where $A \equiv B$ means: $(A \leftrightarrow B)$ is a tautology. $[A] \wedge[B]=[A \wedge B], \quad-[A]=[\neg A]$ and so on.
Prove: If $[A] \neq 0$, then there is a formula B such that $0 \neq[B]<[A]$.

Infinite Boolean algebras?

We cannot extend the finite theorem to infinite Boolean algebras.

- Even for atomic Boolean algebras this is theorem fails! The algebra $S=\{X \subseteq \mathbb{N} \mid X$ is finite or co-finite $\}$ is atomic: because every non-empty set $X \in S$ contains a singleton. However, S is countable, hence not isomorphic to any $2{ }^{W}$.
- There are algebras without atoms!

Example

The Lindenbaum algebra of the Classical Propositional Logic is atomless.
This algebra is Fm / \equiv, where $A \equiv B$ means: $(A \leftrightarrow B)$ is a tautology. $[A] \wedge[B]=[A \wedge B], \quad-[A]=[\neg A]$ and so on.
Prove: If $[A] \neq 0$, then there is a formula B such that $0 \neq[B]<[A]$. Intuitively: there is no "strongest" formula.

Stone's representation theorem

Theorem (Stone's representation theorem, 1936)
Any Boolean algebra is isomorphic to some field of sets, i.e., to some subalgebra $S \subseteq 2^{W}$, for some set W.

Stone's representation theorem

Theorem (Stone's representation theorem, 1936)
Any Boolean algebra is isomorphic to some field of sets, i.e., to some subalgebra $S \subseteq 2^{W}$, for some set W.

The definition of a Boolean subalgebra is standard: it is a subset that is itself a Boolean algebra.

Stone's representation theorem

Theorem (Stone's representation theorem, 1936)
Any Boolean algebra is isomorphic to some field of sets, i.e., to some subalgebra $S \subseteq 2^{W}$, for some set W.

The definition of a Boolean subalgebra is standard: it is a subset that is itself a Boolean algebra.

If $\mathcal{B} \cong \mathcal{B}^{\prime}$ and \mathcal{B}^{\prime} is a subalgebra of $\mathcal{B}^{\prime \prime}$, then let us say that \mathcal{B} is embeddable into $\mathcal{B}^{\prime \prime}$.

Theorem (Stone's representation theorem)
Any Boolean algebra \mathcal{B} is embeddable into some algebra of the form 2^{W}.

Stone's representation theorem

Theorem (Stone's representation theorem, 1936)
Any Boolean algebra is isomorphic to some field of sets, i.e., to some subalgebra $S \subseteq 2^{W}$, for some set W.

The definition of a Boolean subalgebra is standard: it is a subset that is itself a Boolean algebra.
If $\mathcal{B} \cong \mathcal{B}^{\prime}$ and \mathcal{B}^{\prime} is a subalgebra of $\mathcal{B}^{\prime \prime}$, then let us say that \mathcal{B} is embeddable into $\mathcal{B}^{\prime \prime}$.

Theorem (Stone's representation theorem)
Any Boolean algebra \mathcal{B} is embeddable into some algebra of the form 2^{W}.
How can we prove this theorem without having atoms?

Filters and ultrafilters over a set

Definition

Let $W \neq \varnothing$. A filter over \mathcal{I} - is a family of subsets $\Phi \subseteq 2^{\mathcal{I}}$ such that
(1) $\varnothing \notin \Phi$
(2) $W \in \Phi$
(3) $X \in \Phi$ and $X \subseteq Y \Rightarrow Y \in \Phi \quad$ for all $X, Y \subseteq \mathcal{I}$
(4) $X, Y \in \Phi \Rightarrow X \cap Y \in \Phi \quad$ for all $X, Y \subseteq \mathcal{I}$

Filters and ultrafilters over a set

Definition

Let $W \neq \varnothing$. A filter over \mathcal{I} - is a family of subsets $\Phi \subseteq 2^{\mathcal{I}}$ such that
(1) $\varnothing \notin \Phi$
(2) $W \in \Phi$
(3) $X \in \Phi$ and $X \subseteq Y \Rightarrow Y \in \Phi \quad$ for all $X, Y \subseteq \mathcal{I}$
(4) $X, Y \in \Phi \Rightarrow X \cap Y \in \Phi \quad$ for all $X, Y \subseteq \mathcal{I}$

An ultrafilter over W additionally satisfies:
(5) $X \in \Phi$ or $\bar{X} \in \Phi \quad$ for all $X \subseteq \mathcal{I}$.

Filters and ultrafilters over a set

Definition

Let $W \neq \varnothing$. A filter over \mathcal{I} - is a family of subsets $\Phi \subseteq 2^{\mathcal{I}}$ such that
(1) $\varnothing \notin \Phi$
(2) $W \in \Phi$
(3) $X \in \Phi$ and $X \subseteq Y \Rightarrow Y \in \Phi \quad$ for all $X, Y \subseteq \mathcal{I}$
(4) $X, Y \in \Phi \Rightarrow X \cap Y \in \Phi \quad$ for all $X, Y \subseteq \mathcal{I}$

An ultrafilter over W additionally satisfies:
(5) $X \in \Phi$ or $\bar{X} \in \Phi \quad$ for all $X \subseteq \mathcal{I}$.

Now we have a Boolean algebra $\mathcal{B}=(D, \wedge, \vee,-, 0,1)$ instead of $2^{\mathcal{I}}$.

Filters and ultrafilters over a set

Definition

Let $W \neq \varnothing$. A filter over \mathcal{I} - is a family of subsets $\Phi \subseteq 2^{\mathcal{I}}$ such that
(1) $\varnothing \notin \Phi$
(2) $W \in \Phi$
(3) $X \in \Phi$ and $X \subseteq Y \Rightarrow Y \in \Phi \quad$ for all $X, Y \subseteq \mathcal{I}$
(4) $X, Y \in \Phi \Rightarrow X \cap Y \in \Phi \quad$ for all $X, Y \subseteq \mathcal{I}$

An ultrafilter over W additionally satisfies:
(5) $X \in \Phi$ or $\bar{X} \in \Phi \quad$ for all $X \subseteq \mathcal{I}$.

Now we have a Boolean algebra $\mathcal{B}=(D, \wedge, \vee,-, 0,1)$ instead of $2^{\mathcal{I}}$. So we replace $X \subseteq \mathcal{I}$ with $a \in D$, and write $a \leqslant b$ instead of $X \subseteq Y$.

Filters and ultrafilters in Boolean algebras

Let $\mathcal{B}=(D, \wedge, \vee,-, 0,1)$ be a Boolean algebra. We also have \leqslant.

Filters and ultrafilters in Boolean algebras

Let $\mathcal{B}=(D, \wedge, \vee,-, 0,1)$ be a Boolean algebra. We also have \leqslant.

Definition

A filter in a Boolean algebra \mathcal{B} is a subset $\Phi \subseteq D$ such that
(1) $0 \notin \Phi$
(2) $1 \in \Phi$
(3) $a \in \Phi$ and $a \leqslant b \Rightarrow b \in \Phi \quad$ for all $a, b \in D$
(4) $a, b \in \Phi \Rightarrow a \wedge b \in \Phi \quad$ for all $a, b \in D$

Filters and ultrafilters in Boolean algebras

Let $\mathcal{B}=(D, \wedge, \vee,-, 0,1)$ be a Boolean algebra. We also have \leqslant.

Definition

A filter in a Boolean algebra \mathcal{B} is a subset $\Phi \subseteq D$ such that
(1) $0 \notin \Phi$
(2) $1 \in \Phi$
(3) $a \in \Phi$ and $a \leqslant b \Rightarrow b \in \Phi \quad$ for all $a, b \in D$
(4) $a, b \in \Phi \Rightarrow a \wedge b \in \Phi \quad$ for all $a, b \in D$

An ultrafilter in a Boolean algebra \mathcal{B} additionally satisfies:
(5) $a \in \Phi$ or $\bar{a} \in \Phi \quad$ for all $a \in D$.

Filters and ultrafilters in Boolean algebras

Let $\mathcal{B}=(D, \wedge, \vee,-, 0,1)$ be a Boolean algebra. We also have \leqslant.

Definition

A filter in a Boolean algebra \mathcal{B} is a subset $\Phi \subseteq D$ such that
(1) $0 \notin \Phi$
(2) $1 \in \Phi$
(3) $a \in \Phi$ and $a \leqslant b \Rightarrow b \in \Phi \quad$ for all $a, b \in D$
(4) $a, b \in \Phi \Rightarrow a \wedge b \in \Phi \quad$ for all $a, b \in D$

An ultrafilter in a Boolean algebra \mathcal{B} additionally satisfies:
(5) $a \in \Phi$ or $\bar{a} \in \Phi \quad$ for all $a \in D$.

A subset $E \subseteq D$ has the finite intersection property if for all $a_{1}, \ldots, a_{n} \in E$ we have $\left(a_{1} \wedge \ldots \wedge a_{n}\right) \neq 0$.

Filters and ultrafilters in Boolean algebras

Let $\mathcal{B}=(D, \wedge, \vee,-, 0,1)$ be a Boolean algebra. We also have \leqslant.

Definition

A filter in a Boolean algebra \mathcal{B} is a subset $\Phi \subseteq D$ such that
(1) $0 \notin \Phi$
(2) $1 \in \Phi$
(3) $a \in \Phi$ and $a \leqslant b \Rightarrow b \in \Phi \quad$ for all $a, b \in D$
(4) $a, b \in \Phi \Rightarrow a \wedge b \in \Phi \quad$ for all $a, b \in D$

An ultrafilter in a Boolean algebra \mathcal{B} additionally satisfies:
(5) $a \in \Phi$ or $\bar{a} \in \Phi \quad$ for all $a \in D$.

A subset $E \subseteq D$ has the finite intersection property if for all $a_{1}, \ldots, a_{n} \in E$ we have $\left(a_{1} \wedge \ldots \wedge a_{n}\right) \neq 0$.

Theorem
(1) $E \subseteq D$ has the finite intersection property $\Longrightarrow E \subseteq \Phi$ for some filter Φ.

Filters and ultrafilters in Boolean algebras

Let $\mathcal{B}=(D, \wedge, \vee,-, 0,1)$ be a Boolean algebra. We also have \leqslant.

Definition

A filter in a Boolean algebra \mathcal{B} is a subset $\Phi \subseteq D$ such that
(1) $0 \notin \Phi$
(2) $1 \in \Phi$
(3) $a \in \Phi$ and $a \leqslant b \Rightarrow b \in \Phi \quad$ for all $a, b \in D$
(4) $a, b \in \Phi \Rightarrow a \wedge b \in \Phi \quad$ for all $a, b \in D$

An ultrafilter in a Boolean algebra \mathcal{B} additionally satisfies:
(5) $a \in \Phi$ or $\bar{a} \in \Phi \quad$ for all $a \in D$.

A subset $E \subseteq D$ has the finite intersection property if for all $a_{1}, \ldots, a_{n} \in E$ we have $\left(a_{1} \wedge \ldots \wedge a_{n}\right) \neq 0$.

Theorem

(1) $E \subseteq D$ has the finite intersection property $\Longrightarrow E \subseteq \Phi$ for some filter Φ. (2) Any filter is contained in some ultrafilter.

Stone's representation theorem

Theorem (Stone's representation theorem, 1936)
Any Boolean algebra is isomorphic to some field of sets, i.e., to some subalgebra $S \subseteq 2^{W}$, for some set W.

Stone's representation theorem

Theorem (Stone's representation theorem, 1936)
Any Boolean algebra is isomorphic to some field of sets, i.e., to some subalgebra $S \subseteq 2^{W}$, for some set W.

Proof.

Put $W=\operatorname{Uf}(\mathcal{B})=\{\Phi \subseteq D \mid \Phi$ is an ultrafilter $\}$.

Stone's representation theorem

Theorem (Stone's representation theorem, 1936)
Any Boolean algebra is isomorphic to some field of sets, i.e., to some subalgebra $S \subseteq 2^{W}$, for some set W.

Proof.

Put $W=\operatorname{Uf}(\mathcal{B})=\{\Phi \subseteq D \mid \Phi$ is an ultrafilter $\}$.
Denote $\operatorname{Uf}(a)=\{\Phi \in \operatorname{Uf}(\mathcal{B}) \mid a \in \Phi\}$ - all ultrafilters containing a.

Stone's representation theorem

Theorem (Stone's representation theorem, 1936)
Any Boolean algebra is isomorphic to some field of sets, i.e., to some subalgebra $S \subseteq 2^{W}$, for some set W.

Proof.

Put $W=\operatorname{Uf}(\mathcal{B})=\{\Phi \subseteq D \mid \Phi$ is an ultrafilter $\}$.
Denote $\operatorname{Uf}(a)=\{\Phi \in \operatorname{Uf}(\mathcal{B}) \mid a \in \Phi\}$ - all ultrafilters containing a. Now we build a function $f: \mathcal{B} \rightarrow 2^{W}$ by putting: $f(a)=\operatorname{Uf}(a)$

Stone's representation theorem

Theorem (Stone's representation theorem, 1936)
Any Boolean algebra is isomorphic to some field of sets, i.e., to some subalgebra $S \subseteq 2^{W}$, for some set W.

Proof.

Put $W=\operatorname{Uf}(\mathcal{B})=\{\Phi \subseteq D \mid \Phi$ is an ultrafilter $\}$.
Denote $\operatorname{Uf}(a)=\{\Phi \in \operatorname{Uf}(\mathcal{B}) \mid a \in \Phi\}$ - all ultrafilters containing a. Now we build a function $f: \mathcal{B} \rightarrow 2^{W}$ by putting: $f(a)=\operatorname{Uf}(a)$ Next we prove:

Stone's representation theorem

Theorem (Stone's representation theorem, 1936)
Any Boolean algebra is isomorphic to some field of sets, i.e., to some subalgebra $S \subseteq 2^{W}$, for some set W.

Proof.

Put $W=\operatorname{Uf}(\mathcal{B})=\{\Phi \subseteq D \mid \Phi$ is an ultrafilter $\}$.
Denote $\operatorname{Uf}(a)=\{\Phi \in \operatorname{Uf}(\mathcal{B}) \mid a \in \Phi\}$ - all ultrafilters containing a. Now we build a function $f: \mathcal{B} \rightarrow 2^{W}$ by putting: $f(a)=\operatorname{Uf}(a)$ Next we prove:
(1) f preserves complement: $f(\bar{a})=\overline{f(a)}$.

Stone's representation theorem

Theorem (Stone's representation theorem, 1936)
Any Boolean algebra is isomorphic to some field of sets, i.e., to some subalgebra $S \subseteq 2^{W}$, for some set W.

Proof.

Put $W=\operatorname{Uf}(\mathcal{B})=\{\Phi \subseteq D \mid \Phi$ is an ultrafilter $\}$.
Denote $\operatorname{Uf}(a)=\{\Phi \in \operatorname{Uf}(\mathcal{B}) \mid a \in \Phi\}$ - all ultrafilters containing a. Now we build a function $f: \mathcal{B} \rightarrow 2^{W}$ by putting: $f(a)=\operatorname{Uf}(a)$ Next we prove:
(1) f preserves complement: $f(\bar{a})=\overline{f(a)}$.
(2) f preserves conjunction: $f(a \wedge b)=f(a) \cap f(b)$.

Stone's representation theorem

Theorem (Stone's representation theorem, 1936)
Any Boolean algebra is isomorphic to some field of sets, i.e., to some subalgebra $S \subseteq 2^{W}$, for some set W.

Proof.

Put $W=\operatorname{Uf}(\mathcal{B})=\{\Phi \subseteq D \mid \Phi$ is an ultrafilter $\}$.
Denote $\operatorname{Uf}(a)=\{\Phi \in \operatorname{Uf}(\mathcal{B}) \mid a \in \Phi\}$ - all ultrafilters containing a. Now we build a function $f: \mathcal{B} \rightarrow 2^{W}$ by putting: $f(a)=\operatorname{Uf}(a)$ Next we prove:
(1) f preserves complement: $f(\bar{a})=\overline{f(a)}$.
(2) f preserves conjunction: $f(a \wedge b)=f(a) \cap f(b)$.
(3) f is injective: if $a \neq b$ then $f(a) \neq f(b)$

Stone's representation theorem

Theorem (Stone's representation theorem, 1936)
Any Boolean algebra is isomorphic to some field of sets, i.e., to some subalgebra $S \subseteq 2^{W}$, for some set W.

Proof.

Put $W=\operatorname{Uf}(\mathcal{B})=\{\Phi \subseteq D \mid \Phi$ is an ultrafilter $\}$.
Denote $\operatorname{Uf}(a)=\{\Phi \in \operatorname{Uf}(\mathcal{B}) \mid a \in \Phi\}$ - all ultrafilters containing a. Now we build a function $f: \mathcal{B} \rightarrow 2^{W}$ by putting: $f(a)=\operatorname{Uf}(a)$ Next we prove:
(1) f preserves complement: $f(\bar{a})=\overline{f(a)}$.
(2) f preserves conjunction: $f(a \wedge b)=f(a) \cap f(b)$.
(0) f is injective: if $a \neq b$ then $f(a) \neq f(b)$

In general, f is not surjective!

Conclusion

- Any finite Boolean algebra \mathcal{B} is isomorphic to 2^{W}, for some set W.

Conclusion

- Any finite Boolean algebra \mathcal{B} is isomorphic to 2^{W}, for some set W.
- Any Boolean algebra \mathcal{B} is isomorphic to some subalgebra $S \subseteq 2^{W}$, for some set W.

Conclusion

- Any finite Boolean algebra \mathcal{B} is isomorphic to 2^{W}, for some set W.
- Any Boolean algebra \mathcal{B} is isomorphic to some subalgebra $S \subseteq 2^{W}$, for some set W.
- The set of all ultrafilters $\operatorname{Uf}(\mathcal{B})$ has some topology (Stone space).

Conclusion

- Any finite Boolean algebra \mathcal{B} is isomorphic to 2^{W}, for some set W.
- Any Boolean algebra \mathcal{B} is isomorphic to some subalgebra $S \subseteq 2^{W}$, for some set W.
- The set of all ultrafilters $\operatorname{Uf}(\mathcal{B})$ has some topology (Stone space). The above embedding $f: \mathcal{B} \rightarrow 2^{\mathrm{Uf}(\mathcal{B})}$ "respects" this topology: any homomorphism between Boolean algebras corresponds to some continuous mapping between Stone spaces.

Conclusion

- Any finite Boolean algebra \mathcal{B} is isomorphic to 2^{W}, for some set W.
- Any Boolean algebra \mathcal{B} is isomorphic to some subalgebra $S \subseteq 2^{W}$, for some set W.
- The set of all ultrafilters $\operatorname{Uf}(\mathcal{B})$ has some topology (Stone space). The above embedding $f: \mathcal{B} \rightarrow 2^{\mathrm{Uf}(\mathcal{B})}$ "respects" this topology: any homomorphism between Boolean algebras corresponds to some continuous mapping between Stone spaces.
- Moreover, we have a duality between the category of Boolean algebras and the category of Stone spaces.

Conclusion

- Any finite Boolean algebra \mathcal{B} is isomorphic to 2^{W}, for some set W.
- Any Boolean algebra \mathcal{B} is isomorphic to some subalgebra $S \subseteq 2^{W}$, for some set W.
- The set of all ultrafilters $\operatorname{Uf}(\mathcal{B})$ has some topology (Stone space). The above embedding $f: \mathcal{B} \rightarrow 2^{\mathrm{Uf}(\mathcal{B})}$ "respects" this topology: any homomorphism between Boolean algebras corresponds to some continuous mapping between Stone spaces.
- Moreover, we have a duality between the category of Boolean algebras and the category of Stone spaces.

End of lecture 10. Thank you!

