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Abstract Boolean algebras
Definition
Boolean algebra: ℬ = (D,∧,∨,−, 0, 1), where D ̸= ∅ is a set, 0, 1 ∈ D,
the operations ∧,∨ : D × D → D and − : D → D satisfy the laws:

a ∧ b = b ∧ a a ∨ b = b ∨ a (commutativity laws)

(a ∧ b) ∧ c = a ∧ (b ∧ c)
(a ∨ b) ∨ c = a ∨ (b ∨ c) (associativity laws)

(a ∧ b) ∨ c = (a ∨ c) ∧ (b ∨ c)
(a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c) (distributivity laws)

a ∧ a = a a ∨ a = a (idempotent laws)

a ∧ (a ∨ b) = a a ∨ (a ∧ b) = a (absorption laws)

a ∧ a = 0 a ∨ a = 1 a = a (complement laws)

a ∧ c = a ∨ c a ∨ c = a ∧ c (de Morgan laws)

a ∧ 0 = 0 a ∧ 1 = a a ∨ 0 = a a ∨ 1 = 1 (zero-one laws)

Terminology: ∧ meet, ∨ join, − complement.
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Concrete Boolean algebra: ℘({x , y , z})
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Concrete Boolean algebras

Example ((a) Boolean algebra of all subsets)

ℬ = (2W ,∩,∪,−,∅,W ) is a Boolean algebra. Here X := W ∖ X .

Example ((b) Boolean algebra of some subsets)

Assume that S ⊆ 2W is closed under ∪,∩,−. Clearly, ∅,W ∈ S .
Then (S ,∩,∪,−,∅,W ) is a Boolean algebra, it is called a field of sets.

Question. Is every “abstract” Boolean algebra isomorphic to some
“concrete” Boolean algebra? Of the form (a) or (b)?

Today we will prove 2 theorems:
any finite Boolean algebra is isomorphic to an algebra of the form (a).
any Boolean algebra is isomorphic to an algebra of the form (b),
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Isomorphism of Boolean algebras

Definition
Boolean algebras ℬ and ℬ′ are isomorphic (ℬ ∼= ℬ′) if there is an
isomorphism h : ℬ → ℬ′, i.e., a bijection that preserves ∨, (and ∧, 0, 1).

Theorem 1 (Representation of finite Boolean algebras)
For any finite Boolean algebra ℬ there exists a set W such that
ℬ ∼= (2W ,∩,∪,−,∅,W ).

Example (Not every Boolean algebra is isomorphic to 2W )
S = {X ⊆ N | X is finite or co-finite} is a Boolean algebra. Countable!

But any algebra of all subsets 2W is either finite or at least continual.

Hence our algebra is not isomorphic to any algebra of the form 2W .
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Partial order 6 in Boolean algebras
In a Boolean algebra ℬ = (D,∧,∨,−, 0, 1), we introduce inequality:

a6 b � a ∧ b = a

⇔ a ∨ b = b ⇔ a ∨ b = 1 ⇔ a ∧ b = 0.

Exercise. Prove these equivalences, using the axioms of Boolean algebras.
Exercise. Prove that a ∧ b 6 a, a6 a ∨ b, 06 a6 1.

Proposition
The relation 6 is a partial order on D, i.e., it is:

reflexive ∀a (a6 a)
transitive ∀a, b, c (a6 b 6 c ⇒ a6 c)
antisymmetric ∀a, b (a6 b 6 a ⇒ a = b)

Example

In the field of sets (S ,∩,∪,−,∅,W ), where S ⊆ 2W , the relation 6 is ⊆.
For this reason, we read “a6 b” as “a is contained in b” or “b contains a”.
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antisymmetric ∀a, b (a6 b 6 a ⇒ a = b)

Example

In the field of sets (S ,∩,∪,−,∅,W ), where S ⊆ 2W , the relation 6 is ⊆.
For this reason, we read “a6 b” as “a is contained in b” or “b contains a”.

Evgeny Zolin, MSU Representation of BA’s April 28th, 2021 6 / 18



Partial order 6 in Boolean algebras
In a Boolean algebra ℬ = (D,∧,∨,−, 0, 1), we introduce inequality:

a6 b � a ∧ b = a ⇔ a ∨ b = b ⇔ a ∨ b = 1 ⇔ a ∧ b = 0.

Exercise. Prove these equivalences, using the axioms of Boolean algebras.
Exercise. Prove that a ∧ b 6 a, a6 a ∨ b, 06 a6 1.

Proposition
The relation 6 is a partial order on D, i.e., it is:

reflexive ∀a (a6 a)
transitive ∀a, b, c (a6 b 6 c ⇒ a6 c)
antisymmetric ∀a, b (a6 b 6 a ⇒ a = b)

Example

In the field of sets (S ,∩,∪,−,∅,W ), where S ⊆ 2W , the relation 6 is ⊆.
For this reason, we read “a6 b” as “a is contained in b” or “b contains a”.

Evgeny Zolin, MSU Representation of BA’s April 28th, 2021 6 / 18



Partial order 6 in Boolean algebras
In a Boolean algebra ℬ = (D,∧,∨,−, 0, 1), we introduce inequality:

a6 b � a ∧ b = a ⇔ a ∨ b = b ⇔ a ∨ b = 1 ⇔ a ∧ b = 0.

Exercise. Prove these equivalences, using the axioms of Boolean algebras.
Exercise. Prove that a ∧ b 6 a, a6 a ∨ b, 06 a6 1.

Proposition
The relation 6 is a partial order on D, i.e., it is:

reflexive ∀a (a6 a)
transitive ∀a, b, c (a6 b 6 c ⇒ a6 c)
antisymmetric ∀a, b (a6 b 6 a ⇒ a = b)

Example

In the field of sets (S ,∩,∪,−,∅,W ), where S ⊆ 2W , the relation 6 is ⊆.
For this reason, we read “a6 b” as “a is contained in b” or “b contains a”.

Evgeny Zolin, MSU Representation of BA’s April 28th, 2021 6 / 18



Partial order 6 in Boolean algebras
In a Boolean algebra ℬ = (D,∧,∨,−, 0, 1), we introduce inequality:

a6 b � a ∧ b = a ⇔ a ∨ b = b ⇔ a ∨ b = 1 ⇔ a ∧ b = 0.

Exercise. Prove these equivalences, using the axioms of Boolean algebras.
Exercise. Prove that a ∧ b 6 a, a6 a ∨ b, 06 a6 1.

Proposition
The relation 6 is a partial order on D, i.e., it is:

reflexive ∀a (a6 a)
transitive ∀a, b, c (a6 b 6 c ⇒ a6 c)
antisymmetric ∀a, b (a6 b 6 a ⇒ a = b)

Example

In the field of sets (S ,∩,∪,−,∅,W ), where S ⊆ 2W , the relation 6 is ⊆.

For this reason, we read “a6 b” as “a is contained in b” or “b contains a”.

Evgeny Zolin, MSU Representation of BA’s April 28th, 2021 6 / 18



Partial order 6 in Boolean algebras
In a Boolean algebra ℬ = (D,∧,∨,−, 0, 1), we introduce inequality:

a6 b � a ∧ b = a ⇔ a ∨ b = b ⇔ a ∨ b = 1 ⇔ a ∧ b = 0.

Exercise. Prove these equivalences, using the axioms of Boolean algebras.
Exercise. Prove that a ∧ b 6 a, a6 a ∨ b, 06 a6 1.

Proposition
The relation 6 is a partial order on D, i.e., it is:

reflexive ∀a (a6 a)
transitive ∀a, b, c (a6 b 6 c ⇒ a6 c)
antisymmetric ∀a, b (a6 b 6 a ⇒ a = b)

Example

In the field of sets (S ,∩,∪,−,∅,W ), where S ⊆ 2W , the relation 6 is ⊆.
For this reason, we read “a6 b” as “a is contained in b” or “b contains a”.

Evgeny Zolin, MSU Representation of BA’s April 28th, 2021 6 / 18



Atoms in Boolean algebras

Definition
An atom in a Boolean algebra ℬ is a minimal non-zero element.

So, it is an element s ̸= 0 such that between 0 and s there are no elements:

∀a ∈ D
(︀
a6 s ⇒ (a = 0 ∨ a = s)

)︀
.

Denote the set of atoms by At(ℬ) := {s ∈ D | s is an atom}.

A Boolean algebra is atomic if every non-zero element contains an atom:

∀a ∈ D ∖ {0} ∃s ∈ At(ℬ): (s 6 a).

Proposition. Any finite Boolean algebra is atomic.

Proof.
If a ̸= 0 is not an atom, then there is 0 ̸= b < a. Repeat with b.
This process is finite. When it stops, we get an atom s 6 a.
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Properties of atoms

Lemma (Disjunction property for atoms)
Let s be an atom and a, b be elements of a Boolean algebra ℬ.

s 6 (a ∨ b) ⇒ s 6 a or s 6 b.

Proof.
By definition of 6, we have: s = s ∧ (a ∨ b) = (s ∧ a) ∨ (s ∧ b).
Then two cases are possible:

1 if (s ∧ a) = 0, then s = (s ∧ b) and thus s 6 b;
2 if (s ∧ a) ̸= 0, then since (s ∧ a)6 s and s is an atom, we have

(s ∧ a) = s and thus s 6 a.
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Properties of atoms
Denote At(a) := {s ∈ At(ℬ) | s 6 a} — the set of all atoms below a ∈ D.

Lemma (Atomic decomposition of an element)
Let ℬ be a finite Boolean algebra. Then for any element a ∈ D

a =
⋁︀

s∈At(a)
s.

Ex. 1) a> b and a> c ⇒ a> (b ∨ c). 2) a6 b and a6 c ⇒ a6 (b ∧ c).

Proof of lemma.
Denote this disjunction by b.

(>) Since a> s for each atom s ∈ At(a), we have a> b (by Exercise 1).

(6) Let us prove that a6 b, that is a ∧ b = 0. Assume that: a ∧ b ̸= 0.
Since the algebra ℬ is atomic, there is an atom s 6 (a ∧ b).
Hence s 6 b and s 6 a6 b, thus s 6 b. Then, by Exercise 2,
s 6 (b ∧ b) = 0, which is impossible, since any atom is non-zero.

Evgeny Zolin, MSU Representation of BA’s April 28th, 2021 9 / 18



Properties of atoms
Denote At(a) := {s ∈ At(ℬ) | s 6 a} — the set of all atoms below a ∈ D.

Lemma (Atomic decomposition of an element)
Let ℬ be a finite Boolean algebra. Then for any element a ∈ D

a =
⋁︀

s∈At(a)
s.

Ex. 1) a> b and a> c ⇒ a> (b ∨ c). 2) a6 b and a6 c ⇒ a6 (b ∧ c).

Proof of lemma.
Denote this disjunction by b.

(>) Since a> s for each atom s ∈ At(a), we have a> b (by Exercise 1).

(6) Let us prove that a6 b, that is a ∧ b = 0. Assume that: a ∧ b ̸= 0.
Since the algebra ℬ is atomic, there is an atom s 6 (a ∧ b).
Hence s 6 b and s 6 a6 b, thus s 6 b. Then, by Exercise 2,
s 6 (b ∧ b) = 0, which is impossible, since any atom is non-zero.

Evgeny Zolin, MSU Representation of BA’s April 28th, 2021 9 / 18



Properties of atoms
Denote At(a) := {s ∈ At(ℬ) | s 6 a} — the set of all atoms below a ∈ D.

Lemma (Atomic decomposition of an element)
Let ℬ be a finite Boolean algebra. Then for any element a ∈ D

a =
⋁︀

s∈At(a)
s.

Ex. 1) a> b and a> c ⇒ a> (b ∨ c).

2) a6 b and a6 c ⇒ a6 (b ∧ c).

Proof of lemma.
Denote this disjunction by b.

(>) Since a> s for each atom s ∈ At(a), we have a> b (by Exercise 1).

(6) Let us prove that a6 b, that is a ∧ b = 0. Assume that: a ∧ b ̸= 0.
Since the algebra ℬ is atomic, there is an atom s 6 (a ∧ b).
Hence s 6 b and s 6 a6 b, thus s 6 b. Then, by Exercise 2,
s 6 (b ∧ b) = 0, which is impossible, since any atom is non-zero.

Evgeny Zolin, MSU Representation of BA’s April 28th, 2021 9 / 18



Properties of atoms
Denote At(a) := {s ∈ At(ℬ) | s 6 a} — the set of all atoms below a ∈ D.

Lemma (Atomic decomposition of an element)
Let ℬ be a finite Boolean algebra. Then for any element a ∈ D

a =
⋁︀

s∈At(a)
s.

Ex. 1) a> b and a> c ⇒ a> (b ∨ c). 2) a6 b and a6 c ⇒ a6 (b ∧ c).

Proof of lemma.
Denote this disjunction by b.

(>) Since a> s for each atom s ∈ At(a), we have a> b (by Exercise 1).

(6) Let us prove that a6 b, that is a ∧ b = 0. Assume that: a ∧ b ̸= 0.
Since the algebra ℬ is atomic, there is an atom s 6 (a ∧ b).
Hence s 6 b and s 6 a6 b, thus s 6 b. Then, by Exercise 2,
s 6 (b ∧ b) = 0, which is impossible, since any atom is non-zero.

Evgeny Zolin, MSU Representation of BA’s April 28th, 2021 9 / 18



Properties of atoms
Denote At(a) := {s ∈ At(ℬ) | s 6 a} — the set of all atoms below a ∈ D.

Lemma (Atomic decomposition of an element)
Let ℬ be a finite Boolean algebra. Then for any element a ∈ D

a =
⋁︀

s∈At(a)
s.

Ex. 1) a> b and a> c ⇒ a> (b ∨ c). 2) a6 b and a6 c ⇒ a6 (b ∧ c).

Proof of lemma.
Denote this disjunction by b.

(>) Since a> s for each atom s ∈ At(a), we have a> b (by Exercise 1).

(6) Let us prove that a6 b, that is a ∧ b = 0. Assume that: a ∧ b ̸= 0.
Since the algebra ℬ is atomic, there is an atom s 6 (a ∧ b).
Hence s 6 b and s 6 a6 b, thus s 6 b. Then, by Exercise 2,
s 6 (b ∧ b) = 0, which is impossible, since any atom is non-zero.

Evgeny Zolin, MSU Representation of BA’s April 28th, 2021 9 / 18



Properties of atoms
Denote At(a) := {s ∈ At(ℬ) | s 6 a} — the set of all atoms below a ∈ D.

Lemma (Atomic decomposition of an element)
Let ℬ be a finite Boolean algebra. Then for any element a ∈ D

a =
⋁︀

s∈At(a)
s.

Ex. 1) a> b and a> c ⇒ a> (b ∨ c). 2) a6 b and a6 c ⇒ a6 (b ∧ c).

Proof of lemma.
Denote this disjunction by b.

(>) Since a> s for each atom s ∈ At(a), we have a> b (by Exercise 1).

(6) Let us prove that a6 b, that is a ∧ b = 0. Assume that: a ∧ b ̸= 0.
Since the algebra ℬ is atomic, there is an atom s 6 (a ∧ b).
Hence s 6 b and s 6 a6 b, thus s 6 b. Then, by Exercise 2,
s 6 (b ∧ b) = 0, which is impossible, since any atom is non-zero.

Evgeny Zolin, MSU Representation of BA’s April 28th, 2021 9 / 18



Properties of atoms
Denote At(a) := {s ∈ At(ℬ) | s 6 a} — the set of all atoms below a ∈ D.

Lemma (Atomic decomposition of an element)
Let ℬ be a finite Boolean algebra. Then for any element a ∈ D

a =
⋁︀

s∈At(a)
s.

Ex. 1) a> b and a> c ⇒ a> (b ∨ c). 2) a6 b and a6 c ⇒ a6 (b ∧ c).

Proof of lemma.
Denote this disjunction by b.

(>) Since a> s for each atom s ∈ At(a), we have a> b (by Exercise 1).

(6) Let us prove that a6 b, that is a ∧ b = 0.

Assume that: a ∧ b ̸= 0.
Since the algebra ℬ is atomic, there is an atom s 6 (a ∧ b).
Hence s 6 b and s 6 a6 b, thus s 6 b. Then, by Exercise 2,
s 6 (b ∧ b) = 0, which is impossible, since any atom is non-zero.

Evgeny Zolin, MSU Representation of BA’s April 28th, 2021 9 / 18



Properties of atoms
Denote At(a) := {s ∈ At(ℬ) | s 6 a} — the set of all atoms below a ∈ D.

Lemma (Atomic decomposition of an element)
Let ℬ be a finite Boolean algebra. Then for any element a ∈ D

a =
⋁︀

s∈At(a)
s.

Ex. 1) a> b and a> c ⇒ a> (b ∨ c). 2) a6 b and a6 c ⇒ a6 (b ∧ c).

Proof of lemma.
Denote this disjunction by b.

(>) Since a> s for each atom s ∈ At(a), we have a> b (by Exercise 1).

(6) Let us prove that a6 b, that is a ∧ b = 0. Assume that: a ∧ b ̸= 0.

Since the algebra ℬ is atomic, there is an atom s 6 (a ∧ b).
Hence s 6 b and s 6 a6 b, thus s 6 b. Then, by Exercise 2,
s 6 (b ∧ b) = 0, which is impossible, since any atom is non-zero.

Evgeny Zolin, MSU Representation of BA’s April 28th, 2021 9 / 18



Properties of atoms
Denote At(a) := {s ∈ At(ℬ) | s 6 a} — the set of all atoms below a ∈ D.

Lemma (Atomic decomposition of an element)
Let ℬ be a finite Boolean algebra. Then for any element a ∈ D

a =
⋁︀

s∈At(a)
s.

Ex. 1) a> b and a> c ⇒ a> (b ∨ c). 2) a6 b and a6 c ⇒ a6 (b ∧ c).

Proof of lemma.
Denote this disjunction by b.

(>) Since a> s for each atom s ∈ At(a), we have a> b (by Exercise 1).

(6) Let us prove that a6 b, that is a ∧ b = 0. Assume that: a ∧ b ̸= 0.
Since the algebra ℬ is atomic, there is an atom s 6 (a ∧ b).

Hence s 6 b and s 6 a6 b, thus s 6 b. Then, by Exercise 2,
s 6 (b ∧ b) = 0, which is impossible, since any atom is non-zero.

Evgeny Zolin, MSU Representation of BA’s April 28th, 2021 9 / 18



Properties of atoms
Denote At(a) := {s ∈ At(ℬ) | s 6 a} — the set of all atoms below a ∈ D.

Lemma (Atomic decomposition of an element)
Let ℬ be a finite Boolean algebra. Then for any element a ∈ D

a =
⋁︀

s∈At(a)
s.

Ex. 1) a> b and a> c ⇒ a> (b ∨ c). 2) a6 b and a6 c ⇒ a6 (b ∧ c).

Proof of lemma.
Denote this disjunction by b.

(>) Since a> s for each atom s ∈ At(a), we have a> b (by Exercise 1).

(6) Let us prove that a6 b, that is a ∧ b = 0. Assume that: a ∧ b ̸= 0.
Since the algebra ℬ is atomic, there is an atom s 6 (a ∧ b).
Hence s 6 b and s 6 a

6 b, thus s 6 b. Then, by Exercise 2,
s 6 (b ∧ b) = 0, which is impossible, since any atom is non-zero.

Evgeny Zolin, MSU Representation of BA’s April 28th, 2021 9 / 18



Properties of atoms
Denote At(a) := {s ∈ At(ℬ) | s 6 a} — the set of all atoms below a ∈ D.

Lemma (Atomic decomposition of an element)
Let ℬ be a finite Boolean algebra. Then for any element a ∈ D

a =
⋁︀

s∈At(a)
s.

Ex. 1) a> b and a> c ⇒ a> (b ∨ c). 2) a6 b and a6 c ⇒ a6 (b ∧ c).

Proof of lemma.
Denote this disjunction by b.

(>) Since a> s for each atom s ∈ At(a), we have a> b (by Exercise 1).

(6) Let us prove that a6 b, that is a ∧ b = 0. Assume that: a ∧ b ̸= 0.
Since the algebra ℬ is atomic, there is an atom s 6 (a ∧ b).
Hence s 6 b and s 6 a6 b, thus s 6 b.

Then, by Exercise 2,
s 6 (b ∧ b) = 0, which is impossible, since any atom is non-zero.

Evgeny Zolin, MSU Representation of BA’s April 28th, 2021 9 / 18



Properties of atoms
Denote At(a) := {s ∈ At(ℬ) | s 6 a} — the set of all atoms below a ∈ D.

Lemma (Atomic decomposition of an element)
Let ℬ be a finite Boolean algebra. Then for any element a ∈ D

a =
⋁︀

s∈At(a)
s.

Ex. 1) a> b and a> c ⇒ a> (b ∨ c). 2) a6 b and a6 c ⇒ a6 (b ∧ c).

Proof of lemma.
Denote this disjunction by b.

(>) Since a> s for each atom s ∈ At(a), we have a> b (by Exercise 1).

(6) Let us prove that a6 b, that is a ∧ b = 0. Assume that: a ∧ b ̸= 0.
Since the algebra ℬ is atomic, there is an atom s 6 (a ∧ b).
Hence s 6 b and s 6 a6 b, thus s 6 b. Then, by Exercise 2,
s 6 (b ∧ b) = 0,

which is impossible, since any atom is non-zero.
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Theorem (Finite Stone’s theorem (Marshall H. Stone (1903–1989)))

Any finite Boolean algebra ℬ is isomorphic to 2W, for some set W .

Proof.
Put W = At(ℬ). We show that the following function is an isomorphism:

f : ℬ → 2W defined by: f (a) = At(a) for any a ∈ ℬ.

It suffices to show that f is a bijection and preserves − and ∨.

f (a) = f (a)? Let us show that W = At(a) ⊎ At(a) (disjoint union).
For any atom s, we have s 6 1 = a ∨ a, so s 6 a or s 6 a.
Thus s ∈ At(a) or s ∈ At(a). Not both, otherwise s 6 (a ∧ a) = 0.

f (a ∨ b) = f (a) ∪ f (b)?
s ∈ At(a ∨ b) ⇐⇒ s 6 a ∨ b ⇐⇒

s 6 a or s 6 b ⇐⇒ s ∈ At(a) or s ∈ At(b).
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f : ℬ → 2W defined by: f (a) = At(a) for any a ∈ ℬ.

It suffices to show that f is a bijection and preserves − and ∨.
f is injective?

1) First let us prove: if f (a) = ∅ then a = 0, for all a ∈ ℬ.
If a ̸= 0, then there is an atom s 6 a. So s ∈ At(a) = f (a) ̸= ∅.

2) Now let us prove: if f (a) = f (b) then a = b.
If f (a) = f (b), then ∅ = f (a) ∩ f (b) = f (a ∧ b) and so a ∧ b = 0.
Hence a6 b. similarly b 6 a, thus a = b.
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Any finite Boolean algebra ℬ is isomorphic to 2W, for some set W .

Proof.
Put W = At(ℬ). We show that the following function is an isomorphism:

f : ℬ → 2W defined by: f (a) = At(a) for any a ∈ ℬ.

It suffices to show that f is a bijection and preserves − and ∨.
f is surjective?

Given X ⊆ W , put a :=
⋁︀

t∈X t and show: f (a) = X ,
in other words: At(a) = X , or more explicitly:

∀s ∈ At(ℬ) (s 6 a ⇔ s ∈ X ).
(⇐) Trivial. (⇒) Assume s 6 a, which means s = s ∧ a. Then

0 ̸= s = s ∧ a = s ∧
(︀ ⋁︀
t∈X

t
)︀

=
⋁︀
t∈X

(s ∧ t).

Hence there is a non-zero disjunct: (s ∧ t) ̸= 0 for some t ∈ X .
So we have: (s ∧ t)6 s, t and s, t are atoms
=⇒ (s ∧ t) = s and (s ∧ t) = t. =⇒ s = t =⇒ s ∈ X . �.
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Infinite Boolean algebras?
We cannot extend the finite theorem to infinite Boolean algebras.

Even for atomic Boolean algebras this is theorem fails!
The algebra S = {X ⊆ N | X is finite or co-finite} is atomic:
because every non-empty set X ∈ S contains a singleton.
However, S is countable, hence not isomorphic to any 2W .

There are algebras without atoms!

Example
The Lindenbaum algebra of the Classical Propositional Logic is atomless.

This algebra is Fm/≡, where A ≡ B means: (A ↔ B) is a tautology.
[A] ∧ [B] = [A ∧ B], −[A] = [¬A] and so on.

Prove: If [A] ̸= 0, then there is a formula B such that 0 ̸= [B] < [A].

Intuitively: there is no “strongest” formula.
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Stone’s representation theorem

Theorem (Stone’s representation theorem, 1936)
Any Boolean algebra is isomorphic to some field of sets, i.e., to some
subalgebra S ⊆ 2W, for some set W .

The definition of a Boolean subalgebra is standard: it is a subset that is
itself a Boolean algebra.

If ℬ ∼= ℬ′ and ℬ′ is a subalgebra of ℬ′′, then let us say that
ℬ is embeddable into ℬ′′.

Theorem (Stone’s representation theorem)

Any Boolean algebra ℬ is embeddable into some algebra of the form 2W.

How can we prove this theorem without having atoms?
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Filters and ultrafilters over a set

Definition
Let W ̸= ∅. A filter over ℐ — is a family of subsets Φ ⊆ 2ℐ such that
(1) ∅ /∈ Φ
(2) W ∈ Φ
(3) X ∈ Φ and X ⊆ Y ⇒ Y ∈ Φ for all X ,Y ⊆ ℐ
(4) X ,Y ∈ Φ ⇒ X ∩ Y ∈ Φ for all X ,Y ⊆ ℐ

An ultrafilter over W additionally satisfies:

(5) X ∈ Φ or X ∈ Φ for all X ⊆ ℐ.

Now we have a Boolean algebra ℬ = (D,∧,∨,−, 0, 1) instead of 2ℐ .

So we replace X ⊆ ℐ with a ∈ D, and write a6 b instead of X ⊆ Y .
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Filters and ultrafilters in Boolean algebras
Let ℬ = (D,∧,∨,−, 0, 1) be a Boolean algebra. We also have 6.

Definition
A filter in a Boolean algebra ℬ is a subset Φ ⊆ D such that
(1) 0 /∈ Φ
(2) 1 ∈ Φ
(3) a ∈ Φ and a6 b ⇒ b ∈ Φ for all a, b ∈ D
(4) a, b ∈ Φ ⇒ a ∧ b ∈ Φ for all a, b ∈ D

An ultrafilter in a Boolean algebra ℬ additionally satisfies:
(5) a ∈ Φ or a ∈ Φ for all a ∈ D.

A subset E ⊆ D has the finite intersection property if

for all a1, . . . , an ∈ E we have (a1 ∧ . . . ∧ an) ̸= 0.

Theorem
(1) E ⊆ D has the finite intersection property =⇒ E ⊆ Φ for some filter Φ.
(2) Any filter is contained in some ultrafilter.
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Stone’s representation theorem

Theorem (Stone’s representation theorem, 1936)
Any Boolean algebra is isomorphic to some field of sets, i.e., to some
subalgebra S ⊆ 2W, for some set W .

Proof.
Put W = Uf(ℬ) = {Φ ⊆ D | Φ is an ultrafilter}.
Denote Uf(a) = {Φ ∈ Uf(ℬ) | a ∈ Φ} — all ultrafilters containing a.

Now we build a function f : ℬ → 2W by putting: f (a) = Uf(a)

Next we prove:
1 f preserves complement: f (a) = f (a).
2 f preserves conjunction: f (a ∧ b) = f (a) ∩ f (b).
3 f is injective: if a ̸= b then f (a) ̸= f (b)

In general, f is not surjective!
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Conclusion

Any finite Boolean algebra ℬ is isomorphic to 2W, for some set W .

Any Boolean algebra ℬ is isomorphic to some subalgebra S ⊆ 2W, for
some set W .

The set of all ultrafilters Uf(ℬ) has some topology (Stone space).
The above embedding f : ℬ → 2Uf(ℬ) “respects” this topology: any
homomorphism between Boolean algebras corresponds to some
continuous mapping between Stone spaces.

Moreover, we have a duality between the category of Boolean algebras
and the category of Stone spaces.

End of lecture 10. Thank you!
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