ACCL Lecture 9: Applications of ultraproducts: Compactness. Criterion of axiomatizability

Evgeny Zolin

Department of Mathematical Logic and Theory of Algorithms Faculty of Mechanics and Mathematics Moscow State University

> Advanced Course in Classical Logic April 21st, 2021

For a family of models $(M_i)_{i \in I}$, we build their ultraproduct $N = \prod_{i \in I}^{\Phi} M_i$.

For a family of models $(M_i)_{i \in I}$, we build their ultraproduct $N = \prod_{i \in I}^{\Phi} M_i$.

Theorem (Łoś, 1955)

Suppose $M = \prod_{i \in I}^{\Phi} M_i$ is the ultraproduct of models. Then, for any closed formula (sentence) A, we have:

 $N \models A \iff \{i \in \mathbf{I} \mid M_i \models A\} \in \Phi.$

For a family of models $(M_i)_{i \in I}$, we build their ultraproduct $N = \prod_{i \in I}^{\Phi} M_i$.

Theorem (Łoś, 1955)

Suppose $M = \prod_{i \in I}^{\Phi} M_i$ is the ultraproduct of models. Then, for any closed formula (sentence) A, we have:

 $N \models A \iff \{i \in I \mid M_i \models A\} \in \Phi.$

A holds in the ultraproduct $M \iff A$ holds in almost all models M_i .

For a family of models $(M_i)_{i \in I}$, we build their ultraproduct $N = \prod_{i \in I}^{\Phi} M_i$.

Theorem (Łoś, 1955)

Suppose $M = \prod_{i \in I}^{\Phi} M_i$ is the ultraproduct of models. Then, for any closed formula (sentence) A, we have:

$$N \models A \iff \{i \in I \mid M_i \models A\} \in \Phi.$$

A holds in the ultraproduct $M \iff A$ holds in almost all models M_i .

If $M_i = M$ for all $i \in I$, then we denote $M^{\Phi} = \prod_{i \in I}^{\Phi} M_i$.

For a family of models $(M_i)_{i \in I}$, we build their ultraproduct $N = \prod_{i \in I}^{\Phi} M_i$.

Theorem (Łoś, 1955)

Suppose $M = \prod_{i \in I}^{\Phi} M_i$ is the ultraproduct of models. Then, for any closed formula (sentence) A, we have:

$$N \models A \iff \{i \in \mathbf{I} \mid M_i \models A\} \in \Phi.$$

A holds in the ultraproduct $M \iff A$ holds in almost all models M_i .

If
$$M_i = M$$
 for all $i \in I$, then we denote $M^{\Phi} = \prod_{i \in I}^{\Phi} M_i$.

Corollary

For every sentence A: $M \models A \iff M^{\Phi} \models A$.

Evgeny Zolin, MSU

For a family of models $(M_i)_{i \in I}$, we build their ultraproduct $N = \prod_{i \in I}^{\Phi} M_i$.

Theorem (Łoś, 1955)

Suppose $M = \prod_{i \in I}^{\Phi} M_i$ is the ultraproduct of models. Then, for any closed formula (sentence) A, we have:

$$N \models A \iff \{i \in \mathbf{I} \mid M_i \models A\} \in \Phi.$$

A holds in the ultraproduct $M \iff A$ holds in almost all models M_i .

If
$$M_i = M$$
 for all $i \in I$, then we denote $M^{\Phi} = \prod_{i \in I}^{\Phi} M_i$.
Corollary
For every sentence A: $M \models A \iff M^{\Phi} \models A$. Thus: $M \equiv M^{\Phi}$.

Let \mathbb{K} be a class of models (in some fixed signature Σ).

Definition 1

A class of models $\mathbb K$ is called compact if, for any set of formulas $\Gamma,$

Let \mathbb{K} be a class of models (in some fixed signature Σ).

Definition 1

A class of models $\mathbb K$ is called compact if, for any set of formulas Γ ,

if every finite subset $\Delta \subseteq \Gamma$ has a model in \mathbb{K} , then the whole set Γ has a model in \mathbb{K} .

Let \mathbb{K} be a class of models (in some fixed signature Σ).

Definition 1

A class of models $\mathbb K$ is called compact if, for any set of formulas Γ ,

if every finite subset $\Delta \subseteq \Gamma$ has a model in \mathbb{K} , then the whole set Γ has a model in \mathbb{K} .

 $\label{eq:Gamma} \Gamma \text{ has a model in } \mathbb{K} \hspace{.1in} \leftrightarrows \hspace{.1in} \Gamma \text{ is satisfiable in } \mathbb{K}$

Let \mathbb{K} be a class of models (in some fixed signature Σ).

Definition 1

A class of models $\mathbb K$ is called compact if, for any set of formulas Γ ,

if every finite subset $\Delta \subseteq \Gamma$ has a model in \mathbb{K} , then the whole set Γ has a model in \mathbb{K} .

 $\label{eq:Gamma} \Gamma \text{ has a model in } \mathbb{K} \hspace{.1in} \leftrightarrows \hspace{.1in} \Gamma \text{ is satisfiable in } \mathbb{K}$

Definition 2

 $\mathbb K$ is called compact if, for any set of formulas Γ closed under $\wedge,$ we have:

if every formula $A \in \Gamma$ has a model in \mathbb{K} , then the whole set Γ has a model in \mathbb{K} .

Let \mathbb{K} be a class of models (in some fixed signature Σ).

Definition 1

A class of models $\mathbb K$ is called compact if, for any set of formulas Γ ,

if every finite subset $\Delta \subseteq \Gamma$ has a model in \mathbb{K} , then the whole set Γ has a model in \mathbb{K} .

 $\label{eq:Gamma} \Gamma \text{ has a model in } \mathbb{K} \hspace{.1in} \leftrightarrows \hspace{.1in} \Gamma \text{ is satisfiable in } \mathbb{K}$

Definition 2

 $\mathbb K$ is called compact if, for any set of formulas Γ closed under $\wedge,$ we have:

if every formula $A \in \Gamma$ has a model in \mathbb{K} , then the whole set Γ has a model in \mathbb{K} .

 Γ is closed under \land means: $A, B \in \Gamma \implies (A \land B) \in \Gamma$.

A class of models $\mathbb K$ is called compact if, for any set of formulas $\Gamma,$

 $\begin{array}{l} \text{if every finite subset } \Delta \subseteq \Gamma \text{ has a model in } \mathbb{K}, \\ \text{ then the whole set } \Gamma \text{ has a model in } \mathbb{K}. \end{array}$

Definition 2

 $\mathbb K$ is called compact if, for any set of formulas Γ closed under $\wedge,$ we have:

if every formula $A \in \Gamma$ has a model in \mathbb{K} , then the whole set Γ has a model in \mathbb{K} .

(1) \Rightarrow (2) Assume: Γ be closed under \land ; every $A \in \Gamma$ has a model in \mathbb{K} .

A class of models $\mathbb K$ is called compact if, for any set of formulas $\Gamma,$

 $\begin{array}{l} \text{if every finite subset } \Delta \subseteq \Gamma \text{ has a model in } \mathbb{K}, \\ \text{ then the whole set } \Gamma \text{ has a model in } \mathbb{K}. \end{array}$

Definition 2

 $\mathbb K$ is called compact if, for any set of formulas Γ closed under $\wedge,$ we have:

if every formula $A \in \Gamma$ has a model in \mathbb{K} , then the whole set Γ has a model in \mathbb{K} .

(1) \Rightarrow (2) Assume: Γ be closed under \land ; every $A \in \Gamma$ has a model in \mathbb{K} . For any finite $\Delta = \{A_1, \ldots, A_n\} \subseteq \Gamma$, we have $A := (A_1 \land \ldots \land A_n) \in \Gamma$.

A class of models $\mathbb K$ is called compact if, for any set of formulas $\Gamma,$

 $\begin{array}{l} \text{if every finite subset } \Delta \subseteq \Gamma \text{ has a model in } \mathbb{K}, \\ \text{ then the whole set } \Gamma \text{ has a model in } \mathbb{K}. \end{array}$

Definition 2

 $\mathbb K$ is called compact if, for any set of formulas Γ closed under $\wedge,$ we have:

if every formula $A \in \Gamma$ has a model in \mathbb{K} , then the whole set Γ has a model in \mathbb{K} .

(1) \Rightarrow (2) Assume: Γ be closed under \land ; every $A \in \Gamma$ has a model in \mathbb{K} . For any finite $\Delta = \{A_1, \ldots, A_n\} \subseteq \Gamma$, we have $A := (A_1 \land \ldots \land A_n) \in \Gamma$. So A (and hence Δ) has a model in \mathbb{K} .

A class of models $\mathbb K$ is called compact if, for any set of formulas $\Gamma,$

 $\begin{array}{l} \text{if every finite subset } \Delta \subseteq \Gamma \text{ has a model in } \mathbb{K}, \\ \text{ then the whole set } \Gamma \text{ has a model in } \mathbb{K}. \end{array}$

Definition 2

 $\mathbb K$ is called compact if, for any set of formulas Γ closed under $\wedge,$ we have:

if every formula $A \in \Gamma$ has a model in \mathbb{K} , then the whole set Γ has a model in \mathbb{K} .

(1) \Rightarrow (2) Assume: Γ be closed under \land ; every $A \in \Gamma$ has a model in \mathbb{K} . For any finite $\Delta = \{A_1, \ldots, A_n\} \subseteq \Gamma$, we have $A := (A_1 \land \ldots \land A_n) \in \Gamma$. So A (and hence Δ) has a model in \mathbb{K} . Therefore, Γ has a model in \mathbb{K} .

A class of models $\mathbb K$ is called compact if, for any set of formulas $\Gamma,$

 $\begin{array}{l} \text{if every finite subset } \Delta \subseteq \Gamma \text{ has a model in } \mathbb{K}, \\ \text{ then the whole set } \Gamma \text{ has a model in } \mathbb{K}. \end{array}$

Definition 2

 $\mathbb K$ is called compact if, for any set of formulas Γ closed under $\wedge,$ we have:

if every formula $A \in \Gamma$ has a model in \mathbb{K} , then the whole set Γ has a model in \mathbb{K} .

(1) \Rightarrow (2) Assume: Γ be closed under \land ; every $A \in \Gamma$ has a model in \mathbb{K} . For any finite $\Delta = \{A_1, \ldots, A_n\} \subseteq \Gamma$, we have $A := (A_1 \land \ldots \land A_n) \in \Gamma$. So A (and hence Δ) has a model in \mathbb{K} . Therefore, Γ has a model in \mathbb{K} . (2) \Rightarrow (1) Let $\Gamma \subseteq Fm$ and every finite $\Delta \subseteq \Gamma$ has a model in \mathbb{K} .

A class of models $\mathbb K$ is called compact if, for any set of formulas $\Gamma,$

 $\begin{array}{l} \text{if every finite subset } \Delta \subseteq \Gamma \text{ has a model in } \mathbb{K}, \\ \text{ then the whole set } \Gamma \text{ has a model in } \mathbb{K}. \end{array}$

Definition 2

 $\mathbb K$ is called compact if, for any set of formulas Γ closed under $\wedge,$ we have:

if every formula $A \in \Gamma$ has a model in \mathbb{K} , then the whole set Γ has a model in \mathbb{K} .

(1)⇒(2) Assume: Γ be closed under ∧; every A ∈ Γ has a model in K.
For any finite Δ = {A₁,..., A_n} ⊆ Γ, we have A := (A₁ ∧ ... ∧ A_n) ∈ Γ.
So A (and hence Δ) has a model in K. Therefore, Γ has a model in K.
(2)⇒(1) Let Γ ⊆ Fm and every finite Δ ⊆ Γ has a model in K.
Take the closure of Γ under conjunction: Γ^.

A class of models $\mathbb K$ is called compact if, for any set of formulas $\Gamma,$

 $\begin{array}{l} \text{if every finite subset } \Delta \subseteq \Gamma \text{ has a model in } \mathbb{K}, \\ \text{ then the whole set } \Gamma \text{ has a model in } \mathbb{K}. \end{array}$

Definition 2

 $\mathbb K$ is called compact if, for any set of formulas Γ closed under $\wedge,$ we have:

if every formula $A \in \Gamma$ has a model in \mathbb{K} , then the whole set Γ has a model in \mathbb{K} .

(1) \Rightarrow (2) Assume: Γ be closed under \land ; every $A \in \Gamma$ has a model in \mathbb{K} . For any finite $\Delta = \{A_1, \ldots, A_n\} \subseteq \Gamma$, we have $A := (A_1 \land \ldots \land A_n) \in \Gamma$. So A (and hence Δ) has a model in \mathbb{K} . Therefore, Γ has a model in \mathbb{K} . (2) \Rightarrow (1) Let $\Gamma \subseteq Fm$ and every finite $\Delta \subseteq \Gamma$ has a model in \mathbb{K} . Take the closure of Γ under conjunction: Γ^{\land} . Clearly: $M \models \Gamma \Leftrightarrow M \models \Gamma^{\land}$.

A class of models $\mathbb K$ is called compact if, for any set of formulas $\Gamma,$

 $\begin{array}{l} \text{if every finite subset } \Delta \subseteq \Gamma \text{ has a model in } \mathbb{K}, \\ \text{ then the whole set } \Gamma \text{ has a model in } \mathbb{K}. \end{array}$

Definition 2

 $\mathbb K$ is called compact if, for any set of formulas Γ closed under $\wedge,$ we have:

if every formula $A \in \Gamma$ has a model in \mathbb{K} , then the whole set Γ has a model in \mathbb{K} .

(1) \Rightarrow (2) Assume: Γ be closed under \land ; every $A \in \Gamma$ has a model in \mathbb{K} . For any finite $\Delta = \{A_1, \ldots, A_n\} \subseteq \Gamma$, we have $A := (A_1 \land \ldots \land A_n) \in \Gamma$. So A (and hence Δ) has a model in \mathbb{K} . Therefore, Γ has a model in \mathbb{K} . (2) \Rightarrow (1) Let $\Gamma \subseteq Fm$ and every finite $\Delta \subseteq \Gamma$ has a model in \mathbb{K} . Take the closure of Γ under conjunction: Γ^{\land} . Clearly: $M \models \Gamma \Leftrightarrow M \models \Gamma^{\land}$. Each formula $A \in \Gamma^{\land}$ has a model in \mathbb{K} ,

A class of models $\mathbb K$ is called compact if, for any set of formulas $\Gamma,$

 $\begin{array}{l} \text{if every finite subset } \Delta \subseteq \Gamma \text{ has a model in } \mathbb{K}, \\ \text{ then the whole set } \Gamma \text{ has a model in } \mathbb{K}. \end{array}$

Definition 2

 $\mathbb K$ is called compact if, for any set of formulas Γ closed under $\wedge,$ we have:

if every formula $A \in \Gamma$ has a model in \mathbb{K} , then the whole set Γ has a model in \mathbb{K} .

(1) \Rightarrow (2) Assume: Γ be closed under \land ; every $A \in \Gamma$ has a model in \mathbb{K} . For any finite $\Delta = \{A_1, \ldots, A_n\} \subseteq \Gamma$, we have $A := (A_1 \land \ldots \land A_n) \in \Gamma$. So A (and hence Δ) has a model in \mathbb{K} . Therefore, Γ has a model in \mathbb{K} . (2) \Rightarrow (1) Let $\Gamma \subseteq Fm$ and every finite $\Delta \subseteq \Gamma$ has a model in \mathbb{K} . Take the closure of Γ under conjunction: Γ^{\land} . Clearly: $M \models \Gamma \Leftrightarrow M \models \Gamma^{\land}$. Each formula $A \in \Gamma^{\land}$ has a model in \mathbb{K} , since $A = (A_1 \land \ldots \land A_n)$, where $\Delta = \{A_1, \ldots, A_n\} \subseteq \Gamma$ has a model in \mathbb{K} .

A class of models $\mathbb K$ is called compact if, for any set of formulas $\Gamma,$

 $\begin{array}{l} \text{if every finite subset } \Delta \subseteq \Gamma \text{ has a model in } \mathbb{K}, \\ \text{ then the whole set } \Gamma \text{ has a model in } \mathbb{K}. \end{array}$

Definition 2

 $\mathbb K$ is called compact if, for any set of formulas Γ closed under $\wedge,$ we have:

if every formula $A \in \Gamma$ has a model in \mathbb{K} , then the whole set Γ has a model in \mathbb{K} .

(1) \Rightarrow (2) Assume: Γ be closed under \land ; every $A \in \Gamma$ has a model in \mathbb{K} . For any finite $\Delta = \{A_1, \ldots, A_n\} \subseteq \Gamma$, we have $A := (A_1 \land \ldots \land A_n) \in \Gamma$. So A (and hence Δ) has a model in \mathbb{K} . Therefore, Γ has a model in \mathbb{K} . (2) \Rightarrow (1) Let $\Gamma \subseteq Fm$ and every finite $\Delta \subseteq \Gamma$ has a model in \mathbb{K} . Take the closure of Γ under conjunction: Γ^{\land} . Clearly: $M \models \Gamma \Leftrightarrow M \models \Gamma^{\land}$. Each formula $A \in \Gamma^{\land}$ has a model in \mathbb{K} , since $A = (A_1 \land \ldots \land A_n)$, where $\Delta = \{A_1, \ldots, A_n\} \subseteq \Gamma$ has a model in \mathbb{K} . Thus, Γ has a model in \mathbb{K} .

Theorem (Compactness theorem)

If a class of models \mathbb{K} is closed under ultraproducts, then \mathbb{K} is compact.

Theorem (Compactness theorem)

If a class of models $\mathbb K$ is closed under ultraproducts, then $\ \mathbb K$ is compact.

We will use Definition 2 of compactness.

Take any set of formulas $\Gamma = \{A_i \mid i \in I\}$ closed under \wedge .

Theorem (Compactness theorem)

If a class of models \mathbb{K} is closed under ultraproducts, then \mathbb{K} is compact.

We will use Definition 2 of compactness.

Take any set of formulas $\Gamma = \{A_i \mid i \in I\}$ closed under \land . Assume that every formula A_i has a model $M_i \in \mathbb{K}$. So $M_i \models A_i$.

Theorem (Compactness theorem)

If a class of models $\mathbb K$ is closed under ultraproducts, then $\ \mathbb K$ is compact.

We will use Definition 2 of compactness.

Take any set of formulas $\Gamma = \{A_i \mid i \in I\}$ closed under \land . Assume that every formula A_i has a model $M_i \in \mathbb{K}$. So $M_i \models A_i$. For every $i \in I$, consider $X_i := \{\ell \in I \mid M_\ell \models A_i\}$. So $X_i \subseteq I$.

Theorem (Compactness theorem)

If a class of models \mathbb{K} is closed under ultraproducts, then \mathbb{K} is compact.

We will use Definition 2 of compactness.

Take any set of formulas $\Gamma = \{A_i \mid i \in I\}$ closed under \land . Assume that every formula A_i has a model $M_i \in \mathbb{K}$. So $M_i \models A_i$. For every $i \in I$, consider $X_i := \{\ell \in I \mid M_\ell \models A_i\}$. So $X_i \subseteq I$.

Proposition. The family of sets $\Psi = \{X_i \mid i \in I\}$ has the F.I.P.

Theorem (Compactness theorem)

If a class of models \mathbb{K} is closed under ultraproducts, then \mathbb{K} is compact.

We will use Definition 2 of compactness.

Take any set of formulas $\Gamma = \{A_i \mid i \in I\}$ closed under \land . Assume that every formula A_i has a model $M_i \in \mathbb{K}$. So $M_i \models A_i$. For every $i \in I$, consider $X_i := \{\ell \in I \mid M_\ell \models A_i\}$. So $X_i \subseteq I$.

Proposition. The family of sets $\Psi = \{X_i \mid i \in I\}$ has the F.I.P. $X_{i_1} \cap \ldots \cap X_{i_n} \neq \emptyset$?

Theorem (Compactness theorem)

If a class of models \mathbb{K} is closed under ultraproducts, then \mathbb{K} is compact.

We will use Definition 2 of compactness.

Take any set of formulas $\Gamma = \{A_i \mid i \in I\}$ closed under \land . Assume that every formula A_i has a model $M_i \in \mathbb{K}$. So $M_i \models A_i$. For every $i \in I$, consider $X_i := \{\ell \in I \mid M_\ell \models A_i\}$. So $X_i \subseteq I$.

Proposition. The family of sets $\Psi = \{X_i \mid i \in I\}$ has the F.I.P. $\ell \in X_{i_1} \cap \ldots \cap X_{i_n}$

Theorem (Compactness theorem)

If a class of models \mathbb{K} is closed under ultraproducts, then \mathbb{K} is compact.

We will use Definition 2 of compactness.

Take any set of formulas $\Gamma = \{A_i \mid i \in I\}$ closed under \land . Assume that every formula A_i has a model $M_i \in \mathbb{K}$. So $M_i \models A_i$. For every $i \in I$, consider $X_i := \{\ell \in I \mid M_\ell \models A_i\}$. So $X_i \subseteq I$.

Proposition. The family of sets $\Psi = \{X_i \mid i \in I\}$ has the F.I.P. $\ell \in X_{i_1} \cap \ldots \cap X_{i_n}$, where $A_\ell := (A_{i_1} \wedge \ldots \wedge A_{i_n}) \in \Gamma$,

Theorem (Compactness theorem)

If a class of models \mathbb{K} is closed under ultraproducts, then \mathbb{K} is compact.

We will use Definition 2 of compactness.

Take any set of formulas $\Gamma = \{A_i \mid i \in I\}$ closed under \land . Assume that every formula A_i has a model $M_i \in \mathbb{K}$. So $M_i \models A_i$. For every $i \in I$, consider $X_i := \{\ell \in I \mid M_\ell \models A_i\}$. So $X_i \subseteq I$.

Proposition. The family of sets $\Psi = \{X_i \mid i \in I\}$ has the F.I.P. $\ell \in X_{i_1} \cap \ldots \cap X_{i_n}$, where $A_\ell := (A_{i_1} \wedge \ldots \wedge A_{i_n}) \in \Gamma$, since $M_\ell \models A_\ell$.

Theorem (Compactness theorem)

If a class of models \mathbb{K} is closed under ultraproducts, then \mathbb{K} is compact.

We will use Definition 2 of compactness.

Take any set of formulas $\Gamma = \{A_i \mid i \in I\}$ closed under \land . Assume that every formula A_i has a model $M_i \in \mathbb{K}$. So $M_i \models A_i$. For every $i \in I$, consider $X_i := \{\ell \in I \mid M_\ell \models A_i\}$. So $X_i \subseteq I$.

Proposition. The family of sets $\Psi = \{X_i \mid i \in I\}$ has the F.I.P. $\ell \in X_{i_1} \cap \ldots \cap X_{i_n}$, where $A_\ell := (A_{i_1} \wedge \ldots \wedge A_{i_n}) \in \Gamma$, since $M_\ell \models A_\ell$.

Hence $\Psi \subseteq \Phi$ for some ultrafilter Φ .

Theorem (Compactness theorem)

If a class of models $\mathbb K$ is closed under ultraproducts, then $\ \mathbb K$ is compact.

We will use Definition 2 of compactness.

Take any set of formulas $\Gamma = \{A_i \mid i \in I\}$ closed under \land . Assume that every formula A_i has a model $M_i \in \mathbb{K}$. So $M_i \models A_i$. For every $i \in I$, consider $X_i := \{\ell \in I \mid M_\ell \models A_i\}$. So $X_i \subseteq I$.

Proposition. The family of sets $\Psi = \{X_i \mid i \in I\}$ has the F.I.P. $\ell \in X_{i_1} \cap \ldots \cap X_{i_n}$, where $A_\ell := (A_{i_1} \wedge \ldots \wedge A_{i_n}) \in \Gamma$, since $M_\ell \models A_\ell$.

Hence $\Psi \subseteq \Phi$ for some ultrafilter Φ . Build $M := \prod_{i \in I}^{\Phi} M_i$.

Theorem (Compactness theorem)

If a class of models $\mathbb K$ is closed under ultraproducts, then $\ \mathbb K$ is compact.

We will use Definition 2 of compactness.

Take any set of formulas $\Gamma = \{A_i \mid i \in I\}$ closed under \land . Assume that every formula A_i has a model $M_i \in \mathbb{K}$. So $M_i \models A_i$. For every $i \in I$, consider $X_i := \{\ell \in I \mid M_\ell \models A_i\}$. So $X_i \subseteq I$.

Proposition. The family of sets $\Psi = \{X_i \mid i \in I\}$ has the F.I.P. $\ell \in X_{i_1} \cap \ldots \cap X_{i_n}$, where $A_\ell := (A_{i_1} \wedge \ldots \wedge A_{i_n}) \in \Gamma$, since $M_\ell \models A_\ell$.

Hence $\Psi \subseteq \Phi$ for some ultrafilter Φ . Build $M := \prod_{i \in I} \Phi_i$. Then $M \in \mathbb{K}$.

Theorem (Compactness theorem)

If a class of models $\mathbb K$ is closed under ultraproducts, then $\ \mathbb K$ is compact.

We will use Definition 2 of compactness.

Take any set of formulas $\Gamma = \{A_i \mid i \in I\}$ closed under \land . Assume that every formula A_i has a model $M_i \in \mathbb{K}$. So $M_i \models A_i$. For every $i \in I$, consider $X_i := \{\ell \in I \mid M_\ell \models A_i\}$. So $X_i \subseteq I$.

Proposition. The family of sets $\Psi = \{X_i \mid i \in I\}$ has the F.I.P. $\ell \in X_{i_1} \cap \ldots \cap X_{i_n}$, where $A_\ell := (A_{i_1} \wedge \ldots \wedge A_{i_n}) \in \Gamma$, since $M_\ell \models A_\ell$.

Hence $\Psi \subseteq \Phi$ for some ultrafilter Φ . Build $M := \prod_{i \in I}^{\Phi} M_i$. Then $M \in \mathbb{K}$. Now $M \models A_i$ for every $i \in I$,

Theorem (Compactness theorem)

If a class of models $\mathbb K$ is closed under ultraproducts, then $\ \mathbb K$ is compact.

We will use Definition 2 of compactness.

Take any set of formulas $\Gamma = \{A_i \mid i \in I\}$ closed under \land . Assume that every formula A_i has a model $M_i \in \mathbb{K}$. So $M_i \models A_i$. For every $i \in I$, consider $X_i := \{\ell \in I \mid M_\ell \models A_i\}$. So $X_i \subseteq I$.

Proposition. The family of sets $\Psi = \{X_i \mid i \in I\}$ has the F.I.P. $\ell \in X_{i_1} \cap \ldots \cap X_{i_n}$, where $A_\ell := (A_{i_1} \wedge \ldots \wedge A_{i_n}) \in \Gamma$, since $M_\ell \models A_\ell$.

Hence $\Psi \subseteq \Phi$ for some ultrafilter Φ . Build $M := \prod_{i \in I}^{\Phi} M_i$. Then $M \in \mathbb{K}$. Now $M \models A_i$ for every $i \in I$, since $\{\ell \in I \mid M_\ell \models A_i\}$
$\mathsf{Ultraproducts} \Longrightarrow \mathsf{compactness}$

Theorem (Compactness theorem)

If a class of models $\mathbb K$ is closed under ultraproducts, then $\ \mathbb K$ is compact.

We will use Definition 2 of compactness.

Take any set of formulas $\Gamma = \{A_i \mid i \in I\}$ closed under \land . Assume that every formula A_i has a model $M_i \in \mathbb{K}$. So $M_i \models A_i$. For every $i \in I$, consider $X_i := \{\ell \in I \mid M_\ell \models A_i\}$. So $X_i \subseteq I$.

Proposition. The family of sets $\Psi = \{X_i \mid i \in I\}$ has the F.I.P. $\ell \in X_{i_1} \cap \ldots \cap X_{i_n}$, where $A_\ell := (A_{i_1} \wedge \ldots \wedge A_{i_n}) \in \Gamma$, since $M_\ell \models A_\ell$.

Hence $\Psi \subseteq \Phi$ for some ultrafilter Φ . Build $M := \prod_{i \in I}^{\Phi} M_i$. Then $M \in \mathbb{K}$. Now $M \models A_i$ for every $i \in I$, since $\{\ell \in I \mid M_\ell \models A_i\} = X_i \in \Phi$.

$\mathsf{Ultraproducts} \Longrightarrow \mathsf{compactness}$

Theorem (Compactness theorem)

If a class of models $\mathbb K$ is closed under ultraproducts, then $\ \mathbb K$ is compact.

We will use Definition 2 of compactness.

Take any set of formulas $\Gamma = \{A_i \mid i \in I\}$ closed under \land . Assume that every formula A_i has a model $M_i \in \mathbb{K}$. So $M_i \models A_i$. For every $i \in I$, consider $X_i := \{\ell \in I \mid M_\ell \models A_i\}$. So $X_i \subseteq I$.

Proposition. The family of sets $\Psi = \{X_i \mid i \in I\}$ has the F.I.P. $\ell \in X_{i_1} \cap \ldots \cap X_{i_n}$, where $A_\ell := (A_{i_1} \wedge \ldots \wedge A_{i_n}) \in \Gamma$, since $M_\ell \models A_\ell$.

Hence $\Psi \subseteq \Phi$ for some ultrafilter Φ . Build $M := \prod_{i \in I}^{\Phi} M_i$. Then $M \in \mathbb{K}$. Now $M \models A_i$ for every $i \in I$, since $\{\ell \in I \mid M_\ell \models A_i\} = X_i \in \Phi$.

Corollary (Мальцев). The class of all models (over Σ) is compact.

Definition

A class \mathbb{K} is elementary (or axiomatizable, or first-order definable), if $\mathbb{K} = \text{Models}(\Gamma) = \{M \mid M \models \Gamma\}$, for some set of sentences $\Gamma \subseteq \text{Fm}$.

Definition

A class \mathbb{K} is elementary (or axiomatizable, or first-order definable), if $\mathbb{K} = \text{Models}(\Gamma) = \{M \mid M \models \Gamma\}$, for some set of sentences $\Gamma \subseteq \text{Fm}$.

Examples: the class of all groups, fields, linear orders, infinite groups, algebraically closed fields etc.

Definition

A class \mathbb{K} is elementary (or axiomatizable, or first-order definable), if $\mathbb{K} = \text{Models}(\Gamma) = \{M \mid M \models \Gamma\}$, for some set of sentences $\Gamma \subseteq \text{Fm}$.

Examples: the class of all groups, fields, linear orders, infinite groups, algebraically closed fields etc. But not: finite groups!

Definition

A class \mathbb{K} is elementary (or axiomatizable, or first-order definable), if $\mathbb{K} = \text{Models}(\Gamma) = \{M \mid M \models \Gamma\}$, for some set of sentences $\Gamma \subseteq \text{Fm}$.

Examples: the class of all groups, fields, linear orders, infinite groups, algebraically closed fields etc. But not: finite groups!

When \mathbb{K} is elementary?

A class \mathbb{K} is elementary (or axiomatizable, or first-order definable), if $\mathbb{K} = \text{Models}(\Gamma) = \{M \mid M \models \Gamma\}$, for some set of sentences $\Gamma \subseteq \text{Fm}$.

Examples: the class of all groups, fields, linear orders, infinite groups, algebraically closed fields etc. But not: finite groups!

When \mathbb{K} is elementary? What are necessary and sufficient conditions?

A class \mathbb{K} is elementary (or axiomatizable, or first-order definable), if $\mathbb{K} = \text{Models}(\Gamma) = \{M \mid M \models \Gamma\}$, for some set of sentences $\Gamma \subseteq \text{Fm}$.

Examples: the class of all groups, fields, linear orders, infinite groups, algebraically closed fields etc. But not: finite groups!

When \mathbb{K} is elementary? What are necessary and sufficient conditions? "Structural" conditions (in terms of closure under operations / relations)

A class \mathbb{K} is elementary (or axiomatizable, or first-order definable), if $\mathbb{K} = \text{Models}(\Gamma) = \{M \mid M \models \Gamma\}$, for some set of sentences $\Gamma \subseteq \text{Fm}$.

Examples: the class of all groups, fields, linear orders, infinite groups, algebraically closed fields etc. But not: finite groups!

When \mathbb{K} is elementary? What are necessary and sufficient conditions? "Structural" conditions (in terms of closure under operations / relations)

• \mathbb{K} is elementary \implies \mathbb{K} is closed under ultraproducts.

A class \mathbb{K} is elementary (or axiomatizable, or first-order definable), if $\mathbb{K} = \text{Models}(\Gamma) = \{M \mid M \models \Gamma\}$, for some set of sentences $\Gamma \subseteq \text{Fm}$.

Examples: the class of all groups, fields, linear orders, infinite groups, algebraically closed fields etc. But not: finite groups!

When \mathbb{K} is elementary? What are necessary and sufficient conditions? "Structural" conditions (in terms of closure under operations / relations)

A class \mathbb{K} is elementary (or axiomatizable, or first-order definable), if $\mathbb{K} = \text{Models}(\Gamma) = \{M \mid M \models \Gamma\}$, for some set of sentences $\Gamma \subseteq \text{Fm}$.

Examples: the class of all groups, fields, linear orders, infinite groups, algebraically closed fields etc. But not: finite groups!

When \mathbb{K} is elementary? What are necessary and sufficient conditions? "Structural" conditions (in terms of closure under operations / relations)

- \mathbb{K} is elementary $\implies \mathbb{K}$ is closed under \equiv . Indeed, if $M \models \Gamma$ and $M \equiv N$, then $N \models \Gamma$.

A class \mathbb{K} is elementary (or axiomatizable, or first-order definable), if $\mathbb{K} = \text{Models}(\Gamma) = \{M \mid M \models \Gamma\}$, for some set of sentences $\Gamma \subseteq \text{Fm}$.

Examples: the class of all groups, fields, linear orders, infinite groups, algebraically closed fields etc. But not: finite groups!

When \mathbb{K} is elementary? What are necessary and sufficient conditions? "Structural" conditions (in terms of closure under operations / relations)

- \mathbb{K} is elementary $\implies \mathbb{K}$ is closed under \equiv . Indeed, if $M \models \Gamma$ and $M \equiv N$, then $N \models \Gamma$.

Eureka! These two conditions are sufficient!

 \mathbb{K} is elementary $\iff \mathbb{K}$ is closed under ultraproducts and \equiv .

 \mathbb{K} is elementary $\iff \mathbb{K}$ is closed under ultraproducts and \equiv .

(\Leftarrow) A natural candidate for the axiomatization of \mathbb{K} is...

 \mathbb{K} is elementary $\iff \mathbb{K}$ is closed under ultraproducts and \equiv .

(\Leftarrow) A natural candidate for the axiomatization of \mathbb{K} is... its theory:

 $\Gamma := \text{Theory}(\mathbb{K}) = \{A \in \text{Fm} \mid \mathbb{K} \models A\}.$

(\Leftarrow) A natural candidate for the axiomatization of \mathbb{K} is... its theory:

```
\Gamma := \text{Theory}(\mathbb{K}) = \{A \in \text{Fm} \mid \mathbb{K} \models A\}.
```

We prove: $\mathbb{K} = Models(\Gamma)$.

(\Leftarrow) A natural candidate for the axiomatization of \mathbb{K} is... its theory:

```
\Gamma := \text{Theory}(\mathbb{K}) = \{A \in \text{Fm} \mid \mathbb{K} \models A\}.
```

We prove: $\mathbb{K} = Models(\Gamma)$. (\subseteq) Trivial.

(\Leftarrow) A natural candidate for the axiomatization of \mathbb{K} is... its theory:

```
\Gamma := \text{Theory}(\mathbb{K}) = \{A \in \text{Fm} \mid \mathbb{K} \models A\}.
```

```
We prove: \mathbb{K} = Models(\Gamma). (\subseteq) Trivial.
(\supseteq) Take any M \models \Gamma. Why M \in \mathbb{K}?
```

(\Leftarrow) A natural candidate for the axiomatization of \mathbb{K} is... its theory:

 $\Gamma := \text{Theory}(\mathbb{K}) = \{A \in \text{Fm} \mid \mathbb{K} \models A\}.$

We prove: $\mathbb{K} = \text{Models}(\Gamma)$. (\subseteq) Trivial. (\supseteq) Take any $M \models \Gamma$. Why $M \in \mathbb{K}$? Take its theory: T := Theory(M).

(\Leftarrow) A natural candidate for the axiomatization of \mathbb{K} is... its theory:

 $\Gamma := \text{Theory}(\mathbb{K}) = \{A \in \text{Fm} \mid \mathbb{K} \models A\}.$

We prove: $\mathbb{K} = \text{Models}(\Gamma)$. (\subseteq) Trivial. (\supseteq) Take any $M \models \Gamma$. Why $M \in \mathbb{K}$? Take its theory: T := Theory(M).

• **Proposition 1.** T has a model in the class \mathbb{K} .

(\Leftarrow) A natural candidate for the axiomatization of \mathbb{K} is... its theory:

 $\Gamma := \text{Theory}(\mathbb{K}) = \{A \in \text{Fm} \mid \mathbb{K} \models A\}.$

We prove: $\mathbb{K} = \text{Models}(\Gamma)$. (\subseteq) Trivial. (\supseteq) Take any $M \models \Gamma$. Why $M \in \mathbb{K}$? Take its theory: T := Theory(M).

• **Proposition 1.** T has a model in the class \mathbb{K} .

 \mathbb{K} is compact, so it suffices to show that every $A \in \mathcal{T}$ has a model in \mathbb{K} .

 \mathbb{K} is elementary $\iff \mathbb{K}$ is closed under ultraproducts and \equiv .

(\Leftarrow) A natural candidate for the axiomatization of $\mathbb K$ is... its theory:

 $\Gamma := \text{Theory}(\mathbb{K}) = \{A \in \text{Fm} \mid \mathbb{K} \models A\}.$

We prove: $\mathbb{K} = \text{Models}(\Gamma)$. (\subseteq) Trivial. (\supseteq) Take any $M \models \Gamma$. Why $M \in \mathbb{K}$? Take its theory: T := Theory(M).

• **Proposition 1.** T has a model in the class \mathbb{K} .

 \mathbb{K} is compact, so it suffices to show that every $A \in T$ has a model in \mathbb{K} . Assume the contrary: A does **not** have a model in \mathbb{K} . So, $\mathbb{K} \models \neg A$.

 \mathbb{K} is elementary $\iff \mathbb{K}$ is closed under ultraproducts and \equiv .

(\Leftarrow) A natural candidate for the axiomatization of \mathbb{K} is... its theory:

 $\Gamma := \text{Theory}(\mathbb{K}) = \{A \in \text{Fm} \mid \mathbb{K} \models A\}.$

We prove: $\mathbb{K} = \text{Models}(\Gamma)$. (\subseteq) Trivial. (\supseteq) Take any $M \models \Gamma$. Why $M \in \mathbb{K}$? Take its theory: T := Theory(M).

• **Proposition 1.** T has a model in the class \mathbb{K} .

 \mathbb{K} is compact, so it suffices to show that every $A \in T$ has a model in \mathbb{K} . Assume the contrary: A does **not** have a model in \mathbb{K} . So, $\mathbb{K} \models \neg A$. Then $(\neg A) \in \Gamma$.

 \mathbb{K} is elementary $\iff \mathbb{K}$ is closed under ultraproducts and \equiv .

(\Leftarrow) A natural candidate for the axiomatization of \mathbb{K} is... its theory:

 $\Gamma := \text{Theory}(\mathbb{K}) = \{A \in \text{Fm} \mid \mathbb{K} \models A\}.$

We prove: $\mathbb{K} = \text{Models}(\Gamma)$. (\subseteq) Trivial. (\supseteq) Take any $M \models \Gamma$. Why $M \in \mathbb{K}$? Take its theory: T := Theory(M).

• **Proposition 1.** T has a model in the class \mathbb{K} .

 \mathbb{K} is compact, so it suffices to show that every $A \in T$ has a model in \mathbb{K} . Assume the contrary: A does **not** have a model in \mathbb{K} . So, $\mathbb{K} \models \neg A$. Then $(\neg A) \in \Gamma$. Then $M \models \neg A$. But $M \models A$, contradiction.

 \mathbb{K} is elementary $\iff \mathbb{K}$ is closed under ultraproducts and \equiv .

(\Leftarrow) A natural candidate for the axiomatization of \mathbb{K} is... its theory:

 $\Gamma := \text{Theory}(\mathbb{K}) = \{A \in \text{Fm} \mid \mathbb{K} \models A\}.$

We prove: $\mathbb{K} = \text{Models}(\Gamma)$. (\subseteq) Trivial. (\supseteq) Take any $M \models \Gamma$. Why $M \in \mathbb{K}$? Take its theory: T := Theory(M).

• **Proposition 1.** T has a model in the class \mathbb{K} .

 \mathbb{K} is compact, so it suffices to show that every $A \in T$ has a model in \mathbb{K} . Assume the contrary: A does **not** have a model in \mathbb{K} . So, $\mathbb{K} \models \neg A$. Then $(\neg A) \in \Gamma$. Then $M \models \neg A$. But $M \models A$, contradiction.

Hence \exists a model $N \in \mathbb{K}$ such that $N \models T$.

 \mathbb{K} is elementary $\iff \mathbb{K}$ is closed under ultraproducts and \equiv .

(\Leftarrow) A natural candidate for the axiomatization of \mathbb{K} is... its theory:

 $\Gamma := \text{Theory}(\mathbb{K}) = \{A \in \text{Fm} \mid \mathbb{K} \models A\}.$

We prove: $\mathbb{K} = \text{Models}(\Gamma)$. (\subseteq) Trivial. (\supseteq) Take any $M \models \Gamma$. Why $M \in \mathbb{K}$? Take its theory: T := Theory(M).

• **Proposition 1.** T has a model in the class \mathbb{K} .

 \mathbb{K} is compact, so it suffices to show that every $A \in T$ has a model in \mathbb{K} . Assume the contrary: A does **not** have a model in \mathbb{K} . So, $\mathbb{K} \models \neg A$. Then $(\neg A) \in \Gamma$. Then $M \models \neg A$. But $M \models A$, contradiction.

Hence \exists a model $N \in \mathbb{K}$ such that $N \models T$. Recall that T = Theory(M).

 \mathbb{K} is elementary $\iff \mathbb{K}$ is closed under ultraproducts and \equiv .

(\Leftarrow) A natural candidate for the axiomatization of \mathbb{K} is... its theory:

 $\Gamma := \text{Theory}(\mathbb{K}) = \{A \in \text{Fm} \mid \mathbb{K} \models A\}.$

We prove: $\mathbb{K} = \text{Models}(\Gamma)$. (\subseteq) Trivial. (\supseteq) Take any $M \models \Gamma$. Why $M \in \mathbb{K}$? Take its theory: T := Theory(M).

• **Proposition 1.** T has a model in the class \mathbb{K} .

 \mathbb{K} is compact, so it suffices to show that every $A \in T$ has a model in \mathbb{K} . Assume the contrary: A does **not** have a model in \mathbb{K} . So, $\mathbb{K} \models \neg A$. Then $(\neg A) \in \Gamma$. Then $M \models \neg A$. But $M \models A$, contradiction.

Hence \exists a model $N \in \mathbb{K}$ such that $N \models T$. Recall that T = Theory(M).

• Proposition 2. $M \equiv N$.

 \mathbb{K} is elementary $\iff \mathbb{K}$ is closed under ultraproducts and \equiv .

(\Leftarrow) A natural candidate for the axiomatization of \mathbb{K} is... its theory:

 $\Gamma := \text{Theory}(\mathbb{K}) = \{A \in \text{Fm} \mid \mathbb{K} \models A\}.$

We prove: $\mathbb{K} = \text{Models}(\Gamma)$. (\subseteq) Trivial. (\supseteq) Take any $M \models \Gamma$. Why $M \in \mathbb{K}$? Take its theory: T := Theory(M).

• **Proposition 1.** T has a model in the class \mathbb{K} .

 \mathbb{K} is compact, so it suffices to show that every $A \in T$ has a model in \mathbb{K} . Assume the contrary: A does **not** have a model in \mathbb{K} . So, $\mathbb{K} \models \neg A$. Then $(\neg A) \in \Gamma$. Then $M \models \neg A$. But $M \models A$, contradiction.

Hence \exists a model $N \in \mathbb{K}$ such that $N \models T$. Recall that T = Theory(M).

• **Proposition 2.** $M \equiv N$. (And hence $M \in \mathbb{K}$, Q.E.D.)

 \mathbb{K} is elementary $\iff \mathbb{K}$ is closed under ultraproducts and \equiv .

(\Leftarrow) A natural candidate for the axiomatization of \mathbb{K} is... its theory:

 $\Gamma := \text{Theory}(\mathbb{K}) = \{A \in \text{Fm} \mid \mathbb{K} \models A\}.$

We prove: $\mathbb{K} = \text{Models}(\Gamma)$. (\subseteq) Trivial. (\supseteq) Take any $M \models \Gamma$. Why $M \in \mathbb{K}$? Take its theory: T := Theory(M).

• **Proposition 1.** T has a model in the class \mathbb{K} .

 \mathbb{K} is compact, so it suffices to show that every $A \in T$ has a model in \mathbb{K} . Assume the contrary: A does **not** have a model in \mathbb{K} . So, $\mathbb{K} \models \neg A$. Then $(\neg A) \in \Gamma$. Then $M \models \neg A$. But $M \models A$, contradiction.

Hence \exists a model $N \in \mathbb{K}$ such that $N \models T$. Recall that T = Theory(M).

• Proposition 2. $M \equiv N$. (And hence $M \in \mathbb{K}$, Q.E.D.) $M \models A \Rightarrow A \in T \Rightarrow N \models A$.

 \mathbb{K} is elementary $\iff \mathbb{K}$ is closed under ultraproducts and \equiv .

(\Leftarrow) A natural candidate for the axiomatization of \mathbb{K} is... its theory:

 $\Gamma := \text{Theory}(\mathbb{K}) = \{A \in \text{Fm} \mid \mathbb{K} \models A\}.$

We prove: $\mathbb{K} = \text{Models}(\Gamma)$. (\subseteq) Trivial. (\supseteq) Take any $M \models \Gamma$. Why $M \in \mathbb{K}$? Take its theory: T := Theory(M).

• **Proposition 1.** T has a model in the class \mathbb{K} .

 \mathbb{K} is compact, so it suffices to show that every $A \in T$ has a model in \mathbb{K} . Assume the contrary: A does **not** have a model in \mathbb{K} . So, $\mathbb{K} \models \neg A$. Then $(\neg A) \in \Gamma$. Then $M \models \neg A$. But $M \models A$, contradiction.

Hence \exists a model $N \in \mathbb{K}$ such that $N \models T$. Recall that T = Theory(M).

• **Proposition 2.** $M \equiv N$. (And hence $M \in \mathbb{K}$, Q.E.D.) $M \models A \Rightarrow A \in T \Rightarrow N \models A$. Conversely, $M \not\models A \Rightarrow M \models \neg A$

 \mathbb{K} is elementary $\iff \mathbb{K}$ is closed under ultraproducts and \equiv .

(\Leftarrow) A natural candidate for the axiomatization of \mathbb{K} is... its theory:

 $\Gamma := \text{Theory}(\mathbb{K}) = \{A \in \text{Fm} \mid \mathbb{K} \models A\}.$

We prove: $\mathbb{K} = \text{Models}(\Gamma)$. (\subseteq) Trivial. (\supseteq) Take any $M \models \Gamma$. Why $M \in \mathbb{K}$? Take its theory: T := Theory(M).

• **Proposition 1.** T has a model in the class \mathbb{K} .

 \mathbb{K} is compact, so it suffices to show that every $A \in T$ has a model in \mathbb{K} . Assume the contrary: A does **not** have a model in \mathbb{K} . So, $\mathbb{K} \models \neg A$. Then $(\neg A) \in \Gamma$. Then $M \models \neg A$. But $M \models A$, contradiction.

Hence \exists a model $N \in \mathbb{K}$ such that $N \models T$. Recall that T = Theory(M).

• Proposition 2. $M \equiv N$. (And hence $M \in \mathbb{K}$, Q.E.D.) $M \models A \Rightarrow A \in T \Rightarrow N \models A$. Conversely, $M \not\models A \Rightarrow M \models \neg A \Rightarrow (as above) \Rightarrow N \models \neg A \Rightarrow N \not\models A$. Q.E.D.

Theorem (Axiomatizability criterion) \mathbb{K} is elementary $\iff \mathbb{K}$ is compact and closed under \equiv .

Axiomatizability criterion via compactness

Evgeny	Zolin,	MSU
--------	--------	-----

Finitely axiomatizable classes

Definition

 \mathbb{K} is called finitely axiomatizable if $\mathbb{K} = Models(A)$, for some formula A.

Finitely axiomatizable classes

Definition

 \mathbb{K} is called finitely axiomatizable if $\mathbb{K} = Models(A)$, for some formula A.

When \mathbb{K} is finitely axiomatizable?

Theorem (Keisler, 1961, Axiomatizability criterion)

 \mathbb{K} is axiomatizable $\iff \mathbb{K}$ is closed under ultraproducts and \equiv .

Theorem (Keisler, 1961, Axiomatizability criterion) \mathbb{K} is axiomatizable $\iff \mathbb{K}$ is closed under ultraproducts and \equiv .

Theorem (Keisler, 1961, Finite axiomatizability criterion)

 \mathbb{K} is fin. ax. $\iff \mathbb{K}$ and $\overline{\mathbb{K}}$ are closed under ultraproducts and \equiv .

Theorem (Keisler, 1961, Axiomatizability criterion) \mathbb{K} is axiomatizable $\iff \mathbb{K}$ is closed under ultraproducts and \equiv .

Theorem (Keisler, 1961, Finite axiomatizability criterion)

 \mathbb{K} is fin. ax. $\iff \mathbb{K}$ and $\overline{\mathbb{K}}$ are closed under ultraproducts and \equiv .

Proof. (\Longrightarrow) If \mathbb{K} is fin. ax., then $\mathbb{K} = \text{Models}(A)$ and $\overline{\mathbb{K}} = \text{Models}(\neg A)$.

Theorem (Keisler, 1961, Axiomatizability criterion) \mathbb{K} is axiomatizable $\iff \mathbb{K}$ is closed under ultraproducts and \equiv .

Theorem (Keisler, 1961, Finite axiomatizability criterion)

 \mathbb{K} is fin. ax. $\iff \mathbb{K}$ and $\overline{\mathbb{K}}$ are closed under ultraproducts and \equiv .

Proof. (\Longrightarrow) If \mathbb{K} is fin. ax., then $\mathbb{K} = \text{Models}(A)$ and $\overline{\mathbb{K}} = \text{Models}(\neg A)$. (\Leftarrow) By Theorem 1, \mathbb{K} and $\overline{\mathbb{K}}$ are both elementary:

 $\mathbb{K} = \mathsf{Models}(\Gamma) \quad \mathsf{and} \quad \overline{\mathbb{K}} = \mathsf{Models}(\Delta).$

Theorem (Keisler, 1961, Axiomatizability criterion) \mathbb{K} is axiomatizable $\iff \mathbb{K}$ is closed under ultraproducts and \equiv .

Theorem (Keisler, 1961, Finite axiomatizability criterion)

 \mathbb{K} is fin. ax. $\iff \mathbb{K}$ and $\overline{\mathbb{K}}$ are closed under ultraproducts and \equiv .

Proof. (\Longrightarrow) If \mathbb{K} is fin. ax., then $\mathbb{K} = \text{Models}(A)$ and $\overline{\mathbb{K}} = \text{Models}(\neg A)$.

(\Leftarrow) By Theorem 1, \mathbb{K} and $\overline{\mathbb{K}}$ are both elementary:

 $\mathbb{K} = \mathsf{Models}(\Gamma)$ and $\overline{\mathbb{K}} = \mathsf{Models}(\Delta)$.

Clearly, $\Gamma \cup \Delta$ has no models at all,

Theorem (Keisler, 1961, Axiomatizability criterion) \mathbb{K} is axiomatizable $\iff \mathbb{K}$ is closed under ultraproducts and \equiv .

Theorem (Keisler, 1961, Finite axiomatizability criterion)

 \mathbb{K} is fin. ax. $\iff \mathbb{K}$ and $\overline{\mathbb{K}}$ are closed under ultraproducts and \equiv .

Proof. (\Longrightarrow) If \mathbb{K} is fin. ax., then $\mathbb{K} = \text{Models}(A)$ and $\overline{\mathbb{K}} = \text{Models}(\neg A)$. (\Leftarrow) By Theorem 1, \mathbb{K} and $\overline{\mathbb{K}}$ are both elementary:

 $\mathbb{K} = \mathsf{Models}(\Gamma)$ and $\overline{\mathbb{K}} = \mathsf{Models}(\Delta)$.

Clearly, $\Gamma \cup \Delta$ has no models at all, since $\mathbb{K} \cap \overline{\mathbb{K}} = \emptyset$.

Theorem (Keisler, 1961, Axiomatizability criterion) \mathbb{K} is axiomatizable $\iff \mathbb{K}$ is closed under ultraproducts and \equiv .

Theorem (Keisler, 1961, Finite axiomatizability criterion)

 \mathbb{K} is fin. ax. $\iff \mathbb{K}$ and $\overline{\mathbb{K}}$ are closed under ultraproducts and \equiv .

Proof. (\Longrightarrow) If \mathbb{K} is fin. ax., then $\mathbb{K} = \text{Models}(A)$ and $\overline{\mathbb{K}} = \text{Models}(\neg A)$. (\Leftarrow) By Theorem 1, \mathbb{K} and $\overline{\mathbb{K}}$ are both elementary:

 $\mathbb{K} = \mathsf{Models}(\Gamma)$ and $\overline{\mathbb{K}} = \mathsf{Models}(\Delta)$.

Clearly, $\Gamma \cup \Delta$ has no models at all, since $\mathbb{K} \cap \overline{\mathbb{K}} = \emptyset$. By compactness, \exists finite $\Gamma' = \{A_1, \ldots, A_m\} \subseteq \Gamma$ and $\Delta' = \{B_1, \ldots, B_n\} \subseteq \Delta$ such that $\Gamma' \cup \Delta'$ has no models.

Theorem (Keisler, 1961, Axiomatizability criterion) \mathbb{K} is axiomatizable $\iff \mathbb{K}$ is closed under ultraproducts and \equiv .

Theorem (Keisler, 1961, Finite axiomatizability criterion)

 \mathbb{K} is fin. ax. $\iff \mathbb{K}$ and $\overline{\mathbb{K}}$ are closed under ultraproducts and \equiv .

Proof. (\Longrightarrow) If \mathbb{K} is fin. ax., then $\mathbb{K} = \text{Models}(A)$ and $\overline{\mathbb{K}} = \text{Models}(\neg A)$. (\Leftarrow) By Theorem 1, \mathbb{K} and $\overline{\mathbb{K}}$ are both elementary:

 $\mathbb{K} = \mathsf{Models}(\Gamma)$ and $\overline{\mathbb{K}} = \mathsf{Models}(\Delta)$.

Clearly, $\Gamma \cup \Delta$ has no models at all, since $\mathbb{K} \cap \overline{\mathbb{K}} = \emptyset$. By compactness, \exists finite $\Gamma' = \{A_1, \ldots, A_m\} \subseteq \Gamma$ and $\Delta' = \{B_1, \ldots, B_n\} \subseteq \Delta$ such that $\Gamma' \cup \Delta'$ has no models. Exercise: $\mathbb{K} = \text{Models}(A_1 \land \ldots \land A_m)$, $\overline{\mathbb{K}} = \text{Models}(B_1 \land \ldots \land B_n)$. Q.E.D.

Consider $\Psi = \{X \subseteq \mathbb{N} \mid X \text{ is cofinite}\}$

Consider $\Psi = \{X \subseteq \mathbb{N} \mid X \text{ is cofinite}\} - \text{ it is a filter.}$

Consider $\Psi = \{X \subseteq \mathbb{N} \mid X \text{ is cofinite}\} - \text{it is a filter.}$

So $\Psi \subseteq \Phi$ for some ultrafilter over \mathbb{N} .

Consider $\Psi = \{X \subseteq \mathbb{N} \mid X \text{ is cofinite}\} - \text{it is a filter.}$

So $\Psi \subseteq \Phi$ for some ultrafilter over \mathbb{N} .

This ultrafilter Φ is non-principal.

Consider $\Psi = \{X \subseteq \mathbb{N} \mid X \text{ is cofinite}\} - \text{it is a filter.}$

So $\Psi \subseteq \Phi$ for some ultrafilter over \mathbb{N} .

This ultrafilter Φ is non-principal.

Because $\bigcap \Phi$

Consider $\Psi = \{X \subseteq \mathbb{N} \mid X \text{ is cofinite}\} - \text{it is a filter.}$

So $\Psi \subseteq \Phi$ for some ultrafilter over \mathbb{N} .

This ultrafilter Φ is non-principal.

Because $\bigcap \Phi \subseteq \bigcap \Psi = \emptyset$. Because $X_k = (\mathbb{N} \setminus \{k\}) \in \Psi$.

Consider $\Psi = \{X \subseteq \mathbb{N} \mid X \text{ is cofinite}\} - \text{it is a filter.}$

So $\Psi \subseteq \Phi$ for some ultrafilter over \mathbb{N} .

This ultrafilter Φ is non-principal.

Because $\bigcap \Phi \subseteq \bigcap \Psi = \emptyset$. Because $X_k = (\mathbb{N} \setminus \{k\}) \in \Psi$.

Moreover, the converse also holds (exercise):

any non-principal ultrafilter Φ has all co-finite subsets of \mathbb{N} .

• The class of all **groups** — is finitely axiomatizable.

- The class of all groups is finitely axiomatizable.
- The class of finite groups is not axiomatizable:

- The class of all groups is finitely axiomatizable.
- The class of finite groups is not axiomatizable: because it is not closed under ultraproducts.

- The class of all groups is finitely axiomatizable.
- Provide the second seco

- The class of all groups is finitely axiomatizable.
- Provide the set of the set of

- The class of all groups is finitely axiomatizable.
- Provide the set of the set of

- The class of all groups is finitely axiomatizable.
- Provide the set of the set of

- The class of all groups is finitely axiomatizable.
- Provide the set of the set of

- The class of all groups is finitely axiomatizable.
- The class of finite groups is not axiomatizable: because it is not closed under ultraproducts. Indeed, take the groups G_n = Z_n, n ∈ N. Let Φ be a non-principal ultra-filter over N. So Φ has all co-finite sets X ⊆ N. Now take their ultraproduct G = Π^Φ_{n∈N} G_n. Is it a group? Yes! by Łoś's theorem. Is is finite?

- The class of all groups is finitely axiomatizable.
- The class of finite groups is not axiomatizable: because it is not closed under ultraproducts. Indeed, take the groups G_n = Z_n, n ∈ N. Let Φ be a non-principal ultra-filter over N. So Φ has all co-finite sets X ⊆ N. Now take their ultraproduct G = Π^Φ_{n∈N} G_n. Is it a group? Yes! by Łoś's theorem. Is is finite? No!

- The class of all groups is finitely axiomatizable.
- The class of finite groups is not axiomatizable: because it is not closed under ultraproducts. Indeed, take the groups G_n = Z_n, n ∈ N. Let Φ be a non-principal ultra-filter over N. So Φ has all co-finite sets X ⊆ N. Now take their ultraproduct G = ∏^Φ_{n∈N} G_n. Is it a group? Yes! by Łoś's theorem. Is is finite? No!

Because almost all groups G_k are $\ge n$, so G_n satisfies:

 $\exists^{\geq n} x := \exists x_1 \ldots \exists x_n (x_1 \neq x_2 \land x_1 \neq x_3 \land x_2 \neq x_3 \land \ldots x_{n-1} \neq x_n)$

- The class of all groups is finitely axiomatizable.
- The class of finite groups is not axiomatizable: because it is not closed under ultraproducts. Indeed, take the groups G_n = Z_n, n ∈ N. Let Φ be a non-principal ultra-filter over N. So Φ has all co-finite sets X ⊆ N. Now take their ultraproduct G = ∏^Φ_{n∈N} G_n. Is it a group? Yes! by Łoś's theorem. Is is finite? No!

Because almost all groups G_k are $\ge n$, so G_n satisfies:

 $\exists^{\geq n} x := \exists x_1 \ldots \exists x_n (x_1 \neq x_2 \land x_1 \neq x_3 \land x_2 \neq x_3 \land \ldots x_{n-1} \neq x_n)$

Thus, the class of finite groups is not closed under ultraproducts!

• Infinite groups — is axiomatizable:

• Infinite groups — is axiomatizable:

 $\{ \text{ axioms of groups } \} \cup \{ \exists^{\geq 2}x, \exists^{\geq 3}x, \exists^{\geq 4}x, \dots \}.$

- Infinite groups is axiomatizable: { axioms of groups } $\cup \{ \exists^{\geq 2}x, \exists^{\geq 3}x, \exists^{\geq 4}x, \dots \}.$
- Is it finitely axiomatizable?

- Infinite groups is axiomatizable: { axioms of groups } $\cup \{ \exists^{\geq 2}x, \exists^{\geq 3}x, \exists^{\geq 4}x, \dots \}.$
- Is it finitely axiomatizable? No!

- Infinite groups is axiomatizable: { axioms of groups } \cup { $\exists^{\geq 2}x, \exists^{\geq 3}x, \exists^{\geq 4}x, \dots$ }.
- Is it finitely axiomatizable? No! K
 ■ {non-groups} ∪ {finite groups} is not closed under ultraproducts!

- Infinite groups is axiomatizable: { axioms of groups } \cup { $\exists^{\geq 2}x, \exists^{\geq 3}x, \exists^{\geq 4}x, \dots$ }.
- Is it finitely axiomatizable? No! $\overline{\mathbb{K}} = \{\text{non-groups}\} \cup \{\text{finite groups}\}$ is not closed under ultraproducts!
- The class K of infinite groups of finite periods? There is n ∈ N such that ∀x ∈ G (xⁿ = e).
- Infinite groups is axiomatizable: { axioms of groups } \cup { $\exists^{\geq 2}x, \exists^{\geq 3}x, \exists^{\geq 4}x, \dots$ }.
- Is it finitely axiomatizable? No! $\overline{\mathbb{K}} = \{\text{non-groups}\} \cup \{\text{finite groups}\}$ is not closed under ultraproducts!
- The class K of infinite groups of finite periods? There is n ∈ N such that ∀x ∈ G (xⁿ = e).
 Exercise: K is not axiomatizable, K is not axiomatizable.

- Infinite groups is axiomatizable: { axioms of groups } \cup { $\exists^{\geq 2}x, \exists^{\geq 3}x, \exists^{\geq 4}x, \dots$ }.
- Is it finitely axiomatizable? No! $\overline{\mathbb{K}} = \{\text{non-groups}\} \cup \{\text{finite groups}\}$ is not closed under ultraproducts!
- The class K of infinite groups of finite periods? There is n ∈ N such that ∀x ∈ G (xⁿ = e).
 Exercise: K is not axiomatizable, K is not axiomatizable.
 Fields

- Infinite groups is axiomatizable: { axioms of groups } \cup { $\exists^{\geq 2}x, \exists^{\geq 3}x, \exists^{\geq 4}x, \dots$ }.
- Is it finitely axiomatizable? No! $\overline{\mathbb{K}} = \{\text{non-groups}\} \cup \{\text{finite groups}\}$ is not closed under ultraproducts!
- The class K of infinite groups of finite periods? There is n ∈ N such that ∀x ∈ G (xⁿ = e).
 Exercise: K is not axiomatizable, K is not axiomatizable.

Fields — finitely axiomatizable

- Infinite groups is axiomatizable: { axioms of groups } \cup { $\exists^{\geq 2}x, \exists^{\geq 3}x, \exists^{\geq 4}x, \dots$ }.
- Is it finitely axiomatizable? No! $\overline{\mathbb{K}} = \{\text{non-groups}\} \cup \{\text{finite groups}\}$ is not closed under ultraproducts!
- The class K of infinite groups of finite periods? There is n ∈ N such that ∀x ∈ G (xⁿ = e).
 Exercise: K is not axiomatizable, K is not axiomatizable.
- Fields finitely axiomatizable
 - finite fields?

- Infinite groups is axiomatizable: { axioms of groups } \cup { $\exists^{\geq 2}x, \exists^{\geq 3}x, \exists^{\geq 4}x, \dots$ }.
- Is it finitely axiomatizable? No! $\overline{\mathbb{K}} = \{\text{non-groups}\} \cup \{\text{finite groups}\}$ is not closed under ultraproducts!
- The class K of infinite groups of finite periods? There is n ∈ N such that ∀x ∈ G (xⁿ = e).
 Exercise: K is not axiomatizable, K is not axiomatizable.
- Fields finitely axiomatizable
 - finite fields? not even axiomatizable

- Infinite groups is axiomatizable: { axioms of groups } $\cup \{ \exists^{\geq 2}x, \exists^{\geq 3}x, \exists^{\geq 4}x, \dots \}.$
- Is it finitely axiomatizable? No! $\overline{\mathbb{K}} = \{\text{non-groups}\} \cup \{\text{finite groups}\}$ is not closed under ultraproducts!
- The class K of infinite groups of finite periods? There is n ∈ N such that ∀x ∈ G (xⁿ = e).
 Exercise: K is not axiomatizable, K is not axiomatizable.
- Fields finitely axiomatizable
 - finite fields? not even axiomatizable
 - infinite fields?

- Infinite groups is axiomatizable: { axioms of groups } \cup { $\exists^{\geq 2}x, \exists^{\geq 3}x, \exists^{\geq 4}x, \dots$ }.
- Is it finitely axiomatizable? No! $\overline{\mathbb{K}} = \{\text{non-groups}\} \cup \{\text{finite groups}\}$ is not closed under ultraproducts!
- The class K of infinite groups of finite periods? There is n ∈ N such that ∀x ∈ G (xⁿ = e).
 Exercise: K is not axiomatizable, K is not axiomatizable.
- Fields finitely axiomatizable
 - finite fields? not even axiomatizable
 - infinite fields? axiomatizable, but not finitely ax.

- Infinite groups is axiomatizable: { axioms of groups } \cup { $\exists^{\geq 2}x, \exists^{\geq 3}x, \exists^{\geq 4}x, \dots$ }.
- Is it finitely axiomatizable? No! $\overline{\mathbb{K}} = \{\text{non-groups}\} \cup \{\text{finite groups}\}$ is not closed under ultraproducts!
- The class K of infinite groups of finite periods? There is n ∈ N such that ∀x ∈ G (xⁿ = e).
 Exercise: K is not axiomatizable, K is not axiomatizable.
- Fields finitely axiomatizable
 - finite fields? not even axiomatizable
 - infinite fields? axiomatizable, but not finitely ax.
 - fields of characteristic p > 0? $(1 + 1 + \ldots + 1 = 0)$

- Infinite groups is axiomatizable: { axioms of groups } \cup { $\exists^{\geq 2}x, \exists^{\geq 3}x, \exists^{\geq 4}x, \dots$ }.
- Is it finitely axiomatizable? No! $\overline{\mathbb{K}} = \{\text{non-groups}\} \cup \{\text{finite groups}\}$ is not closed under ultraproducts!
- The class K of infinite groups of finite periods? There is n ∈ N such that ∀x ∈ G (xⁿ = e).
 Exercise: K is not axiomatizable, K is not axiomatizable.
- Fields finitely axiomatizable
 - finite fields? not even axiomatizable
 - infinite fields? axiomatizable, but not finitely ax.
 - fields of characteristic p > 0? $(1 + 1 + \ldots + 1 = 0)$ fin. ax.

- Infinite groups is axiomatizable: { axioms of groups } \cup { $\exists^{\geq 2}x, \exists^{\geq 3}x, \exists^{\geq 4}x, \dots$ }.
- Is it finitely axiomatizable? No! $\overline{\mathbb{K}} = \{\text{non-groups}\} \cup \{\text{finite groups}\}$ is not closed under ultraproducts!
- The class K of infinite groups of finite periods? There is n ∈ N such that ∀x ∈ G (xⁿ = e).
 Exercise: K is not axiomatizable, K is not axiomatizable.
- Fields finitely axiomatizable
 - finite fields? not even axiomatizable
 - infinite fields? axiomatizable, but not finitely ax.
 - fields of characteristic p > 0? $(1 + 1 + \ldots + 1 = 0)$ fin. ax.
 - infinite fields of finite characteristic p > 0?

- Infinite groups is axiomatizable: { axioms of groups } \cup { $\exists^{\geq 2}x, \exists^{\geq 3}x, \exists^{\geq 4}x, \dots$ }.
- Is it finitely axiomatizable? No! $\overline{\mathbb{K}} = \{\text{non-groups}\} \cup \{\text{finite groups}\}$ is not closed under ultraproducts!
- The class K of infinite groups of finite periods? There is n ∈ N such that ∀x ∈ G (xⁿ = e).
 Exercise: K is not axiomatizable, K is not axiomatizable.
- Fields finitely axiomatizable
 - finite fields? not even axiomatizable
 - infinite fields? axiomatizable, but not finitely ax.
 - fields of characteristic p > 0? $(1 + 1 + \ldots + 1 = 0)$ fin. ax.
 - infinite fields of finite characteristic p > 0? not axiomatizable, its complement is not axiomatizable. (exercise)

- Infinite groups is axiomatizable: { axioms of groups } \cup { $\exists^{\geq 2}x, \exists^{\geq 3}x, \exists^{\geq 4}x, \dots$ }.
- Is it finitely axiomatizable? No! $\overline{\mathbb{K}} = \{\text{non-groups}\} \cup \{\text{finite groups}\}$ is not closed under ultraproducts!
- The class K of infinite groups of finite periods? There is n ∈ N such that ∀x ∈ G (xⁿ = e).
 Exercise: K is not axiomatizable, K is not axiomatizable.
- Fields finitely axiomatizable
 - finite fields? not even axiomatizable
 - infinite fields? axiomatizable, but not finitely ax.
 - fields of characteristic p > 0? $(1 + 1 + \ldots + 1 = 0)$ fin. ax.
 - infinite fields of finite characteristic p > 0? not axiomatizable, its complement is not axiomatizable. (exercise)
- Well-ordered sets linear order and every nonempty subset has a minimal element.

- Infinite groups is axiomatizable: { axioms of groups } \cup { $\exists^{\geq 2}x, \exists^{\geq 3}x, \exists^{\geq 4}x, \dots$ }.
- Is it finitely axiomatizable? No! $\overline{\mathbb{K}} = \{\text{non-groups}\} \cup \{\text{finite groups}\}$ is not closed under ultraproducts!
- The class K of infinite groups of finite periods? There is n ∈ N such that ∀x ∈ G (xⁿ = e).
 Exercise: K is not axiomatizable, K is not axiomatizable.
- Fields finitely axiomatizable
 - finite fields? not even axiomatizable
 - infinite fields? axiomatizable, but not finitely ax.
 - fields of characteristic p > 0? $(1 + 1 + \ldots + 1 = 0)$ fin. ax.
 - infinite fields of finite characteristic p > 0? not axiomatizable, its complement is not axiomatizable. (exercise)
- Well-ordered sets linear order and every nonempty subset has a minimal element. — not elementary; its complement is not elementary.

- Infinite groups is axiomatizable: { axioms of groups } \cup { $\exists^{\geq 2}x, \exists^{\geq 3}x, \exists^{\geq 4}x, \dots$ }.
- Is it finitely axiomatizable? No! $\overline{\mathbb{K}} = \{\text{non-groups}\} \cup \{\text{finite groups}\}$ is not closed under ultraproducts!
- The class K of infinite groups of finite periods? There is n ∈ N such that ∀x ∈ G (xⁿ = e).
 Exercise: K is not axiomatizable, K is not axiomatizable.
- Fields finitely axiomatizable
 - finite fields? not even axiomatizable
 - infinite fields? axiomatizable, but not finitely ax.
 - fields of characteristic p > 0? $(1 + 1 + \ldots + 1 = 0)$ fin. ax.
 - infinite fields of finite characteristic p > 0? not axiomatizable, its complement is not axiomatizable. (exercise)
- Well-ordered sets linear order and every nonempty subset has a minimal element. not elementary; its complement is not elementary.
- J. Bell, A. Slomson. Models and Ultraproducts: An Introduction. 1969.

Evgeny Zolin, MSU