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 Loś’s theorem (reminder)

For a family of models (Mi )i∈I , we build their ultraproduct N =
∏︀Φ

i∈I Mi .

Theorem ( Loś, 1955)

Suppose M =
∏︀Φ

i∈I Mi is the ultraproduct of models.
Then, for any closed formula (sentence) A, we have:

N |= A ⇐⇒ {i ∈ I | Mi |= A} ∈ Φ.

A holds in the ultraproduct M ⇐⇒ A holds in almost all models Mi .

If Mi = M for all i ∈ I, then we denote MΦ =
∏︀Φ

i∈I Mi .

Corollary

For every sentence A: M |= A ⇐⇒ MΦ |= A. Thus: M ≡ MΦ.
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Compact class of models

Let K be a class of models (in some fixed signature Σ).

Definition 1
A class of models K is called compact if, for any set of formulas Γ,

if every finite subset Δ ⊆ Γ has a model in K,
then the whole set Γ has a model in K.

Γ has a model in K � Γ is satisfiable in K

Definition 2
K is called compact if, for any set of formulas Γ closed under ∧, we have:

if every formula A ∈ Γ has a model in K,
then the whole set Γ has a model in K.

Γ is closed under ∧ means: A,B ∈ Γ =⇒ (A ∧ B) ∈ Γ.
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Ultraproducts =⇒ compactness

Theorem (Compactness theorem)
If a class of models K is closed under ultraproducts, then K is compact.

We will use Definition 2 of compactness.
Take any set of formulas Γ = {Ai | i ∈ I} closed under ∧.
Assume that every formula Ai has a model Mi ∈ K. So Mi |= Ai .
For every i ∈ I, consider Xi := {ℓ ∈ I | Mℓ |= Ai}. So Xi ⊆ I.

Proposition. The family of sets Ψ = {Xi | i ∈ I} has the F.I.P.

ℓ ∈

Xi1 ∩ . . . ∩ Xin , since Mℓ |= Aℓ.

Hence Ψ ⊆ Φ for some ultrafilter Φ. Build M :=
∏︀Φ

i∈I Mi . Then M ∈ K.
Now M |= Ai for every i ∈ I, since {ℓ ∈ I | Mℓ |= Ai} = Xi ∈ Φ.

Corollary (Мальцев). The class of all models (over Σ) is compact.
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For every i ∈ I, consider Xi := {ℓ ∈ I | Mℓ |= Ai}. So Xi ⊆ I.

Proposition. The family of sets Ψ = {Xi | i ∈ I} has the F.I.P.
ℓ ∈ Xi1 ∩ . . . ∩ Xin

, since Mℓ |= Aℓ.

Hence Ψ ⊆ Φ for some ultrafilter Φ. Build M :=
∏︀Φ

i∈I Mi . Then M ∈ K.
Now M |= Ai for every i ∈ I, since {ℓ ∈ I | Mℓ |= Ai} = Xi ∈ Φ.

Corollary (Мальцев). The class of all models (over Σ) is compact.
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Elementary class of models

Definition
A class K is elementary (or axiomatizable, or first-order definable), if
K = Models(Γ) = {M | M |= Γ}, for some set of sentences Γ ⊆ Fm.

Examples: the class of all groups, fields, linear orders, infinite groups,
algebraically closed fields etc. But not: finite groups!

When K is elementary? What are necessary and sufficient conditions?
“Structural” conditions (in terms of closure under operations / relations)

K is elementary =⇒ K is closed under ultraproducts.
Indeed, if Mi |= Γ for all i , then their ultraproduct M |= Γ.

K is elementary =⇒ K is closed under ≡.
Indeed, if M |= Γ and M ≡ N, then N |= Γ.

Eureka! These two conditions are sufficient!
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Theorem (Keisler, 1961, Axiomatizability criterion)
K is elementary ⇐⇒ K is closed under ultraproducts and ≡.

(⇐=) A natural candidate for the axiomatization of K is... its theory:

Γ := Theory(K) = {A ∈ Fm | K |= A}.

We prove: K = Models(Γ). (⊆) Trivial.
(⊇) Take any M |= Γ. Why M ∈ K? Take its theory: T := Theory(M).

∙ Proposition 1. T has a model in the class K.

K is compact, so it suffices to show that every A ∈ T has a model in K.
Assume the contrary: A does not have a model in K. So, K |= ¬A. Then
(¬A) ∈ Γ. Then M |= ¬A. But M |= A, contradiction.

Hence ∃ a model N ∈ K such that N |= T . Recall that T = Theory(M).

∙ Proposition 2. M ≡ N. (And hence M ∈ K, Q.E.D.)
M |= A ⇒ A ∈ T ⇒ N |= A. Conversely,
M |̸= A ⇒ M |= ¬A ⇒ (as above) ⇒ N |= ¬A ⇒ N |̸= A. Q.E.D.

Evgeny Zolin, MSU Ultrafilters April 21st, 2021 7 / 13



Theorem (Keisler, 1961, Axiomatizability criterion)
K is elementary ⇐⇒ K is closed under ultraproducts and ≡.

(⇐=) A natural candidate for the axiomatization of K is...

its theory:

Γ := Theory(K) = {A ∈ Fm | K |= A}.

We prove: K = Models(Γ). (⊆) Trivial.
(⊇) Take any M |= Γ. Why M ∈ K? Take its theory: T := Theory(M).

∙ Proposition 1. T has a model in the class K.

K is compact, so it suffices to show that every A ∈ T has a model in K.
Assume the contrary: A does not have a model in K. So, K |= ¬A. Then
(¬A) ∈ Γ. Then M |= ¬A. But M |= A, contradiction.

Hence ∃ a model N ∈ K such that N |= T . Recall that T = Theory(M).

∙ Proposition 2. M ≡ N. (And hence M ∈ K, Q.E.D.)
M |= A ⇒ A ∈ T ⇒ N |= A. Conversely,
M |̸= A ⇒ M |= ¬A ⇒ (as above) ⇒ N |= ¬A ⇒ N |̸= A. Q.E.D.

Evgeny Zolin, MSU Ultrafilters April 21st, 2021 7 / 13



Theorem (Keisler, 1961, Axiomatizability criterion)
K is elementary ⇐⇒ K is closed under ultraproducts and ≡.

(⇐=) A natural candidate for the axiomatization of K is... its theory:

Γ := Theory(K) = {A ∈ Fm | K |= A}.

We prove: K = Models(Γ). (⊆) Trivial.
(⊇) Take any M |= Γ. Why M ∈ K? Take its theory: T := Theory(M).

∙ Proposition 1. T has a model in the class K.

K is compact, so it suffices to show that every A ∈ T has a model in K.
Assume the contrary: A does not have a model in K. So, K |= ¬A. Then
(¬A) ∈ Γ. Then M |= ¬A. But M |= A, contradiction.

Hence ∃ a model N ∈ K such that N |= T . Recall that T = Theory(M).

∙ Proposition 2. M ≡ N. (And hence M ∈ K, Q.E.D.)
M |= A ⇒ A ∈ T ⇒ N |= A. Conversely,
M |̸= A ⇒ M |= ¬A ⇒ (as above) ⇒ N |= ¬A ⇒ N |̸= A. Q.E.D.

Evgeny Zolin, MSU Ultrafilters April 21st, 2021 7 / 13



Theorem (Keisler, 1961, Axiomatizability criterion)
K is elementary ⇐⇒ K is closed under ultraproducts and ≡.

(⇐=) A natural candidate for the axiomatization of K is... its theory:

Γ := Theory(K) = {A ∈ Fm | K |= A}.

We prove: K = Models(Γ).

(⊆) Trivial.
(⊇) Take any M |= Γ. Why M ∈ K? Take its theory: T := Theory(M).

∙ Proposition 1. T has a model in the class K.

K is compact, so it suffices to show that every A ∈ T has a model in K.
Assume the contrary: A does not have a model in K. So, K |= ¬A. Then
(¬A) ∈ Γ. Then M |= ¬A. But M |= A, contradiction.

Hence ∃ a model N ∈ K such that N |= T . Recall that T = Theory(M).

∙ Proposition 2. M ≡ N. (And hence M ∈ K, Q.E.D.)
M |= A ⇒ A ∈ T ⇒ N |= A. Conversely,
M |̸= A ⇒ M |= ¬A ⇒ (as above) ⇒ N |= ¬A ⇒ N |̸= A. Q.E.D.

Evgeny Zolin, MSU Ultrafilters April 21st, 2021 7 / 13



Theorem (Keisler, 1961, Axiomatizability criterion)
K is elementary ⇐⇒ K is closed under ultraproducts and ≡.

(⇐=) A natural candidate for the axiomatization of K is... its theory:

Γ := Theory(K) = {A ∈ Fm | K |= A}.

We prove: K = Models(Γ). (⊆) Trivial.

(⊇) Take any M |= Γ. Why M ∈ K? Take its theory: T := Theory(M).

∙ Proposition 1. T has a model in the class K.

K is compact, so it suffices to show that every A ∈ T has a model in K.
Assume the contrary: A does not have a model in K. So, K |= ¬A. Then
(¬A) ∈ Γ. Then M |= ¬A. But M |= A, contradiction.

Hence ∃ a model N ∈ K such that N |= T . Recall that T = Theory(M).

∙ Proposition 2. M ≡ N. (And hence M ∈ K, Q.E.D.)
M |= A ⇒ A ∈ T ⇒ N |= A. Conversely,
M |̸= A ⇒ M |= ¬A ⇒ (as above) ⇒ N |= ¬A ⇒ N |̸= A. Q.E.D.

Evgeny Zolin, MSU Ultrafilters April 21st, 2021 7 / 13



Theorem (Keisler, 1961, Axiomatizability criterion)
K is elementary ⇐⇒ K is closed under ultraproducts and ≡.

(⇐=) A natural candidate for the axiomatization of K is... its theory:

Γ := Theory(K) = {A ∈ Fm | K |= A}.

We prove: K = Models(Γ). (⊆) Trivial.
(⊇) Take any M |= Γ. Why M ∈ K?

Take its theory: T := Theory(M).

∙ Proposition 1. T has a model in the class K.

K is compact, so it suffices to show that every A ∈ T has a model in K.
Assume the contrary: A does not have a model in K. So, K |= ¬A. Then
(¬A) ∈ Γ. Then M |= ¬A. But M |= A, contradiction.

Hence ∃ a model N ∈ K such that N |= T . Recall that T = Theory(M).

∙ Proposition 2. M ≡ N. (And hence M ∈ K, Q.E.D.)
M |= A ⇒ A ∈ T ⇒ N |= A. Conversely,
M |̸= A ⇒ M |= ¬A ⇒ (as above) ⇒ N |= ¬A ⇒ N |̸= A. Q.E.D.

Evgeny Zolin, MSU Ultrafilters April 21st, 2021 7 / 13



Theorem (Keisler, 1961, Axiomatizability criterion)
K is elementary ⇐⇒ K is closed under ultraproducts and ≡.

(⇐=) A natural candidate for the axiomatization of K is... its theory:

Γ := Theory(K) = {A ∈ Fm | K |= A}.

We prove: K = Models(Γ). (⊆) Trivial.
(⊇) Take any M |= Γ. Why M ∈ K? Take its theory: T := Theory(M).

∙ Proposition 1. T has a model in the class K.

K is compact, so it suffices to show that every A ∈ T has a model in K.
Assume the contrary: A does not have a model in K. So, K |= ¬A. Then
(¬A) ∈ Γ. Then M |= ¬A. But M |= A, contradiction.

Hence ∃ a model N ∈ K such that N |= T . Recall that T = Theory(M).

∙ Proposition 2. M ≡ N. (And hence M ∈ K, Q.E.D.)
M |= A ⇒ A ∈ T ⇒ N |= A. Conversely,
M |̸= A ⇒ M |= ¬A ⇒ (as above) ⇒ N |= ¬A ⇒ N |̸= A. Q.E.D.

Evgeny Zolin, MSU Ultrafilters April 21st, 2021 7 / 13



Theorem (Keisler, 1961, Axiomatizability criterion)
K is elementary ⇐⇒ K is closed under ultraproducts and ≡.

(⇐=) A natural candidate for the axiomatization of K is... its theory:

Γ := Theory(K) = {A ∈ Fm | K |= A}.

We prove: K = Models(Γ). (⊆) Trivial.
(⊇) Take any M |= Γ. Why M ∈ K? Take its theory: T := Theory(M).

∙ Proposition 1. T has a model in the class K.

K is compact, so it suffices to show that every A ∈ T has a model in K.
Assume the contrary: A does not have a model in K. So, K |= ¬A. Then
(¬A) ∈ Γ. Then M |= ¬A. But M |= A, contradiction.

Hence ∃ a model N ∈ K such that N |= T . Recall that T = Theory(M).

∙ Proposition 2. M ≡ N. (And hence M ∈ K, Q.E.D.)
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Axiomatizability criterion via compactness

Theorem (Axiomatizability criterion)
K is elementary ⇐⇒ K is compact and closed under ≡.

Proof.
K is elementary

=⇒
K is closed under ultraproducts and ≡

=⇒
K is compact and closed under ≡

=⇒
K is elementary

The last implication was proved in Keisler’s theorem.
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Finitely axiomatizable classes

Definition
K is called finitely axiomatizable if K = Models(A), for some formula A.

When K is finitely axiomatizable?
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Finite axiomatizability criterion

Theorem (Keisler, 1961, Axiomatizability criterion)
K is axiomatizable ⇐⇒ K is closed under ultraproducts and ≡.

Theorem (Keisler, 1961, Finite axiomatizability criterion)

K is fin. ax. ⇐⇒ K and K are closed under ultraproducts and ≡.

Proof. (=⇒) If K is fin. ax., then K = Models(A) and K = Models(¬A).

(⇐=) By Theorem 1, K and K are both elementary:

K = Models(Γ) and K = Models(Δ).

Clearly, Γ ∪ Δ has no models at all, since K ∩K = ∅.
By compactness, ∃ finite Γ′ = {A1, . . . ,Am} ⊆ Γ and
Δ′ = {B1, . . . ,Bn} ⊆ Δ such that Γ′ ∪ Δ′ has no models.
Exercise: K = Models(A1 ∧ . . . ∧ Am),

K = Models(B1 ∧ . . . ∧ Bn). Q.E.D.
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A non-principal ultrafilter

Consider Ψ = {X ⊆ N | X is cofinite}

— it is a filter.

So Ψ ⊆ Φ for some ultrafilter over N.

This ultrafilter Φ is non-principal.

Because
⋂︀

Φ ⊆
⋂︀

Ψ = ∅. Because Xk = (N ∖ {k}) ∈ Ψ.

Moreover, the converse also holds (exercise):

any non-principal ultrafilter Φ
has all co-finite subsets of N.
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Examples

1 The class of all groups — is finitely axiomatizable.

2 The class of finite groups — is not axiomatizable:
because it is not closed under ultraproducts.
Indeed, take the groups Gn = Zn, n ∈ N.
Let Φ be a non-principal ultra-filter over N.
So Φ has all co-finite sets X ⊆ N.
Now take their ultraproduct G =

∏︀Φ
n∈N Gn.

Is it a group? Yes! by  Loś’s theorem.
Is is finite? No!
Because almost all groups Gk are >n, so Gn satisfies:

∃>nx := ∃x1 . . . ∃xn(x1 ̸= x2 ∧ x1 ̸= x3 ∧ x2 ̸= x3 ∧ . . . xn−1 ̸= xn)

Thus, the class of finite groups is not closed under ultraproducts!
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Examples

Infinite groups — is axiomatizable:

{ axioms of groups } ∪ { ∃>2x ,∃>3x ,∃>4x , . . . }.

Is it finitely axiomatizable? No! K = {non-groups} ∪ {finite groups} is
not closed under ultraproducts!

The class K of infinite groups of finite periods?
There is n ∈ N such that ∀x ∈ G (xn = e).
Exercise: K is not axiomatizable, K is not axiomatizable.
Fields — finitely axiomatizable

finite fields? — not even axiomatizable
infinite fields? — axiomatizable, but not finitely ax.
fields of characteristic p > 0? (1 + 1 + . . . + 1 = 0) — fin. ax.
infinite fields of finite characteristic p > 0? — not axiomatizable, its
complement is not axiomatizable. (exercise)

Well-ordered sets — linear order and every nonempty subset has a
minimal element. — not elementary; its complement is not elementary.

J. Bell, A. Slomson. Models and Ultraproducts: An Introduction. 1969.
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