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First-order predicate logic: Syntax

The language has:
connectives ¬,∧,∨,→

quantifiers ∀, ∃
(individual) variables: x0, x1, x2, . . .
Usually we write: x , y , z .

predicate symbols P
(n)
i — an n-ary predicate symbol

Usually finite or countable set of these symbols.

functional symbols f
(n)
i

constants ci
But in this lecture — only predicate symbols (finitely many).

A signature Σ = (Pred,Func,Const)
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Formula

Assume we have in the signature: Pred = {P(3),Q(1),R(2)}.

So, for example, we can write: P(x , y , z), Q(x), R(x , y).
Examples of formulas:
P(x , y , x)

(P(x , y , x) ∧ Q(y)) → R(x , z)

Evgeny Zolin, MSU Infinitary Logic March 31st, 2021 3 / 11



Formula

Assume we have in the signature: Pred = {P(3),Q(1),R(2)}.
So, for example, we can write: P(x , y , z), Q(x), R(x , y).

Examples of formulas:
P(x , y , x)

(P(x , y , x) ∧ Q(y)) → R(x , z)

Evgeny Zolin, MSU Infinitary Logic March 31st, 2021 3 / 11



Formula

Assume we have in the signature: Pred = {P(3),Q(1),R(2)}.
So, for example, we can write: P(x , y , z), Q(x), R(x , y).
Examples of formulas:
P(x , y , x)

(P(x , y , x) ∧ Q(y)) → R(x , z)

Evgeny Zolin, MSU Infinitary Logic March 31st, 2021 3 / 11



Formula

Assume we have in the signature: Pred = {P(3),Q(1),R(2)}.
So, for example, we can write: P(x , y , z), Q(x), R(x , y).
Examples of formulas:
P(x , y , x)

(P(x , y , x) ∧ Q(y)) → R(x , z)

∃y (∀x P(x , y , x) ∧ ¬Q(y)) → ∀zR(x , z) — free variables?

Evgeny Zolin, MSU Infinitary Logic March 31st, 2021 3 / 11



Formula

Assume we have in the signature: Pred = {P(3),Q(1),R(2)}.
So, for example, we can write: P(x , y , z), Q(x), R(x , y).
Examples of formulas:
P(x , y , x)

(P(x , y , x) ∧ Q(y)) → R(x , z)

∃y (∀x P(x , y , x) ∧ ¬Q(y)) → ∀zR(x, z) — free variable!

Evgeny Zolin, MSU Infinitary Logic March 31st, 2021 3 / 11



Formula

Assume we have in the signature: Pred = {P(3),Q(1),R(2)}.
So, for example, we can write: P(x , y , z), Q(x), R(x , y).
Examples of formulas:
P(x , y , x)

(P(x , y , x) ∧ Q(y)) → R(x , z)

∃y (∀x P(x , y , x) ∧ ¬Q(y)) → ∃x ∀zR(x, z)

Evgeny Zolin, MSU Infinitary Logic March 31st, 2021 3 / 11



Formula

Assume we have in the signature: Pred = {P(3),Q(1),R(2)}.
So, for example, we can write: P(x , y , z), Q(x), R(x , y).
Examples of formulas:
P(x , y , x)

(P(x , y , x) ∧ Q(y)) → R(x , z)
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First-order predicate logic: Semantics

Model (or interpretation) over the signature Σ: M = (D, *), where

D ̸= ∅ — a domain
* is an interpretation function
n-ary predicate P* ⊆ Dn

for every n-ary predicate symbol P ∈ Pred

Assume A is a sentence. We define:
A formula A is true in a model M — we write M |= A.
Definition by induction on A.

Example: Model: M = (N, <).
Sentence A: ∀x∃y (x < y). Then... M |= A.
Sentence B : ∀x∃y (y < x). Then... M |̸= B .
Formula C : ∃y (y < x). Then... it is not a closed formula.

So, a sentence means some statement (true or false) about a model.
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Elementary equivalence of models

Let M = (D, *) and N = (G , ♯) be two models.

Definition (Elementary equivalence)
M ≡ N means: for every sentence A (over Σ) we have:

M |= A ⇐⇒ N |= A.

Compare with isomorphism:

Definition (Isomorphism of models)
M ∼= N, if there is a bijection f : D → G , such that, for all a, b ∈ D:

R*(a, b) is true in M ⇐⇒ R♯(f (a), f (b)) is true in N.
Similarly for all predicates P ∈ Pred.

Theorem
M ∼= N =⇒ M ≡ N. The converse does not hold in general.
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Isomorphism vs. equivalence

Example 1. (N, <) ̸∼= (Z, <).

Moreover, (N, <) ̸≡ (Z, <). Which formula distinguishes them?

∀x ∃y (y < x)

Example 2. (Z, <) ̸∼= (Z + Z, <). Why?
(Z, <) ≡ (Z + Z, <)? Yes, but why?

Evgeny Zolin, MSU Infinitary Logic March 31st, 2021 6 / 11



Isomorphism vs. equivalence

Example 1. (N, <) ̸∼= (Z, <).
Moreover, (N, <) ̸≡ (Z, <). Which formula distinguishes them?

∀x ∃y (y < x)

Example 2. (Z, <) ̸∼= (Z + Z, <). Why?
(Z, <) ≡ (Z + Z, <)? Yes, but why?

Evgeny Zolin, MSU Infinitary Logic March 31st, 2021 6 / 11



Isomorphism vs. equivalence

Example 1. (N, <) ̸∼= (Z, <).
Moreover, (N, <) ̸≡ (Z, <). Which formula distinguishes them?

∀x ∃y (y < x)

Example 2. (Z, <) ̸∼= (Z + Z, <). Why?
(Z, <) ≡ (Z + Z, <)? Yes, but why?

Evgeny Zolin, MSU Infinitary Logic March 31st, 2021 6 / 11



Isomorphism vs. equivalence

Example 1. (N, <) ̸∼= (Z, <).
Moreover, (N, <) ̸≡ (Z, <). Which formula distinguishes them?

∀x ∃y (y < x)

Example 2. (Z, <) ̸∼= (Z + Z, <). Why?

(Z, <) ≡ (Z + Z, <)? Yes, but why?

Evgeny Zolin, MSU Infinitary Logic March 31st, 2021 6 / 11



Isomorphism vs. equivalence

Example 1. (N, <) ̸∼= (Z, <).
Moreover, (N, <) ̸≡ (Z, <). Which formula distinguishes them?

∀x ∃y (y < x)

Example 2. (Z, <) ̸∼= (Z + Z, <). Why?
(Z, <) ≡ (Z + Z, <)?

Yes, but why?

Evgeny Zolin, MSU Infinitary Logic March 31st, 2021 6 / 11



Isomorphism vs. equivalence

Example 1. (N, <) ̸∼= (Z, <).
Moreover, (N, <) ̸≡ (Z, <). Which formula distinguishes them?

∀x ∃y (y < x)

Example 2. (Z, <) ̸∼= (Z + Z, <). Why?
(Z, <) ≡ (Z + Z, <)? Yes, but why?

Evgeny Zolin, MSU Infinitary Logic March 31st, 2021 6 / 11



Ehrenfeucht game

Let M = (D, *) and N = (G , ♯) be two models.

Two players:

Player 1 Player 2
Novator Conservator
Spoiler Duplicator
∀ ∃
Abelard Eloise
∀belard ∃loise
P̸≡ P≡

“Похищенный рай” (1988)

The “aim” of the first player P̸≡ is to show that M ̸≡ N.
The “aim” of the second player P≡ is to show that M ≡ N.
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Game(M,N):

Round 0. Player 1 chooses n > 1.
Then n rounds the following happens:

Player 1 picks any element from M or N (he has a choice!)
Player 2 picks any element from the opposite model.

After n rounds we have:
n elements a1, . . . , an from M,
n elements b1, . . . , bn from N.
It does not matter who picked them!

Can we distinguish (a1, . . . , an) from (b1, . . . , bn) by any P ∈ Pred?

For example, M |= P7(a3, a5, a3), but N |̸= P7(b3, b5, b3), or vice versa.

YES =⇒ P ̸≡ wins (Player 1)
NO =⇒ P≡ wins (Player 2).

Important notion: a winning strategy for some player.
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Theorem (Main)
M ≡ N ⇐⇒ P≡ has a winning strategy in Game(M,N).

q(A) — the quantifier rank of a formula.

q(P(x1, . . . , xs) ) = 0,
q(¬A) = q(A),

q(A ∧ B) = max( q(A), q(B) ).
q(∀x B) = 1 + q(B),

Example.
A = ∃y (∀x ∃zP(x , y , z) ∧ ¬Q(y)) → ∃x ∀zR(x , z)
q(A) = 3.

Definition (Elementary n-equivalence)
M ≡n N means: for every sentence A of q(A) 6 n we have:

M |= A ⇐⇒ N |= A.
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Theorem (Main)
M ≡ N ⇐⇒ P≡ has a winning strategy in Game(M,N).

Gamen(M,N) — exactly n rounds.

Theorem (Mainn)
M ≡n N ⇐⇒ P≡ has a winning strategy in Gamen(M,N).

Theorem 1 ⇐= Theorem 2.
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Interactive

(N, <) and (Z, <). P1 wins in 2 rounds.
But P2 wins in 1 round.

(Z, <) and (Q, <). P1 wins in 3 rounds.
But P2 wins in 2 rounds.
Q ≡ R. Show this using games.
Using games, prove:

M N M ∼= N M ≡ N

N N + N
Z Z + Z
Q Q + Q
R R + R

The end of Lecture 6. Questions?
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