ACCL Lecture 6: Ehrenfeucht games: a criterion of elementary equivalence of two models

Evgeny Zolin

Department of Mathematical Logic and Theory of Algorithms Faculty of Mechanics and Mathematics Moscow State University

> Advanced Course in Classical Logic March 31st, 2021

- A TE N - A TE N

The language has:

• connectives $\neg, \land, \lor, \rightarrow$

The language has:

- connectives $\neg, \land, \lor, \rightarrow$
- quantifiers \forall , \exists

イロト 不得下 イヨト イヨト 二日

The language has:

- $\bullet \ \mbox{connectives} \ \neg, \wedge, \vee, \rightarrow$
- quantifiers \forall , \exists
- (individual) variables: $x_0, x_1, x_2, ...$ Usually we write: x, y, z.

- 3

< □ > < 同 > < 回 > < 回 > < 回 >

The language has:

- connectives $\neg, \land, \lor, \rightarrow$
- quantifiers \forall , \exists
- (individual) variables: x₀, x₁, x₂, ... Usually we write: x, y, z.
- predicate symbols P_i⁽ⁿ⁾ an *n*-ary predicate symbol
 Usually finite or countable set of these symbols.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The language has:

- connectives $\neg, \land, \lor, \rightarrow$
- quantifiers \forall , \exists
- (individual) variables: x₀, x₁, x₂, ... Usually we write: x, y, z.
- predicate symbols P_i⁽ⁿ⁾ an *n*-ary predicate symbol
 Usually finite or countable set of these symbols.
- functional symbols $f_i^{(n)}$
- constants c_i

But in this lecture — only predicate symbols (finitely many).

The language has:

- connectives $\neg, \land, \lor, \rightarrow$
- quantifiers \forall , \exists
- (individual) variables: x₀, x₁, x₂, ... Usually we write: x, y, z.
- predicate symbols P_i⁽ⁿ⁾ an *n*-ary predicate symbol
 Usually finite or countable set of these symbols.
- functional symbols $f_i^{(n)}$
- constants c_i

But in this lecture — only predicate symbols (finitely many).

A signature $\Sigma = (Pred, Func, Const)$

<ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Assume we have in the signature: $Pred = \{P^{(3)}, Q^{(1)}, R^{(2)}\}.$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - の Q ()

Assume we have in the signature: $Pred = \{P^{(3)}, Q^{(1)}, R^{(2)}\}$. So, for example, we can write: P(x, y, z), Q(x), R(x, y).

イロト 不得 トイヨト イヨト 二日

Assume we have in the signature: $Pred = \{P^{(3)}, Q^{(1)}, R^{(2)}\}$. So, for example, we can write: P(x, y, z), Q(x), R(x, y). Examples of formulas: P(x, y, x)

イロト 不得 トイヨト イヨト 二日

Assume we have in the signature: $Pred = \{P^{(3)}, Q^{(1)}, R^{(2)}\}$. So, for example, we can write: P(x, y, z), Q(x), R(x, y). Examples of formulas: P(x, y, x)

 $(P(x,y,x) \land Q(y)) \rightarrow R(x,z)$

イロト イポト イヨト イヨト 二日

Assume we have in the signature: $Pred = \{P^{(3)}, Q^{(1)}, R^{(2)}\}$. So, for example, we can write: P(x, y, z), Q(x), R(x, y). Examples of formulas: P(x, y, x)

 $(P(x, y, x) \land Q(y)) \rightarrow R(x, z)$

 $\exists y (\forall x P(x, y, x) \land \neg Q(y)) \rightarrow \forall z R(\mathbf{x}, z) - \text{free variable}!$

<ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Assume we have in the signature: $Pred = \{P^{(3)}, Q^{(1)}, R^{(2)}\}$. So, for example, we can write: P(x, y, z), Q(x), R(x, y). Examples of formulas: P(x, y, x)

 $(P(x, y, x) \land Q(y)) \rightarrow R(x, z)$

 $\exists y (\forall x P(x, y, x) \land \neg Q(y)) \to \exists x \forall z R(\mathbf{x}, z)$

<ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Assume we have in the signature: $Pred = \{P^{(3)}, Q^{(1)}, R^{(2)}\}$. So, for example, we can write: P(x, y, z), Q(x), R(x, y). Examples of formulas: P(x, y, x)

 $(P(x, y, x) \land Q(y)) \rightarrow R(x, z)$

 $\exists y (\forall x P(x, y, x) \land \neg Q(y)) \to \exists x \forall z R(x, z)$

This is a closed formula or sentence.

Model (or interpretation) over the signature Σ : M = (D, *), where

イロト イ団ト イヨト イヨト 二日

Model (or interpretation) over the signature Σ : M = (D, *), where $D \neq \emptyset$ — a domain

Model (or interpretation) over the signature Σ : M = (D, *), where $D \neq \emptyset$ — a domain * is an interpretation function

イロト 不得下 イヨト イヨト 二日

Model (or interpretation) over the signature Σ : M = (D, *), where $D \neq \varnothing$ — a domain * is an interpretation function *n*-ary predicate $P^* \subseteq D^n$ for every *n*-ary predicate symbol $P \in \text{Pred}$

Model (or interpretation) over the signature Σ : M = (D, *), where $D \neq \emptyset$ — a domain * is an interpretation function *n*-ary predicate $P^* \subseteq D^n$ for every *n*-ary predicate symbol $P \in \text{Pred}$

Assume A is a sentence. We define:

Model (or interpretation) over the signature Σ : M = (D, *), where $D \neq \emptyset$ — a domain * is an interpretation function *n*-ary predicate $P^* \subseteq D^n$ for every *n*-ary predicate symbol $P \in \text{Pred}$

Assume A is a sentence. We define: A formula A is true in a model M — we write $M \models A$.

Model (or interpretation) over the signature Σ : M = (D, *), where $D \neq \varnothing$ — a domain * is an interpretation function *n*-ary predicate $P^* \subseteq D^n$ for every *n*-ary predicate symbol $P \in \text{Pred}$

Assume A is a sentence. We define: A formula A is true in a model M — we write $M \models A$. Definition by induction on A.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Model (or interpretation) over the signature Σ : M = (D, *), where $D \neq \varnothing$ — a domain * is an interpretation function *n*-ary predicate $P^* \subseteq D^n$ for every *n*-ary predicate symbol $P \in \text{Pred}$

Assume A is a sentence. We define: A formula A is true in a model M — we write $M \models A$. Definition by induction on A.

Example: Model: $M = (\mathbb{N}, <)$. Sentence $A: \forall x \exists y (x < y)$. Then...

Model (or interpretation) over the signature Σ : M = (D, *), where $D \neq \varnothing$ — a domain * is an interpretation function *n*-ary predicate $P^* \subseteq D^n$ for every *n*-ary predicate symbol $P \in \text{Pred}$

Assume A is a sentence. We define: A formula A is true in a model M — we write $M \models A$. Definition by induction on A.

Example: Model: $M = (\mathbb{N}, <)$. Sentence A: $\forall x \exists y (x < y)$. Then... $M \models A$.

Model (or interpretation) over the signature Σ : M = (D, *), where $D \neq \varnothing$ — a domain * is an interpretation function *n*-ary predicate $P^* \subseteq D^n$ for every *n*-ary predicate symbol $P \in \text{Pred}$

Assume A is a sentence. We define: A formula A is true in a model M — we write $M \models A$. Definition by induction on A.

Example: Model: $M = (\mathbb{N}, <)$. Sentence A: $\forall x \exists y (x < y)$. Then... $M \models A$. Sentence B: $\forall x \exists y (y < x)$. Then...

Model (or interpretation) over the signature Σ : M = (D, *), where $D \neq \varnothing$ — a domain * is an interpretation function *n*-ary predicate $P^* \subseteq D^n$ for every *n*-ary predicate symbol $P \in \text{Pred}$

Assume A is a sentence. We define: A formula A is true in a model M — we write $M \models A$. Definition by induction on A.

Example: Model: $M = (\mathbb{N}, <)$. Sentence A: $\forall x \exists y (x < y)$. Then... $M \models A$. Sentence B: $\forall x \exists y (y < x)$. Then... $M \not\models B$.

Model (or interpretation) over the signature Σ : M = (D, *), where $D \neq \varnothing$ — a domain * is an interpretation function *n*-ary predicate $P^* \subseteq D^n$ for every *n*-ary predicate symbol $P \in \text{Pred}$

Assume A is a sentence. We define: A formula A is true in a model M — we write $M \models A$. Definition by induction on A.

Example: Model: $M = (\mathbb{N}, <)$. Sentence A: $\forall x \exists y (x < y)$. Then... $M \models A$. Sentence B: $\forall x \exists y (y < x)$. Then... $M \not\models B$. Formula C: $\exists y (y < x)$. Then...

Model (or interpretation) over the signature Σ : M = (D, *), where $D \neq \varnothing$ — a domain * is an interpretation function *n*-ary predicate $P^* \subseteq D^n$ for every *n*-ary predicate symbol $P \in \text{Pred}$

Assume A is a sentence. We define: A formula A is true in a model M — we write $M \models A$. Definition by induction on A.

Example: Model: $M = (\mathbb{N}, <)$. Sentence A: $\forall x \exists y (x < y)$. Then... $M \models A$. Sentence B: $\forall x \exists y (y < x)$. Then... $M \not\models B$. Formula C: $\exists y (y < x)$. Then... it is not a closed formula.

Model (or interpretation) over the signature Σ : M = (D, *), where $D \neq \varnothing$ — a domain * is an interpretation function *n*-ary predicate $P^* \subseteq D^n$ for every *n*-ary predicate symbol $P \in \text{Pred}$

Assume A is a sentence. We define: A formula A is true in a model M — we write $M \models A$. Definition by induction on A.

Example: Model: $M = (\mathbb{N}, <)$. Sentence A: $\forall x \exists y \ (x < y)$. Then... $M \models A$. Sentence B: $\forall x \exists y \ (y < x)$. Then... $M \not\models B$. Formula C: $\exists y \ (y < x)$. Then... it is not a closed formula.

So, a sentence means some statement (true or false) about a model.

Evgeny Zolin, MSU

Let M = (D, *) and $N = (G, \sharp)$ be two models.

Let M = (D, *) and $N = (G, \sharp)$ be two models.

Definition (Elementary equivalence) $M \equiv N$ means: for every sentence A (over Σ) we have:

$$M \models A \iff N \models A.$$

Let M = (D, *) and $N = (G, \sharp)$ be two models.

Definition (Elementary equivalence) $M \equiv N$ means: for every sentence A (over Σ) we have:

$$M \models A \iff N \models A.$$

Compare with isomorphism:

< □ > < 同 > < 回 > < 回 > < 回 >

Let M = (D, *) and $N = (G, \sharp)$ be two models.

Definition (Elementary equivalence)

 $M \equiv N$ means: for every sentence A (over Σ) we have:

$$M \models A \iff N \models A.$$

Compare with isomorphism:

Definition (Isomorphism of models) $M \cong N$, if there is a bijection $f: D \to G$, such that, for all $a, b \in D$:

 $R^*(a, b)$ is true in $M \iff R^{\sharp}(f(a), f(b))$ is true in N.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Let M = (D, *) and $N = (G, \sharp)$ be two models.

Definition (Elementary equivalence)

 $M \equiv N$ means: for every sentence A (over Σ) we have:

$$M \models A \iff N \models A.$$

Compare with isomorphism:

Definition (Isomorphism of models) $M \cong N$, if there is a bijection $f: D \to G$, such that, for all $a, b \in D$:

> $R^*(a, b)$ is true in $M \iff R^{\sharp}(f(a), f(b))$ is true in N. Similarly for all predicates $P \in Pred$.

<ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let M = (D, *) and $N = (G, \sharp)$ be two models.

Definition (Elementary equivalence)

 $M \equiv N$ means: for every sentence A (over Σ) we have:

$$M \models A \iff N \models A.$$

Compare with isomorphism:

Definition (Isomorphism of models) $M \cong N$, if there is a bijection $f: D \to G$, such that, for all $a, b \in D$:

> $R^*(a, b)$ is true in $M \iff R^{\sharp}(f(a), f(b))$ is true in N. Similarly for all predicates $P \in \text{Pred}$.

Theorem

 $M \cong N \implies M \equiv N.$

Let M = (D, *) and $N = (G, \sharp)$ be two models.

Definition (Elementary equivalence)

 $M \equiv N$ means: for every sentence A (over Σ) we have:

$$M \models A \iff N \models A.$$

Compare with isomorphism:

Definition (Isomorphism of models) $M \cong N$, if there is a bijection $f: D \to G$, such that, for all $a, b \in D$:

> $R^*(a, b)$ is true in $M \iff R^{\sharp}(f(a), f(b))$ is true in N. Similarly for all predicates $P \in \text{Pred}$.

Theorem

 $M \cong N \implies M \equiv N$. The converse does not hold in general.

Evgeny Zolin, MSU

Isomorphism vs. equivalence

Example 1. $(\mathbb{N}, <) \not\cong (\mathbb{Z}, <).$

Example 1. $(\mathbb{N}, <) \not\cong (\mathbb{Z}, <)$. Moreover, $(\mathbb{N}, <) \not\equiv (\mathbb{Z}, <)$. Which formula distinguishes them?

イロト 不得下 イヨト イヨト 二日

Example 1. $(\mathbb{N}, <) \not\cong (\mathbb{Z}, <)$. Moreover, $(\mathbb{N}, <) \not\equiv (\mathbb{Z}, <)$. Which formula distinguishes them?

 $\forall x \, \exists y \, (y < x)$

Example 1. $(\mathbb{N}, <) \not\cong (\mathbb{Z}, <)$. Moreover, $(\mathbb{N}, <) \not\equiv (\mathbb{Z}, <)$. Which formula distinguishes them?

 $\forall x \, \exists y \, (y < x)$

Example 2. $(\mathbb{Z}, <) \not\cong (\mathbb{Z} + \mathbb{Z}, <)$. Why?

Example 1. $(\mathbb{N}, <) \not\cong (\mathbb{Z}, <)$. Moreover, $(\mathbb{N}, <) \not\equiv (\mathbb{Z}, <)$. Which formula distinguishes them?

 $\forall x \exists y (y < x)$

Example 2. $(\mathbb{Z}, <) \not\cong (\mathbb{Z} + \mathbb{Z}, <)$. Why? $(\mathbb{Z}, <) \equiv (\mathbb{Z} + \mathbb{Z}, <)$?

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Example 1. $(\mathbb{N}, <) \not\cong (\mathbb{Z}, <)$. Moreover, $(\mathbb{N}, <) \not\equiv (\mathbb{Z}, <)$. Which formula distinguishes them?

 $\forall x \exists y (y < x)$

Example 2. $(\mathbb{Z}, <) \not\cong (\mathbb{Z} + \mathbb{Z}, <)$. Why? $(\mathbb{Z}, <) \equiv (\mathbb{Z} + \mathbb{Z}, <)$? Yes, but why?

Let M = (D, *) and $N = (G, \sharp)$ be two models.

Let M = (D, *) and $N = (G, \sharp)$ be two models. Two players:

Player 1 | Player 2

Let M = (D, *) and $N = (G, \sharp)$ be two models. Two players:

Player 1Player 2NovatorConservator

Let M = (D, *) and $N = (G, \sharp)$ be two models. Two players:

Player 1	Player 2
Novator	Conservator
Spoiler	Duplicator

Let M = (D, *) and $N = (G, \sharp)$ be two models. Two players:

Player 1	Player 2	
Novator	Conservator	
Spoiler	Duplicator	
\forall	Ξ	

Let M = (D, *) and $N = (G, \sharp)$ be two models. Two players:

Player 1	Player 2
Novator	Conservator
Spoiler	Duplicator
\forall	Ξ
Abelard	Eloise

Let M = (D, *) and $N = (G, \sharp)$ be two models. Two players:

Player 1	Player 2
Novator	Conservator
Spoiler	Duplicator
\forall	Ξ
Abelard	Eloise
∀belard	∃loise

Let M = (D, *) and $N = (G, \sharp)$ be two models. Two players:

Player 1	Player 2
Novator	Conservator
Spoiler	Duplicator
\forall	Ξ
Abelard	Eloise
∀belard	∃loise
P _≢	P_{\equiv}

Let M = (D, *) and $N = (G, \sharp)$ be two models. Two players:

Player 1	Player 2
Novator	Conservator
Spoiler	Duplicator
\forall	Ξ
Abelard	Eloise
∀belard	∃loise
P _≢	P_{\equiv}

"Похищенный рай" (1988)

Let M = (D, *) and $N = (G, \sharp)$ be two models. Two players:

Player 1	Player 2
Novator	Conservator
Spoiler	Duplicator
\forall	Ξ
Abelard	Eloise
∀belard	∃loise
P _≢	P_{\equiv}

"Похищенный рай" (1988)

The "aim" of the first player $P_{\not\equiv}$ is to show that $M \not\equiv N$.

Let M = (D, *) and $N = (G, \sharp)$ be two models. Two players:

Player 2
Conservator
Duplicator
Ξ
Eloise
∃loise
P_{\equiv}

"Похищенный рай" (1988)

The "aim" of the first player P_{\neq} is to show that $M \neq N$. The "aim" of the second player P_{\equiv} is to show that $M \equiv N$.

イロト イポト イヨト イヨト 二日

Evgeny Zonn, 1050	Evgeny	Zolin,	MSU
-------------------	--------	--------	-----

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Round 0. Player 1 chooses $n \ge 1$.

Evgeny	Zolin,	MSU
--------	--------	-----

Round 0. Player 1 chooses $n \ge 1$. Then *n* rounds the following happens:

3

(a)

Round 0. Player 1 chooses $n \ge 1$. Then *n* rounds the following happens:

• Player 1 picks any element from M or N (he has a choice!)

- 3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Round 0. Player 1 chooses $n \ge 1$. Then *n* rounds the following happens:

- Player 1 picks any element from *M* or *N* (he has a choice!)
- Player 2 picks any element from the opposite model.

3

< □ > < 同 > < 回 > < 回 > < 回 >

Round 0. Player 1 chooses $n \ge 1$. Then *n* rounds the following happens:

- Player 1 picks any element from M or N (he has a choice!)
- Player 2 picks any element from the opposite model.

After *n* rounds we have:

- *n* elements a_1, \ldots, a_n from *M*,
- *n* elements b_1, \ldots, b_n from *N*.

< □ > < 同 > < 回 > < 回 > < 回 >

Round 0. Player 1 chooses $n \ge 1$. Then *n* rounds the following happens:

- Player 1 picks any element from *M* or *N* (he has a choice!)
- Player 2 picks any element from the opposite model.

After *n* rounds we have:

- *n* elements a_1, \ldots, a_n from *M*,
- *n* elements b_1, \ldots, b_n from *N*.
 - It does not matter who picked them!

∃ ► < ∃ ►</p>

Round 0. Player 1 chooses $n \ge 1$. Then *n* rounds the following happens:

• Player 1 picks any element from M or N (he has a choice!)

• Player 2 picks any element from the opposite model.

After *n* rounds we have:

- *n* elements a_1, \ldots, a_n from *M*,
- *n* elements b_1, \ldots, b_n from *N*.
 - It does not matter who picked them!

Can we distinguish (a_1, \ldots, a_n) from (b_1, \ldots, b_n) by any $P \in \mathsf{Pred}$?

- 3

< □ > < 同 > < 回 > < 回 > < 回 >

Round 0. Player 1 chooses $n \ge 1$. Then *n* rounds the following happens:

- Player 1 picks any element from M or N (he has a choice!)
- Player 2 picks any element from the opposite model.

After *n* rounds we have:

- *n* elements a_1, \ldots, a_n from *M*,
- n elements b₁,..., b_n from N.
 It does not matter who picked them!

Can we distinguish (a_1, \ldots, a_n) from (b_1, \ldots, b_n) by any $P \in \mathsf{Pred}$?

For example, $M \models P_7(a_3, a_5, a_3)$, but $N \not\models P_7(b_3, b_5, b_3)$, or vice versa.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Round 0. Player 1 chooses $n \ge 1$. Then *n* rounds the following happens:

• Player 1 picks any element from M or N (he has a choice!)

• Player 2 picks any element from the opposite model.

After *n* rounds we have:

- *n* elements a_1, \ldots, a_n from *M*,
- *n* elements b_1, \ldots, b_n from *N*.

It does not matter who picked them!

Can we distinguish (a_1, \ldots, a_n) from (b_1, \ldots, b_n) by any $P \in$ Pred?

For example, $M \models P_7(a_3, a_5, a_3)$, but $N \not\models P_7(b_3, b_5, b_3)$, or vice versa.

 $\begin{array}{l} \mathsf{YES} \implies \mathsf{P}_{\not\equiv} \text{ wins (Player 1)} \\ \mathsf{NO} \implies \mathsf{P}_{\equiv} \text{ wins (Player 2).} \end{array}$

Important notion: a winning strategy for some player.

Evgeny Zolin, MSU

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (Main) $M \equiv N \iff P_{\equiv}$ has a winning strategy in Game(M,N).

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国▶ - 国 - のの⊙

 $M \equiv N \iff P_{\equiv}$ has a winning strategy in Game(M,N).

q(A) — the quantifier rank of a formula.

 $q(P(x_1,\ldots,x_s))=0,$

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国▶ - 国 - のの⊙

 $M \equiv N \iff P_{\equiv}$ has a winning strategy in Game(M,N).

q(A) — the quantifier rank of a formula.

 $q(P(x_1,\ldots,x_s)) = 0,$ $q(\neg A) = q(A),$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

 $M \equiv N \iff P_{\equiv}$ has a winning strategy in Game(M,N).

q(A) — the quantifier rank of a formula.

$$q(P(x_1,\ldots,x_s)) = 0,$$

$$q(\neg A) = q(A),$$

$$q(A \land B) = \max(q(A),q(B)).$$

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国▶ - 国 - のの⊙

 $M \equiv N \iff P_{\equiv}$ has a winning strategy in Game(M,N).

q(A) — the quantifier rank of a formula.

$$q(P(x_1,\ldots,x_s)) = 0,$$

$$q(\neg A) = q(A),$$

$$q(A \land B) = \max(q(A),q(B))$$

$$q(\forall x B) = 1 + q(B),$$

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国▶ - 国 - のの⊙

 $M \equiv N \iff P_{\equiv}$ has a winning strategy in Game(M,N).

q(A) — the quantifier rank of a formula.

$$q(P(x_1,...,x_s)) = 0,$$

$$q(\neg A) = q(A),$$

$$q(A \land B) = \max(q(A),q(B)),$$

$$q(\forall x B) = 1 + q(B),$$

Example.

 $A = \exists y (\forall x \exists z P(x, y, z) \land \neg Q(y)) \to \exists x \forall z R(x, z)$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

 $M \equiv N \iff P_{\equiv}$ has a winning strategy in Game(M,N).

q(A) — the quantifier rank of a formula.

$$q(P(x_1,...,x_s)) = 0,$$

$$q(\neg A) = q(A),$$

$$q(A \land B) = \max(q(A),q(B)).$$

$$q(\forall x B) = 1 + q(B),$$

Example.

 $A = \exists y (\forall x \exists z P(x, y, z) \land \neg Q(y)) \to \exists x \forall z R(x, z)$ q(A) = 3.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

 $M \equiv N \iff P_{\equiv}$ has a winning strategy in Game(M,N).

q(A) — the quantifier rank of a formula.

$$q(P(x_1,...,x_s)) = 0,$$

$$q(\neg A) = q(A),$$

$$q(A \land B) = \max(q(A),q(B)),$$

$$q(\forall x B) = 1 + q(B),$$

Example.

$$A = \exists y (\forall x \exists z P(x, y, z) \land \neg Q(y)) \to \exists x \forall z R(x, z)$$

$$q(A) = 3.$$

Definition (Elementary *n*-equivalence) $M \equiv_n N$ means: for every sentence A of $q(A) \leq n$ we have:

$$M \models A \iff N \models A.$$

Evgeny Zolin, MSU

3

・ロト ・ 四ト ・ ヨト ・ ヨト

Theorem (Main) $M \equiv N \iff P_{\equiv}$ has a winning strategy in Game(M,N).

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国▶ - 国 - のの⊙

Theorem (Main) $M \equiv N \iff P_{\equiv}$ has a winning strategy in Game(M,N).

 $Game_n(M, N)$ — exactly *n* rounds.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (Main)

 $M \equiv N \iff P_{\equiv}$ has a winning strategy in Game(M,N).

 $Game_n(M, N)$ — exactly *n* rounds.

Theorem $(Main_n)$ $M \equiv_n N \iff P_{\equiv}$ has a winning strategy in $Game_n(M, N)$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● のへで

Theorem (Main)

 $M \equiv N \iff P_{\equiv}$ has a winning strategy in Game(M,N).

 $Game_n(M, N)$ — exactly *n* rounds.

Theorem (Main_n)

 $M \equiv_n N \iff P_{\equiv}$ has a winning strategy in $Game_n(M, N)$.

Theorem 1 \leftarrow Theorem 2.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● のへで

• $(\mathbb{N}, <)$ and $(\mathbb{Z}, <)$. P_1 wins in 2 rounds. But P_2 wins in 1 round.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 シスペ

- $(\mathbb{N}, <)$ and $(\mathbb{Z}, <)$. P_1 wins in 2 rounds. But P_2 wins in 1 round.
- $(\mathbb{Z}, <)$ and $(\mathbb{Q}, <)$. P_1 wins in 3 rounds. But P_2 wins in 2 rounds.

- $(\mathbb{N}, <)$ and $(\mathbb{Z}, <)$. P_1 wins in 2 rounds. But P_2 wins in 1 round.
- $(\mathbb{Z}, <)$ and $(\mathbb{Q}, <)$. P_1 wins in 3 rounds. But P_2 wins in 2 rounds.
- $\mathbb{Q} \equiv \mathbb{R}$. Show this using games.

イロト 不得 トイヨト イヨト 二日

- $(\mathbb{N}, <)$ and $(\mathbb{Z}, <)$. P_1 wins in 2 rounds. But P_2 wins in 1 round.
- $(\mathbb{Z}, <)$ and $(\mathbb{Q}, <)$. P_1 wins in 3 rounds. But P_2 wins in 2 rounds.
- $\mathbb{Q} \equiv \mathbb{R}$. Show this using games.
- Using games, prove:

Μ	N	$M \cong N$	$M \equiv N$
\mathbb{N}	$\mathbb{N} + \mathbb{N}$		
\mathbb{Z}	$\mathbb{Z} + \mathbb{Z}$		
\mathbb{Q}	$\mathbb{Q} + \mathbb{Q}$		
\mathbb{R}	$\mathbb{R} + \mathbb{R}$		

- $(\mathbb{N}, <)$ and $(\mathbb{Z}, <)$. P_1 wins in 2 rounds. But P_2 wins in 1 round.
- $(\mathbb{Z}, <)$ and $(\mathbb{Q}, <)$. P_1 wins in 3 rounds. But P_2 wins in 2 rounds.
- $\mathbb{Q} \equiv \mathbb{R}$. Show this using games.
- Using games, prove:

 Μ	Ν	$M \cong N$	$M \equiv N$
\mathbb{N}	$\mathbb{N} + \mathbb{N}$	_	
\mathbb{Z}	$\mathbb{Z} + \mathbb{Z}$		
Q	$\mathbb{Q} + \mathbb{Q}$		
\mathbb{R}	$\mathbb{R} + \mathbb{R}$		

The end of Lecture 6. Questions?

- $(\mathbb{N}, <)$ and $(\mathbb{Z}, <)$. P_1 wins in 2 rounds. But P_2 wins in 1 round.
- $(\mathbb{Z}, <)$ and $(\mathbb{Q}, <)$. P_1 wins in 3 rounds. But P_2 wins in 2 rounds.
- $\mathbb{Q} \equiv \mathbb{R}$. Show this using games.
- Using games, prove:

 Μ	Ν	$M \cong N$	$M \equiv N$
\mathbb{N}	$\mathbb{N} + \mathbb{N}$	_	
\mathbb{Z}	$\mathbb{Z} + \mathbb{Z}$	_	
\mathbb{Q}	$\mathbb{Q} + \mathbb{Q}$		
\mathbb{R}	$\mathbb{R} + \mathbb{R}$		

The end of Lecture 6. Questions?

- $(\mathbb{N}, <)$ and $(\mathbb{Z}, <)$. P_1 wins in 2 rounds. But P_2 wins in 1 round.
- $(\mathbb{Z}, <)$ and $(\mathbb{Q}, <)$. P_1 wins in 3 rounds. But P_2 wins in 2 rounds.
- $\mathbb{Q} \equiv \mathbb{R}$. Show this using games.
- Using games, prove:

 Μ	Ν	$M \cong N$	$M \equiv N$
\mathbb{N}	$\mathbb{N} + \mathbb{N}$	—	
\mathbb{Z}	$\mathbb{Z} + \mathbb{Z}$	—	
Q	$\mathbb{Q} + \mathbb{Q}$	+	+
$\mathbb R$	$\mathbb{R} + \mathbb{R}$		

The end of Lecture 6. Questions?

- $(\mathbb{N}, <)$ and $(\mathbb{Z}, <)$. P_1 wins in 2 rounds. But P_2 wins in 1 round.
- $(\mathbb{Z}, <)$ and $(\mathbb{Q}, <)$. P_1 wins in 3 rounds. But P_2 wins in 2 rounds.
- $\mathbb{Q} \equiv \mathbb{R}$. Show this using games.
- Using games, prove:

	Μ	Ν	$M \cong N$	$M \equiv N$
	\mathbb{N}	$\mathbb{N} + \mathbb{N}$	—	
	\mathbb{Z}	$\mathbb{Z} + \mathbb{Z}$	—	
(Q	$\mathbb{Q} + \mathbb{Q}$	+	+
	$\mathbb R$	$\mathbb{R} + \mathbb{R}$	—	

The end of Lecture 6. Questions?

- $(\mathbb{N}, <)$ and $(\mathbb{Z}, <)$. P_1 wins in 2 rounds. But P_2 wins in 1 round.
- $(\mathbb{Z}, <)$ and $(\mathbb{Q}, <)$. P_1 wins in 3 rounds. But P_2 wins in 2 rounds.
- $\mathbb{Q} \equiv \mathbb{R}$. Show this using games.
- Using games, prove:

М	Ν	$M \cong N$	$M \equiv N$
\mathbb{N}	$\mathbb{N} + \mathbb{N}$	_	—
\mathbb{Z}	$\mathbb{Z} + \mathbb{Z}$	_	
\mathbb{Q}	$\mathbb{Q} + \mathbb{Q}$	+	+
\mathbb{R}	$\mathbb{R} + \mathbb{R}$	_	

The end of Lecture 6. Questions?

- $(\mathbb{N}, <)$ and $(\mathbb{Z}, <)$. P_1 wins in 2 rounds. But P_2 wins in 1 round.
- $(\mathbb{Z}, <)$ and $(\mathbb{Q}, <)$. P_1 wins in 3 rounds. But P_2 wins in 2 rounds.
- $\mathbb{Q} \equiv \mathbb{R}$. Show this using games.
- Using games, prove:

М	N	$M \cong N$	$M \equiv N$
\mathbb{N}	$\mathbb{N} + \mathbb{N}$	_	—
\mathbb{Z}	$\mathbb{Z} + \mathbb{Z}$	_	+
\mathbb{Q}	$\mathbb{Q} + \mathbb{Q}$	+	+
\mathbb{R}	$\mathbb{R} + \mathbb{R}$	_	

The end of Lecture 6. Questions?

- $(\mathbb{N}, <)$ and $(\mathbb{Z}, <)$. P_1 wins in 2 rounds. But P_2 wins in 1 round.
- $(\mathbb{Z}, <)$ and $(\mathbb{Q}, <)$. P_1 wins in 3 rounds. But P_2 wins in 2 rounds.
- $\mathbb{Q} \equiv \mathbb{R}$. Show this using games.
- Using games, prove:

М	N	$M \cong N$	$M \equiv N$
\mathbb{N}	$\mathbb{N} + \mathbb{N}$	_	—
\mathbb{Z}	$\mathbb{Z} + \mathbb{Z}$	_	+
\mathbb{Q}	$\mathbb{Q} + \mathbb{Q}$	+	+
\mathbb{R}	$\mathbb{R} + \mathbb{R}$	_	+

The end of Lecture 6. Questions?

- $(\mathbb{N}, <)$ and $(\mathbb{Z}, <)$. P_1 wins in 2 rounds. But P_2 wins in 1 round.
- $(\mathbb{Z}, <)$ and $(\mathbb{Q}, <)$. P_1 wins in 3 rounds. But P_2 wins in 2 rounds.
- $\mathbb{Q} \equiv \mathbb{R}$. Show this using games.
- Using games, prove:

М	Ν	$M \cong N$	$M \equiv N$
\mathbb{N}	$\mathbb{N} + \mathbb{N}$	_	—
\mathbb{Z}	$\mathbb{Z} + \mathbb{Z}$	_	+
Q	$\mathbb{Q} + \mathbb{Q}$	+	+
\mathbb{R}	$\mathbb{R} + \mathbb{R}$	_	+

• $\mathbb{N} \equiv \mathbb{N} + \mathbb{Z}$. Show this using games.

The end of Lecture 6.

Questions?

- $(\mathbb{N}, <)$ and $(\mathbb{Z}, <)$. P_1 wins in 2 rounds. But P_2 wins in 1 round.
- $(\mathbb{Z}, <)$ and $(\mathbb{Q}, <)$. P_1 wins in 3 rounds. But P_2 wins in 2 rounds.
- $\mathbb{Q} \equiv \mathbb{R}$. Show this using games.
- Using games, prove:

- $\mathbb{N} \equiv \mathbb{N} + \mathbb{Z}$. Show this using games.
- $\mathbb{N} + \mathbb{N} \neq \mathbb{N} + \mathbb{N} + \mathbb{N}$. Find the formula with minimal q(A).

The end of Lecture 6.

Questions?

< A

Evgeny Zolin, MSU

Infinitary Logic

▶ ▲ ■ ▶ ▲ ■ ▶ ■ 少への March 31st, 2021 11/11