ACCL Lecture 6:
 Ehrenfeucht games: a criterion of elementary equivalence of two models

Evgeny Zolin

Department of Mathematical Logic and Theory of Algorithms Faculty of Mechanics and Mathematics Moscow State University

Advanced Course in Classical Logic March 31st, 2021

First-order predicate logic: Syntax

The language has:

- connectives $\neg, \wedge, \vee, \rightarrow$

First-order predicate logic: Syntax

The language has:

- connectives $\neg, \wedge, \vee, \rightarrow$
- quantifiers \forall, \exists

First-order predicate logic: Syntax

The language has:

- connectives $\neg, \wedge, \vee, \rightarrow$
- quantifiers \forall, \exists
- (individual) variables: $x_{0}, x_{1}, x_{2}, \ldots$ Usually we write: x, y, z.

First-order predicate logic: Syntax

The language has:

- connectives $\neg, \wedge, \vee, \rightarrow$
- quantifiers \forall, \exists
- (individual) variables: $x_{0}, x_{1}, x_{2}, \ldots$ Usually we write: x, y, z.
- predicate symbols $P_{i}^{(n)}$ - an n-ary predicate symbol Usually finite or countable set of these symbols.

First-order predicate logic: Syntax

The language has:

- connectives $\neg, \wedge, \vee, \rightarrow$
- quantifiers \forall, \exists
- (individual) variables: $x_{0}, x_{1}, x_{2}, \ldots$ Usually we write: x, y, z.
- predicate symbols $P_{i}^{(n)}$ - an n-ary predicate symbol Usually finite or countable set of these symbols.
- functional symbols $f_{i}^{(n)}$
- constants c_{i}

But in this lecture - only predicate symbols (finitely many).

First-order predicate logic: Syntax

The language has:

- connectives $\neg, \wedge, \vee, \rightarrow$
- quantifiers \forall, \exists
- (individual) variables: $x_{0}, x_{1}, x_{2}, \ldots$ Usually we write: x, y, z.
- predicate symbols $P_{i}^{(n)}$ - an n-ary predicate symbol Usually finite or countable set of these symbols.
- functional symbols $f_{i}^{(n)}$
- constants c_{i}

But in this lecture - only predicate symbols (finitely many).
A signature $\Sigma=($ Pred, Func, Const)

Formula

Assume we have in the signature: Pred $=\left\{P^{(3)}, Q^{(1)}, R^{(2)}\right\}$.

Formula

Assume we have in the signature: Pred $=\left\{P^{(3)}, Q^{(1)}, R^{(2)}\right\}$. So, for example, we can write: $P(x, y, z), Q(x), R(x, y)$.

Formula

Assume we have in the signature: Pred $=\left\{P^{(3)}, Q^{(1)}, R^{(2)}\right\}$. So, for example, we can write: $P(x, y, z), Q(x), R(x, y)$.
Examples of formulas:
$P(x, y, x)$

Formula

Assume we have in the signature: Pred $=\left\{P^{(3)}, Q^{(1)}, R^{(2)}\right\}$. So, for example, we can write: $P(x, y, z), Q(x), R(x, y)$.
Examples of formulas:
$P(x, y, x)$
$(P(x, y, x) \wedge Q(y)) \rightarrow R(x, z)$

Formula

Assume we have in the signature: Pred $=\left\{P^{(3)}, Q^{(1)}, R^{(2)}\right\}$. So, for example, we can write: $P(x, y, z), Q(x), R(x, y)$.
Examples of formulas:
$P(x, y, x)$
$(P(x, y, x) \wedge Q(y)) \rightarrow R(x, z)$
$\exists y(\forall x P(x, y, x) \wedge \neg Q(y)) \rightarrow \forall z R(x, z)$ - free variable!

Formula

Assume we have in the signature: Pred $=\left\{P^{(3)}, Q^{(1)}, R^{(2)}\right\}$. So, for example, we can write: $P(x, y, z), Q(x), R(x, y)$.
Examples of formulas:
$P(x, y, x)$
$(P(x, y, x) \wedge Q(y)) \rightarrow R(x, z)$
$\exists y(\forall x P(x, y, x) \wedge \neg Q(y)) \rightarrow \exists x \forall z R(x, z)$

Formula

Assume we have in the signature: Pred $=\left\{P^{(3)}, Q^{(1)}, R^{(2)}\right\}$.
So, for example, we can write: $P(x, y, z), Q(x), R(x, y)$.
Examples of formulas:
$P(x, y, x)$
$(P(x, y, x) \wedge Q(y)) \rightarrow R(x, z)$
$\exists y(\forall x P(x, y, x) \wedge \neg Q(y)) \rightarrow \exists x \forall z R(x, z)$
This is a closed formula or sentence.

First-order predicate logic: Semantics

Model (or interpretation) over the signature $\Sigma: M=(D, *)$, where

First-order predicate logic: Semantics

Model (or interpretation) over the signature $\Sigma: M=(D, *)$, where $D \neq \varnothing$ - a domain

First-order predicate logic: Semantics

Model (or interpretation) over the signature $\Sigma: M=(D, *)$, where $D \neq \varnothing$ - a domain

* is an interpretation function

First-order predicate logic: Semantics

Model (or interpretation) over the signature $\Sigma: M=(D, *)$, where $D \neq \varnothing$ - a domain

* is an interpretation function
n-ary predicate $P^{*} \subseteq D^{n}$
for every n-ary predicate symbol $P \in$ Pred

First-order predicate logic: Semantics

Model (or interpretation) over the signature $\Sigma: M=(D, *)$, where $D \neq \varnothing$ - a domain

* is an interpretation function
n-ary predicate $P^{*} \subseteq D^{n}$
for every n-ary predicate symbol $P \in$ Pred
Assume A is a sentence. We define:

First-order predicate logic: Semantics

Model (or interpretation) over the signature $\Sigma: M=(D, *)$, where $D \neq \varnothing$ - a domain

* is an interpretation function
n-ary predicate $P^{*} \subseteq D^{n}$
for every n-ary predicate symbol $P \in$ Pred
Assume A is a sentence. We define:
A formula A is true in a model M - we write $M \models A$.

First-order predicate logic: Semantics

Model (or interpretation) over the signature $\Sigma: M=(D, *)$, where $D \neq \varnothing$ - a domain

* is an interpretation function
n-ary predicate $P^{*} \subseteq D^{n}$
for every n-ary predicate symbol $P \in$ Pred
Assume A is a sentence. We define:
A formula A is true in a model $M-$ we write $M \models A$.
Definition by induction on A.

First-order predicate logic: Semantics

Model (or interpretation) over the signature $\Sigma: M=(D, *)$, where $D \neq \varnothing$ - a domain

* is an interpretation function
n-ary predicate $P^{*} \subseteq D^{n}$
for every n-ary predicate symbol $P \in$ Pred
Assume A is a sentence. We define:
A formula A is true in a model M - we write $M \models A$.
Definition by induction on A.
Example: Model: $M=(\mathbb{N},<)$.
Sentence A : $\forall x \exists y(x<y)$. Then...

First-order predicate logic: Semantics

Model (or interpretation) over the signature $\Sigma: M=(D, *)$, where $D \neq \varnothing$ - a domain

* is an interpretation function
n-ary predicate $P^{*} \subseteq D^{n}$
for every n-ary predicate symbol $P \in$ Pred
Assume A is a sentence. We define:
A formula A is true in a model M - we write $M \models A$.
Definition by induction on A.
Example: Model: $M=(\mathbb{N},<)$.
Sentence A : $\forall x \exists y(x<y)$. Then... $M \models A$.

First-order predicate logic: Semantics

Model (or interpretation) over the signature $\Sigma: M=(D, *)$, where $D \neq \varnothing$ - a domain

* is an interpretation function
n-ary predicate $P^{*} \subseteq D^{n}$
for every n-ary predicate symbol $P \in$ Pred
Assume A is a sentence. We define:
A formula A is true in a model M - we write $M \models A$.
Definition by induction on A.
Example: Model: $M=(\mathbb{N},<)$.
Sentence A : $\forall x \exists y(x<y)$. Then... $M \models A$.
Sentence $B: \forall x \exists y(y<x)$. Then...

First-order predicate logic: Semantics

Model (or interpretation) over the signature $\Sigma: M=(D, *)$, where $D \neq \varnothing$ - a domain

* is an interpretation function
n-ary predicate $P^{*} \subseteq D^{n}$
for every n-ary predicate symbol $P \in$ Pred
Assume A is a sentence. We define:
A formula A is true in a model M - we write $M \models A$.
Definition by induction on A.
Example: Model: $M=(\mathbb{N},<)$.
Sentence A : $\forall x \exists y(x<y)$. Then... $M \models A$.
Sentence B : $\forall x \exists y(y<x)$. Then... $M \not F B$.

First-order predicate logic: Semantics

Model (or interpretation) over the signature $\Sigma: M=(D, *)$, where $D \neq \varnothing$ - a domain

* is an interpretation function
n-ary predicate $P^{*} \subseteq D^{n}$
for every n-ary predicate symbol $P \in$ Pred
Assume A is a sentence. We define:
A formula A is true in a model M - we write $M \models A$.
Definition by induction on A.
Example: Model: $M=(\mathbb{N},<)$.
Sentence A : $\forall x \exists y(x<y)$. Then... $M \models A$.
Sentence $B: \forall x \exists y(y<x)$. Then... $M \not \equiv B$.
Formula C: $\exists y(y<x)$. Then...

First-order predicate logic: Semantics

Model (or interpretation) over the signature $\Sigma: M=(D, *)$, where $D \neq \varnothing$ - a domain

* is an interpretation function
n-ary predicate $P^{*} \subseteq D^{n}$
for every n-ary predicate symbol $P \in$ Pred
Assume A is a sentence. We define:
A formula A is true in a model M - we write $M \models A$.
Definition by induction on A.
Example: Model: $M=(\mathbb{N},<)$.
Sentence A : $\forall x \exists y(x<y)$. Then... $M \models A$.
Sentence $B: \forall x \exists y(y<x)$. Then... $M \not \equiv B$.
Formula C : $\exists y(y<x)$. Then... it is not a closed formula.

First-order predicate logic: Semantics

Model (or interpretation) over the signature $\Sigma: M=(D, *)$, where $D \neq \varnothing$ - a domain

* is an interpretation function
n-ary predicate $P^{*} \subseteq D^{n}$
for every n-ary predicate symbol $P \in$ Pred
Assume A is a sentence. We define:
A formula A is true in a model M - we write $M \models A$.
Definition by induction on A.
Example: Model: $M=(\mathbb{N},<)$.
Sentence A : $\forall x \exists y(x<y)$. Then... $M \models A$.
Sentence $B: \forall x \exists y(y<x)$. Then... $M \not \equiv B$.
Formula $C: \exists y(y<x)$. Then... it is not a closed formula.
So, a sentence means some statement (true or false) about a model.

Elementary equivalence of models

Let $M=(D, *)$ and $N=(G, \sharp)$ be two models.

Elementary equivalence of models

Let $M=(D, *)$ and $N=(G, \sharp)$ be two models.
Definition (Elementary equivalence)
$M \equiv N$ means: for every sentence A (over $\Sigma)$ we have:

$$
M \models A \quad \Longleftrightarrow \quad N \models A .
$$

Elementary equivalence of models

Let $M=(D, *)$ and $N=(G, \sharp)$ be two models.
Definition (Elementary equivalence)
$M \equiv N$ means: for every sentence A (over $\Sigma)$ we have:

$$
M \models A \quad \Longleftrightarrow \quad N \models A .
$$

Compare with isomorphism:

Elementary equivalence of models

Let $M=(D, *)$ and $N=(G, \sharp)$ be two models.
Definition (Elementary equivalence)
$M \equiv N$ means: for every sentence A (over $\Sigma)$ we have:

$$
M \models A \quad \Longleftrightarrow \quad N \models A
$$

Compare with isomorphism:
Definition (Isomorphism of models)
$M \cong N$, if there is a bijection $f: D \rightarrow G$, such that, for all $a, b \in D$:
$R^{*}(a, b)$ is true in $M \quad \Longleftrightarrow \quad R^{\sharp}(f(a), f(b))$ is true in N.

Elementary equivalence of models

Let $M=(D, *)$ and $N=(G, \sharp)$ be two models.
Definition (Elementary equivalence)
$M \equiv N$ means: for every sentence A (over $\Sigma)$ we have:

$$
M \models A \quad \Longleftrightarrow \quad N \models A
$$

Compare with isomorphism:
Definition (Isomorphism of models)
$M \cong N$, if there is a bijection $f: D \rightarrow G$, such that, for all $a, b \in D$:
$R^{*}(a, b)$ is true in $M \quad \Longleftrightarrow \quad R^{\sharp}(f(a), f(b))$ is true in N.
Similarly for all predicates $P \in$ Pred.

Elementary equivalence of models

Let $M=(D, *)$ and $N=(G, \sharp)$ be two models.
Definition (Elementary equivalence)
$M \equiv N$ means: for every sentence A (over $\Sigma)$ we have:

$$
M \models A \quad \Longleftrightarrow \quad N \models A
$$

Compare with isomorphism:
Definition (Isomorphism of models)
$M \cong N$, if there is a bijection $f: D \rightarrow G$, such that, for all $a, b \in D$:
$R^{*}(a, b)$ is true in $M \quad \Longleftrightarrow \quad R^{\sharp}(f(a), f(b))$ is true in N. Similarly for all predicates $P \in$ Pred.

Theorem
$M \cong N \quad \Longrightarrow \quad M \equiv N$.

Elementary equivalence of models

Let $M=(D, *)$ and $N=(G, \sharp)$ be two models.
Definition (Elementary equivalence)
$M \equiv N$ means: for every sentence A (over $\Sigma)$ we have:

$$
M \models A \quad \Longleftrightarrow \quad N \models A
$$

Compare with isomorphism:
Definition (Isomorphism of models)
$M \cong N$, if there is a bijection $f: D \rightarrow G$, such that, for all $a, b \in D$:
$R^{*}(a, b)$ is true in $M \quad \Longleftrightarrow \quad R^{\sharp}(f(a), f(b))$ is true in N. Similarly for all predicates $P \in$ Pred.

Theorem
$M \cong N \quad \Longrightarrow \quad M \equiv N$. The converse does not hold in general.

Isomorphism vs. equivalence

Example 1. $(\mathbb{N},<) \not \neq(\mathbb{Z},<)$.

Isomorphism vs. equivalence

Example 1. $(\mathbb{N},<) \not \approx(\mathbb{Z},<)$.

Moreover, $(\mathbb{N},<) \not \equiv(\mathbb{Z},<)$. Which formula distinguishes them?

Isomorphism vs. equivalence

Example 1. $(\mathbb{N},<) \not \approx(\mathbb{Z},<)$.

Moreover, $(\mathbb{N},<) \not \equiv(\mathbb{Z},<)$. Which formula distinguishes them?

$$
\forall x \exists y(y<x)
$$

Isomorphism vs. equivalence

Example 1. $(\mathbb{N},<) \not \approx(\mathbb{Z},<)$.

Moreover, $(\mathbb{N},<) \not \equiv(\mathbb{Z},<)$. Which formula distinguishes them?

$$
\forall x \exists y(y<x)
$$

Example 2. $(\mathbb{Z},<) \not \equiv(\mathbb{Z}+\mathbb{Z},<)$. Why?

Isomorphism vs. equivalence

Example 1. $(\mathbb{N},<) \not \approx(\mathbb{Z},<)$.
Moreover, $(\mathbb{N},<) \not \equiv(\mathbb{Z},<)$. Which formula distinguishes them?

$$
\forall x \exists y(y<x)
$$

Example 2. $(\mathbb{Z},<) \neq(\mathbb{Z}+\mathbb{Z},<)$. Why?
$(\mathbb{Z},<) \equiv(\mathbb{Z}+\mathbb{Z},<)$?

Isomorphism vs. equivalence

Example 1. $(\mathbb{N},<) \not \approx(\mathbb{Z},<)$.
Moreover, $(\mathbb{N},<) \not \equiv(\mathbb{Z},<)$. Which formula distinguishes them?

$$
\forall x \exists y(y<x)
$$

Example 2. $(\mathbb{Z},<) \neq(\mathbb{Z}+\mathbb{Z},<)$. Why?
$(\mathbb{Z},<) \equiv(\mathbb{Z}+\mathbb{Z},<)$? Yes, but why?

Ehrenfeucht game

Let $M=(D, *)$ and $N=(G, \sharp)$ be two models.

Ehrenfeucht game

Let $M=(D, *)$ and $N=(G, \sharp)$ be two models.
Two players:
Player 1 Player 2

Ehrenfeucht game

Let $M=(D, *)$ and $N=(G, \sharp)$ be two models.
Two players:

Player 1 Player 2
Novator Conservator

Ehrenfeucht game

Let $M=(D, *)$ and $N=(G, \sharp)$ be two models.
Two players:

Player 1 Player 2
Novator Conservator
Spoiler Duplicator

Ehrenfeucht game

Let $M=(D, *)$ and $N=(G, \sharp)$ be two models.
Two players:

Player 1	Player 2
Novator	Conservator
Spoiler	Duplicator
\forall	\exists

Ehrenfeucht game

Let $M=(D, *)$ and $N=(G, \sharp)$ be two models.
Two players:

Player 1	Player 2
Novator	Conservator
Spoiler	Duplicator
\forall	\exists
Abelard	Eloise

Ehrenfeucht game

Let $M=(D, *)$ and $N=(G, \sharp)$ be two models.
Two players:

Player 1	Player 2
Novator	Conservator
Spoiler	Duplicator
\forall	\exists
Abelard	Eloise
\forall belard	\exists loise

Ehrenfeucht game

Let $M=(D, *)$ and $N=(G, \sharp)$ be two models.
Two players:

Player 1	Player 2
Novator	Conservator
Spoiler	Duplicator
\forall	\exists
Abelard	Eloise
\forall belard	$\exists l o i s e$
$\mathrm{P}_{\equiv \equiv}$	P_{\equiv}

Ehrenfeucht game

Let $M=(D, *)$ and $N=(G, \sharp)$ be two models.
Two players:

Player 1	Player 2
Novator	Conservator
Spoiler	Duplicator
\forall	\exists
Abelard	Eloise
\forall belard	$\exists l o i s e$
$\mathrm{P}_{\not \equiv}$	P_{\equiv}

"Похищенный рай" (1988)

Ehrenfeucht game

Let $M=(D, *)$ and $N=(G, \sharp)$ be two models.
Two players:

Player 1	Player 2
Novator	Conservator
Spoiler	Duplicator
\forall	\exists
Abelard	Eloise
\forall belard	$\exists l o i s e$
$\mathrm{P}_{\not \equiv \equiv}$	P_{\equiv}

"Похищенный рай" (1988)

The "aim" of the first player $P_{\not \equiv}$ is to show that $M \not \equiv N$.

Ehrenfeucht game

Let $M=(D, *)$ and $N=(G, \sharp)$ be two models.
Two players:

Player 1	Player 2
Novator	Conservator
Spoiler	Duplicator
\forall	\exists
Abelard	Eloise
\forall belard	$\exists l o i s e$
$\mathrm{P}_{\not \equiv \equiv}$	P_{\equiv}

"Похищенный рай" (1988)

The "aim" of the first player $P_{\not \equiv}$ is to show that $M \not \equiv N$. The "aim" of the second player P_{\equiv} is to show that $M \equiv N$.

Game(M,N):

Game(M,N):

Round 0. Player 1 chooses $n \geqslant 1$.

Game(M,N):

Round 0. Player 1 chooses $n \geqslant 1$. Then n rounds the following happens:

Game(M,N):

Round 0. Player 1 chooses $n \geqslant 1$.
Then n rounds the following happens:

- Player 1 picks any element from M or N (he has a choice!)

Game(M,N):

Round 0. Player 1 chooses $n \geqslant 1$.
Then n rounds the following happens:

- Player 1 picks any element from M or N (he has a choice!)
- Player 2 picks any element from the opposite model.

Game(M,N):

Round 0. Player 1 chooses $n \geqslant 1$.
Then n rounds the following happens:

- Player 1 picks any element from M or N (he has a choice!)
- Player 2 picks any element from the opposite model.

After n rounds we have:

- n elements a_{1}, \ldots, a_{n} from M,
- n elements b_{1}, \ldots, b_{n} from N.

Game(M,N):

Round 0. Player 1 chooses $n \geqslant 1$.
Then n rounds the following happens:

- Player 1 picks any element from M or N (he has a choice!)
- Player 2 picks any element from the opposite model.

After n rounds we have:

- n elements a_{1}, \ldots, a_{n} from M,
- n elements b_{1}, \ldots, b_{n} from N.

It does not matter who picked them!

Game(M,N):

Round 0. Player 1 chooses $n \geqslant 1$.
Then n rounds the following happens:

- Player 1 picks any element from M or N (he has a choice!)
- Player 2 picks any element from the opposite model.

After n rounds we have:

- n elements a_{1}, \ldots, a_{n} from M,
- n elements b_{1}, \ldots, b_{n} from N.

It does not matter who picked them!
Can we distinguish $\left(a_{1}, \ldots, a_{n}\right)$ from $\left(b_{1}, \ldots, b_{n}\right)$ by any $P \in$ Pred?

Game(M,N):

Round 0. Player 1 chooses $n \geqslant 1$.
Then n rounds the following happens:

- Player 1 picks any element from M or N (he has a choice!)
- Player 2 picks any element from the opposite model.

After n rounds we have:

- n elements a_{1}, \ldots, a_{n} from M,
- n elements b_{1}, \ldots, b_{n} from N.

It does not matter who picked them!
Can we distinguish $\left(a_{1}, \ldots, a_{n}\right)$ from $\left(b_{1}, \ldots, b_{n}\right)$ by any $P \in$ Pred?
For example, $M \models P_{7}\left(a_{3}, a_{5}, a_{3}\right)$, but $N \neq P_{7}\left(b_{3}, b_{5}, b_{3}\right)$, or vice versa.

Game(M,N):

Round 0. Player 1 chooses $n \geqslant 1$.
Then n rounds the following happens:

- Player 1 picks any element from M or N (he has a choice!)
- Player 2 picks any element from the opposite model.

After n rounds we have:

- n elements a_{1}, \ldots, a_{n} from M,
- n elements b_{1}, \ldots, b_{n} from N.

It does not matter who picked them!
Can we distinguish $\left(a_{1}, \ldots, a_{n}\right)$ from $\left(b_{1}, \ldots, b_{n}\right)$ by any $P \in$ Pred?
For example, $M \models P_{7}\left(a_{3}, a_{5}, a_{3}\right)$, but $N \not F P_{7}\left(b_{3}, b_{5}, b_{3}\right)$, or vice versa.
YES $\Longrightarrow P_{\not \equiv \equiv}$ wins (Player 1)
$\mathrm{NO} \Longrightarrow P_{\equiv \text { wins (Player 2). }}$.
Important notion: a winning strategy for some player.

Theorem (Main)

Theorem (Main)
$M \equiv N \quad \Longleftrightarrow \quad P_{\equiv}$ has a winning strategy in $\operatorname{Game}(M, N)$.
$q(A)$ - the quantifier rank of a formula.

$$
q\left(P\left(x_{1}, \ldots, x_{s}\right)\right)=0
$$

Theorem (Main)

$q(A)$ - the quantifier rank of a formula.

$$
\begin{gathered}
q\left(P\left(x_{1}, \ldots, x_{s}\right)\right)=0, \\
q(\neg A)=q(A),
\end{gathered}
$$

Theorem (Main)

$q(A)$ - the quantifier rank of a formula.

$$
\begin{gathered}
q\left(P\left(x_{1}, \ldots, x_{s}\right)\right)=0, \\
q(\neg A)=q(A), \\
q(A \wedge B)=\max (q(A), q(B)) .
\end{gathered}
$$

Theorem (Main)

$q(A)$ - the quantifier rank of a formula.

$$
\begin{gathered}
q\left(P\left(x_{1}, \ldots, x_{s}\right)\right)=0, \\
q(\neg A)=q(A), \\
q(A \wedge B)=\max (q(A), q(B)) . \\
q(\forall x B)=1+q(B),
\end{gathered}
$$

Theorem (Main)

$q(A)$ - the quantifier rank of a formula.

$$
\begin{gathered}
q\left(P\left(x_{1}, \ldots, x_{s}\right)\right)=0, \\
q(\neg A)=q(A), \\
q(A \wedge B)=\max (q(A), q(B)) . \\
q(\forall x B)=1+q(B),
\end{gathered}
$$

Example.
$A=\exists y(\forall x \exists z P(x, y, z) \wedge \neg Q(y)) \rightarrow \exists x \forall z R(x, z)$

Theorem (Main)

$q(A)$ - the quantifier rank of a formula.

$$
\begin{gathered}
q\left(P\left(x_{1}, \ldots, x_{s}\right)\right)=0, \\
q(\neg A)=q(A), \\
q(A \wedge B)=\max (q(A), q(B)) . \\
q(\forall x B)=1+q(B),
\end{gathered}
$$

Example.
$A=\exists y(\forall x \exists z P(x, y, z) \wedge \neg Q(y)) \rightarrow \exists x \forall z R(x, z)$
$q(A)=3$.

Theorem (Main)

$M \equiv N \quad \Longleftrightarrow \quad P_{\equiv}$ has a winning strategy in $\operatorname{Game}(M, N)$.
$q(A)$ - the quantifier rank of a formula.

$$
\begin{gathered}
q\left(P\left(x_{1}, \ldots, x_{s}\right)\right)=0, \\
q(\neg A)=q(A), \\
q(A \wedge B)=\max (q(A), q(B)) . \\
q(\forall \times B)=1+q(B),
\end{gathered}
$$

Example.
$A=\exists y(\forall x \exists z P(x, y, z) \wedge \neg Q(y)) \rightarrow \exists x \forall z R(x, z)$
$q(A)=3$.

Definition (Elementary n-equivalence)

$M \equiv{ }_{n} N$ means: for every sentence A of $q(A) \leqslant n$ we have:

$$
M \models A \quad \Longleftrightarrow \quad N \models A .
$$

Theorem (Main)

Theorem (Main)
$M \equiv N \quad \Longleftrightarrow \quad P_{\equiv}$ has a winning strategy in $\operatorname{Game}(M, N)$.
$\operatorname{Game}_{n}(M, N)$ - exactly n rounds.

Theorem (Main)

$M \equiv N \quad \Longleftrightarrow \quad P_{\equiv}$ has a winning strategy in $\operatorname{Game}(M, N)$.
$\operatorname{Game}_{n}(M, N)$ - exactly n rounds.
Theorem (Main ${ }_{n}$)

Theorem (Main)

$M \equiv N \quad \Longleftrightarrow \quad P_{\equiv}$ has a winning strategy in $\operatorname{Game}(M, N)$.
$\operatorname{Game}_{n}(M, N)$ - exactly n rounds.
Theorem (Main ${ }_{n}$)

Theorem $1 \Longleftarrow$ Theorem 2 .

Interactive

- ($\mathbb{N},<$) and $(\mathbb{Z},<) . P_{1}$ wins in 2 rounds. But P_{2} wins in 1 round.

Interactive

- ($\mathbb{N},<)$ and $(\mathbb{Z},<) . P_{1}$ wins in 2 rounds. But P_{2} wins in 1 round.
- $(\mathbb{Z},<)$ and $(\mathbb{Q},<) . P_{1}$ wins in 3 rounds. But P_{2} wins in 2 rounds.

Interactive

- ($\mathbb{N},<)$ and $(\mathbb{Z},<) . P_{1}$ wins in 2 rounds. But P_{2} wins in 1 round.
- $(\mathbb{Z},<)$ and $(\mathbb{Q},<) . P_{1}$ wins in 3 rounds. But P_{2} wins in 2 rounds.
- $\mathbb{Q} \equiv \mathbb{R}$. Show this using games.

Interactive

- ($\mathbb{N},<)$ and $(\mathbb{Z},<) . P_{1}$ wins in 2 rounds. But P_{2} wins in 1 round.
- $(\mathbb{Z},<)$ and $(\mathbb{Q},<) . P_{1}$ wins in 3 rounds.

But P_{2} wins in 2 rounds.

- $\mathbb{Q} \equiv \mathbb{R}$. Show this using games.
- Using games, prove:

M	N	$M \cong N$	$M \equiv N$
\mathbb{N}	$\mathbb{N}+\mathbb{N}$		
\mathbb{Z}	$\mathbb{Z}+\mathbb{Z}$		
\mathbb{Q}	$\mathbb{Q}+\mathbb{Q}$		
\mathbb{R}	$\mathbb{R}+\mathbb{R}$		

Interactive

- ($\mathbb{N},<$) and $(\mathbb{Z},<) . P_{1}$ wins in 2 rounds. But P_{2} wins in 1 round.
- $(\mathbb{Z},<)$ and $(\mathbb{Q},<) . P_{1}$ wins in 3 rounds.

But P_{2} wins in 2 rounds.

- $\mathbb{Q} \equiv \mathbb{R}$. Show this using games.
- Using games, prove:

M	N	$M \cong N$	$M \equiv N$
\mathbb{N}	$\mathbb{N}+\mathbb{N}$	-	
\mathbb{Z}	$\mathbb{Z}+\mathbb{Z}$		
\mathbb{Q}	$\mathbb{Q}+\mathbb{Q}$		
\mathbb{R}	$\mathbb{R}+\mathbb{R}$		

The end of Lecture 6. Questions?

Interactive

- ($\mathbb{N},<$) and $(\mathbb{Z},<) . P_{1}$ wins in 2 rounds. But P_{2} wins in 1 round.
- $(\mathbb{Z},<)$ and $(\mathbb{Q},<) . P_{1}$ wins in 3 rounds.

But P_{2} wins in 2 rounds.

- $\mathbb{Q} \equiv \mathbb{R}$. Show this using games.
- Using games, prove:

M	N	$M \cong N$	$M \equiv N$
\mathbb{N}	$\mathbb{N}+\mathbb{N}$	-	
\mathbb{Z}	$\mathbb{Z}+\mathbb{Z}$	-	
\mathbb{Q}	$\mathbb{Q}+\mathbb{Q}$		
\mathbb{R}	$\mathbb{R}+\mathbb{R}$		

The end of Lecture 6. Questions?

Interactive

- ($\mathbb{N},<)$ and $(\mathbb{Z},<) . P_{1}$ wins in 2 rounds. But P_{2} wins in 1 round.
- $(\mathbb{Z},<)$ and $(\mathbb{Q},<) . P_{1}$ wins in 3 rounds.

But P_{2} wins in 2 rounds.

- $\mathbb{Q} \equiv \mathbb{R}$. Show this using games.
- Using games, prove:

M	N	$M \cong N$	$M \equiv N$
\mathbb{N}	$\mathbb{N}+\mathbb{N}$	-	
\mathbb{Z}	$\mathbb{Z}+\mathbb{Z}$	-	
\mathbb{Q}	$\mathbb{Q}+\mathbb{Q}$	+	+
\mathbb{R}	$\mathbb{R}+\mathbb{R}$		

The end of Lecture 6. Questions?

Interactive

- ($\mathbb{N},<)$ and $(\mathbb{Z},<) . P_{1}$ wins in 2 rounds. But P_{2} wins in 1 round.
- $(\mathbb{Z},<)$ and $(\mathbb{Q},<) . P_{1}$ wins in 3 rounds.

But P_{2} wins in 2 rounds.

- $\mathbb{Q} \equiv \mathbb{R}$. Show this using games.
- Using games, prove:

M	N	$M \cong N$	$M \equiv N$
\mathbb{N}	$\mathbb{N}+\mathbb{N}$	-	
\mathbb{Z}	$\mathbb{Z}+\mathbb{Z}$	-	
\mathbb{Q}	$\mathbb{Q}+\mathbb{Q}$	+	+
\mathbb{R}	$\mathbb{R}+\mathbb{R}$	-	

The end of Lecture 6. Questions?

Interactive

- ($\mathbb{N},<)$ and $(\mathbb{Z},<) . P_{1}$ wins in 2 rounds. But P_{2} wins in 1 round.
- $(\mathbb{Z},<)$ and $(\mathbb{Q},<) . P_{1}$ wins in 3 rounds.

But P_{2} wins in 2 rounds.

- $\mathbb{Q} \equiv \mathbb{R}$. Show this using games.
- Using games, prove:

M	N	$M \cong N$	$M \equiv N$
\mathbb{N}	$\mathbb{N}+\mathbb{N}$	-	-
\mathbb{Z}	$\mathbb{Z}+\mathbb{Z}$	-	
\mathbb{Q}	$\mathbb{Q}+\mathbb{Q}$	+	+
\mathbb{R}	$\mathbb{R}+\mathbb{R}$	-	

The end of Lecture 6. Questions?

Interactive

- ($\mathbb{N},<)$ and $(\mathbb{Z},<) . P_{1}$ wins in 2 rounds. But P_{2} wins in 1 round.
- $(\mathbb{Z},<)$ and $(\mathbb{Q},<) . P_{1}$ wins in 3 rounds.

But P_{2} wins in 2 rounds.

- $\mathbb{Q} \equiv \mathbb{R}$. Show this using games.
- Using games, prove:

M	N	$M \cong N$	$M \equiv N$
\mathbb{N}	$\mathbb{N}+\mathbb{N}$	-	-
\mathbb{Z}	$\mathbb{Z}+\mathbb{Z}$	-	+
\mathbb{Q}	$\mathbb{Q}+\mathbb{Q}$	+	+
\mathbb{R}	$\mathbb{R}+\mathbb{R}$	-	

The end of Lecture 6. Questions?

Interactive

- ($\mathbb{N},<)$ and $(\mathbb{Z},<) . P_{1}$ wins in 2 rounds. But P_{2} wins in 1 round.
- $(\mathbb{Z},<)$ and $(\mathbb{Q},<) . P_{1}$ wins in 3 rounds.

But P_{2} wins in 2 rounds.

- $\mathbb{Q} \equiv \mathbb{R}$. Show this using games.
- Using games, prove:

M	N	$M \cong N$	$M \equiv N$
\mathbb{N}	$\mathbb{N}+\mathbb{N}$	-	-
\mathbb{Z}	$\mathbb{Z}+\mathbb{Z}$	-	+
\mathbb{Q}	$\mathbb{Q}+\mathbb{Q}$	+	+
\mathbb{R}	$\mathbb{R}+\mathbb{R}$	-	+

The end of Lecture 6. Questions?

Interactive

- ($\mathbb{N},<$) and $(\mathbb{Z},<) . P_{1}$ wins in 2 rounds. But P_{2} wins in 1 round.
- $(\mathbb{Z},<)$ and $(\mathbb{Q},<) . P_{1}$ wins in 3 rounds.

But P_{2} wins in 2 rounds.

- $\mathbb{Q} \equiv \mathbb{R}$. Show this using games.
- Using games, prove:

M	N	$M \cong N$	$M \equiv N$
\mathbb{N}	$\mathbb{N}+\mathbb{N}$	-	-
\mathbb{Z}	$\mathbb{Z}+\mathbb{Z}$	-	+
\mathbb{Q}	$\mathbb{Q}+\mathbb{Q}$	+	+
\mathbb{R}	$\mathbb{R}+\mathbb{R}$	-	+

- $\mathbb{N} \equiv \mathbb{N}+\mathbb{Z}$. Show this using games.

The end of Lecture 6. Questions?

Interactive

- $(\mathbb{N},<)$ and $(\mathbb{Z},<) . P_{1}$ wins in 2 rounds. But P_{2} wins in 1 round.
- $(\mathbb{Z},<)$ and $(\mathbb{Q},<) . P_{1}$ wins in 3 rounds.

But P_{2} wins in 2 rounds.

- $\mathbb{Q} \equiv \mathbb{R}$. Show this using games.
- Using games, prove:

M	N	$M \cong N$	$M \equiv N$
\mathbb{N}	$\mathbb{N}+\mathbb{N}$	-	-
\mathbb{Z}	$\mathbb{Z}+\mathbb{Z}$	-	+
\mathbb{Q}	$\mathbb{Q}+\mathbb{Q}$	+	+
\mathbb{R}	$\mathbb{R}+\mathbb{R}$	-	+

- $\mathbb{N} \equiv \mathbb{N}+\mathbb{Z}$. Show this using games.
- $\mathbb{N}+\mathbb{N} \not \equiv \mathbb{N}+\mathbb{N}+\mathbb{N}$. Find the formula with minimal $q(A)$.

$$
\text { The end of Lecture } 6 \text {. Questions? }
$$

