
ACCL Lecture 5:
Recursively axiomatizable propositional calculi.

Linial – Post Theorem:
Undecidability of recognizing axiomatizations

of the Classical Propositional Logic

Evgeny Zolin

Department of Mathematical Logic and Theory of Algorithms
Faculty of Mechanics and Mathematics

Moscow State University

Advanced Course in Classical Logic
March 24th, 2021

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 1 / 13

Axiom system for the CPL

(→1) A → (B → A)
(→2) [A → (B → C)] → [(A → B) → (A → C)]

(∧1) A ∧ B → A
(∧2) A ∧ B → B
(∧3) A → (B → A ∧ B)

(∨1) A → A ∨ B
(∨2) B → A ∨ B
(∨3) (A → C) → [(B → C) → (A ∨ B → C)]

(¬1) (A → B) → [(A → ¬B) → ¬A]
(¬2) A → (¬A → B)
(¬3) ¬¬A → A

Rule of inference: modus ponens MP: from A and A → B we obtain B .

Theorem (Completeness)
A formula D is provable from these axioms ⇐⇒ D is a tautology.

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 2 / 13

Axiom system for the CPL

(→1) A → (B → A)
(→2) [A → (B → C)] → [(A → B) → (A → C)]

(∧1) A ∧ B → A
(∧2) A ∧ B → B
(∧3) A → (B → A ∧ B)

(∨1) A → A ∨ B
(∨2) B → A ∨ B
(∨3) (A → C) → [(B → C) → (A ∨ B → C)]

(¬1) (A → B) → [(A → ¬B) → ¬A]
(¬2) A → (¬A → B)
(¬3) ¬¬A → A

Rule of inference: modus ponens MP: from A and A → B we obtain B .

Theorem (Completeness)
A formula D is provable from these axioms ⇐⇒ D is a tautology.

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 2 / 13

Axiom system for the CPL

(→1) A → (B → A)
(→2) [A → (B → C)] → [(A → B) → (A → C)]

(∧1) A ∧ B → A
(∧2) A ∧ B → B
(∧3) A → (B → A ∧ B)

(∨1) A → A ∨ B
(∨2) B → A ∨ B
(∨3) (A → C) → [(B → C) → (A ∨ B → C)]

(¬1) (A → B) → [(A → ¬B) → ¬A]
(¬2) A → (¬A → B)
(¬3) ¬¬A → A

Rule of inference: modus ponens MP: from A and A → B we obtain B .

Theorem (Completeness)
A formula D is provable from these axioms ⇐⇒ D is a tautology.

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 2 / 13

Recognizing axiomatizations

Denote by B1, . . . ,B11 the above axioms.

Let A1, . . . ,An be any formulas.
Problem. How can we check that the set of formulas {A1, . . . ,An} (with
the rule MP) axiomatize all tautologies?
Question. Does there exist an algorithm that solves this problem?
We need to check two things:

The set of axioms {A1, . . . ,An} is correct:
if D is provable from them, then D is a tautology.
⇐⇒ Each Ai is a tautology. This is a decidable problem.

The set of axioms {A1, . . . ,An} is complete:
if D is a tautology, then D is provable from them.
⇐⇒ each Bi is provable from {A1, . . . ,An}.

In general, an axiomatic system {A1, . . . ,An} + (MP) may be undecidable.
Even if it were decidable, there is no guarantee that its algorithm can be
built from {A1, . . . ,An} effectively.

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 3 / 13

Recognizing axiomatizations

Denote by B1, . . . ,B11 the above axioms.

Let A1, . . . ,An be any formulas.

Problem. How can we check that the set of formulas {A1, . . . ,An} (with
the rule MP) axiomatize all tautologies?
Question. Does there exist an algorithm that solves this problem?
We need to check two things:

The set of axioms {A1, . . . ,An} is correct:
if D is provable from them, then D is a tautology.
⇐⇒ Each Ai is a tautology. This is a decidable problem.

The set of axioms {A1, . . . ,An} is complete:
if D is a tautology, then D is provable from them.
⇐⇒ each Bi is provable from {A1, . . . ,An}.

In general, an axiomatic system {A1, . . . ,An} + (MP) may be undecidable.
Even if it were decidable, there is no guarantee that its algorithm can be
built from {A1, . . . ,An} effectively.

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 3 / 13

Recognizing axiomatizations

Denote by B1, . . . ,B11 the above axioms.

Let A1, . . . ,An be any formulas.
Problem. How can we check that the set of formulas {A1, . . . ,An} (with
the rule MP) axiomatize all tautologies?

Question. Does there exist an algorithm that solves this problem?
We need to check two things:

The set of axioms {A1, . . . ,An} is correct:
if D is provable from them, then D is a tautology.
⇐⇒ Each Ai is a tautology. This is a decidable problem.

The set of axioms {A1, . . . ,An} is complete:
if D is a tautology, then D is provable from them.
⇐⇒ each Bi is provable from {A1, . . . ,An}.

In general, an axiomatic system {A1, . . . ,An} + (MP) may be undecidable.
Even if it were decidable, there is no guarantee that its algorithm can be
built from {A1, . . . ,An} effectively.

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 3 / 13

Recognizing axiomatizations

Denote by B1, . . . ,B11 the above axioms.

Let A1, . . . ,An be any formulas.
Problem. How can we check that the set of formulas {A1, . . . ,An} (with
the rule MP) axiomatize all tautologies?
Question. Does there exist an algorithm that solves this problem?

We need to check two things:
The set of axioms {A1, . . . ,An} is correct:
if D is provable from them, then D is a tautology.
⇐⇒ Each Ai is a tautology. This is a decidable problem.

The set of axioms {A1, . . . ,An} is complete:
if D is a tautology, then D is provable from them.
⇐⇒ each Bi is provable from {A1, . . . ,An}.

In general, an axiomatic system {A1, . . . ,An} + (MP) may be undecidable.
Even if it were decidable, there is no guarantee that its algorithm can be
built from {A1, . . . ,An} effectively.

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 3 / 13

Recognizing axiomatizations

Denote by B1, . . . ,B11 the above axioms.

Let A1, . . . ,An be any formulas.
Problem. How can we check that the set of formulas {A1, . . . ,An} (with
the rule MP) axiomatize all tautologies?
Question. Does there exist an algorithm that solves this problem?
We need to check two things:

The set of axioms {A1, . . . ,An} is correct:
if D is provable from them, then D is a tautology.
⇐⇒ Each Ai is a tautology. This is a decidable problem.

The set of axioms {A1, . . . ,An} is complete:
if D is a tautology, then D is provable from them.
⇐⇒ each Bi is provable from {A1, . . . ,An}.

In general, an axiomatic system {A1, . . . ,An} + (MP) may be undecidable.
Even if it were decidable, there is no guarantee that its algorithm can be
built from {A1, . . . ,An} effectively.

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 3 / 13

Recognizing axiomatizations

Denote by B1, . . . ,B11 the above axioms.

Let A1, . . . ,An be any formulas.
Problem. How can we check that the set of formulas {A1, . . . ,An} (with
the rule MP) axiomatize all tautologies?
Question. Does there exist an algorithm that solves this problem?
We need to check two things:

The set of axioms {A1, . . . ,An} is correct:
if D is provable from them, then D is a tautology.

⇐⇒ Each Ai is a tautology. This is a decidable problem.

The set of axioms {A1, . . . ,An} is complete:
if D is a tautology, then D is provable from them.
⇐⇒ each Bi is provable from {A1, . . . ,An}.

In general, an axiomatic system {A1, . . . ,An} + (MP) may be undecidable.
Even if it were decidable, there is no guarantee that its algorithm can be
built from {A1, . . . ,An} effectively.

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 3 / 13

Recognizing axiomatizations

Denote by B1, . . . ,B11 the above axioms.

Let A1, . . . ,An be any formulas.
Problem. How can we check that the set of formulas {A1, . . . ,An} (with
the rule MP) axiomatize all tautologies?
Question. Does there exist an algorithm that solves this problem?
We need to check two things:

The set of axioms {A1, . . . ,An} is correct:
if D is provable from them, then D is a tautology.
⇐⇒ Each Ai is a tautology.

This is a decidable problem.

The set of axioms {A1, . . . ,An} is complete:
if D is a tautology, then D is provable from them.
⇐⇒ each Bi is provable from {A1, . . . ,An}.

In general, an axiomatic system {A1, . . . ,An} + (MP) may be undecidable.
Even if it were decidable, there is no guarantee that its algorithm can be
built from {A1, . . . ,An} effectively.

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 3 / 13

Recognizing axiomatizations

Denote by B1, . . . ,B11 the above axioms.

Let A1, . . . ,An be any formulas.
Problem. How can we check that the set of formulas {A1, . . . ,An} (with
the rule MP) axiomatize all tautologies?
Question. Does there exist an algorithm that solves this problem?
We need to check two things:

The set of axioms {A1, . . . ,An} is correct:
if D is provable from them, then D is a tautology.
⇐⇒ Each Ai is a tautology. This is a decidable problem.

The set of axioms {A1, . . . ,An} is complete:
if D is a tautology, then D is provable from them.
⇐⇒ each Bi is provable from {A1, . . . ,An}.

In general, an axiomatic system {A1, . . . ,An} + (MP) may be undecidable.
Even if it were decidable, there is no guarantee that its algorithm can be
built from {A1, . . . ,An} effectively.

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 3 / 13

Recognizing axiomatizations

Denote by B1, . . . ,B11 the above axioms.

Let A1, . . . ,An be any formulas.
Problem. How can we check that the set of formulas {A1, . . . ,An} (with
the rule MP) axiomatize all tautologies?
Question. Does there exist an algorithm that solves this problem?
We need to check two things:

The set of axioms {A1, . . . ,An} is correct:
if D is provable from them, then D is a tautology.
⇐⇒ Each Ai is a tautology. This is a decidable problem.

The set of axioms {A1, . . . ,An} is complete:
if D is a tautology, then D is provable from them.

⇐⇒ each Bi is provable from {A1, . . . ,An}.
In general, an axiomatic system {A1, . . . ,An} + (MP) may be undecidable.
Even if it were decidable, there is no guarantee that its algorithm can be
built from {A1, . . . ,An} effectively.

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 3 / 13

Recognizing axiomatizations

Denote by B1, . . . ,B11 the above axioms.

Let A1, . . . ,An be any formulas.
Problem. How can we check that the set of formulas {A1, . . . ,An} (with
the rule MP) axiomatize all tautologies?
Question. Does there exist an algorithm that solves this problem?
We need to check two things:

The set of axioms {A1, . . . ,An} is correct:
if D is provable from them, then D is a tautology.
⇐⇒ Each Ai is a tautology. This is a decidable problem.

The set of axioms {A1, . . . ,An} is complete:
if D is a tautology, then D is provable from them.
⇐⇒ each Bi is provable from {A1, . . . ,An}.

In general, an axiomatic system {A1, . . . ,An} + (MP) may be undecidable.
Even if it were decidable, there is no guarantee that its algorithm can be
built from {A1, . . . ,An} effectively.

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 3 / 13

Recognizing axiomatizations

Denote by B1, . . . ,B11 the above axioms.

Let A1, . . . ,An be any formulas.
Problem. How can we check that the set of formulas {A1, . . . ,An} (with
the rule MP) axiomatize all tautologies?
Question. Does there exist an algorithm that solves this problem?
We need to check two things:

The set of axioms {A1, . . . ,An} is correct:
if D is provable from them, then D is a tautology.
⇐⇒ Each Ai is a tautology. This is a decidable problem.

The set of axioms {A1, . . . ,An} is complete:
if D is a tautology, then D is provable from them.
⇐⇒ each Bi is provable from {A1, . . . ,An}.

In general, an axiomatic system {A1, . . . ,An} + (MP) may be undecidable.

Even if it were decidable, there is no guarantee that its algorithm can be
built from {A1, . . . ,An} effectively.

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 3 / 13

Recognizing axiomatizations

Denote by B1, . . . ,B11 the above axioms.

Let A1, . . . ,An be any formulas.
Problem. How can we check that the set of formulas {A1, . . . ,An} (with
the rule MP) axiomatize all tautologies?
Question. Does there exist an algorithm that solves this problem?
We need to check two things:

The set of axioms {A1, . . . ,An} is correct:
if D is provable from them, then D is a tautology.
⇐⇒ Each Ai is a tautology. This is a decidable problem.

The set of axioms {A1, . . . ,An} is complete:
if D is a tautology, then D is provable from them.
⇐⇒ each Bi is provable from {A1, . . . ,An}.

In general, an axiomatic system {A1, . . . ,An} + (MP) may be undecidable.
Even if it were decidable, there is no guarantee that its algorithm can be
built from {A1, . . . ,An} effectively.

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 3 / 13

Other complete axiomatizations

The set of connectives {→,¬} is functionally complete.
How to axiomatize all tautologies that use only {→,¬}?

Theorem
The axioms (→1), (→2), (¬1), (¬2), (¬3) are complete for all tautologies
that use only {→,¬}.

What about {→}? It is functionally incomplete. But
How to axiomatize all tautologies that use only →?
(!) Axioms (→1) and (→2) are not enough! We need:

Pierce’s law: ((A → B) → A) → A

Can we axiomatize all →-tautologies with only one axiom? Yes:
[(A → B) → C] → [(C → A) → (D → A)]. (Lukasiewicz, 1948).

One axiom can be built for {→,¬}, for {¬,∧,∨,→}, for {↔}, etc.
Ted Ulrich — collects single axioms for many logics in {→} and {↔}.
https://web.ics.purdue.edu/~dulrich/Home-page.htm

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 4 / 13

https://web.ics.purdue.edu/~dulrich/Home-page.htm

Other complete axiomatizations

The set of connectives {→,¬} is functionally complete.
How to axiomatize all tautologies that use only {→,¬}?

Theorem
The axioms (→1), (→2), (¬1), (¬2), (¬3) are complete for all tautologies
that use only {→,¬}.

What about {→}? It is functionally incomplete. But
How to axiomatize all tautologies that use only →?
(!) Axioms (→1) and (→2) are not enough! We need:

Pierce’s law: ((A → B) → A) → A

Can we axiomatize all →-tautologies with only one axiom? Yes:
[(A → B) → C] → [(C → A) → (D → A)]. (Lukasiewicz, 1948).

One axiom can be built for {→,¬}, for {¬,∧,∨,→}, for {↔}, etc.
Ted Ulrich — collects single axioms for many logics in {→} and {↔}.
https://web.ics.purdue.edu/~dulrich/Home-page.htm

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 4 / 13

https://web.ics.purdue.edu/~dulrich/Home-page.htm

Other complete axiomatizations

The set of connectives {→,¬} is functionally complete.
How to axiomatize all tautologies that use only {→,¬}?

Theorem
The axioms (→1), (→2), (¬1), (¬2), (¬3) are complete for all tautologies
that use only {→,¬}.

What about {→}? It is functionally incomplete. But
How to axiomatize all tautologies that use only →?

(!) Axioms (→1) and (→2) are not enough! We need:
Pierce’s law: ((A → B) → A) → A

Can we axiomatize all →-tautologies with only one axiom? Yes:
[(A → B) → C] → [(C → A) → (D → A)]. (Lukasiewicz, 1948).

One axiom can be built for {→,¬}, for {¬,∧,∨,→}, for {↔}, etc.
Ted Ulrich — collects single axioms for many logics in {→} and {↔}.
https://web.ics.purdue.edu/~dulrich/Home-page.htm

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 4 / 13

https://web.ics.purdue.edu/~dulrich/Home-page.htm

Other complete axiomatizations

The set of connectives {→,¬} is functionally complete.
How to axiomatize all tautologies that use only {→,¬}?

Theorem
The axioms (→1), (→2), (¬1), (¬2), (¬3) are complete for all tautologies
that use only {→,¬}.

What about {→}? It is functionally incomplete. But
How to axiomatize all tautologies that use only →?
(!) Axioms (→1) and (→2) are not enough! We need:

Pierce’s law: ((A → B) → A) → A

Can we axiomatize all →-tautologies with only one axiom? Yes:
[(A → B) → C] → [(C → A) → (D → A)]. (Lukasiewicz, 1948).

One axiom can be built for {→,¬}, for {¬,∧,∨,→}, for {↔}, etc.
Ted Ulrich — collects single axioms for many logics in {→} and {↔}.
https://web.ics.purdue.edu/~dulrich/Home-page.htm

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 4 / 13

https://web.ics.purdue.edu/~dulrich/Home-page.htm

Other complete axiomatizations

The set of connectives {→,¬} is functionally complete.
How to axiomatize all tautologies that use only {→,¬}?

Theorem
The axioms (→1), (→2), (¬1), (¬2), (¬3) are complete for all tautologies
that use only {→,¬}.

What about {→}? It is functionally incomplete. But
How to axiomatize all tautologies that use only →?
(!) Axioms (→1) and (→2) are not enough! We need:

Pierce’s law: ((A → B) → A) → A

Can we axiomatize all →-tautologies with only one axiom?

Yes:
[(A → B) → C] → [(C → A) → (D → A)]. (Lukasiewicz, 1948).

One axiom can be built for {→,¬}, for {¬,∧,∨,→}, for {↔}, etc.
Ted Ulrich — collects single axioms for many logics in {→} and {↔}.
https://web.ics.purdue.edu/~dulrich/Home-page.htm

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 4 / 13

https://web.ics.purdue.edu/~dulrich/Home-page.htm

Other complete axiomatizations

The set of connectives {→,¬} is functionally complete.
How to axiomatize all tautologies that use only {→,¬}?

Theorem
The axioms (→1), (→2), (¬1), (¬2), (¬3) are complete for all tautologies
that use only {→,¬}.

What about {→}? It is functionally incomplete. But
How to axiomatize all tautologies that use only →?
(!) Axioms (→1) and (→2) are not enough! We need:

Pierce’s law: ((A → B) → A) → A

Can we axiomatize all →-tautologies with only one axiom? Yes:
[(A → B) → C] → [(C → A) → (D → A)]. (Lukasiewicz, 1948).

One axiom can be built for {→,¬}, for {¬,∧,∨,→}, for {↔}, etc.
Ted Ulrich — collects single axioms for many logics in {→} and {↔}.
https://web.ics.purdue.edu/~dulrich/Home-page.htm

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 4 / 13

https://web.ics.purdue.edu/~dulrich/Home-page.htm

Other complete axiomatizations

The set of connectives {→,¬} is functionally complete.
How to axiomatize all tautologies that use only {→,¬}?

Theorem
The axioms (→1), (→2), (¬1), (¬2), (¬3) are complete for all tautologies
that use only {→,¬}.

What about {→}? It is functionally incomplete. But
How to axiomatize all tautologies that use only →?
(!) Axioms (→1) and (→2) are not enough! We need:

Pierce’s law: ((A → B) → A) → A

Can we axiomatize all →-tautologies with only one axiom? Yes:
[(A → B) → C] → [(C → A) → (D → A)]. (Lukasiewicz, 1948).

One axiom can be built for {→,¬}, for {¬,∧,∨,→}, for {↔}, etc.

Ted Ulrich — collects single axioms for many logics in {→} and {↔}.
https://web.ics.purdue.edu/~dulrich/Home-page.htm

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 4 / 13

https://web.ics.purdue.edu/~dulrich/Home-page.htm

Other complete axiomatizations

The set of connectives {→,¬} is functionally complete.
How to axiomatize all tautologies that use only {→,¬}?

Theorem
The axioms (→1), (→2), (¬1), (¬2), (¬3) are complete for all tautologies
that use only {→,¬}.

What about {→}? It is functionally incomplete. But
How to axiomatize all tautologies that use only →?
(!) Axioms (→1) and (→2) are not enough! We need:

Pierce’s law: ((A → B) → A) → A

Can we axiomatize all →-tautologies with only one axiom? Yes:
[(A → B) → C] → [(C → A) → (D → A)]. (Lukasiewicz, 1948).

One axiom can be built for {→,¬}, for {¬,∧,∨,→}, for {↔}, etc.
Ted Ulrich — collects single axioms for many logics in {→} and {↔}.
https://web.ics.purdue.edu/~dulrich/Home-page.htm
Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 4 / 13

https://web.ics.purdue.edu/~dulrich/Home-page.htm

Decidable and semi-decidable sets
Let U be N or Σ* (the set of all words over an alphabet Σ).

Definition 1. A set D ⊆ U is called decidable (or recursive) if its
characteristic function is computable:

∀x ∈ Σ* 𝜒D(x) =

{︂
1, x ∈ D,
0, x /∈ D.

Definition 2. A set D ⊆ U is called semi-decidable (or recursively
enumerable, r.e.) if its semi-characteristic function is computable:

∀x ∈ Σ* 𝜒D(x) =

{︂
1, x ∈ D,
undefined , x /∈ D.

Example
Prime numbers — decidable. Tautologies — decidable.
{n ∈ N | ∃a, b, c ∈ N : n = a4 + b4 − c4} — semi-decidable. Decidable?

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 5 / 13

Decidable and semi-decidable sets
Let U be N or Σ* (the set of all words over an alphabet Σ).

Definition 1. A set D ⊆ U is called decidable (or recursive) if its
characteristic function is computable:

∀x ∈ Σ* 𝜒D(x) =

{︂
1, x ∈ D,
0, x /∈ D.

Definition 2. A set D ⊆ U is called semi-decidable (or recursively
enumerable, r.e.) if its semi-characteristic function is computable:

∀x ∈ Σ* 𝜒D(x) =

{︂
1, x ∈ D,
undefined , x /∈ D.

Example
Prime numbers — decidable. Tautologies — decidable.
{n ∈ N | ∃a, b, c ∈ N : n = a4 + b4 − c4} — semi-decidable. Decidable?

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 5 / 13

Decidable and semi-decidable sets
Let U be N or Σ* (the set of all words over an alphabet Σ).

Definition 1. A set D ⊆ U is called decidable (or recursive) if its
characteristic function is computable:

∀x ∈ Σ* 𝜒D(x) =

{︂
1, x ∈ D,
0, x /∈ D.

Definition 2. A set D ⊆ U is called semi-decidable (or recursively
enumerable, r.e.) if its semi-characteristic function is computable:

∀x ∈ Σ* 𝜒D(x) =

{︂
1, x ∈ D,
undefined , x /∈ D.

Example
Prime numbers — decidable.

Tautologies — decidable.
{n ∈ N | ∃a, b, c ∈ N : n = a4 + b4 − c4} — semi-decidable. Decidable?

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 5 / 13

Decidable and semi-decidable sets
Let U be N or Σ* (the set of all words over an alphabet Σ).

Definition 1. A set D ⊆ U is called decidable (or recursive) if its
characteristic function is computable:

∀x ∈ Σ* 𝜒D(x) =

{︂
1, x ∈ D,
0, x /∈ D.

Definition 2. A set D ⊆ U is called semi-decidable (or recursively
enumerable, r.e.) if its semi-characteristic function is computable:

∀x ∈ Σ* 𝜒D(x) =

{︂
1, x ∈ D,
undefined , x /∈ D.

Example
Prime numbers — decidable. Tautologies — decidable.

{n ∈ N | ∃a, b, c ∈ N : n = a4 + b4 − c4} — semi-decidable. Decidable?

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 5 / 13

Decidable and semi-decidable sets
Let U be N or Σ* (the set of all words over an alphabet Σ).

Definition 1. A set D ⊆ U is called decidable (or recursive) if its
characteristic function is computable:

∀x ∈ Σ* 𝜒D(x) =

{︂
1, x ∈ D,
0, x /∈ D.

Definition 2. A set D ⊆ U is called semi-decidable (or recursively
enumerable, r.e.) if its semi-characteristic function is computable:

∀x ∈ Σ* 𝜒D(x) =

{︂
1, x ∈ D,
undefined , x /∈ D.

Example
Prime numbers — decidable. Tautologies — decidable.
{n ∈ N | ∃a, b, c ∈ N : n = a4 + b4 − c4} — semi-decidable.

Decidable?

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 5 / 13

Decidable and semi-decidable sets
Let U be N or Σ* (the set of all words over an alphabet Σ).

Definition 1. A set D ⊆ U is called decidable (or recursive) if its
characteristic function is computable:

∀x ∈ Σ* 𝜒D(x) =

{︂
1, x ∈ D,
0, x /∈ D.

Definition 2. A set D ⊆ U is called semi-decidable (or recursively
enumerable, r.e.) if its semi-characteristic function is computable:

∀x ∈ Σ* 𝜒D(x) =

{︂
1, x ∈ D,
undefined , x /∈ D.

Example
Prime numbers — decidable. Tautologies — decidable.
{n ∈ N | ∃a, b, c ∈ N : n = a4 + b4 − c4} — semi-decidable. Decidable?

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 5 / 13

Recursively enumerable calculi

A calculus consists of: 1) a set of axioms, 2) a set of rules.

A rule with n premises — a relation R ⊆ Fmn × Fm.
(usually a partial function, usually a computable function)
A calculus is called decidable / semi-decidable if the set of its theorems
(provable formulas) is decidable / semi-decidable.

Theorem 1
Any calculus with a finite set of axioms and a finite set of rules is
semi-decidable.

Proof.
Given a formula D, build all possible proofs and search for D.

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 6 / 13

Recursively enumerable calculi

A calculus consists of: 1) a set of axioms, 2) a set of rules.
A rule with n premises — a relation R ⊆ Fmn × Fm.
(usually a partial function, usually a computable function)

A calculus is called decidable / semi-decidable if the set of its theorems
(provable formulas) is decidable / semi-decidable.

Theorem 1
Any calculus with a finite set of axioms and a finite set of rules is
semi-decidable.

Proof.
Given a formula D, build all possible proofs and search for D.

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 6 / 13

Recursively enumerable calculi

A calculus consists of: 1) a set of axioms, 2) a set of rules.
A rule with n premises — a relation R ⊆ Fmn × Fm.
(usually a partial function, usually a computable function)
A calculus is called decidable / semi-decidable if the set of its theorems
(provable formulas) is decidable / semi-decidable.

Theorem 1
Any calculus with a finite set of axioms and a finite set of rules is
semi-decidable.

Proof.
Given a formula D, build all possible proofs and search for D.

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 6 / 13

Recursively enumerable calculi

A calculus consists of: 1) a set of axioms, 2) a set of rules.
A rule with n premises — a relation R ⊆ Fmn × Fm.
(usually a partial function, usually a computable function)
A calculus is called decidable / semi-decidable if the set of its theorems
(provable formulas) is decidable / semi-decidable.

Theorem 1
Any calculus with a finite set of axioms and a finite set of rules is
semi-decidable.

Proof.
Given a formula D, build all possible proofs and search for D.

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 6 / 13

Recursively enumerable calculi

A calculus consists of: 1) a set of axioms, 2) a set of rules.
A rule with n premises — a relation R ⊆ Fmn × Fm.
(usually a partial function, usually a computable function)
A calculus is called decidable / semi-decidable if the set of its theorems
(provable formulas) is decidable / semi-decidable.

Theorem 1
Any calculus with a finite set of axioms and a finite set of rules is
semi-decidable.

Proof.
Given a formula D, build all possible proofs and search for D.

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 6 / 13

Recursively enumerable calculi

Theorem 1
Any calculus with a finite set of axioms and a finite set of rules is
semi-decidable.

Proof.
Given a formula D, build all possible proofs and search for D.

Theorem 2
Any calculus with a decidable set of axioms and a finite set of rules is
semi-decidable.

Proof — the same.

Theorem 3
Any calculus with a semi-decidable set of axioms and a finite set of rules is
semi-decidable.

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 7 / 13

Recursively enumerable calculi

Theorem 1
Any calculus with a finite set of axioms and a finite set of rules is
semi-decidable.

Proof.
Given a formula D, build all possible proofs and search for D.

Theorem 2
Any calculus with a decidable set of axioms and a finite set of rules is
semi-decidable.

Proof — the same.

Theorem 3
Any calculus with a semi-decidable set of axioms and a finite set of rules is
semi-decidable.

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 7 / 13

Recursively enumerable calculi

Theorem 1
Any calculus with a finite set of axioms and a finite set of rules is
semi-decidable.

Proof.
Given a formula D, build all possible proofs and search for D.

Theorem 2
Any calculus with a decidable set of axioms and a finite set of rules is
semi-decidable.

Proof — the same.

Theorem 3
Any calculus with a semi-decidable set of axioms and a finite set of rules is
semi-decidable.

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 7 / 13

Recursively enumerable calculi

Theorem 1
Any calculus with a finite set of axioms and a finite set of rules is
semi-decidable.

Proof.
Given a formula D, build all possible proofs and search for D.

Theorem 2
Any calculus with a decidable set of axioms and a finite set of rules is
semi-decidable.

Proof — the same.

Theorem 3
Any calculus with a semi-decidable set of axioms and a finite set of rules is
semi-decidable.

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 7 / 13

Recursively enumerable calculi

Theorem 3
Any calculus with a semi-decidable set of axioms and a finite set of rules is
semi-decidable.

Proof.
There is a computable enumeration A0,A1, . . . of all axioms of this calculus.
Given a formula D, is it provable?
Algorithm: for each n ∈ N,
– build the formulas A0, . . . ,An,
– build proofs of length 6n from A0, . . . ,An,
– check if you obtained D. If not, continue for n + 1.

Question: Theorem 2 (decidable set of axioms) and Theorem 3
(semi-decidable set of axioms) talk about the same calculi?

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 8 / 13

Recursively enumerable calculi

Theorem 3
Any calculus with a semi-decidable set of axioms and a finite set of rules is
semi-decidable.

Proof.
There is a computable enumeration A0,A1, . . . of all axioms of this calculus.

Given a formula D, is it provable?
Algorithm: for each n ∈ N,
– build the formulas A0, . . . ,An,
– build proofs of length 6n from A0, . . . ,An,
– check if you obtained D. If not, continue for n + 1.

Question: Theorem 2 (decidable set of axioms) and Theorem 3
(semi-decidable set of axioms) talk about the same calculi?

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 8 / 13

Recursively enumerable calculi

Theorem 3
Any calculus with a semi-decidable set of axioms and a finite set of rules is
semi-decidable.

Proof.
There is a computable enumeration A0,A1, . . . of all axioms of this calculus.
Given a formula D, is it provable?

Algorithm: for each n ∈ N,
– build the formulas A0, . . . ,An,
– build proofs of length 6n from A0, . . . ,An,
– check if you obtained D. If not, continue for n + 1.

Question: Theorem 2 (decidable set of axioms) and Theorem 3
(semi-decidable set of axioms) talk about the same calculi?

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 8 / 13

Recursively enumerable calculi

Theorem 3
Any calculus with a semi-decidable set of axioms and a finite set of rules is
semi-decidable.

Proof.
There is a computable enumeration A0,A1, . . . of all axioms of this calculus.
Given a formula D, is it provable?
Algorithm: for each n ∈ N,
– build the formulas A0, . . . ,An,

– build proofs of length 6n from A0, . . . ,An,
– check if you obtained D. If not, continue for n + 1.

Question: Theorem 2 (decidable set of axioms) and Theorem 3
(semi-decidable set of axioms) talk about the same calculi?

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 8 / 13

Recursively enumerable calculi

Theorem 3
Any calculus with a semi-decidable set of axioms and a finite set of rules is
semi-decidable.

Proof.
There is a computable enumeration A0,A1, . . . of all axioms of this calculus.
Given a formula D, is it provable?
Algorithm: for each n ∈ N,
– build the formulas A0, . . . ,An,
– build proofs of length 6n from A0, . . . ,An,

– check if you obtained D. If not, continue for n + 1.

Question: Theorem 2 (decidable set of axioms) and Theorem 3
(semi-decidable set of axioms) talk about the same calculi?

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 8 / 13

Recursively enumerable calculi

Theorem 3
Any calculus with a semi-decidable set of axioms and a finite set of rules is
semi-decidable.

Proof.
There is a computable enumeration A0,A1, . . . of all axioms of this calculus.
Given a formula D, is it provable?
Algorithm: for each n ∈ N,
– build the formulas A0, . . . ,An,
– build proofs of length 6n from A0, . . . ,An,
– check if you obtained D. If not, continue for n + 1.

Question: Theorem 2 (decidable set of axioms) and Theorem 3
(semi-decidable set of axioms) talk about the same calculi?

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 8 / 13

Recursively enumerable calculi

Theorem 3
Any calculus with a semi-decidable set of axioms and a finite set of rules is
semi-decidable.

Proof.
There is a computable enumeration A0,A1, . . . of all axioms of this calculus.
Given a formula D, is it provable?
Algorithm: for each n ∈ N,
– build the formulas A0, . . . ,An,
– build proofs of length 6n from A0, . . . ,An,
– check if you obtained D. If not, continue for n + 1.

Question: Theorem 2 (decidable set of axioms) and Theorem 3
(semi-decidable set of axioms) talk about the same calculi?

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 8 / 13

The problem of checking axiomatizations

Assume that we have a finite set of tautologies A1, . . . ,An.

The rules of inference are always

MP
A A → B

B
and Substitution rule

A(p1, . . . , pk)

A(B1, . . . ,Bk)

Problem
Does there exist an algorithm that checks whether

the given tautologies A1, . . . ,An axiomatize all tautologies?

Theorem (Samuel Linial, Emil Post, 1949)
There is no such an algorithm.

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 9 / 13

The problem of checking axiomatizations

Assume that we have a finite set of tautologies A1, . . . ,An.

The rules of inference are always

MP
A A → B

B
and Substitution rule

A(p1, . . . , pk)

A(B1, . . . ,Bk)

Problem
Does there exist an algorithm that checks whether

the given tautologies A1, . . . ,An axiomatize all tautologies?

Theorem (Samuel Linial, Emil Post, 1949)
There is no such an algorithm.

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 9 / 13

The problem of checking axiomatizations

Assume that we have a finite set of tautologies A1, . . . ,An.

The rules of inference are always

MP
A A → B

B
and Substitution rule

A(p1, . . . , pk)

A(B1, . . . ,Bk)

Problem
Does there exist an algorithm that checks whether

the given tautologies A1, . . . ,An axiomatize all tautologies?

Theorem (Samuel Linial, Emil Post, 1949)
There is no such an algorithm.

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 9 / 13

The problem of checking axiomatizations

Assume that we have a finite set of tautologies A1, . . . ,An.

The rules of inference are always

MP
A A → B

B
and Substitution rule

A(p1, . . . , pk)

A(B1, . . . ,Bk)

Problem
Does there exist an algorithm that checks whether

the given tautologies A1, . . . ,An axiomatize all tautologies?

Theorem (Samuel Linial, Emil Post, 1949)
There is no such an algorithm.

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 9 / 13

How can we prove undecidability? Reduction!

Problem (or language) — any language L ⊆ Σ*.

Definition (Algorithmic (effective) reduction, L1 4 L2)
A problem L1 ⊆ Σ*

1 is reducible to a problem L2 ⊆ Σ*
2 if

there is a computable function f : Σ*
1 → Σ*

2 such that:

for all words x ∈ Σ*
1: x ∈ L1 ⇐⇒ f (x) ∈ L2.

Lemma
(a) L 4 L′ and L′ is decidable =⇒ L is decidable;
(b) L 4 L′ and L is undecidable =⇒ L′ is undecidable.

Proof.
If the machine M ′(y) decides the problem y ∈ L′,
then the machine M(x) = M ′(f (x)) decides the problem x ∈ L.

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 10 / 13

How can we prove undecidability? Reduction!

Problem (or language) — any language L ⊆ Σ*.

Definition (Algorithmic (effective) reduction, L1 4 L2)
A problem L1 ⊆ Σ*

1 is reducible to a problem L2 ⊆ Σ*
2 if

there is a computable function f : Σ*
1 → Σ*

2 such that:

for all words x ∈ Σ*
1: x ∈ L1 ⇐⇒ f (x) ∈ L2.

Lemma
(a) L 4 L′ and L′ is decidable =⇒ L is decidable;
(b) L 4 L′ and L is undecidable =⇒ L′ is undecidable.

Proof.
If the machine M ′(y) decides the problem y ∈ L′,
then the machine M(x) = M ′(f (x)) decides the problem x ∈ L.

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 10 / 13

How can we prove undecidability? Reduction!

Problem (or language) — any language L ⊆ Σ*.

Definition (Algorithmic (effective) reduction, L1 4 L2)
A problem L1 ⊆ Σ*

1 is reducible to a problem L2 ⊆ Σ*
2 if

there is a computable function f : Σ*
1 → Σ*

2 such that:

for all words x ∈ Σ*
1: x ∈ L1 ⇐⇒ f (x) ∈ L2.

Lemma
(a) L 4 L′ and L′ is decidable =⇒ L is decidable;
(b) L 4 L′ and L is undecidable =⇒ L′ is undecidable.

Proof.
If the machine M ′(y) decides the problem y ∈ L′,
then the machine M(x) = M ′(f (x)) decides the problem x ∈ L.

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 10 / 13

How can we prove undecidability? Reduction!

Problem (or language) — any language L ⊆ Σ*.

Definition (Algorithmic (effective) reduction, L1 4 L2)
A problem L1 ⊆ Σ*

1 is reducible to a problem L2 ⊆ Σ*
2 if

there is a computable function f : Σ*
1 → Σ*

2 such that:

for all words x ∈ Σ*
1: x ∈ L1 ⇐⇒ f (x) ∈ L2.

Lemma
(a) L 4 L′ and L′ is decidable =⇒ L is decidable;
(b) L 4 L′ and L is undecidable =⇒ L′ is undecidable.

Proof.
If the machine M ′(y) decides the problem y ∈ L′,
then the machine M(x) = M ′(f (x)) decides the problem x ∈ L.

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 10 / 13

How can we prove undecidability? Reduction!

Problem (or language) — any language L ⊆ Σ*.

Definition (Algorithmic (effective) reduction, L1 4 L2)
A problem L1 ⊆ Σ*

1 is reducible to a problem L2 ⊆ Σ*
2 if

there is a computable function f : Σ*
1 → Σ*

2 such that:

for all words x ∈ Σ*
1: x ∈ L1 ⇐⇒ f (x) ∈ L2.

Lemma
(a) L 4 L′ and L′ is decidable =⇒ L is decidable;
(b) L 4 L′ and L is undecidable =⇒ L′ is undecidable.

Proof.
If the machine M ′(y) decides the problem y ∈ L′,
then the machine M(x) = M ′(f (x)) decides the problem x ∈ L.

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 10 / 13

How can we prove undecidability? Reduction!

Problem (or language) — any language L ⊆ Σ*.

Definition (Algorithmic (effective) reduction, L1 4 L2)
A problem L1 ⊆ Σ*

1 is reducible to a problem L2 ⊆ Σ*
2 if

there is a computable function f : Σ*
1 → Σ*

2 such that:

for all words x ∈ Σ*
1: x ∈ L1 ⇐⇒ f (x) ∈ L2.

Lemma
(a) L 4 L′ and L′ is decidable =⇒ L is decidable;
(b) L 4 L′ and L is undecidable =⇒ L′ is undecidable.

Proof.
If the machine M ′(y) decides the problem y ∈ L′,
then the machine M(x) = M ′(f (x)) decides the problem x ∈ L.

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 10 / 13

Uniform Post Production System (Tag system)
Tag system — Π = (Σ,P, ℓ) consists of:
– Σ = (a1, . . . , am) — a finite alphabet,

– P = (x1, . . . , xm) — m words, ℓ> 1 — an integer.

Π is applicable to a word w if |w |> ℓ.

Application of Π to w : ai z v
Π−→ v xi where |aiz | = ℓ. So,

– remember the first symbol ai of w ;
– delete the first ℓ symbols from w ;
– add the word xi to the end.

Definition

Π halts on an input word w if w Π−→ w0
Π−→ . . . u for some word |u| < ℓ.

Theorem (Minski, 1961)
The problem “Π stops on w ” is undecidable.

Moreover, ∃Π0 such that the problem “Π0 stops on w ” is undecidable.

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 11 / 13

Uniform Post Production System (Tag system)
Tag system — Π = (Σ,P, ℓ) consists of:
– Σ = (a1, . . . , am) — a finite alphabet,
– P = (x1, . . . , xm) — m words,

ℓ> 1 — an integer.

Π is applicable to a word w if |w |> ℓ.

Application of Π to w : ai z v
Π−→ v xi where |aiz | = ℓ. So,

– remember the first symbol ai of w ;
– delete the first ℓ symbols from w ;
– add the word xi to the end.

Definition

Π halts on an input word w if w Π−→ w0
Π−→ . . . u for some word |u| < ℓ.

Theorem (Minski, 1961)
The problem “Π stops on w ” is undecidable.

Moreover, ∃Π0 such that the problem “Π0 stops on w ” is undecidable.

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 11 / 13

Uniform Post Production System (Tag system)
Tag system — Π = (Σ,P, ℓ) consists of:
– Σ = (a1, . . . , am) — a finite alphabet,
– P = (x1, . . . , xm) — m words, ℓ> 1 — an integer.

Π is applicable to a word w if |w |> ℓ.

Application of Π to w : ai z v
Π−→ v xi where |aiz | = ℓ. So,

– remember the first symbol ai of w ;
– delete the first ℓ symbols from w ;
– add the word xi to the end.

Definition

Π halts on an input word w if w Π−→ w0
Π−→ . . . u for some word |u| < ℓ.

Theorem (Minski, 1961)
The problem “Π stops on w ” is undecidable.

Moreover, ∃Π0 such that the problem “Π0 stops on w ” is undecidable.

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 11 / 13

Uniform Post Production System (Tag system)
Tag system — Π = (Σ,P, ℓ) consists of:
– Σ = (a1, . . . , am) — a finite alphabet,
– P = (x1, . . . , xm) — m words, ℓ> 1 — an integer.

Π is applicable to a word w if |w |> ℓ.

Application of Π to w : ai z v
Π−→ v xi where |aiz | = ℓ. So,

– remember the first symbol ai of w ;
– delete the first ℓ symbols from w ;
– add the word xi to the end.

Definition

Π halts on an input word w if w Π−→ w0
Π−→ . . . u for some word |u| < ℓ.

Theorem (Minski, 1961)
The problem “Π stops on w ” is undecidable.

Moreover, ∃Π0 such that the problem “Π0 stops on w ” is undecidable.

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 11 / 13

Uniform Post Production System (Tag system)
Tag system — Π = (Σ,P, ℓ) consists of:
– Σ = (a1, . . . , am) — a finite alphabet,
– P = (x1, . . . , xm) — m words, ℓ> 1 — an integer.

Π is applicable to a word w if |w |> ℓ.

Application of Π to w : ai z v
Π−→ v xi where |aiz | = ℓ.

So,
– remember the first symbol ai of w ;
– delete the first ℓ symbols from w ;
– add the word xi to the end.

Definition

Π halts on an input word w if w Π−→ w0
Π−→ . . . u for some word |u| < ℓ.

Theorem (Minski, 1961)
The problem “Π stops on w ” is undecidable.

Moreover, ∃Π0 such that the problem “Π0 stops on w ” is undecidable.

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 11 / 13

Uniform Post Production System (Tag system)
Tag system — Π = (Σ,P, ℓ) consists of:
– Σ = (a1, . . . , am) — a finite alphabet,
– P = (x1, . . . , xm) — m words, ℓ> 1 — an integer.

Π is applicable to a word w if |w |> ℓ.

Application of Π to w : ai z v
Π−→ v xi where |aiz | = ℓ. So,

– remember the first symbol ai of w ;

– delete the first ℓ symbols from w ;
– add the word xi to the end.

Definition

Π halts on an input word w if w Π−→ w0
Π−→ . . . u for some word |u| < ℓ.

Theorem (Minski, 1961)
The problem “Π stops on w ” is undecidable.

Moreover, ∃Π0 such that the problem “Π0 stops on w ” is undecidable.

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 11 / 13

Uniform Post Production System (Tag system)
Tag system — Π = (Σ,P, ℓ) consists of:
– Σ = (a1, . . . , am) — a finite alphabet,
– P = (x1, . . . , xm) — m words, ℓ> 1 — an integer.

Π is applicable to a word w if |w |> ℓ.

Application of Π to w : ai z v
Π−→ v xi where |aiz | = ℓ. So,

– remember the first symbol ai of w ;
– delete the first ℓ symbols from w ;

– add the word xi to the end.

Definition

Π halts on an input word w if w Π−→ w0
Π−→ . . . u for some word |u| < ℓ.

Theorem (Minski, 1961)
The problem “Π stops on w ” is undecidable.

Moreover, ∃Π0 such that the problem “Π0 stops on w ” is undecidable.

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 11 / 13

Uniform Post Production System (Tag system)
Tag system — Π = (Σ,P, ℓ) consists of:
– Σ = (a1, . . . , am) — a finite alphabet,
– P = (x1, . . . , xm) — m words, ℓ> 1 — an integer.

Π is applicable to a word w if |w |> ℓ.

Application of Π to w : ai z v
Π−→ v xi where |aiz | = ℓ. So,

– remember the first symbol ai of w ;
– delete the first ℓ symbols from w ;
– add the word xi to the end.

Definition

Π halts on an input word w if w Π−→ w0
Π−→ . . . u for some word |u| < ℓ.

Theorem (Minski, 1961)
The problem “Π stops on w ” is undecidable.

Moreover, ∃Π0 such that the problem “Π0 stops on w ” is undecidable.

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 11 / 13

Uniform Post Production System (Tag system)
Tag system — Π = (Σ,P, ℓ) consists of:
– Σ = (a1, . . . , am) — a finite alphabet,
– P = (x1, . . . , xm) — m words, ℓ> 1 — an integer.

Π is applicable to a word w if |w |> ℓ.

Application of Π to w : ai z v
Π−→ v xi where |aiz | = ℓ. So,

– remember the first symbol ai of w ;
– delete the first ℓ symbols from w ;
– add the word xi to the end.

Definition

Π halts on an input word w if w Π−→ w0
Π−→ . . . u for some word |u| < ℓ.

Theorem (Minski, 1961)
The problem “Π stops on w ” is undecidable.

Moreover, ∃Π0 such that the problem “Π0 stops on w ” is undecidable.

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 11 / 13

Uniform Post Production System (Tag system)
Tag system — Π = (Σ,P, ℓ) consists of:
– Σ = (a1, . . . , am) — a finite alphabet,
– P = (x1, . . . , xm) — m words, ℓ> 1 — an integer.

Π is applicable to a word w if |w |> ℓ.

Application of Π to w : ai z v
Π−→ v xi where |aiz | = ℓ. So,

– remember the first symbol ai of w ;
– delete the first ℓ symbols from w ;
– add the word xi to the end.

Definition

Π halts on an input word w if w Π−→ w0
Π−→ . . . u for some word |u| < ℓ.

Theorem (Minski, 1961)
The problem “Π stops on w ” is undecidable.

Moreover, ∃Π0 such that the problem “Π0 stops on w ” is undecidable.

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 11 / 13

Uniform Post Production System (Tag system)
Tag system — Π = (Σ,P, ℓ) consists of:
– Σ = (a1, . . . , am) — a finite alphabet,
– P = (x1, . . . , xm) — m words, ℓ> 1 — an integer.

Π is applicable to a word w if |w |> ℓ.

Application of Π to w : ai z v
Π−→ v xi where |aiz | = ℓ. So,

– remember the first symbol ai of w ;
– delete the first ℓ symbols from w ;
– add the word xi to the end.

Definition

Π halts on an input word w if w Π−→ w0
Π−→ . . . u for some word |u| < ℓ.

Theorem (Minski, 1961)
The problem “Π stops on w ” is undecidable.

Moreover, ∃Π0 such that the problem “Π0 stops on w ” is undecidable.

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 11 / 13

Undecidability of axiomatizations of CPL

Theorem (Samuel Linial, Emil Post, 1949)
There is no algorithm that checks:

whether the given tautologies A1, . . . ,An axiomatize all tautologies?

Proof (sketch).
To a symbol a3, we build a formula E3 = p → (p → (p → (p → p))).
We encode a word a2a5a3a1 into a formula E2 ∧ (E5 ∧ (E3 ∧ E1))).
Given a Post system Π of and an input word w ,

an algorithm builds a calculus C = C (Π,w) = {A1, . . . ,An} such that

Π stops on input w ⇐⇒ the calculus C can prove all tautologies.

This is a reduction of the halting problem for Tag systems to our problem.
�

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 12 / 13

Undecidability of axiomatizations of CPL

Theorem (Samuel Linial, Emil Post, 1949)
There is no algorithm that checks:

whether the given tautologies A1, . . . ,An axiomatize all tautologies?

Proof (sketch).

To a symbol a3, we build a formula E3 = p → (p → (p → (p → p))).
We encode a word a2a5a3a1 into a formula E2 ∧ (E5 ∧ (E3 ∧ E1))).
Given a Post system Π of and an input word w ,

an algorithm builds a calculus C = C (Π,w) = {A1, . . . ,An} such that

Π stops on input w ⇐⇒ the calculus C can prove all tautologies.

This is a reduction of the halting problem for Tag systems to our problem.
�

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 12 / 13

Undecidability of axiomatizations of CPL

Theorem (Samuel Linial, Emil Post, 1949)
There is no algorithm that checks:

whether the given tautologies A1, . . . ,An axiomatize all tautologies?

Proof (sketch).
To a symbol a3, we build a formula E3 = p → (p → (p → (p → p))).

We encode a word a2a5a3a1 into a formula E2 ∧ (E5 ∧ (E3 ∧ E1))).
Given a Post system Π of and an input word w ,

an algorithm builds a calculus C = C (Π,w) = {A1, . . . ,An} such that

Π stops on input w ⇐⇒ the calculus C can prove all tautologies.

This is a reduction of the halting problem for Tag systems to our problem.
�

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 12 / 13

Undecidability of axiomatizations of CPL

Theorem (Samuel Linial, Emil Post, 1949)
There is no algorithm that checks:

whether the given tautologies A1, . . . ,An axiomatize all tautologies?

Proof (sketch).
To a symbol a3, we build a formula E3 = p → (p → (p → (p → p))).
We encode a word a2a5a3a1 into a formula E2 ∧ (E5 ∧ (E3 ∧ E1))).

Given a Post system Π of and an input word w ,

an algorithm builds a calculus C = C (Π,w) = {A1, . . . ,An} such that

Π stops on input w ⇐⇒ the calculus C can prove all tautologies.

This is a reduction of the halting problem for Tag systems to our problem.
�

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 12 / 13

Undecidability of axiomatizations of CPL

Theorem (Samuel Linial, Emil Post, 1949)
There is no algorithm that checks:

whether the given tautologies A1, . . . ,An axiomatize all tautologies?

Proof (sketch).
To a symbol a3, we build a formula E3 = p → (p → (p → (p → p))).
We encode a word a2a5a3a1 into a formula E2 ∧ (E5 ∧ (E3 ∧ E1))).
Given a Post system Π of and an input word w ,

an algorithm builds a calculus C = C (Π,w) = {A1, . . . ,An} such that

Π stops on input w ⇐⇒ the calculus C can prove all tautologies.

This is a reduction of the halting problem for Tag systems to our problem.
�

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 12 / 13

Undecidability of axiomatizations of CPL

Theorem (Samuel Linial, Emil Post, 1949)
There is no algorithm that checks:

whether the given tautologies A1, . . . ,An axiomatize all tautologies?

Proof (sketch).
To a symbol a3, we build a formula E3 = p → (p → (p → (p → p))).
We encode a word a2a5a3a1 into a formula E2 ∧ (E5 ∧ (E3 ∧ E1))).
Given a Post system Π of and an input word w ,

an algorithm builds a calculus C = C (Π,w) = {A1, . . . ,An} such that

Π stops on input w ⇐⇒ the calculus C can prove all tautologies.

This is a reduction of the halting problem for Tag systems to our problem.
�

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 12 / 13

Undecidability of axiomatizations of CPL

Theorem (Samuel Linial, Emil Post, 1949)
There is no algorithm that checks:

whether the given tautologies A1, . . . ,An axiomatize all tautologies?

Proof (sketch).
To a symbol a3, we build a formula E3 = p → (p → (p → (p → p))).
We encode a word a2a5a3a1 into a formula E2 ∧ (E5 ∧ (E3 ∧ E1))).
Given a Post system Π of and an input word w ,

an algorithm builds a calculus C = C (Π,w) = {A1, . . . ,An} such that

Π stops on input w ⇐⇒ the calculus C can prove all tautologies.

This is a reduction of the halting problem for Tag systems to our problem.
�

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 12 / 13

Undecidability of axiomatizations of CPL

Theorem (Samuel Linial, Emil Post, 1949)
There is no algorithm that checks:

whether the given tautologies A1, . . . ,An axiomatize all tautologies?

Proof (sketch).
To a symbol a3, we build a formula E3 = p → (p → (p → (p → p))).
We encode a word a2a5a3a1 into a formula E2 ∧ (E5 ∧ (E3 ∧ E1))).
Given a Post system Π of and an input word w ,

an algorithm builds a calculus C = C (Π,w) = {A1, . . . ,An} such that

Π stops on input w ⇐⇒ the calculus C can prove all tautologies.

This is a reduction of the halting problem for Tag systems to our problem.
�

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 12 / 13

New results (Grigory Bokov, 2016, MSU)

Theorem
Fix any calculus D0 = {B1, . . . ,Bm} (even in →!).
Then the following problem is undecidable:

given a calculus C = {A1, . . . ,An}, decide if C ⊇ D.

Corollary
Fix any formula B . Then the following problem is undecidable:

given a calculus C = {A1, . . . ,An}, decide if C ⊢ B .

Theorem
Fix a calculus D = {B1, . . . ,Bm} (even in →!) with D ⊢ p → (q → p).
Then the following problem is undecidable:

given a calculus C = {A1, . . . ,An}, decide if C = D.

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 13 / 13

New results (Grigory Bokov, 2016, MSU)

Theorem
Fix any calculus D0 = {B1, . . . ,Bm} (even in →!).
Then the following problem is undecidable:

given a calculus C = {A1, . . . ,An}, decide if C ⊇ D.

Corollary
Fix any formula B . Then the following problem is undecidable:

given a calculus C = {A1, . . . ,An}, decide if C ⊢ B .

Theorem
Fix a calculus D = {B1, . . . ,Bm} (even in →!) with D ⊢ p → (q → p).
Then the following problem is undecidable:

given a calculus C = {A1, . . . ,An}, decide if C = D.

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 13 / 13

New results (Grigory Bokov, 2016, MSU)

Theorem
Fix any calculus D0 = {B1, . . . ,Bm} (even in →!).
Then the following problem is undecidable:

given a calculus C = {A1, . . . ,An}, decide if C ⊇ D.

Corollary
Fix any formula B . Then the following problem is undecidable:

given a calculus C = {A1, . . . ,An}, decide if C ⊢ B .

Theorem
Fix a calculus D = {B1, . . . ,Bm} (even in →!) with D ⊢ p → (q → p).
Then the following problem is undecidable:

given a calculus C = {A1, . . . ,An}, decide if C = D.

Evgeny Zolin, MSU Linial–Post Theorem March 24th, 2021 13 / 13

