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Axiom system for the CPL

(→1) A → (B → A)
(→2) [A → (B → C )] → [(A → B) → (A → C )]

(∧1) A ∧ B → A
(∧2) A ∧ B → B
(∧3) A → (B → A ∧ B)

(∨1) A → A ∨ B
(∨2) B → A ∨ B
(∨3) (A → C ) → [(B → C ) → (A ∨ B → C )]

(¬1) (A → B) → [(A → ¬B) → ¬A]
(¬2) A → (¬A → B)
(¬3) ¬¬A → A

Rule of inference: modus ponens MP: from A and A → B we obtain B .

Theorem (Completeness)
A formula D is provable from these axioms ⇐⇒ D is a tautology.
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Recognizing axiomatizations

Denote by B1, . . . ,B11 the above axioms.

Let A1, . . . ,An be any formulas.
Problem. How can we check that the set of formulas {A1, . . . ,An} (with
the rule MP) axiomatize all tautologies?
Question. Does there exist an algorithm that solves this problem?
We need to check two things:

The set of axioms {A1, . . . ,An} is correct:
if D is provable from them, then D is a tautology.
⇐⇒ Each Ai is a tautology. This is a decidable problem.

The set of axioms {A1, . . . ,An} is complete:
if D is a tautology, then D is provable from them.
⇐⇒ each Bi is provable from {A1, . . . ,An}.

In general, an axiomatic system {A1, . . . ,An} + (MP) may be undecidable.
Even if it were decidable, there is no guarantee that its algorithm can be
built from {A1, . . . ,An} effectively.
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Other complete axiomatizations

The set of connectives {→,¬} is functionally complete.
How to axiomatize all tautologies that use only {→,¬}?

Theorem
The axioms (→1), (→2), (¬1), (¬2), (¬3) are complete for all tautologies
that use only {→,¬}.

What about {→}? It is functionally incomplete. But
How to axiomatize all tautologies that use only →?
(!) Axioms (→1) and (→2) are not enough! We need:

Pierce’s law: ((A → B) → A) → A

Can we axiomatize all →-tautologies with only one axiom? Yes:
[(A → B) → C ] → [(C → A) → (D → A)]. ( Lukasiewicz, 1948).

One axiom can be built for {→,¬}, for {¬,∧,∨,→}, for {↔}, etc.
Ted Ulrich — collects single axioms for many logics in {→} and {↔}.
https://web.ics.purdue.edu/~dulrich/Home-page.htm
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Decidable and semi-decidable sets
Let U be N or Σ* (the set of all words over an alphabet Σ).

Definition 1. A set D ⊆ U is called decidable (or recursive) if its
characteristic function is computable:

∀x ∈ Σ* 𝜒D(x) =

{︂
1, x ∈ D,
0, x /∈ D.

Definition 2. A set D ⊆ U is called semi-decidable (or recursively
enumerable, r.e.) if its semi-characteristic function is computable:

∀x ∈ Σ* 𝜒D(x) =

{︂
1, x ∈ D,
undefined , x /∈ D.

Example
Prime numbers — decidable. Tautologies — decidable.
{n ∈ N | ∃a, b, c ∈ N : n = a4 + b4 − c4} — semi-decidable. Decidable?
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Recursively enumerable calculi

A calculus consists of: 1) a set of axioms, 2) a set of rules.

A rule with n premises — a relation R ⊆ Fmn × Fm.
(usually a partial function, usually a computable function)
A calculus is called decidable / semi-decidable if the set of its theorems
(provable formulas) is decidable / semi-decidable.

Theorem 1
Any calculus with a finite set of axioms and a finite set of rules is
semi-decidable.

Proof.
Given a formula D, build all possible proofs and search for D.
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Recursively enumerable calculi

Theorem 1
Any calculus with a finite set of axioms and a finite set of rules is
semi-decidable.

Proof.
Given a formula D, build all possible proofs and search for D.

Theorem 2
Any calculus with a decidable set of axioms and a finite set of rules is
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Proof — the same.

Theorem 3
Any calculus with a semi-decidable set of axioms and a finite set of rules is
semi-decidable.
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Recursively enumerable calculi

Theorem 3
Any calculus with a semi-decidable set of axioms and a finite set of rules is
semi-decidable.

Proof.
There is a computable enumeration A0,A1, . . . of all axioms of this calculus.
Given a formula D, is it provable?
Algorithm: for each n ∈ N,
– build the formulas A0, . . . ,An,
– build proofs of length 6n from A0, . . . ,An,
– check if you obtained D. If not, continue for n + 1.

Question: Theorem 2 (decidable set of axioms) and Theorem 3
(semi-decidable set of axioms) talk about the same calculi?
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The problem of checking axiomatizations

Assume that we have a finite set of tautologies A1, . . . ,An.

The rules of inference are always

MP
A A → B

B
and Substitution rule

A(p1, . . . , pk)

A(B1, . . . ,Bk)

Problem
Does there exist an algorithm that checks whether

the given tautologies A1, . . . ,An axiomatize all tautologies?

Theorem (Samuel Linial, Emil Post, 1949)
There is no such an algorithm.
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How can we prove undecidability? Reduction!

Problem (or language) — any language L ⊆ Σ*.

Definition (Algorithmic (effective) reduction, L1 4 L2)
A problem L1 ⊆ Σ*

1 is reducible to a problem L2 ⊆ Σ*
2 if

there is a computable function f : Σ*
1 → Σ*

2 such that:

for all words x ∈ Σ*
1: x ∈ L1 ⇐⇒ f (x) ∈ L2.

Lemma
(a) L 4 L′ and L′ is decidable =⇒ L is decidable;
(b) L 4 L′ and L is undecidable =⇒ L′ is undecidable.

Proof.
If the machine M ′(y) decides the problem y ∈ L′,
then the machine M(x) = M ′(f (x)) decides the problem x ∈ L.
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Uniform Post Production System (Tag system)
Tag system — Π = (Σ,P, ℓ) consists of:
– Σ = (a1, . . . , am) — a finite alphabet,

– P = (x1, . . . , xm) — m words, ℓ> 1 — an integer.

Π is applicable to a word w if |w |> ℓ.

Application of Π to w : ai z v
Π−→ v xi where |aiz | = ℓ. So,

– remember the first symbol ai of w ;
– delete the first ℓ symbols from w ;
– add the word xi to the end.

Definition

Π halts on an input word w if w Π−→ w0
Π−→ . . . u for some word |u| < ℓ.

Theorem (Minski, 1961)
The problem “Π stops on w ” is undecidable.

Moreover, ∃Π0 such that the problem “Π0 stops on w ” is undecidable.
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Π−→ . . . u for some word |u| < ℓ.

Theorem (Minski, 1961)
The problem “Π stops on w ” is undecidable.

Moreover, ∃Π0 such that the problem “Π0 stops on w ” is undecidable.
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Undecidability of axiomatizations of CPL

Theorem (Samuel Linial, Emil Post, 1949)
There is no algorithm that checks:

whether the given tautologies A1, . . . ,An axiomatize all tautologies?

Proof (sketch).
To a symbol a3, we build a formula E3 = p → (p → (p → (p → p))).
We encode a word a2a5a3a1 into a formula E2 ∧ (E5 ∧ (E3 ∧ E1))).
Given a Post system Π of and an input word w ,

an algorithm builds a calculus C = C (Π,w) = {A1, . . . ,An} such that

Π stops on input w ⇐⇒ the calculus C can prove all tautologies.

This is a reduction of the halting problem for Tag systems to our problem.
�
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New results (Grigory Bokov, 2016, MSU)

Theorem
Fix any calculus D0 = {B1, . . . ,Bm} (even in →!).
Then the following problem is undecidable:

given a calculus C = {A1, . . . ,An}, decide if C ⊇ D.

Corollary
Fix any formula B . Then the following problem is undecidable:

given a calculus C = {A1, . . . ,An}, decide if C ⊢ B .

Theorem
Fix a calculus D = {B1, . . . ,Bm} (even in →!) with D ⊢ p → (q → p).
Then the following problem is undecidable:

given a calculus C = {A1, . . . ,An}, decide if C = D.
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