ACCL Lecture 5:
 Recursively axiomatizable propositional calculi. Linial - Post Theorem:
 Undecidability of recognizing axiomatizations of the Classical Propositional Logic

Evgeny Zolin

Department of Mathematical Logic and Theory of Algorithms
Faculty of Mechanics and Mathematics Moscow State University

> Advanced Course in Classical Logic March 24th, 2021

Axiom system for the CPL

$$
\begin{array}{ll}
(\rightarrow 1) & A \rightarrow(B \rightarrow A) \\
(\rightarrow 2) & {[A \rightarrow(B \rightarrow C)] \rightarrow[(A \rightarrow B) \rightarrow(A \rightarrow C)]} \\
(\wedge 1) & A \wedge B \rightarrow A \\
(\wedge 2) & A \wedge B \rightarrow B \\
(\wedge 3) & A \rightarrow(B \rightarrow A \wedge B) \\
(\vee 1) & A \rightarrow A \vee B \\
(\vee 2) & B \rightarrow A \vee B \\
(\vee 3) & (A \rightarrow C) \rightarrow[(B \rightarrow C) \rightarrow(A \vee B \rightarrow C)] \\
(\neg 1) & (A \rightarrow B) \rightarrow[(A \rightarrow \neg B) \rightarrow \neg A] \\
(\neg 2) & A \rightarrow(\neg A \rightarrow B) \\
(\neg 3) & \neg \neg A \rightarrow A
\end{array}
$$

Axiom system for the CPL

$$
\begin{array}{ll}
(\rightarrow 1) & A \rightarrow(B \rightarrow A) \\
(\rightarrow 2) & {[A \rightarrow(B \rightarrow C)] \rightarrow[(A \rightarrow B) \rightarrow(A \rightarrow C)]} \\
(\wedge 1) & A \wedge B \rightarrow A \\
(\wedge 2) & A \wedge B \rightarrow B \\
(\wedge 3) & A \rightarrow(B \rightarrow A \wedge B) \\
(\vee 1) & A \rightarrow A \vee B \\
(\vee 2) & B \rightarrow A \vee B \\
(\vee 3) & (A \rightarrow C) \rightarrow[(B \rightarrow C) \rightarrow(A \vee B \rightarrow C)] \\
(\neg 1) & (A \rightarrow B) \rightarrow[(A \rightarrow \neg B) \rightarrow \neg A] \\
(\neg 2) & A \rightarrow(\neg A \rightarrow B) \\
(\neg 3) & \neg \neg A \rightarrow A
\end{array}
$$

Rule of inference: modus ponens MP: from A and $A \rightarrow B$ we obtain B.

Axiom system for the CPL

$$
\begin{array}{ll}
(\rightarrow 1) & A \rightarrow(B \rightarrow A) \\
(\rightarrow 2) & {[A \rightarrow(B \rightarrow C)] \rightarrow[(A \rightarrow B) \rightarrow(A \rightarrow C)]} \\
(\wedge 1) & A \wedge B \rightarrow A \\
(\wedge 2) & A \wedge B \rightarrow B \\
(\wedge 3) & A \rightarrow(B \rightarrow A \wedge B) \\
(\vee 1) & A \rightarrow A \vee B \\
(\vee 2) & B \rightarrow A \vee B \\
(\vee 3) & (A \rightarrow C) \rightarrow[(B \rightarrow C) \rightarrow(A \vee B \rightarrow C)] \\
(\neg 1) & (A \rightarrow B) \rightarrow[(A \rightarrow \neg B) \rightarrow \neg A] \\
(\neg 2) & A \rightarrow(\neg A \rightarrow B) \\
(\neg 3) & \neg \neg A \rightarrow A
\end{array}
$$

Rule of inference: modus ponens MP: from A and $A \rightarrow B$ we obtain B.
Theorem (Completeness)
A formula D is provable from these axioms $\Longleftrightarrow D$ is a tautology.

Recognizing axiomatizations

Denote by B_{1}, \ldots, B_{11} the above axioms.

Recognizing axiomatizations

Denote by B_{1}, \ldots, B_{11} the above axioms.
Let A_{1}, \ldots, A_{n} be any formulas.

Recognizing axiomatizations

Denote by B_{1}, \ldots, B_{11} the above axioms.
Let A_{1}, \ldots, A_{n} be any formulas.
Problem. How can we check that the set of formulas $\left\{A_{1}, \ldots, A_{n}\right\}$ (with the rule MP) axiomatize all tautologies?

Recognizing axiomatizations

Denote by B_{1}, \ldots, B_{11} the above axioms.
Let A_{1}, \ldots, A_{n} be any formulas.
Problem. How can we check that the set of formulas $\left\{A_{1}, \ldots, A_{n}\right\}$ (with the rule MP) axiomatize all tautologies?
Question. Does there exist an algorithm that solves this problem?

Recognizing axiomatizations

Denote by B_{1}, \ldots, B_{11} the above axioms.
Let A_{1}, \ldots, A_{n} be any formulas.
Problem. How can we check that the set of formulas $\left\{A_{1}, \ldots, A_{n}\right\}$ (with the rule MP) axiomatize all tautologies?
Question. Does there exist an algorithm that solves this problem?
We need to check two things:

Recognizing axiomatizations

Denote by B_{1}, \ldots, B_{11} the above axioms.
Let A_{1}, \ldots, A_{n} be any formulas.
Problem. How can we check that the set of formulas $\left\{A_{1}, \ldots, A_{n}\right\}$ (with the rule MP) axiomatize all tautologies?
Question. Does there exist an algorithm that solves this problem?
We need to check two things:

- The set of axioms $\left\{A_{1}, \ldots, A_{n}\right\}$ is correct: if D is provable from them, then D is a tautology.

Recognizing axiomatizations

Denote by B_{1}, \ldots, B_{11} the above axioms.
Let A_{1}, \ldots, A_{n} be any formulas.
Problem. How can we check that the set of formulas $\left\{A_{1}, \ldots, A_{n}\right\}$ (with the rule MP) axiomatize all tautologies?
Question. Does there exist an algorithm that solves this problem?
We need to check two things:

- The set of axioms $\left\{A_{1}, \ldots, A_{n}\right\}$ is correct:
if D is provable from them, then D is a tautology.
\Longleftrightarrow Each A_{i} is a tautology.

Recognizing axiomatizations

Denote by B_{1}, \ldots, B_{11} the above axioms.
Let A_{1}, \ldots, A_{n} be any formulas.
Problem. How can we check that the set of formulas $\left\{A_{1}, \ldots, A_{n}\right\}$ (with the rule MP) axiomatize all tautologies?
Question. Does there exist an algorithm that solves this problem?
We need to check two things:

- The set of axioms $\left\{A_{1}, \ldots, A_{n}\right\}$ is correct:
if D is provable from them, then D is a tautology.
\Longleftrightarrow Each A_{i} is a tautology. This is a decidable problem.

Recognizing axiomatizations

Denote by B_{1}, \ldots, B_{11} the above axioms.
Let A_{1}, \ldots, A_{n} be any formulas.
Problem. How can we check that the set of formulas $\left\{A_{1}, \ldots, A_{n}\right\}$ (with the rule MP) axiomatize all tautologies?
Question. Does there exist an algorithm that solves this problem?
We need to check two things:

- The set of axioms $\left\{A_{1}, \ldots, A_{n}\right\}$ is correct:
if D is provable from them, then D is a tautology.
\Longleftrightarrow Each A_{i} is a tautology. This is a decidable problem.
- The set of axioms $\left\{A_{1}, \ldots, A_{n}\right\}$ is complete:
if D is a tautology, then D is provable from them.

Recognizing axiomatizations

Denote by B_{1}, \ldots, B_{11} the above axioms.
Let A_{1}, \ldots, A_{n} be any formulas.
Problem. How can we check that the set of formulas $\left\{A_{1}, \ldots, A_{n}\right\}$ (with the rule MP) axiomatize all tautologies?
Question. Does there exist an algorithm that solves this problem?
We need to check two things:

- The set of axioms $\left\{A_{1}, \ldots, A_{n}\right\}$ is correct:
if D is provable from them, then D is a tautology.
\Longleftrightarrow Each A_{i} is a tautology. This is a decidable problem.
- The set of axioms $\left\{A_{1}, \ldots, A_{n}\right\}$ is complete:
if D is a tautology, then D is provable from them.
\Longleftrightarrow each B_{i} is provable from $\left\{A_{1}, \ldots, A_{n}\right\}$.

Recognizing axiomatizations

Denote by B_{1}, \ldots, B_{11} the above axioms.
Let A_{1}, \ldots, A_{n} be any formulas.
Problem. How can we check that the set of formulas $\left\{A_{1}, \ldots, A_{n}\right\}$ (with the rule MP) axiomatize all tautologies?
Question. Does there exist an algorithm that solves this problem?
We need to check two things:

- The set of axioms $\left\{A_{1}, \ldots, A_{n}\right\}$ is correct:
if D is provable from them, then D is a tautology.
\Longleftrightarrow Each A_{i} is a tautology. This is a decidable problem.
- The set of axioms $\left\{A_{1}, \ldots, A_{n}\right\}$ is complete:
if D is a tautology, then D is provable from them.
\Longleftrightarrow each B_{i} is provable from $\left\{A_{1}, \ldots, A_{n}\right\}$.
In general, an axiomatic system $\left\{A_{1}, \ldots, A_{n}\right\}+(M P)$ may be undecidable.

Recognizing axiomatizations

Denote by B_{1}, \ldots, B_{11} the above axioms.
Let A_{1}, \ldots, A_{n} be any formulas.
Problem. How can we check that the set of formulas $\left\{A_{1}, \ldots, A_{n}\right\}$ (with the rule MP) axiomatize all tautologies?
Question. Does there exist an algorithm that solves this problem?
We need to check two things:

- The set of axioms $\left\{A_{1}, \ldots, A_{n}\right\}$ is correct:
if D is provable from them, then D is a tautology.
\Longleftrightarrow Each A_{i} is a tautology. This is a decidable problem.
- The set of axioms $\left\{A_{1}, \ldots, A_{n}\right\}$ is complete:
if D is a tautology, then D is provable from them.
\Longleftrightarrow each B_{i} is provable from $\left\{A_{1}, \ldots, A_{n}\right\}$.
In general, an axiomatic system $\left\{A_{1}, \ldots, A_{n}\right\}+(M P)$ may be undecidable.
Even if it were decidable, there is no guarantee that its algorithm can be built from $\left\{A_{1}, \ldots, A_{n}\right\}$ effectively.

Other complete axiomatizations

- The set of connectives $\{\rightarrow, \neg\}$ is functionally complete. How to axiomatize all tautologies that use only $\{\rightarrow, \neg\}$?

Other complete axiomatizations

- The set of connectives $\{\rightarrow, \neg\}$ is functionally complete. How to axiomatize all tautologies that use only $\{\rightarrow, \neg\}$?

Theorem

The axioms $(\rightarrow 1),(\rightarrow 2),(\neg 1),(\neg 2),(\neg 3)$ are complete for all tautologies that use only $\{\rightarrow, \neg\}$.

Other complete axiomatizations

- The set of connectives $\{\rightarrow, \neg\}$ is functionally complete. How to axiomatize all tautologies that use only $\{\rightarrow, \neg\}$?

Theorem

The axioms $(\rightarrow 1),(\rightarrow 2),(\neg 1),(\neg 2),(\neg 3)$ are complete for all tautologies that use only $\{\rightarrow, \neg\}$.

- What about $\{\rightarrow\}$? It is functionally incomplete. But How to axiomatize all tautologies that use only \rightarrow ?

Other complete axiomatizations

- The set of connectives $\{\rightarrow, \neg\}$ is functionally complete. How to axiomatize all tautologies that use only $\{\rightarrow, \neg\}$?

Theorem

The axioms $(\rightarrow 1)$, $(\rightarrow 2)$, $(\neg 1),(\neg 2),(\neg 3)$ are complete for all tautologies that use only $\{\rightarrow, \neg\}$.

- What about $\{\rightarrow\}$? It is functionally incomplete. But How to axiomatize all tautologies that use only \rightarrow ?
(!) Axioms $(\rightarrow 1)$ and $(\rightarrow 2)$ are not enough! We need:
Pierce's law: $((A \rightarrow B) \rightarrow A) \rightarrow A$

Other complete axiomatizations

- The set of connectives $\{\rightarrow, \neg\}$ is functionally complete. How to axiomatize all tautologies that use only $\{\rightarrow, \neg\}$?

Theorem

The axioms $(\rightarrow 1),(\rightarrow 2),(\neg 1),(\neg 2),(\neg 3)$ are complete for all tautologies that use only $\{\rightarrow, \neg\}$.

- What about $\{\rightarrow\}$? It is functionally incomplete. But How to axiomatize all tautologies that use only \rightarrow ?
(!) Axioms $(\rightarrow 1)$ and $(\rightarrow 2)$ are not enough! We need:

$$
\text { Pierce's law: }((A \rightarrow B) \rightarrow A) \rightarrow A
$$

- Can we axiomatize all \rightarrow-tautologies with only one axiom?

Other complete axiomatizations

- The set of connectives $\{\rightarrow, \neg\}$ is functionally complete. How to axiomatize all tautologies that use only $\{\rightarrow, \neg\}$?

Theorem

The axioms $(\rightarrow 1)$, $(\rightarrow 2)$, $(\neg 1),(\neg 2),(\neg 3)$ are complete for all tautologies that use only $\{\rightarrow, \neg\}$.

- What about $\{\rightarrow\}$? It is functionally incomplete. But How to axiomatize all tautologies that use only \rightarrow ?
(!) Axioms $(\rightarrow 1)$ and $(\rightarrow 2)$ are not enough! We need:

$$
\text { Pierce's law: }((A \rightarrow B) \rightarrow A) \rightarrow A
$$

- Can we axiomatize all \rightarrow-tautologies with only one axiom? Yes:

$$
[(A \rightarrow B) \rightarrow C] \rightarrow[(C \rightarrow A) \rightarrow(D \rightarrow A)] . \text { (Łukasiewicz, 1948). }
$$

Other complete axiomatizations

- The set of connectives $\{\rightarrow, \neg\}$ is functionally complete. How to axiomatize all tautologies that use only $\{\rightarrow, \neg\}$?

Theorem

The axioms $(\rightarrow 1)$, $(\rightarrow 2)$, $(\neg 1),(\neg 2),(\neg 3)$ are complete for all tautologies that use only $\{\rightarrow, \neg\}$.

- What about $\{\rightarrow\}$? It is functionally incomplete. But How to axiomatize all tautologies that use only \rightarrow ?
(!) Axioms $(\rightarrow 1)$ and $(\rightarrow 2)$ are not enough! We need:

$$
\text { Pierce's law: }((A \rightarrow B) \rightarrow A) \rightarrow A
$$

- Can we axiomatize all \rightarrow-tautologies with only one axiom? Yes:

$$
[(A \rightarrow B) \rightarrow C] \rightarrow[(C \rightarrow A) \rightarrow(D \rightarrow A)] \text {. (Łukasiewicz, 1948). }
$$

- One axiom can be built for $\{\rightarrow, \neg\}$, for $\{\neg, \wedge, \vee, \rightarrow\}$, for $\{\leftrightarrow\}$, etc.

Other complete axiomatizations

- The set of connectives $\{\rightarrow, \neg\}$ is functionally complete. How to axiomatize all tautologies that use only $\{\rightarrow, \neg\}$?

Theorem

The axioms $(\rightarrow 1)$, $(\rightarrow 2)$, $(\neg 1),(\neg 2),(\neg 3)$ are complete for all tautologies that use only $\{\rightarrow, \neg\}$.

- What about $\{\rightarrow\}$? It is functionally incomplete. But How to axiomatize all tautologies that use only \rightarrow ?
(!) Axioms $(\rightarrow 1)$ and $(\rightarrow 2)$ are not enough! We need:

$$
\text { Pierce's law: }((A \rightarrow B) \rightarrow A) \rightarrow A
$$

- Can we axiomatize all \rightarrow-tautologies with only one axiom? Yes:

$$
[(A \rightarrow B) \rightarrow C] \rightarrow[(C \rightarrow A) \rightarrow(D \rightarrow A)] . \text { (Łukasiewicz, 1948). }
$$

- One axiom can be built for $\{\rightarrow, \neg\}$, for $\{\neg, \wedge, \vee, \rightarrow\}$, for $\{\leftrightarrow\}$, etc.
- Ted Ulrich - collects single axioms for many logics in $\{\rightarrow\}$ and $\{\leftrightarrow\}$. https://web.ics.purdue.edu/~dulrich/Home-page.htm

Decidable and semi-decidable sets

Let U be \mathbb{N} or Σ^{*} (the set of all words over an alphabet Σ).
Definition 1. A set $D \subseteq U$ is called decidable (or recursive) if its characteristic function is computable:

$$
\forall x \in \Sigma^{*} \quad \chi_{D}(x)= \begin{cases}1, & x \in D, \\ 0, & x \notin D .\end{cases}
$$

Decidable and semi-decidable sets

Let U be \mathbb{N} or Σ^{*} (the set of all words over an alphabet Σ).
Definition 1. A set $D \subseteq U$ is called decidable (or recursive) if its characteristic function is computable:

$$
\forall x \in \Sigma^{*} \quad \chi_{D}(x)= \begin{cases}1, & x \in D, \\ 0, & x \notin D .\end{cases}
$$

Definition 2. A set $D \subseteq U$ is called semi-decidable (or recursively enumerable, r.e.) if its semi-characteristic function is computable:

$$
\forall x \in \Sigma^{*} \quad \chi_{D}(x)= \begin{cases}1, & x \in D, \\ \text { undefined }, & x \notin D .\end{cases}
$$

Decidable and semi-decidable sets

Let U be \mathbb{N} or Σ^{*} (the set of all words over an alphabet Σ).
Definition 1. A set $D \subseteq U$ is called decidable (or recursive) if its characteristic function is computable:

$$
\forall x \in \Sigma^{*} \quad \chi_{D}(x)= \begin{cases}1, & x \in D, \\ 0, & x \notin D .\end{cases}
$$

Definition 2. A set $D \subseteq U$ is called semi-decidable (or recursively enumerable, r.e.) if its semi-characteristic function is computable:

$$
\forall x \in \Sigma^{*} \quad \chi_{D}(x)= \begin{cases}1, & x \in D, \\ \text { undefined }, & x \notin D .\end{cases}
$$

Example

Prime numbers - decidable.

Decidable and semi-decidable sets

Let U be \mathbb{N} or Σ^{*} (the set of all words over an alphabet Σ).
Definition 1. A set $D \subseteq U$ is called decidable (or recursive) if its characteristic function is computable:

$$
\forall x \in \Sigma^{*} \quad \chi_{D}(x)= \begin{cases}1, & x \in D, \\ 0, & x \notin D .\end{cases}
$$

Definition 2. A set $D \subseteq U$ is called semi-decidable (or recursively enumerable, r.e.) if its semi-characteristic function is computable:

$$
\forall x \in \Sigma^{*} \quad \chi_{D}(x)= \begin{cases}1, & x \in D, \\ \text { undefined }, & x \notin D .\end{cases}
$$

Example

Prime numbers - decidable. Tautologies - decidable.

Decidable and semi-decidable sets

Let U be \mathbb{N} or Σ^{*} (the set of all words over an alphabet Σ).
Definition 1. A set $D \subseteq U$ is called decidable (or recursive) if its characteristic function is computable:

$$
\forall x \in \Sigma^{*} \quad \chi_{D}(x)= \begin{cases}1, & x \in D, \\ 0, & x \notin D .\end{cases}
$$

Definition 2. A set $D \subseteq U$ is called semi-decidable (or recursively enumerable, r.e.) if its semi-characteristic function is computable:

$$
\forall x \in \Sigma^{*} \quad \chi_{D}(x)= \begin{cases}1, & x \in D, \\ \text { undefined }, & x \notin D .\end{cases}
$$

Example

Prime numbers - decidable. Tautologies - decidable. $\left\{n \in \mathbb{N} \mid \exists a, b, c \in \mathbb{N}: n=a^{4}+b^{4}-c^{4}\right\}$ - semi-decidable.

Decidable and semi-decidable sets

Let U be \mathbb{N} or Σ^{*} (the set of all words over an alphabet Σ).
Definition 1. A set $D \subseteq U$ is called decidable (or recursive) if its characteristic function is computable:

$$
\forall x \in \Sigma^{*} \quad \chi_{D}(x)= \begin{cases}1, & x \in D, \\ 0, & x \notin D .\end{cases}
$$

Definition 2. A set $D \subseteq U$ is called semi-decidable (or recursively enumerable, r.e.) if its semi-characteristic function is computable:

$$
\forall x \in \Sigma^{*} \quad \chi_{D}(x)= \begin{cases}1, & x \in D, \\ \text { undefined }, & x \notin D .\end{cases}
$$

Example

Prime numbers - decidable. Tautologies - decidable. $\left\{n \in \mathbb{N} \mid \exists a, b, c \in \mathbb{N}: n=a^{4}+b^{4}-c^{4}\right\}-$ semi-decidable. Decidable?

Recursively enumerable calculi

A calculus consists of: 1) a set of axioms, 2) a set of rules.

Recursively enumerable calculi

A calculus consists of: 1) a set of axioms, 2) a set of rules. A rule with n premises - a relation $R \subseteq \mathrm{Fm}^{n} \times \mathrm{Fm}$. (usually a partial function, usually a computable function)

Recursively enumerable calculi

A calculus consists of: 1) a set of axioms, 2) a set of rules.
A rule with n premises - a relation $R \subseteq \mathrm{Fm}^{n} \times \mathrm{Fm}$.
(usually a partial function, usually a computable function)
A calculus is called decidable / semi-decidable if the set of its theorems (provable formulas) is decidable / semi-decidable.

Recursively enumerable calculi

A calculus consists of: 1) a set of axioms, 2) a set of rules.
A rule with n premises - a relation $R \subseteq \mathrm{Fm}^{n} \times \mathrm{Fm}$.
(usually a partial function, usually a computable function)
A calculus is called decidable / semi-decidable if the set of its theorems (provable formulas) is decidable / semi-decidable.

Theorem 1
Any calculus with a finite set of axioms and a finite set of rules is semi-decidable.

Recursively enumerable calculi

A calculus consists of: 1) a set of axioms, 2) a set of rules.
A rule with n premises - a relation $R \subseteq \mathrm{Fm}^{n} \times \mathrm{Fm}$.
(usually a partial function, usually a computable function)
A calculus is called decidable / semi-decidable if the set of its theorems (provable formulas) is decidable / semi-decidable.

Theorem 1
Any calculus with a finite set of axioms and a finite set of rules is semi-decidable.

Proof.

Given a formula D, build all possible proofs and search for D.

Recursively enumerable calculi

Theorem 1

Any calculus with a finite set of axioms and a finite set of rules is semi-decidable.

Proof.

Given a formula D, build all possible proofs and search for D.

Recursively enumerable calculi

Theorem 1

Any calculus with a finite set of axioms and a finite set of rules is semi-decidable.

Proof.

Given a formula D, build all possible proofs and search for D.

Theorem 2

Any calculus with a decidable set of axioms and a finite set of rules is semi-decidable.

Recursively enumerable calculi

Theorem 1

Any calculus with a finite set of axioms and a finite set of rules is semi-decidable.

Proof.

Given a formula D, build all possible proofs and search for D.
Theorem 2
Any calculus with a decidable set of axioms and a finite set of rules is semi-decidable.

Proof - the same.

Recursively enumerable calculi

Theorem 1

Any calculus with a finite set of axioms and a finite set of rules is semi-decidable.

Proof.

Given a formula D, build all possible proofs and search for D.
Theorem 2
Any calculus with a decidable set of axioms and a finite set of rules is semi-decidable.

Proof - the same.
Theorem 3
Any calculus with a semi-decidable set of axioms and a finite set of rules is semi-decidable.

Recursively enumerable calculi

Theorem 3

Any calculus with a semi-decidable set of axioms and a finite set of rules is semi-decidable.

Recursively enumerable calculi

Theorem 3

Any calculus with a semi-decidable set of axioms and a finite set of rules is semi-decidable.

Proof.

There is a computable enumeration A_{0}, A_{1}, \ldots of all axioms of this calculus.

Recursively enumerable calculi

Theorem 3

Any calculus with a semi-decidable set of axioms and a finite set of rules is semi-decidable.

Proof.

There is a computable enumeration A_{0}, A_{1}, \ldots of all axioms of this calculus. Given a formula D, is it provable?

Recursively enumerable calculi

Theorem 3

Any calculus with a semi-decidable set of axioms and a finite set of rules is semi-decidable.

Proof.

There is a computable enumeration A_{0}, A_{1}, \ldots of all axioms of this calculus. Given a formula D, is it provable?
Algorithm: for each $n \in \mathbb{N}$,

- build the formulas A_{0}, \ldots, A_{n},

Recursively enumerable calculi

Theorem 3

Any calculus with a semi-decidable set of axioms and a finite set of rules is semi-decidable.

Proof.

There is a computable enumeration A_{0}, A_{1}, \ldots of all axioms of this calculus. Given a formula D, is it provable?
Algorithm: for each $n \in \mathbb{N}$,

- build the formulas A_{0}, \ldots, A_{n},
- build proofs of length $\leqslant n$ from A_{0}, \ldots, A_{n},

Recursively enumerable calculi

Theorem 3

Any calculus with a semi-decidable set of axioms and a finite set of rules is semi-decidable.

Proof.

There is a computable enumeration A_{0}, A_{1}, \ldots of all axioms of this calculus. Given a formula D, is it provable?
Algorithm: for each $n \in \mathbb{N}$,

- build the formulas A_{0}, \ldots, A_{n},
- build proofs of length $\leqslant n$ from A_{0}, \ldots, A_{n},
- check if you obtained D. If not, continue for $n+1$.

Recursively enumerable calculi

Theorem 3

Any calculus with a semi-decidable set of axioms and a finite set of rules is semi-decidable.

Proof.

There is a computable enumeration A_{0}, A_{1}, \ldots of all axioms of this calculus. Given a formula D, is it provable?
Algorithm: for each $n \in \mathbb{N}$,

- build the formulas A_{0}, \ldots, A_{n},
- build proofs of length $\leqslant n$ from A_{0}, \ldots, A_{n},
- check if you obtained D. If not, continue for $n+1$.

Question: Theorem 2 (decidable set of axioms) and Theorem 3 (semi-decidable set of axioms) talk about the same calculi?

The problem of checking axiomatizations

Assume that we have a finite set of tautologies A_{1}, \ldots, A_{n}.

The problem of checking axiomatizations

Assume that we have a finite set of tautologies A_{1}, \ldots, A_{n}.
The rules of inference are always

$$
\text { MP } \frac{A \quad A \rightarrow B}{B} \quad \text { and } \quad \text { Substitution rule } \frac{A\left(p_{1}, \ldots, p_{k}\right)}{A\left(B_{1}, \ldots, B_{k}\right)}
$$

The problem of checking axiomatizations

Assume that we have a finite set of tautologies A_{1}, \ldots, A_{n}.
The rules of inference are always

$$
\text { MP } \frac{A \quad A \rightarrow B}{B} \quad \text { and } \quad \text { Substitution rule } \frac{A\left(p_{1}, \ldots, p_{k}\right)}{A\left(B_{1}, \ldots, B_{k}\right)}
$$

Problem

Does there exist an algorithm that checks whether the given tautologies A_{1}, \ldots, A_{n} axiomatize all tautologies?

The problem of checking axiomatizations

Assume that we have a finite set of tautologies A_{1}, \ldots, A_{n}.
The rules of inference are always

$$
\text { MP } \frac{A \quad A \rightarrow B}{B} \quad \text { and } \quad \text { Substitution rule } \frac{A\left(p_{1}, \ldots, p_{k}\right)}{A\left(B_{1}, \ldots, B_{k}\right)}
$$

Problem

Does there exist an algorithm that checks whether the given tautologies A_{1}, \ldots, A_{n} axiomatize all tautologies?

Theorem (Samuel Linial, Emil Post, 1949)
There is no such an algorithm.

How can we prove undecidability? Reduction!

Problem (or language) - any language $L \subseteq \Sigma^{*}$.

How can we prove undecidability? Reduction!

Problem (or language) - any language $L \subseteq \Sigma^{*}$.
Definition (Algorithmic (effective) reduction, $L_{1} \preccurlyeq L_{2}$)
A problem $L_{1} \subseteq \Sigma_{1}^{*}$ is reducible to a problem $L_{2} \subseteq \Sigma_{2}^{*}$ if

How can we prove undecidability? Reduction!

Problem (or language) - any language $L \subseteq \Sigma^{*}$.
Definition (Algorithmic (effective) reduction, $L_{1} \preccurlyeq L_{2}$)
A problem $L_{1} \subseteq \Sigma_{1}^{*}$ is reducible to a problem $L_{2} \subseteq \Sigma_{2}^{*}$ if there is a computable function $f: \Sigma_{1}^{*} \rightarrow \Sigma_{2}^{*}$ such that:

How can we prove undecidability? Reduction!

Problem (or language) - any language $L \subseteq \Sigma^{*}$.
Definition (Algorithmic (effective) reduction, $L_{1} \preccurlyeq L_{2}$)
A problem $L_{1} \subseteq \Sigma_{1}^{*}$ is reducible to a problem $L_{2} \subseteq \Sigma_{2}^{*}$ if there is a computable function $f: \Sigma_{1}^{*} \rightarrow \Sigma_{2}^{*}$ such that:

$$
\text { for all words } x \in \Sigma_{1}^{*}: \quad x \in L_{1} \Longleftrightarrow f(x) \in L_{2} .
$$

How can we prove undecidability? Reduction!

Problem (or language) - any language $L \subseteq \Sigma^{*}$.
Definition (Algorithmic (effective) reduction, $L_{1} \preccurlyeq L_{2}$)
A problem $L_{1} \subseteq \Sigma_{1}^{*}$ is reducible to a problem $L_{2} \subseteq \Sigma_{2}^{*}$ if there is a computable function $f: \Sigma_{1}^{*} \rightarrow \Sigma_{2}^{*}$ such that:

$$
\text { for all words } x \in \Sigma_{1}^{*}: \quad x \in L_{1} \Longleftrightarrow f(x) \in L_{2} \text {. }
$$

Lemma
(a) $L \preccurlyeq L^{\prime}$ and L^{\prime} is decidable $\Longrightarrow \quad L$ is decidable;
(b) $L \preccurlyeq L^{\prime}$ and L is undecidable $\Longrightarrow L^{\prime}$ is undecidable.

How can we prove undecidability? Reduction!

Problem (or language) - any language $L \subseteq \Sigma^{*}$.
Definition (Algorithmic (effective) reduction, $L_{1} \preccurlyeq L_{2}$)
A problem $L_{1} \subseteq \Sigma_{1}^{*}$ is reducible to a problem $L_{2} \subseteq \Sigma_{2}^{*}$ if there is a computable function $f: \Sigma_{1}^{*} \rightarrow \Sigma_{2}^{*}$ such that:

$$
\text { for all words } x \in \Sigma_{1}^{*}: \quad x \in L_{1} \Longleftrightarrow f(x) \in L_{2} .
$$

Lemma
(a) $L \preccurlyeq L^{\prime}$ and L^{\prime} is decidable $\Longrightarrow \quad L$ is decidable;
(b) $L \preccurlyeq L^{\prime}$ and L is undecidable $\Longrightarrow L^{\prime}$ is undecidable.

Proof.

If the machine $M^{\prime}(y)$ decides the problem $y \in L^{\prime}$, then the machine $M(x)=M^{\prime}(f(x))$ decides the problem $x \in L$.

Uniform Post Production System (Tag system)

Tag system $-\Pi=(\Sigma, P, \ell)$ consists of:
$-\Sigma=\left(a_{1}, \ldots, a_{m}\right)-$ a finite alphabet,

Uniform Post Production System (Tag system)

Tag system $-\Pi=(\Sigma, P, \ell)$ consists of:
$-\Sigma=\left(a_{1}, \ldots, a_{m}\right)-$ a finite alphabet,
$-P=\left(x_{1}, \ldots, x_{m}\right)-m$ words,

Uniform Post Production System (Tag system)

Tag system $-\Pi=(\Sigma, P, \ell)$ consists of:
$-\Sigma=\left(a_{1}, \ldots, a_{m}\right)-$ a finite alphabet,

- $P=\left(x_{1}, \ldots, x_{m}\right)-m$ words, $\ell \geqslant 1-$ an integer.

Uniform Post Production System (Tag system)

Tag system $-\Pi=(\Sigma, P, \ell)$ consists of:
$-\Sigma=\left(a_{1}, \ldots, a_{m}\right)-$ a finite alphabet,

- $P=\left(x_{1}, \ldots, x_{m}\right)-m$ words, $\ell \geqslant 1-$ an integer.
Π is applicable to a word w if $|w| \geqslant \ell$.

Uniform Post Production System (Tag system)

Tag system $-\Pi=(\Sigma, P, \ell)$ consists of:
$-\Sigma=\left(a_{1}, \ldots, a_{m}\right)-$ a finite alphabet,

- $P=\left(x_{1}, \ldots, x_{m}\right)-m$ words, $\ell \geqslant 1-$ an integer.
Π is applicable to a word w if $|w| \geqslant \ell$.
Application of Π to $w: \quad a_{i} z v \xrightarrow{\Pi} v x_{i} \quad$ where $\left|a_{i} z\right|=\ell$.

Uniform Post Production System (Tag system)

Tag system $-\Pi=(\Sigma, P, \ell)$ consists of:
$-\Sigma=\left(a_{1}, \ldots, a_{m}\right)-$ a finite alphabet,

- $P=\left(x_{1}, \ldots, x_{m}\right)-m$ words, $\ell \geqslant 1-$ an integer.
Π is applicable to a word w if $|w| \geqslant \ell$.
Application of Π to $w: \quad a_{i} z v \xrightarrow{\Pi} v x_{i}$ where $\left|a_{i} z\right|=\ell$. So,
- remember the first symbol a_{i} of w;

Uniform Post Production System (Tag system)

Tag system $-\Pi=(\Sigma, P, \ell)$ consists of:
$-\Sigma=\left(a_{1}, \ldots, a_{m}\right)-$ a finite alphabet,

- $P=\left(x_{1}, \ldots, x_{m}\right)-m$ words, $\ell \geqslant 1-$ an integer.
Π is applicable to a word w if $|w| \geqslant \ell$.
Application of Π to $w: \quad a_{i} z v \xrightarrow{\Pi} v x_{i} \quad$ where $\left|a_{i} z\right|=\ell$. So,
- remember the first symbol a_{i} of w;
- delete the first ℓ symbols from w;

Uniform Post Production System (Tag system)

Tag system $-\Pi=(\Sigma, P, \ell)$ consists of:
$-\Sigma=\left(a_{1}, \ldots, a_{m}\right)-$ a finite alphabet,

- $P=\left(x_{1}, \ldots, x_{m}\right)-m$ words, $\ell \geqslant 1-$ an integer.
Π is applicable to a word w if $|w| \geqslant \ell$.
Application of Π to $w: \quad a_{i} z v \xrightarrow{\Pi} v x_{i} \quad$ where $\left|a_{i} z\right|=\ell$. So,
- remember the first symbol a_{i} of w;
- delete the first ℓ symbols from w;
- add the word x_{i} to the end.

Uniform Post Production System (Tag system)

Tag system $-\Pi=(\Sigma, P, \ell)$ consists of:
$-\Sigma=\left(a_{1}, \ldots, a_{m}\right)-$ a finite alphabet,

- $P=\left(x_{1}, \ldots, x_{m}\right)-m$ words, $\ell \geqslant 1-$ an integer.
Π is applicable to a word w if $|w| \geqslant \ell$.
Application of Π to $w: \quad a_{i} z v \xrightarrow{\Pi} v x_{i} \quad$ where $\left|a_{i} z\right|=\ell$. So,
- remember the first symbol a_{i} of w;
- delete the first ℓ symbols from w;
- add the word x_{i} to the end.

Definition

Π halts on an input word w if $w \xrightarrow{\Pi} w_{0} \xrightarrow{\Pi} \ldots u$ for some word $|u|<\ell$.

Uniform Post Production System (Tag system)

Tag system $-\Pi=(\Sigma, P, \ell)$ consists of:
$-\Sigma=\left(a_{1}, \ldots, a_{m}\right)-$ a finite alphabet,

- $P=\left(x_{1}, \ldots, x_{m}\right)-m$ words, $\ell \geqslant 1-$ an integer.
Π is applicable to a word w if $|w| \geqslant \ell$.
Application of Π to $w: a_{i} z v \xrightarrow{\Pi} v x_{i} \quad$ where $\left|a_{i} z\right|=\ell$. So,
- remember the first symbol a_{i} of w;
- delete the first ℓ symbols from w;
- add the word x_{i} to the end.

Definition

Π halts on an input word w if $w \xrightarrow{\Pi} w_{0} \xrightarrow{\Pi} \ldots u$ for some word $|u|<\ell$.
Theorem (Minski, 1961)
The problem " Π stops on w " is undecidable.

Uniform Post Production System (Tag system)

Tag system $-\Pi=(\Sigma, P, \ell)$ consists of:
$-\Sigma=\left(a_{1}, \ldots, a_{m}\right)-$ a finite alphabet,

- $P=\left(x_{1}, \ldots, x_{m}\right)-m$ words, $\ell \geqslant 1-$ an integer.
Π is applicable to a word w if $|w| \geqslant \ell$.
Application of Π to $w: \quad a_{i} z v \xrightarrow{\Pi} v x_{i} \quad$ where $\left|a_{i} z\right|=\ell$. So,
- remember the first symbol a_{i} of w;
- delete the first ℓ symbols from w;
- add the word x_{i} to the end.

Definition

Π halts on an input word w if $w \xrightarrow{\Pi} w_{0} \xrightarrow{\Pi} \ldots u$ for some word $|u|<\ell$.

Theorem (Minski, 1961)

The problem " Π stops on w " is undecidable.
Moreover, $\exists \Pi_{0}$ such that the problem " Π_{0} stops on w " is undecidable.

Undecidability of axiomatizations of CPL

Theorem (Samuel Linial, Emil Post, 1949)
There is no algorithm that checks:
whether the given tautologies A_{1}, \ldots, A_{n} axiomatize all tautologies?

Undecidability of axiomatizations of CPL

Theorem (Samuel Linial, Emil Post, 1949)

There is no algorithm that checks:
whether the given tautologies A_{1}, \ldots, A_{n} axiomatize all tautologies?

Proof (sketch).

Undecidability of axiomatizations of CPL

Theorem (Samuel Linial, Emil Post, 1949)

There is no algorithm that checks:

whether the given tautologies A_{1}, \ldots, A_{n} axiomatize all tautologies?

Proof (sketch).

To a symbol a_{3}, we build a formula $E_{3}=p \rightarrow(p \rightarrow(p \rightarrow(p \rightarrow p)))$.

Undecidability of axiomatizations of CPL

Theorem (Samuel Linial, Emil Post, 1949)

There is no algorithm that checks:

whether the given tautologies A_{1}, \ldots, A_{n} axiomatize all tautologies?

Proof (sketch).

To a symbol a_{3}, we build a formula $E_{3}=p \rightarrow(p \rightarrow(p \rightarrow(p \rightarrow p)))$. We encode a word $a_{2} a_{5} a_{3} a_{1}$ into a formula $\left.E_{2} \wedge\left(E_{5} \wedge\left(E_{3} \wedge E_{1}\right)\right)\right)$.

Undecidability of axiomatizations of CPL

Theorem (Samuel Linial, Emil Post, 1949)

There is no algorithm that checks:

whether the given tautologies A_{1}, \ldots, A_{n} axiomatize all tautologies?

Proof (sketch).

To a symbol a_{3}, we build a formula $E_{3}=p \rightarrow(p \rightarrow(p \rightarrow(p \rightarrow p)))$. We encode a word $a_{2} a_{5} a_{3} a_{1}$ into a formula $\left.E_{2} \wedge\left(E_{5} \wedge\left(E_{3} \wedge E_{1}\right)\right)\right)$. Given a Post system Π of and an input word w,

Undecidability of axiomatizations of CPL

Theorem (Samuel Linial, Emil Post, 1949)

There is no algorithm that checks:

whether the given tautologies A_{1}, \ldots, A_{n} axiomatize all tautologies?

Proof (sketch).

To a symbol a_{3}, we build a formula $E_{3}=p \rightarrow(p \rightarrow(p \rightarrow(p \rightarrow p)))$. We encode a word $a_{2} a_{5} a_{3} a_{1}$ into a formula $\left.E_{2} \wedge\left(E_{5} \wedge\left(E_{3} \wedge E_{1}\right)\right)\right)$. Given a Post system Π of and an input word w, an algorithm builds a calculus $C=C(\Pi, w)=\left\{A_{1}, \ldots, A_{n}\right\}$ such that

Undecidability of axiomatizations of CPL

Theorem (Samuel Linial, Emil Post, 1949)

There is no algorithm that checks:
whether the given tautologies A_{1}, \ldots, A_{n} axiomatize all tautologies?

Proof (sketch).

To a symbol a_{3}, we build a formula $E_{3}=p \rightarrow(p \rightarrow(p \rightarrow(p \rightarrow p)))$. We encode a word $a_{2} a_{5} a_{3} a_{1}$ into a formula $\left.E_{2} \wedge\left(E_{5} \wedge\left(E_{3} \wedge E_{1}\right)\right)\right)$. Given a Post system Π of and an input word w, an algorithm builds a calculus $C=C(\Pi, w)=\left\{A_{1}, \ldots, A_{n}\right\}$ such that
Π stops on input $w \Longleftrightarrow$ the calculus C can prove all tautologies.

Undecidability of axiomatizations of CPL

Theorem (Samuel Linial, Emil Post, 1949)

There is no algorithm that checks:
whether the given tautologies A_{1}, \ldots, A_{n} axiomatize all tautologies?

Proof (sketch).

To a symbol a_{3}, we build a formula $E_{3}=p \rightarrow(p \rightarrow(p \rightarrow(p \rightarrow p)))$. We encode a word $a_{2} a_{5} a_{3} a_{1}$ into a formula $\left.E_{2} \wedge\left(E_{5} \wedge\left(E_{3} \wedge E_{1}\right)\right)\right)$. Given a Post system Π of and an input word w, an algorithm builds a calculus $C=C(\Pi, w)=\left\{A_{1}, \ldots, A_{n}\right\}$ such that
Π stops on input $w \quad \Longleftrightarrow \quad$ the calculus C can prove all tautologies.
This is a reduction of the halting problem for Tag systems to our problem.

New results (Grigory Bokov, 2016, MSU)

Theorem

Fix any calculus $D_{0}=\left\{B_{1}, \ldots, B_{m}\right\}$ (even in \rightarrow !).
Then the following problem is undecidable:

$$
\text { given a calculus } C=\left\{A_{1}, \ldots, A_{n}\right\} \text {, decide if } C \supseteq D \text {. }
$$

New results (Grigory Bokov, 2016, MSU)

Theorem

Fix any calculus $D_{0}=\left\{B_{1}, \ldots, B_{m}\right\}$ (even in \rightarrow !).
Then the following problem is undecidable:

$$
\text { given a calculus } C=\left\{A_{1}, \ldots, A_{n}\right\} \text {, decide if } C \supseteq D \text {. }
$$

Corollary
Fix any formula B. Then the following problem is undecidable:

$$
\text { given a calculus } C=\left\{A_{1}, \ldots, A_{n}\right\} \text {, decide if } C \vdash B \text {. }
$$

New results (Grigory Bokov, 2016, MSU)

Theorem

Fix any calculus $D_{0}=\left\{B_{1}, \ldots, B_{m}\right\}$ (even in \rightarrow !).
Then the following problem is undecidable:

$$
\text { given a calculus } C=\left\{A_{1}, \ldots, A_{n}\right\} \text {, decide if } C \supseteq D \text {. }
$$

Corollary
Fix any formula B. Then the following problem is undecidable:

$$
\text { given a calculus } C=\left\{A_{1}, \ldots, A_{n}\right\} \text {, decide if } C \vdash B \text {. }
$$

Theorem
Fix a calculus $D=\left\{B_{1}, \ldots, B_{m}\right\}$ (even in \rightarrow !) with $D \vdash p \rightarrow(q \rightarrow p)$. Then the following problem is undecidable:

$$
\text { given a calculus } C=\left\{A_{1}, \ldots, A_{n}\right\} \text {, decide if } C=D \text {. }
$$

