ACCL Lecture 5: Recursively axiomatizable propositional calculi. Linial – Post Theorem: Undecidability of recognizing axiomatizations of the Classical Propositional Logic

Evgeny Zolin

Department of Mathematical Logic and Theory of Algorithms Faculty of Mechanics and Mathematics Moscow State University

> Advanced Course in Classical Logic March 24th, 2021

Axiom system for the $\ensuremath{\mathsf{CPL}}$

$$\begin{array}{ll} (\rightarrow 1) & A \rightarrow (B \rightarrow A) \\ (\rightarrow 2) & [A \rightarrow (B \rightarrow C)] \rightarrow [(A \rightarrow B) \rightarrow (A \rightarrow C)] \end{array} \\ (\wedge 1) & A \wedge B \rightarrow A \\ (\wedge 2) & A \wedge B \rightarrow B \\ (\wedge 3) & A \rightarrow (B \rightarrow A \wedge B) \end{array} \\ (\vee 1) & A \rightarrow A \lor B \\ (\vee 2) & B \rightarrow A \lor B \\ (\vee 3) & (A \rightarrow C) \rightarrow [(B \rightarrow C) \rightarrow (A \lor B \rightarrow C)] \end{array} \\ (\neg 1) & (A \rightarrow B) \rightarrow [(A \rightarrow \neg B) \rightarrow \neg A] \\ (\neg 2) & A \rightarrow (\neg A \rightarrow B) \\ (\neg 3) & \neg \neg A \rightarrow A \end{array}$$

Axiom system for the CPL

$$\begin{array}{ll} (\rightarrow 1) & A \rightarrow (B \rightarrow A) \\ (\rightarrow 2) & [A \rightarrow (B \rightarrow C)] \rightarrow [(A \rightarrow B) \rightarrow (A \rightarrow C)] \end{array} \\ (\wedge 1) & A \wedge B \rightarrow A \\ (\wedge 2) & A \wedge B \rightarrow B \\ (\wedge 2) & A \wedge B \rightarrow B \\ (\wedge 3) & A \rightarrow (B \rightarrow A \wedge B) \end{array} \\ (\vee 1) & A \rightarrow A \vee B \\ (\vee 2) & B \rightarrow A \vee B \\ (\vee 3) & (A \rightarrow C) \rightarrow [(B \rightarrow C) \rightarrow (A \vee B \rightarrow C)] \end{array} \\ (\neg 1) & (A \rightarrow B) \rightarrow [(A \rightarrow \neg B) \rightarrow \neg A] \\ (\neg 2) & A \rightarrow (\neg A \rightarrow B) \\ (\neg 3) & \neg \neg A \rightarrow A \end{array}$$

Rule of inference: modus ponens MP: from A and $A \rightarrow B$ we obtain B.

Axiom system for the CPL

$$\begin{array}{ll} (\rightarrow 1) & A \rightarrow (B \rightarrow A) \\ (\rightarrow 2) & [A \rightarrow (B \rightarrow C)] \rightarrow [(A \rightarrow B) \rightarrow (A \rightarrow C)] \end{array} \\ (\wedge 1) & A \wedge B \rightarrow A \\ (\wedge 2) & A \wedge B \rightarrow B \\ (\wedge 2) & A \wedge B \rightarrow B \\ (\wedge 3) & A \rightarrow (B \rightarrow A \wedge B) \\ (\vee 1) & A \rightarrow A \vee B \\ (\vee 2) & B \rightarrow A \vee B \\ (\vee 3) & (A \rightarrow C) \rightarrow [(B \rightarrow C) \rightarrow (A \vee B \rightarrow C)] \end{array} \\ (\neg 1) & (A \rightarrow B) \rightarrow [(A \rightarrow \neg B) \rightarrow \neg A] \\ (\neg 2) & A \rightarrow (\neg A \rightarrow B) \\ (\neg 3) & \neg \neg A \rightarrow A \end{array}$$

Rule of inference: modus ponens MP: from A and $A \rightarrow B$ we obtain B.

Theorem (Completeness)

A formula D is provable from these axioms \iff D is a tautology.

Evgeny Zolin, MSU

Denote by B_1, \ldots, B_{11} the above axioms.

Denote by B_1, \ldots, B_{11} the above axioms. Let A_1, \ldots, A_n be any formulas.

Denote by B_1, \ldots, B_{11} the above axioms.

Let A_1, \ldots, A_n be any formulas.

Problem. How can we check that the set of formulas $\{A_1, \ldots, A_n\}$ (with the rule MP) axiomatize all tautologies?

Denote by B_1, \ldots, B_{11} the above axioms.

Let A_1, \ldots, A_n be any formulas.

Problem. How can we check that the set of formulas $\{A_1, \ldots, A_n\}$ (with the rule MP) axiomatize all tautologies?

Question. Does there exist an algorithm that solves this problem?

Denote by B_1, \ldots, B_{11} the above axioms.

Let A_1, \ldots, A_n be any formulas.

Problem. How can we check that the set of formulas $\{A_1, \ldots, A_n\}$ (with the rule MP) axiomatize all tautologies?

 $\ensuremath{\textbf{Question}}$. Does there exist an algorithm that solves this problem?

We need to check two things:

Denote by B_1, \ldots, B_{11} the above axioms.

Let A_1, \ldots, A_n be any formulas.

Problem. How can we check that the set of formulas $\{A_1, \ldots, A_n\}$ (with the rule MP) axiomatize all tautologies?

Question. Does there exist an algorithm that solves this problem?

We need to check two things:

- The set of axioms $\{A_1, \ldots, A_n\}$ is correct:
 - if D is provable from them, then D is a tautology.

Denote by B_1, \ldots, B_{11} the above axioms.

Let A_1, \ldots, A_n be any formulas.

Problem. How can we check that the set of formulas $\{A_1, \ldots, A_n\}$ (with the rule MP) axiomatize all tautologies?

 $\ensuremath{\textbf{Question.}}$ Does there exist an algorithm that solves this problem?

We need to check two things:

• The set of axioms $\{A_1, \ldots, A_n\}$ is correct:

if D is provable from them, then D is a tautology.

 \iff Each A_i is a tautology.

Denote by B_1, \ldots, B_{11} the above axioms.

Let A_1, \ldots, A_n be any formulas.

Problem. How can we check that the set of formulas $\{A_1, \ldots, A_n\}$ (with the rule MP) axiomatize all tautologies?

Question. Does there exist an algorithm that solves this problem?

We need to check two things:

• The set of axioms $\{A_1, \ldots, A_n\}$ is correct:

if D is provable from them, then D is a tautology.

 \iff Each A_i is a tautology. This is a decidable problem.

Denote by B_1, \ldots, B_{11} the above axioms.

Let A_1, \ldots, A_n be any formulas.

Problem. How can we check that the set of formulas $\{A_1, \ldots, A_n\}$ (with the rule MP) axiomatize all tautologies?

Question. Does there exist an algorithm that solves this problem? We need to check two things:

• The set of axioms $\{A_1, \ldots, A_n\}$ is correct:

if D is provable from them, then D is a tautology.

 \iff Each A_i is a tautology. This is a decidable problem.

• The set of axioms $\{A_1, \ldots, A_n\}$ is complete: if *D* is a tautology, then *D* is provable from them.

Denote by B_1, \ldots, B_{11} the above axioms.

Let A_1, \ldots, A_n be any formulas.

Problem. How can we check that the set of formulas $\{A_1, \ldots, A_n\}$ (with the rule MP) axiomatize all tautologies?

Question. Does there exist an algorithm that solves this problem? We need to check two things:

• The set of axioms $\{A_1, \ldots, A_n\}$ is correct: if *D* is provable from them, then *D* is a tautology.

 \iff Each A_i is a tautology. This is a decidable problem.

The set of axioms {A₁,..., A_n} is complete:
 if D is a tautology, then D is provable from them.
 ⇔ each B_i is provable from {A₁,..., A_n}.

Denote by B_1, \ldots, B_{11} the above axioms.

Let A_1, \ldots, A_n be any formulas.

Problem. How can we check that the set of formulas $\{A_1, \ldots, A_n\}$ (with the rule MP) axiomatize all tautologies?

Question. Does there exist an algorithm that solves this problem? We need to check two things:

• The set of axioms $\{A_1, \ldots, A_n\}$ is correct:

if D is provable from them, then D is a tautology.

 \iff Each A_i is a tautology. This is a decidable problem.

• The set of axioms $\{A_1, \ldots, A_n\}$ is complete:

if D is a tautology, then D is provable from them.

 \iff each B_i is provable from $\{A_1, \ldots, A_n\}$.

In general, an axiomatic system $\{A_1, \ldots, A_n\} + (MP)$ may be undecidable.

Denote by B_1, \ldots, B_{11} the above axioms.

Let A_1, \ldots, A_n be any formulas.

Problem. How can we check that the set of formulas $\{A_1, \ldots, A_n\}$ (with the rule MP) axiomatize all tautologies?

Question. Does there exist an algorithm that solves this problem? We need to check two things:

• The set of axioms $\{A_1, \ldots, A_n\}$ is correct:

if D is provable from them, then D is a tautology.

 \iff Each A_i is a tautology. This is a decidable problem.

• The set of axioms $\{A_1, \ldots, A_n\}$ is complete:

if D is a tautology, then D is provable from them.

 \iff each B_i is provable from $\{A_1, \ldots, A_n\}$.

In general, an axiomatic system $\{A_1, \ldots, A_n\} + (MP)$ may be undecidable. Even if it were decidable, there is no guarantee that its algorithm can be built from $\{A_1, \ldots, A_n\}$ effectively.

 The set of connectives {→, ¬} is functionally complete. How to axiomatize all tautologies that use only {→, ¬}?

 The set of connectives {→, ¬} is functionally complete. How to axiomatize all tautologies that use only {→, ¬}?

Theorem

 The set of connectives {→, ¬} is functionally complete. How to axiomatize all tautologies that use only {→, ¬}?

Theorem

The axioms $(\rightarrow 1)$, $(\rightarrow 2)$, $(\neg 1)$, $(\neg 2)$, $(\neg 3)$ are complete for all tautologies that use only $\{\rightarrow, \neg\}$.

 What about {→}? It is functionally incomplete. But How to axiomatize all tautologies that use only →?

 The set of connectives {→, ¬} is functionally complete. How to axiomatize all tautologies that use only {→, ¬}?

Theorem

The axioms $(\rightarrow 1)$, $(\rightarrow 2)$, $(\neg 1)$, $(\neg 2)$, $(\neg 3)$ are complete for all tautologies that use only $\{\rightarrow, \neg\}$.

What about {→}? It is functionally incomplete. But How to axiomatize all tautologies that use only →?
(!) Axioms (→1) and (→2) are not enough! We need: *Pierce's law*: ((A → B) → A) → A

 The set of connectives {→, ¬} is functionally complete. How to axiomatize all tautologies that use only {→, ¬}?

Theorem

- What about {→}? It is functionally incomplete. But How to axiomatize all tautologies that use only →?
 (!) Axioms (→1) and (→2) are not enough! We need: *Pierce's law*: ((A → B) → A) → A
- Can we axiomatize all →-tautologies with only one axiom?

 The set of connectives {→, ¬} is functionally complete. How to axiomatize all tautologies that use only {→, ¬}?

Theorem

- What about {→}? It is functionally incomplete. But How to axiomatize all tautologies that use only →?
 (!) Axioms (→1) and (→2) are not enough! We need: *Pierce's law*: ((A → B) → A) → A
- Can we axiomatize all \rightarrow -tautologies with only one axiom? Yes: $[(A \rightarrow B) \rightarrow C] \rightarrow [(C \rightarrow A) \rightarrow (D \rightarrow A)].$ (Łukasiewicz, 1948).

 The set of connectives {→, ¬} is functionally complete. How to axiomatize all tautologies that use only {→, ¬}?

Theorem

- What about {→}? It is functionally incomplete. But How to axiomatize all tautologies that use only →?
 (!) Axioms (→1) and (→2) are not enough! We need: *Pierce's law*: ((A → B) → A) → A
- Can we axiomatize all →-tautologies with only one axiom? Yes: [(A → B) → C] → [(C → A) → (D → A)]. (Łukasiewicz, 1948).
 One axiom can be built for {→, ¬}, for {¬, ∧, ∨, →}, for {↔}, etc.

 The set of connectives {→, ¬} is functionally complete. How to axiomatize all tautologies that use only {→, ¬}?

Theorem

- What about {→}? It is functionally incomplete. But How to axiomatize all tautologies that use only →?
 (!) Axioms (→1) and (→2) are not enough! We need: *Pierce's law*: ((A → B) → A) → A
- Can we axiomatize all \rightarrow -tautologies with only one axiom? Yes: $[(A \rightarrow B) \rightarrow C] \rightarrow [(C \rightarrow A) \rightarrow (D \rightarrow A)].$ (Łukasiewicz, 1948).
- One axiom can be built for $\{\rightarrow, \neg\}$, for $\{\neg, \land, \lor, \rightarrow\}$, for $\{\leftrightarrow\}$, etc.
- Ted Ulrich collects single axioms for many logics in {→} and {↔}. https://web.ics.purdue.edu/~dulrich/Home-page.htm

Let U be \mathbb{N} or Σ^* (the set of all words over an alphabet Σ).

Definition 1. A set $D \subseteq U$ is called decidable (or recursive) if its characteristic function is computable:

$$\forall x \in \Sigma^* \qquad \chi_D(x) = \begin{cases} 1, & x \in D, \\ 0, & x \notin D. \end{cases}$$

Let U be \mathbb{N} or Σ^* (the set of all words over an alphabet Σ).

Definition 1. A set $D \subseteq U$ is called decidable (or recursive) if its characteristic function is computable:

$$\forall x \in \Sigma^* \qquad \chi_D(x) = \begin{cases} 1, & x \in D, \\ 0, & x \notin D. \end{cases}$$

Definition 2. A set $D \subseteq U$ is called semi-decidable (or recursively enumerable, r.e.) if its semi-characteristic function is computable:

$$\forall x \in \Sigma^* \qquad \chi_D(x) = \begin{cases} 1, & x \in D, \\ undefined, & x \notin D. \end{cases}$$

Let U be \mathbb{N} or Σ^* (the set of all words over an alphabet Σ).

Definition 1. A set $D \subseteq U$ is called decidable (or recursive) if its characteristic function is computable:

$$\forall x \in \Sigma^* \qquad \chi_D(x) = \begin{cases} 1, & x \in D, \\ 0, & x \notin D. \end{cases}$$

Definition 2. A set $D \subseteq U$ is called semi-decidable (or recursively enumerable, r.e.) if its semi-characteristic function is computable:

$$\forall x \in \Sigma^* \qquad \chi_D(x) = \begin{cases} 1, & x \in D, \\ undefined, & x \notin D. \end{cases}$$

Example

Prime numbers — decidable.

Evgeny Zolin, MSU

Let U be \mathbb{N} or Σ^* (the set of all words over an alphabet Σ).

Definition 1. A set $D \subseteq U$ is called decidable (or recursive) if its characteristic function is computable:

$$\forall x \in \Sigma^* \qquad \chi_D(x) = \begin{cases} 1, & x \in D, \\ 0, & x \notin D. \end{cases}$$

Definition 2. A set $D \subseteq U$ is called semi-decidable (or recursively enumerable, r.e.) if its semi-characteristic function is computable:

$$\forall x \in \Sigma^* \qquad \chi_D(x) = \begin{cases} 1, & x \in D, \\ undefined, & x \notin D. \end{cases}$$

Example

Prime numbers - decidable. Tautologies - decidable.

Evgeny Zolin, MSU

Linial-Post Theorem

Let U be \mathbb{N} or Σ^* (the set of all words over an alphabet Σ).

Definition 1. A set $D \subseteq U$ is called decidable (or recursive) if its characteristic function is computable:

$$\forall x \in \Sigma^* \qquad \chi_D(x) = \begin{cases} 1, & x \in D, \\ 0, & x \notin D. \end{cases}$$

Definition 2. A set $D \subseteq U$ is called semi-decidable (or recursively enumerable, r.e.) if its semi-characteristic function is computable:

$$\forall x \in \Sigma^* \qquad \chi_D(x) = \begin{cases} 1, & x \in D, \\ undefined, & x \notin D. \end{cases}$$

Example

Prime numbers — decidable. Tautologies — decidable. $\{n \in \mathbb{N} \mid \exists a, b, c \in \mathbb{N}: n = a^4 + b^4 - c^4\}$ — semi-decidable.

Evgeny Zolin, MSU

Let U be \mathbb{N} or Σ^* (the set of all words over an alphabet Σ).

Definition 1. A set $D \subseteq U$ is called decidable (or recursive) if its characteristic function is computable:

$$\forall x \in \Sigma^* \qquad \chi_D(x) = \begin{cases} 1, & x \in D, \\ 0, & x \notin D. \end{cases}$$

Definition 2. A set $D \subseteq U$ is called semi-decidable (or recursively enumerable, r.e.) if its semi-characteristic function is computable:

$$\forall x \in \Sigma^* \qquad \chi_D(x) = \begin{cases} 1, & x \in D, \\ undefined, & x \notin D. \end{cases}$$

Example

Prime numbers — decidable. Tautologies — decidable. $\{n \in \mathbb{N} \mid \exists a, b, c \in \mathbb{N}: n = a^4 + b^4 - c^4\}$ — semi-decidable. Decidable?

Evgeny Zolin, MSU

A calculus consists of: 1) a set of axioms, 2) a set of rules.

A calculus consists of: 1) a set of axioms, 2) a set of rules. A rule with *n* premises — a relation $R \subseteq \operatorname{Fm}^n \times \operatorname{Fm}$. (usually a partial function, usually a computable function)

A calculus consists of: 1) a set of axioms, 2) a set of rules. A rule with *n* premises — a relation $R \subseteq \operatorname{Fm}^n \times \operatorname{Fm}$. (usually a partial function, usually a computable function) A calculus is called decidable / semi-decidable if the set of its theorems (provable formulas) is decidable / semi-decidable.

A calculus consists of: 1) a set of axioms, 2) a set of rules. A rule with *n* premises — a relation $R \subseteq \operatorname{Fm}^n \times \operatorname{Fm}$. (usually a partial function, usually a computable function) A calculus is called decidable / semi-decidable if the set of its theorems (provable formulas) is decidable / semi-decidable.

Theorem 1

Any calculus with a finite set of axioms and a finite set of rules is semi-decidable.

A calculus consists of: 1) a set of axioms, 2) a set of rules. A rule with *n* premises — a relation $R \subseteq \operatorname{Fm}^n \times \operatorname{Fm}$. (usually a partial function, usually a computable function) A calculus is called decidable / semi-decidable if the set of its theorems (provable formulas) is decidable / semi-decidable.

Theorem 1

Any calculus with a finite set of axioms and a finite set of rules is semi-decidable.

Proof.

Given a formula D, build all possible proofs and search for D.

Theorem 1

Any calculus with a finite set of axioms and a finite set of rules is semi-decidable.

Proof.

Given a formula D, build all possible proofs and search for D.
Theorem 1

Any calculus with a finite set of axioms and a finite set of rules is semi-decidable.

Proof.

Given a formula D, build all possible proofs and search for D.

Theorem 2

Any calculus with a decidable set of axioms and a finite set of rules is semi-decidable.

Theorem 1

Any calculus with a finite set of axioms and a finite set of rules is semi-decidable.

Proof.

Given a formula D, build all possible proofs and search for D.

Theorem 2

Any calculus with a decidable set of axioms and a finite set of rules is semi-decidable.

Proof - the same.

Theorem 1

Any calculus with a finite set of axioms and a finite set of rules is semi-decidable.

Proof.

Given a formula D, build all possible proofs and search for D.

Theorem 2

Any calculus with a decidable set of axioms and a finite set of rules is semi-decidable.

$\mathsf{Proof} - \mathsf{the same}.$

Theorem 3

Any calculus with a semi-decidable set of axioms and a finite set of rules is semi-decidable.

Evgeny Zolin, MSU

Linial-Post Theorem

Theorem 3

Any calculus with a semi-decidable set of axioms and a finite set of rules is semi-decidable.

Theorem 3

Any calculus with a semi-decidable set of axioms and a finite set of rules is semi-decidable.

Proof.

There is a computable enumeration A_0, A_1, \ldots of all axioms of this calculus.

Theorem 3

Any calculus with a semi-decidable set of axioms and a finite set of rules is semi-decidable.

Proof.

There is a computable enumeration A_0, A_1, \ldots of all axioms of this calculus. Given a formula D, is it provable?

Theorem 3

Any calculus with a semi-decidable set of axioms and a finite set of rules is semi-decidable.

Proof.

There is a computable enumeration A_0, A_1, \ldots of all axioms of this calculus. Given a formula D, is it provable? Algorithm: for each $n \in \mathbb{N}$, – build the formulas A_0, \ldots, A_n ,

Theorem 3

Any calculus with a semi-decidable set of axioms and a finite set of rules is semi-decidable.

Proof.

There is a computable enumeration A_0, A_1, \ldots of all axioms of this calculus. Given a formula D, is it provable?

- Algorithm: for each $n \in \mathbb{N}$,
- build the formulas A_0, \ldots, A_n ,
- build proofs of length $\leq n$ from A_0, \ldots, A_n ,

Theorem 3

Any calculus with a semi-decidable set of axioms and a finite set of rules is semi-decidable.

Proof.

There is a computable enumeration A_0, A_1, \ldots of all axioms of this calculus. Given a formula D, is it provable?

Algorithm: for each $n \in \mathbb{N}$,

- build the formulas A_0, \ldots, A_n ,
- build proofs of length $\leq n$ from A_0, \ldots, A_n ,
- check if you obtained D. If not, continue for n + 1.

Theorem 3

Any calculus with a semi-decidable set of axioms and a finite set of rules is semi-decidable.

Proof.

There is a computable enumeration A_0, A_1, \ldots of all axioms of this calculus. Given a formula D, is it provable?

Algorithm: for each $n \in \mathbb{N}$,

- build the formulas A_0, \ldots, A_n ,
- build proofs of length $\leq n$ from A_0, \ldots, A_n ,
- check if you obtained D. If not, continue for n + 1.

Question: Theorem 2 (decidable set of axioms) and Theorem 3 (semi-decidable set of axioms) talk about the same calculi?

Assume that we have a finite set of tautologies A_1, \ldots, A_n .

Assume that we have a finite set of tautologies A_1, \ldots, A_n .

The rules of inference are always

$$\mathsf{MP} \ \frac{A \quad A \to B}{B} \qquad \mathsf{and} \qquad \mathsf{Substitution rule} \ \frac{A(p_1, \dots, p_k)}{A(B_1, \dots, B_k)}$$

Assume that we have a finite set of tautologies A_1, \ldots, A_n .

The rules of inference are always

$$\mathsf{MP} \ \frac{A \quad A \to B}{B} \qquad \text{and} \qquad \mathsf{Substitution rule} \ \frac{A(p_1, \dots, p_k)}{A(B_1, \dots, B_k)}$$

Problem

Does there exist an algorithm that checks whether

the given tautologies A_1, \ldots, A_n axiomatize all tautologies?

Assume that we have a finite set of tautologies A_1, \ldots, A_n .

The rules of inference are always

$$\mathsf{MP} \ \frac{A \quad A \to B}{B} \qquad \text{and} \qquad \mathsf{Substitution rule} \ \frac{A(p_1, \dots, p_k)}{A(B_1, \dots, B_k)}$$

Problem

Does there exist an algorithm that checks whether

the given tautologies A_1, \ldots, A_n axiomatize all tautologies?

Theorem (Samuel Linial, Emil Post, 1949)

There is **no** such an algorithm.

Problem (or language) — any language $L \subseteq \Sigma^*$.

Problem (or language) — any language $L \subseteq \Sigma^*$.

Definition (Algorithmic (effective) reduction, $L_1 \preccurlyeq L_2$)

A problem $L_1 \subseteq \Sigma_1^*$ is reducible to a problem $L_2 \subseteq \Sigma_2^*$ if

Problem (or language) — any language $L \subseteq \Sigma^*$.

Definition (Algorithmic (effective) reduction, $L_1 \preccurlyeq L_2$)

A problem $L_1 \subseteq \Sigma_1^*$ is reducible to a problem $L_2 \subseteq \Sigma_2^*$ if there is a computable function $f: \Sigma_1^* \to \Sigma_2^*$ such that:

Problem (or language) — any language $L \subseteq \Sigma^*$. Definition (Algorithmic (effective) reduction, $L_1 \preccurlyeq L_2$) A problem $L_1 \subseteq \Sigma_1^*$ is reducible to a problem $L_2 \subseteq \Sigma_2^*$ if there is a computable function $f: \Sigma_1^* \to \Sigma_2^*$ such that: for all words $x \in \Sigma_1^*$: $x \in L_1 \iff f(x) \in L_2$.

Problem (or language) — any language $L \subseteq \Sigma^*$. Definition (Algorithmic (effective) reduction, $L_1 \preccurlyeq L_2$) A problem $L_1 \subseteq \Sigma_1^*$ is reducible to a problem $L_2 \subseteq \Sigma_2^*$ if there is a computable function $f : \Sigma_1^* \to \Sigma_2^*$ such that: for all words $x \in \Sigma_1^*$: $x \in L_1 \iff f(x) \in L_2$. Lemma

(a)	$L \preccurlyeq L'$ and L' is decidable	\implies	L is decidable;
(b)	$L \preccurlyeq L'$ and L is undecidable	\implies	L' is undecidable.

Problem (or language) — any language $L \subseteq \Sigma^*$. Definition (Algorithmic (effective) reduction, $L_1 \preccurlyeq L_2$) A problem $L_1 \subseteq \Sigma_1^*$ is reducible to a problem $L_2 \subseteq \Sigma_2^*$ if there is a computable function $f : \Sigma_1^* \to \Sigma_2^*$ such that: for all words $x \in \Sigma_1^*$: $x \in L_1 \iff f(x) \in L_2$.

Lemma

(a)	$L \preccurlyeq L'$ and L' is decidable	\implies	L is decidable;
(b)	$L \preccurlyeq L'$ and L is undecidable	\implies	L' is undecidable.

Proof.

If the machine M'(y) decides the problem $y \in L'$, then the machine M(x) = M'(f(x)) decides the problem $x \in L$.

Tag system – $\Pi = (\Sigma, P, \ell)$ consists of: - $\Sigma = (a_1, \dots, a_m)$ – a finite alphabet,

- **Tag system** $\Pi = (\Sigma, P, \ell)$ consists of:
- $-\Sigma = (a_1, \ldots, a_m)$ a finite alphabet,
- $-P = (x_1, ..., x_m) m$ words,

- **Tag system** $\Pi = (\Sigma, P, \ell)$ consists of:
- $-\Sigma = (a_1, \ldots, a_m)$ a finite alphabet,
- $-P = (x_1, \ldots, x_m) m$ words, $\ell \ge 1 an$ integer.

- **Tag system** $\Pi = (\Sigma, P, \ell)$ consists of:
- $-\Sigma = (a_1, \ldots, a_m)$ a finite alphabet,
- $-P = (x_1, \ldots, x_m) m$ words, $\ell \ge 1 an$ integer.

 $\Pi \text{ is applicable to a word } w \text{ if } |w| \ge \ell.$

- **Tag system** $\Pi = (\Sigma, P, \ell)$ consists of:
- $\Sigma = (a_1, \ldots, a_m)$ a finite alphabet,
- $-P = (x_1, \ldots, x_m) m$ words, $\ell \ge 1 an$ integer.

 $\Pi \text{ is applicable to a word } w \text{ if } |w| \ge \ell.$

Application of Π to w:

$$a_i z v \stackrel{\sqcap}{\longrightarrow} v x_i$$

where $|a_i z| = \ell$.

- **Tag system** $\Pi = (\Sigma, P, \ell)$ consists of:
- $-\Sigma = (a_1, \ldots, a_m)$ a finite alphabet,
- $-P = (x_1, \ldots, x_m) m$ words, $\ell \ge 1 an$ integer.

 Π is applicable to a word w if $|w| \ge \ell$.

Application of Π to w: $\begin{vmatrix} a_i z v \stackrel{\Pi}{\longrightarrow} v x_i \end{vmatrix}$ where $|a_i z| = \ell$. So, - remember the first symbol a_i of w_i ;

- **Tag system** $\Pi = (\Sigma, P, \ell)$ consists of:
- $-\Sigma = (a_1, \ldots, a_m)$ a finite alphabet,
- $-P = (x_1, \ldots, x_m) m$ words, $\ell \ge 1 an$ integer.

 Π is applicable to a word w if $|w| \ge \ell$.

Application of Π to w: $|a_i z v \xrightarrow{\Pi} v x_i|$ where $|a_i z| = \ell$. So,

- remember the first symbol a_i of w;
- delete the first ℓ symbols from *w*;

- **Tag system** $-\Pi = (\Sigma, P, \ell)$ consists of:
- $-\Sigma = (a_1, \ldots, a_m)$ a finite alphabet,
- $-P = (x_1, \ldots, x_m) m$ words, $\ell \ge 1 an$ integer.

 Π is applicable to a word w if $|w| \ge \ell$.

Application of Π to w: $|a_i z v \xrightarrow{\Pi} v x_i|$ where $|a_i z| = \ell$. So.

- remember the first symbol a_i of w_i ; - delete the first ℓ symbols from w;
- add the word x_i to the end.

- **Tag system** $-\Pi = (\Sigma, P, \ell)$ consists of:
- $-\Sigma = (a_1, \ldots, a_m)$ a finite alphabet,
- $-P = (x_1, \ldots, x_m) m$ words, $\ell \ge 1 an$ integer.

 Π is applicable to a word w if $|w| \ge \ell$.

Application of Π to w: $|a_i z v \xrightarrow{\Pi} v x_i|$ where $|a_i z| = \ell$. So,

- remember the first symbol a_i of w_i ;
- delete the first ℓ symbols from w;
- add the word x_i to the end.

Definition

 Π halts on an input word w if $w \xrightarrow{\Pi} w_0 \xrightarrow{\Pi} \dots u$ for some word $|u| < \ell$.

- **Tag system** $\Pi = (\Sigma, P, \ell)$ consists of:
- $-\Sigma = (a_1, \ldots, a_m)$ a finite alphabet,
- $-P = (x_1, \ldots, x_m) m$ words, $\ell \ge 1 an$ integer.

 Π is applicable to a word w if $|w| \ge \ell$.

Application of Π to w: $|a_i z v \xrightarrow{\Pi} v x_i|$ where $|a_i z| = \ell$. So,

- remember the first symbol a_i of w_i ;
- delete the first ℓ symbols from w;
- add the word x_i to the end.

Definition

 Π halts on an input word w if $w \xrightarrow{\Pi} w_0 \xrightarrow{\Pi} \dots u$ for some word $|u| < \ell$.

Theorem (Minski, 1961)

The problem " Π stops on w" is **undecidable**.

- **Tag system** $\Pi = (\Sigma, P, \ell)$ consists of:
- $-\Sigma = (a_1, \ldots, a_m)$ a finite alphabet,
- $-P = (x_1, \ldots, x_m) m$ words, $\ell \ge 1$ an integer.

 Π is applicable to a word w if $|w| \ge \ell$.

Application of Π to w: $|a_i z v \xrightarrow{\Pi} v x_i|$ where $|a_i z| = \ell$. So,

- remember the first symbol a_i of w_i ;
- delete the first ℓ symbols from w;
- add the word x_i to the end.

Definition

 Π halts on an input word w if $w \xrightarrow{\Pi} w_0 \xrightarrow{\Pi} \dots u$ for some word $|u| < \ell$.

Theorem (Minski, 1961)

The problem " Π stops on w" is **undecidable**.

Moreover, $\exists \Pi_0$ such that the problem " Π_0 stops on w" is undecidable.

There is **no** algorithm that checks:

whether the given tautologies A_1, \ldots, A_n axiomatize all tautologies?

There is **no** algorithm that checks:

whether the given tautologies A_1, \ldots, A_n axiomatize all tautologies?

Proof (sketch).

There is **no** algorithm that checks:

whether the given tautologies A_1, \ldots, A_n axiomatize all tautologies?

Proof (sketch).

To a symbol a_3 , we build a formula $E_3 = p \rightarrow (p \rightarrow (p \rightarrow (p \rightarrow p)))$.

There is **no** algorithm that checks:

whether the given tautologies A_1, \ldots, A_n axiomatize all tautologies?

Proof (sketch).

To a symbol a_3 , we build a formula $E_3 = p \rightarrow (p \rightarrow (p \rightarrow (p \rightarrow p)))$. We encode a word $a_2a_5a_3a_1$ into a formula $E_2 \wedge (E_5 \wedge (E_3 \wedge E_1)))$.

There is **no** algorithm that checks:

whether the given tautologies A_1, \ldots, A_n axiomatize all tautologies?

Proof (sketch).

To a symbol a_3 , we build a formula $E_3 = p \rightarrow (p \rightarrow (p \rightarrow (p \rightarrow p)))$. We encode a word $a_2a_5a_3a_1$ into a formula $E_2 \wedge (E_5 \wedge (E_3 \wedge E_1)))$. Given a Post system Π of and an input word w,
Theorem (Samuel Linial, Emil Post, 1949)

There is **no** algorithm that checks:

whether the given tautologies A_1, \ldots, A_n axiomatize all tautologies?

Proof (sketch).

To a symbol a_3 , we build a formula $E_3 = p \rightarrow (p \rightarrow (p \rightarrow (p \rightarrow p)))$. We encode a word $a_2a_5a_3a_1$ into a formula $E_2 \wedge (E_5 \wedge (E_3 \wedge E_1)))$. Given a Post system Π of and an input word w,

an algorithm builds a calculus $C = C(\Pi, w) = \{A_1, \dots, A_n\}$ such that

Theorem (Samuel Linial, Emil Post, 1949)

There is **no** algorithm that checks:

whether the given tautologies A_1, \ldots, A_n axiomatize all tautologies?

Proof (sketch).

To a symbol a_3 , we build a formula $E_3 = p \rightarrow (p \rightarrow (p \rightarrow (p \rightarrow p)))$. We encode a word $a_2a_5a_3a_1$ into a formula $E_2 \wedge (E_5 \wedge (E_3 \wedge E_1)))$. Given a Post system Π of and an input word w,

an algorithm builds a calculus $C = C(\Pi, w) = \{A_1, \dots, A_n\}$ such that

 Π stops on input $w \iff$ the calculus C can prove all tautologies.

Theorem (Samuel Linial, Emil Post, 1949)

There is **no** algorithm that checks:

whether the given tautologies A_1, \ldots, A_n axiomatize all tautologies?

Proof (sketch).

To a symbol a_3 , we build a formula $E_3 = p \rightarrow (p \rightarrow (p \rightarrow (p \rightarrow p)))$. We encode a word $a_2a_5a_3a_1$ into a formula $E_2 \wedge (E_5 \wedge (E_3 \wedge E_1)))$. Given a Post system Π of and an input word w,

an algorithm builds a calculus $C = C(\Pi, w) = \{A_1, \ldots, A_n\}$ such that

 $\Pi \text{ stops on input } w \iff \text{ the calculus } C \text{ can prove all tautologies.}$

This is a reduction of the halting problem for Tag systems to our problem.

New results (Grigory Bokov, 2016, MSU)

Theorem

Fix any calculus $D_0 = \{B_1, \ldots, B_m\}$ (even in \rightarrow !).

Then the following problem is **undecidable**:

given a calculus $C = \{A_1, \ldots, A_n\}$, decide if $C \supseteq D$.

New results (Grigory Bokov, 2016, MSU)

Theorem

Fix any calculus $D_0 = \{B_1, \ldots, B_m\}$ (even in \rightarrow !). Then the following problem is undecidable:

given a calculus $C = \{A_1, \ldots, A_n\}$, decide if $C \supseteq D$.

Corollary

Fix any formula B. Then the following problem is **undecidable**:

given a calculus $C = \{A_1, \ldots, A_n\}$, decide if $C \vdash B$.

New results (Grigory Bokov, 2016, MSU)

Theorem

Fix any calculus $D_0 = \{B_1, \ldots, B_m\}$ (even in \rightarrow !). Then the following problem is undecidable:

given a calculus $C = \{A_1, \ldots, A_n\}$, decide if $C \supseteq D$.

Corollary

Fix any formula B. Then the following problem is undecidable:

given a calculus $C = \{A_1, \ldots, A_n\}$, decide if $C \vdash B$.

Theorem

Fix a calculus $D = \{B_1, ..., B_m\}$ (even in \rightarrow !) with $D \vdash p \rightarrow (q \rightarrow p)$. Then the following problem is undecidable:

given a calculus $C = \{A_1, \ldots, A_n\}$, decide if C = D.