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Infinitary propositional formulas: syntax

We will consider the language with countable conjunctions and disjunctions.

We have a countable set of variables: Var = {p0, p1, . . .}.

Definition
Formulas of the infinitary propositional language:
Fm is the smallest set, such that

every pi ∈ Var is a formula: pi ∈ Fm,
if A ∈ Fm, then ¬A ∈ Fm,
if Φ ⊆ Fm and Φ is at most countable: |Φ|6 𝜔, then (

⋀︀
Φ) ∈ Fm.

Other connectives (∧,∨,→) are introduced as abbreviations; in particular:⋁︀
Φ := ¬

⋀︀
{¬A | A ∈ Φ}.
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Infinitary propositional formulas: semantics

A valuation is a function v : Var → {0, 1}.

Denote: v |= A iff v(A) = 1.
Semantics of all formulas:

v |= ¬A ⇐⇒ v |̸= A,
v |=

⋀︀
Φ ⇐⇒ v |= A for every formula A ∈ Φ

v |=
⋁︀

Φ ⇐⇒ v |= A for some formula A ∈ Φ.

Definition
A is a tautology if v(A) = 1 for all valuations v .
A is satisfiable if v(A) = 1 for some valuation v .
A set Γ ⊆ Fm is satisfiable if v |= Γ for some valuation v .
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Axioms and rules for the infinitary propositional logic

Axioms:
∙ All tautologies for ∧,∨,→,¬

∙
⋀︀

Φ → A, for every A ∈ Φ, where Φ ⊆ Fm is at most countable

Rules: modus ponens and (R
⋀︀

): {A → B}B∈Φ
A →

⋀︀
Φ

Definition
A derivation is an at most countable sequence of formulas (A𝛽)𝛽6𝜆, where
𝜆 is some (at most) countable ordinal,
such that each formula either is an axiom or is obtained from the previous
formulas by some rule of inference.
The formula A is provable (or derivable): ⊢ A.

A derivation from a set of hypothesis Γ ⊢ A.
(here Γ is at most countable)
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Example of a derivation. Deduction theorem

Proposition. Φ ⊢
⋀︀

Φ. Here Φ is at most countable.

Fix any tautology D, for example, p → p. Derivation:
∙ A, for every formula A ∈ Φ.
∙ A → (D → A) for every formula A ∈ Φ.
∙ D → A for every formula A ∈ Φ.
∙ D → (

⋀︀
Φ) by the rule (R

⋀︀
).

∙ D
∙

⋀︀
Φ.

If Φ is countable, then the proof is of length 𝜔 + 𝜔 + 𝜔 + 3.

Theorem (Deduction theorem)
(1) If Γ,A ⊢ B , then Γ ⊢ A → B .
(2) If Γ,Φ ⊢ B , then Γ ⊢ (

⋀︀
Φ) → B .

Why (2) follows easily from (1)? Clearly
⋀︀

Φ ⊢ A for every A ∈ Φ.
So if Γ,Φ ⊢ B , then Γ, (

⋀︀
Φ) ⊢ B . By (1) we have Γ ⊢ (

⋀︀
Φ) → B .
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The “length” of derivations

Why did we define only countable derivations (A𝛽)𝛽6𝜆?

Because any provable formula has a proof of a countable length!
Moreover, if Γ ⊢ A, then there is a countable derivation of A from Γ.

Indeed, for any set Γ ⊆ Fm, consider the following transfinite sequence:

Γ0 = Γ
Γ𝜆+1 = Γ𝜆 ∪ ApplyRule(MP, Γ𝜆) ∪ ApplyRule(R

⋀︀
, Γ𝜆)

Γ𝜆 =
⋃︀

𝛼<𝜆 Γ𝛼 for a limit ordinal 𝜆

where ApplyRule(R,∆) is the result of applying the inference rule R in all
possible ways to the formulas from ∆:

ApplyRule(R,∆) = {B ∈ Fm | ∃A⃗ ⊆ Fm : B = R(A⃗)}.

Lemma (Deductive closure of a set of formulas)
For any set Γ, the set Γ𝜔1 is closed under the rules (MP) and (R

⋀︀
).
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Closure

Let X ̸= ∅ be a set. Let 𝒮 be a family of functions on X , where each
function has finite or countable number of arguments.

Functions may be partial (i.e. undefined for some values of arguments).

∙ The rule (MP) is a partial function on formulas with 2 arguments.
∙ The rule (R

⋀︀
) is a partial function on formulas with 𝜔 arguments.

For Y ⊆ X , we define: f [Y ] = {f (a⃗ ) | a⃗ ⊆ Y } and 𝒮[Y ] =
⋃︀
f ∈𝒮

f [Y ].

We define “layers” indexed by ordinals (i.e. by transfinite recursion):

X0 = X , X𝜆+1 = X𝜆 ∪ 𝒮[X𝜆],
X𝜆 =

⋃︀
𝛼<𝜆 X𝛼 for a limit ordinal 𝜆.

Lemma (The closure of X is reached at step 𝜔1)
For any set X , the set X𝜔1 is closed under all function from 𝒮.
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Proof.
Take any a⃗ = (a0, a1, . . .) from X𝜔1 .
Then, for each i ∈ N, ai ∈ X𝜆i

for some countable ordinal 𝜆i < 𝜔1.
Then, for each i ∈ N, we have ai ∈ X𝜆, where 𝜆 = sup{𝜆i | i ∈ N}.
So, a⃗ ⊆ X𝜆.
Then f (a⃗ ) ∈ X𝜆+1.
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Completeness

Theorem (Completeness)
(a) ⊢ A ⇐⇒ A is valid.
(b) Γ ⊢ A ⇐⇒ Γ |= A. (here Γ is at most countable)
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(b) Γ ⊢ A ⇐⇒ Γ |= A. (here Γ is at most countable)

(a) ⇒ (b) by Deduction theorem (2). So we prove only (a).
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Definition
A set of formulas Γ is called consistent if (two equivalent definitions):
(1) Γ 0 ⊥,
(2) 0 ¬(
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(2) 0 ¬(
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Γ).

Lemma 1 (Analogue of Lindenbaum lemma).
Any consistent set of formulas Γ is contained in some saturated set H.

Lemma 2 (Model existence theorem).
Any saturated set of formulas H is satisfiable.
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Completeness

Theorem (Completeness)
(a) ⊢ A ⇐⇒ A is valid.
(b) Γ ⊢ A ⇐⇒ Γ |= A. (here Γ is at most countable)

Proof of theorem. If 0 A, then the set {¬A} is consistent.

Then it is contained in some saturated set: {¬A} ⊆ H. (Lemma 1)
Then H is satisfiable. (Lemma 2)
Therefore, A is not valid.
Q.E.D.
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Saturated set of formulas

Definition
A set of formulas H ⊆ Fm is called saturated (Hintikka set) if we have:

There is no formula A such that A,¬A ∈ H.

If ¬¬A ∈ H, then A ∈ H.

If
⋀︀

Φ ∈ H, then A ∈ H for every A ∈ Φ.

If ¬
⋀︀

Φ ∈ H, then ¬A ∈ H for some A ∈ Φ.

We will saturate a consistent set Γ (at most countable).
Take Γ (at most countable). Take all its subformulas Sub(Γ).
Why Sub(Γ) is again at most countable?
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Subformulas of a formula

Given a formula A, define the set of all its subformulas Sub(A) by induction:

Sub(p) = {p}, Sub(¬A) = {¬A} ∪ Sub(A),

Sub(
⋀︀

Φ) = {
⋀︀

Φ} ∪
⋃︀

A∈Φ
Sub(A).

Proposition. For any formula A, the set Sub(A) is at most countable.

Proof. By (transfinite) induction on A.

Corollary. If |Γ|6 𝜔, then | Sub(Γ)|6 𝜔.
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Saturating a set of formulas

Lemma 1 (Analogue of Lindenbaum lemma).
Any consistent set of formulas Γ is contained in some saturated set H.

Proof. Denote Σ = Sub(Γ) ∪ {¬A | A ∈ Sub(Γ)} = {A0,A1, . . .}.
It is a countable set: Σ = {A0,A1, . . .}.
Build Γ = Γ0 ⊆ ∆0 ⊆ Γ1 ⊆ ∆1 ⊆ Γ2 ⊆ . . . — each at most countable.
Then put H =

⋃︀
n>0

Γn =
⋃︀
n>0

∆n — it will be saturated!

Construction:

Put ∆n :=

{︂
Γn ∪ {An}, if the resulting set is consistent;
Γn otherwise.

If An is not of the form ¬
⋀︀

Φ, then put Γn+1 := ∆n.

If An = ¬
⋀︀

Φ and An ∈ ∆n, then pick any witness formula B ∈ Φ
such that the set Γn+1 := ∆n ∪ {¬B} is consistent.
(!) Such a formula B exists by the rule (R

⋀︀
).
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Satisfaction Lemma

Lemma 2 (Model existence theorem).
Any saturated set H is satisfiable.

Proof. Build a valuation v as follows: v(p) = 1 iff p ∈ H.
We need to prove: v |= H.
This means: if A ∈ H then v(A) = 1.
The proof is by a strange induction: not by subformulas!
By ‘A is simpler than B ’ relation.

A is simpler than ¬A,
for any B ∈ Φ, B is simpler than

⋀︀
Φ,

for any B ∈ Φ, ¬B is simpler than ¬
⋀︀

Φ.
This relation ‘simpler’ is well-founded too, so that we can carry out a
transfinite induction on ‘simpler’.

The remainder of the proof is in the lecture notes.
Q.E.D.
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Completeness

Theorem (Completeness)
(a) ⊢ A ⇐⇒ A is valid.
(b) Γ ⊢ A ⇐⇒ Γ |= A. (here Γ is at most countable)

This theorem (b) cannot be generalized to uncountable sets Γ!
Moreover, no rules with the countable number of premises can make the
calculus complete! We need rules with uncountably many premises!

Recall the set Γ ⊆ Fm such that
– each countable subset of Γ is satisfiable,
– the whole set Γ is not satisfiable.

Then Γ |= ⊥.

However, Γ 0 ⊥. Indeed, otherwise ⊥ has a countable derivation from Γ.
This derivation uses only countable subset Γ′ ⊆ Γ. But we know that
Γ′ |̸= ⊥.
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