ACCL Lecture 4: Infinitary classical propositional logic: Axiomatization and Completeness

Evgeny Zolin

Department of Mathematical Logic and Theory of Algorithms Faculty of Mechanics and Mathematics Moscow State University

> Advanced Course in Classical Logic March 17th, 2021

We will consider the language with countable conjunctions and disjunctions.

We will consider the language with countable conjunctions and disjunctions. We have a countable set of variables: $Var = \{p_0, p_1, \ldots\}$.

We will consider the language with countable conjunctions and disjunctions. We have a countable set of variables: $Var = \{p_0, p_1, \ldots\}$.

Definition

Formulas of the infinitary propositional language: Fm is the smallest set, such that

```
• every p_i \in Var is a formula: p_i \in Fm,
```

We will consider the language with countable conjunctions and disjunctions. We have a countable set of variables: $Var = \{p_0, p_1, \ldots\}$.

Definition

Formulas of the infinitary propositional language: Fm is the smallest set, such that

- every $p_i \in Var$ is a formula: $p_i \in Fm$,
- if $A \in Fm$, then $\neg A \in Fm$,

We will consider the language with countable conjunctions and disjunctions. We have a countable set of variables: $Var = \{p_0, p_1, \ldots\}$.

Definition

Formulas of the infinitary propositional language: Fm is the smallest set, such that

- every $p_i \in Var$ is a formula: $p_i \in Fm$,
- if $A \in Fm$, then $\neg A \in Fm$,

• if $\Phi \subseteq \mathsf{Fm}$ and Φ is at most countable: $|\Phi| \leq \omega$, then $(\bigwedge \Phi) \in \mathsf{Fm}$.

We will consider the language with countable conjunctions and disjunctions. We have a countable set of variables: $Var = \{p_0, p_1, \ldots\}$.

Definition

Formulas of the infinitary propositional language: Fm is the smallest set, such that

- every $p_i \in Var$ is a formula: $p_i \in Fm$,
- if $A \in Fm$, then $\neg A \in Fm$,
- if $\Phi \subseteq \mathsf{Fm}$ and Φ is at most countable: $|\Phi| \leq \omega$, then $(\bigwedge \Phi) \in \mathsf{Fm}$.

Other connectives (\land,\lor,\rightarrow) are introduced as abbreviations; in particular:

 $\bigvee \Phi := \neg \bigwedge \{ \neg A \mid A \in \Phi \}.$

A valuation is a function $v \colon Var \to \{0, 1\}$.

A valuation is a function $v : Var \rightarrow \{0, 1\}$. Denote: $v \models A$ iff v(A) = 1.

A valuation is a function $v : \text{Var} \to \{0, 1\}$. Denote: $v \models A$ iff v(A) = 1. Semantics of all formulas:

$$v \models \neg A \iff v \not\models A$$
,

A valuation is a function $v : Var \rightarrow \{0, 1\}$. Denote: $v \models A$ iff v(A) = 1. Semantics of all formulas:

$$v \models \neg A \iff v \not\models A,$$

 $v \models \bigwedge \Phi \iff v \models A$ for every formula $A \in \Phi$

A valuation is a function $v : Var \rightarrow \{0, 1\}$. Denote: $v \models A$ iff v(A) = 1. Semantics of all formulas:

$$\begin{array}{lll} v \models \neg A & \Longleftrightarrow & v \not\models A, \\ v \models \bigwedge \Phi & \Longleftrightarrow & v \models A \text{ for every formula } A \in \Phi \\ v \models \bigvee \Phi & \Longleftrightarrow & v \models A \text{ for some formula } A \in \Phi. \end{array}$$

Definition

A is a tautology if v(A) = 1 for all valuations v.

A valuation is a function $v : Var \rightarrow \{0, 1\}$. Denote: $v \models A$ iff v(A) = 1. Semantics of all formulas:

$$\begin{array}{lll} v \models \neg A & \Longleftrightarrow & v \not\models A, \\ v \models \bigwedge \Phi & \Longleftrightarrow & v \models A \text{ for every formula } A \in \Phi \\ v \models \bigvee \Phi & \Longleftrightarrow & v \models A \text{ for some formula } A \in \Phi. \end{array}$$

Definition

A is a tautology if v(A) = 1 for all valuations v. A is satisfiable if v(A) = 1 for some valuation v.

A valuation is a function $v : Var \rightarrow \{0, 1\}$. Denote: $v \models A$ iff v(A) = 1. Semantics of all formulas:

$$\begin{array}{lll} v \models \neg A & \Longleftrightarrow & v \not\models A, \\ v \models \bigwedge \Phi & \Longleftrightarrow & v \models A \text{ for every formula } A \in \Phi \\ v \models \bigvee \Phi & \Longleftrightarrow & v \models A \text{ for some formula } A \in \Phi. \end{array}$$

Definition

A is a tautology if v(A) = 1 for all valuations v. A is satisfiable if v(A) = 1 for some valuation v. A set $\Gamma \subseteq Fm$ is satisfiable if $v \models \Gamma$ for some valuation v.

Axioms:

• All tautologies for $\land, \lor, \rightarrow, \neg$

Axioms:

- All tautologies for $\land, \lor, \rightarrow, \neg$
- $\bigwedge \Phi \to A$, for every $A \in \Phi$, where $\Phi \subseteq Fm$ is at most countable

Axioms:

- All tautologies for $\land, \lor, \rightarrow, \neg$
- $\bigwedge \Phi \to A$, for every $A \in \Phi$, where $\Phi \subseteq Fm$ is at most countable

Rules: modus ponens and $(R \wedge)$: $\frac{\{A \to B\}_{B \in \Phi}}{A \to \wedge \Phi}$

Axioms:

- All tautologies for $\land, \lor, \rightarrow, \neg$
- $\bigwedge \Phi \to A$, for every $A \in \Phi$, where $\Phi \subseteq Fm$ is at most countable

Rules: modus ponens and $(R \wedge)$: $\frac{\{A \to B\}_{B \in \Phi}}{A \to \wedge \Phi}$

Definition

A derivation is an at most countable sequence of formulas $(A_{\beta})_{\beta \leq \lambda}$, where λ is some (at most) countable ordinal,

Axioms:

- All tautologies for $\land, \lor, \rightarrow, \neg$
- $\bigwedge \Phi \to A$, for every $A \in \Phi$, where $\Phi \subseteq Fm$ is at most countable

Rules: modus ponens and $(R \wedge)$: $\frac{\{A \to B\}_{B \in \Phi}}{A \to \wedge \Phi}$

Definition

A derivation is an at most countable sequence of formulas $(A_{\beta})_{\beta \leq \lambda}$, where λ is some (at most) countable ordinal, such that each formula either is an axiom or is obtained from the previous formulas by some rule of inference.

Axioms:

- All tautologies for $\land, \lor, \rightarrow, \neg$
- $\bigwedge \Phi \to A$, for every $A \in \Phi$, where $\Phi \subseteq Fm$ is at most countable

Rules: modus ponens and $(R \wedge)$: $\frac{\{A \to B\}_{B \in \Phi}}{A \to \wedge \Phi}$

Definition

A derivation is an at most countable sequence of formulas $(A_\beta)_{\beta \leq \lambda}$, where λ is some (at most) countable ordinal, such that each formula either is an axiom or is obtained from the previous formulas by some rule of inference. The formula A is provable (or derivable): $\vdash A$.

Axioms:

- All tautologies for $\land, \lor, \rightarrow, \neg$
- $\bigwedge \Phi \to A$, for every $A \in \Phi$, where $\Phi \subseteq Fm$ is at most countable

Rules: modus ponens and $(R \wedge)$: $\frac{\{A \to B\}_{B \in \Phi}}{A \to \wedge \Phi}$

Definition

A derivation is an at most countable sequence of formulas $(A_{\beta})_{\beta \leq \lambda}$, where λ is some (at most) countable ordinal, such that each formula either is an axiom or is obtained from the previous formulas by some rule of inference. The formula A is provable (or derivable): $\vdash A$.

A derivation from a set of hypothesis $\Gamma \vdash A$. (here Γ is at most countable)

Proposition. $\Phi \vdash \bigwedge \Phi$. Here Φ is at most countable.

Proposition. $\Phi \vdash \bigwedge \Phi$. Here Φ is at most countable. Fix any tautology *D*, for example, $p \rightarrow p$. Derivation:

• *A*, for every formula $A \in \Phi$.

- *A*, for every formula $A \in \Phi$.
- $A \rightarrow (D \rightarrow A)$ for every formula $A \in \Phi$.

- *A*, for every formula $A \in \Phi$.
- $A \rightarrow (D \rightarrow A)$ for every formula $A \in \Phi$.
- $D \to A$ for every formula $A \in \Phi$.

- *A*, for every formula $A \in \Phi$.
- $A \rightarrow (D \rightarrow A)$ for every formula $A \in \Phi$.
- $D \to A$ for every formula $A \in \Phi$.
- $D \to (\bigwedge \Phi)$ by the rule $(\mathsf{R} \bigwedge)$.

- *A*, for every formula $A \in \Phi$.
- $A \rightarrow (D \rightarrow A)$ for every formula $A \in \Phi$.
- $D \rightarrow A$ for every formula $A \in \Phi$.
- $D \to (\bigwedge \Phi)$ by the rule $(\mathsf{R} \bigwedge)$.
- D

- *A*, for every formula $A \in \Phi$.
- $A \rightarrow (D \rightarrow A)$ for every formula $A \in \Phi$.
- $D \rightarrow A$ for every formula $A \in \Phi$.
- $D \to (\bigwedge \Phi)$ by the rule $(\mathsf{R} \bigwedge)$.
- D
- ∧Φ.

Proposition. $\Phi \vdash \bigwedge \Phi$. Here Φ is at most countable. Fix any tautology *D*, for example, $p \rightarrow p$. Derivation:

- *A*, for every formula $A \in \Phi$.
- $A \rightarrow (D \rightarrow A)$ for every formula $A \in \Phi$.
- $D \rightarrow A$ for every formula $A \in \Phi$.
- $D \to (\bigwedge \Phi)$ by the rule $(\mathsf{R} \bigwedge)$.
- D
- ΛΦ.

If Φ is countable, then the proof is of length $\omega + \omega + \omega + 3$.

Proposition. $\Phi \vdash \bigwedge \Phi$. Here Φ is at most countable. Fix any tautology *D*, for example, $p \rightarrow p$. Derivation:

- *A*, for every formula $A \in \Phi$.
- $A \rightarrow (D \rightarrow A)$ for every formula $A \in \Phi$.
- $D \to A$ for every formula $A \in \Phi$.
- $D \to (\bigwedge \Phi)$ by the rule $(\mathsf{R} \bigwedge)$.

```
• D
```

If Φ is countable, then the proof is of length $\omega + \omega + \omega + 3$.

```
Theorem (Deduction theorem)
```

(1) If $\Gamma, A \vdash B$, then $\Gamma \vdash A \rightarrow B$. (2) If $\Gamma, \Phi \vdash B$, then $\Gamma \vdash (\bigwedge \Phi) \rightarrow B$.

Proposition. $\Phi \vdash \bigwedge \Phi$. Here Φ is at most countable. Fix any tautology *D*, for example, $p \rightarrow p$. Derivation:

- A, for every formula $A \in \Phi$.
- $A \rightarrow (D \rightarrow A)$ for every formula $A \in \Phi$.
- $D \rightarrow A$ for every formula $A \in \Phi$.
- $D \to (\bigwedge \Phi)$ by the rule $(\mathsf{R} \bigwedge)$.

```
• D
```

```
∧Φ.
```

If Φ is countable, then the proof is of length $\omega + \omega + \omega + 3$.

```
Theorem (Deduction theorem)
```

(1) If $\Gamma, A \vdash B$, then $\Gamma \vdash A \rightarrow B$. (2) If $\Gamma, \Phi \vdash B$, then $\Gamma \vdash (\bigwedge \Phi) \rightarrow B$.

Why (2) follows easily from (1)?

Proposition. $\Phi \vdash \bigwedge \Phi$. Here Φ is at most countable. Fix any tautology *D*, for example, $p \rightarrow p$. Derivation:

- *A*, for every formula $A \in \Phi$.
- $A \rightarrow (D \rightarrow A)$ for every formula $A \in \Phi$.
- $D \to A$ for every formula $A \in \Phi$.
- $D \to (\bigwedge \Phi)$ by the rule $(\mathsf{R} \bigwedge)$.

```
• D
```

```
∧Φ.
```

If Φ is countable, then the proof is of length $\omega + \omega + \omega + 3$.

```
Theorem (Deduction theorem)
```

(1) If $\Gamma, A \vdash B$, then $\Gamma \vdash A \rightarrow B$. (2) If $\Gamma, \Phi \vdash B$, then $\Gamma \vdash (\Lambda \Phi) \rightarrow B$.

Why (2) follows easily from (1)? Clearly $\bigwedge \Phi \vdash A$ for every $A \in \Phi$.

Proposition. $\Phi \vdash \bigwedge \Phi$. Here Φ is at most countable. Fix any tautology *D*, for example, $p \rightarrow p$. Derivation:

- A, for every formula $A \in \Phi$.
- $A \rightarrow (D \rightarrow A)$ for every formula $A \in \Phi$.
- $D \to A$ for every formula $A \in \Phi$.
- $D \to (\bigwedge \Phi)$ by the rule $(\mathsf{R} \bigwedge)$.
- D

If Φ is countable, then the proof is of length $\omega + \omega + \omega + 3$.

Theorem (Deduction theorem)

(1) If $\Gamma, A \vdash B$, then $\Gamma \vdash A \rightarrow B$. (2) If $\Gamma, \Phi \vdash B$, then $\Gamma \vdash (\Lambda \Phi) \rightarrow B$.

Why (2) follows easily from (1)? Clearly $\bigwedge \Phi \vdash A$ for every $A \in \Phi$. So if $\Gamma, \Phi \vdash B$, then $\Gamma, (\bigwedge \Phi) \vdash B$.

Proposition. $\Phi \vdash \bigwedge \Phi$. Here Φ is at most countable. Fix any tautology *D*, for example, $p \rightarrow p$. Derivation:

- A, for every formula $A \in \Phi$.
- $A \rightarrow (D \rightarrow A)$ for every formula $A \in \Phi$.
- $D \to A$ for every formula $A \in \Phi$.
- $D \to (\bigwedge \Phi)$ by the rule $(\mathsf{R} \bigwedge)$.
- D

If Φ is countable, then the proof is of length $\omega + \omega + \omega + 3$.

Theorem (Deduction theorem)

(1) If $\Gamma, A \vdash B$, then $\Gamma \vdash A \rightarrow B$. (2) If $\Gamma, \Phi \vdash B$, then $\Gamma \vdash (\Lambda \Phi) \rightarrow B$.

Why (2) follows easily from (1)? Clearly $\land \Phi \vdash A$ for every $A \in \Phi$. So if $\Gamma, \Phi \vdash B$, then $\Gamma, (\land \Phi) \vdash B$. By (1) we have $\Gamma \vdash (\land \Phi) \rightarrow B$.

The "length" of derivations

Why did we define only countable derivations $(A_{\beta})_{\beta \leqslant \lambda}$?
Why did we define only countable derivations $(A_{\beta})_{\beta \leq \lambda}$? Because any provable formula has a proof of a countable length!

Why did we define only countable derivations $(A_{\beta})_{\beta \leq \lambda}$? Because any provable formula has a proof of a countable length! Moreover, if $\Gamma \vdash A$, then there is a countable derivation of A from Γ .

Why did we define only countable derivations $(A_{\beta})_{\beta \leqslant \lambda}$? Because any provable formula has a proof of a countable length! Moreover, if $\Gamma \vdash A$, then there is a countable derivation of A from Γ .

Indeed, for any set $\Gamma\subseteq \mathsf{Fm},$ consider the following transfinite sequence:

 $\Gamma_0 = \Gamma$

Why did we define only countable derivations $(A_{\beta})_{\beta \leqslant \lambda}$? Because any provable formula has a proof of a countable length! Moreover, if $\Gamma \vdash A$, then there is a countable derivation of A from Γ .

Indeed, for any set $\Gamma\subseteq \mathsf{Fm},$ consider the following transfinite sequence:

 $\begin{array}{lll} \Gamma_0 & = & \Gamma \\ \Gamma_{\lambda+1} & = & \Gamma_{\lambda} \cup \mathsf{ApplyRule}(\mathsf{MP}, \Gamma_{\lambda}) \cup \mathsf{ApplyRule}(\mathsf{R} \bigwedge, \Gamma_{\lambda}) \end{array}$

Why did we define only countable derivations $(A_{\beta})_{\beta \leqslant \lambda}$? Because any provable formula has a proof of a countable length! Moreover, if $\Gamma \vdash A$, then there is a countable derivation of A from Γ .

Indeed, for any set $\Gamma\subseteq$ Fm, consider the following transfinite sequence:

$$\begin{array}{lll} \Gamma_{0} & = & \Gamma \\ \Gamma_{\lambda+1} & = & \Gamma_{\lambda} \cup \mathsf{ApplyRule}(\mathsf{MP}, \Gamma_{\lambda}) \cup \mathsf{ApplyRule}(\mathsf{R}\bigwedge, \Gamma_{\lambda}) \\ \Gamma_{\lambda} & = & \bigcup_{\alpha < \lambda} \Gamma_{\alpha} & \text{for a limit ordinal } \lambda \end{array}$$

Why did we define only countable derivations $(A_{\beta})_{\beta \leqslant \lambda}$? Because any provable formula has a proof of a countable length! Moreover, if $\Gamma \vdash A$, then there is a countable derivation of A from Γ .

Indeed, for any set $\Gamma\subseteq$ Fm, consider the following transfinite sequence:

$$\begin{array}{lll} \Gamma_{0} & = & \Gamma \\ \Gamma_{\lambda+1} & = & \Gamma_{\lambda} \cup \mathsf{ApplyRule}(\mathsf{MP}, \Gamma_{\lambda}) \cup \mathsf{ApplyRule}(\mathsf{R}\bigwedge, \Gamma_{\lambda}) \\ \Gamma_{\lambda} & = & \bigcup_{\alpha < \lambda} \Gamma_{\alpha} & \text{for a limit ordinal } \lambda \end{array}$$

where ApplyRule(R, Δ) is the result of applying the inference rule R in all possible ways to the formulas from Δ :

ApplyRule(R, Δ) = { $B \in Fm \mid \exists \vec{A} \subseteq Fm \colon B = R(\vec{A})$ }.

Why did we define only countable derivations $(A_{\beta})_{\beta \leqslant \lambda}$? Because any provable formula has a proof of a countable length! Moreover, if $\Gamma \vdash A$, then there is a countable derivation of A from Γ .

Indeed, for any set $\Gamma\subseteq$ Fm, consider the following transfinite sequence:

$$\begin{array}{lll} \Gamma_{0} & = & \Gamma \\ \Gamma_{\lambda+1} & = & \Gamma_{\lambda} \cup \mathsf{ApplyRule}(\mathsf{MP}, \Gamma_{\lambda}) \cup \mathsf{ApplyRule}(\mathsf{R}\bigwedge, \Gamma_{\lambda}) \\ \Gamma_{\lambda} & = & \bigcup_{\alpha < \lambda} \Gamma_{\alpha} & \text{for a limit ordinal } \lambda \end{array}$$

where ApplyRule(R, Δ) is the result of applying the inference rule R in all possible ways to the formulas from Δ :

ApplyRule(R, Δ) = { $B \in Fm \mid \exists \vec{A} \subseteq Fm : B = R(\vec{A})$ }.

Lemma (Deductive closure of a set of formulas)

For any set Γ , the set Γ_{ω_1} is closed under the rules (MP) and (R \wedge).

Evgeny Zolin, MSU

Let $X \neq \emptyset$ be a set. Let S be a family of functions on X, where each function has finite or countable number of arguments.

Let $X \neq \emptyset$ be a set. Let S be a family of functions on X, where each function has finite or countable number of arguments. Functions may be partial (i.e. undefined for some values of arguments).

Let $X \neq \emptyset$ be a set. Let S be a family of functions on X, where each function has finite or countable number of arguments. Functions may be partial (i.e. undefined for some values of arguments).

• The rule (MP) is a partial function on formulas with 2 arguments.

Let $X \neq \emptyset$ be a set. Let S be a family of functions on X, where each function has finite or countable number of arguments. Functions may be partial (i.e. undefined for some values of arguments).

- The rule (MP) is a partial function on formulas with 2 arguments.
- The rule $(R \wedge)$ is a partial function on formulas with ω arguments.

Let $X \neq \emptyset$ be a set. Let S be a family of functions on X, where each function has finite or countable number of arguments. Functions may be partial (i.e. undefined for some values of arguments).

- The rule (MP) is a partial function on formulas with 2 arguments.
- The rule $(R \land)$ is a partial function on formulas with ω arguments.

For $Y \subseteq X$, we define: $f[Y] = \{f(\vec{a}) \mid \vec{a} \subseteq Y\}$

Let $X \neq \emptyset$ be a set. Let S be a family of functions on X, where each function has finite or countable number of arguments. Functions may be partial (i.e. undefined for some values of arguments).

- The rule (MP) is a partial function on formulas with 2 arguments.
- The rule (R \wedge) is a partial function on formulas with ω arguments.

For $Y \subseteq X$, we define: $f[Y] = \{f(\vec{a}) \mid \vec{a} \subseteq Y\}$ and $\mathcal{S}[Y] = \bigcup_{f \in \mathcal{S}} f[Y]$.

Let $X \neq \emptyset$ be a set. Let S be a family of functions on X, where each function has finite or countable number of arguments. Functions may be partial (i.e. undefined for some values of arguments).

- The rule (MP) is a partial function on formulas with 2 arguments.
- The rule (R \wedge) is a partial function on formulas with ω arguments.

For
$$Y \subseteq X$$
, we define: $f[Y] = \{f(\vec{a}) \mid \vec{a} \subseteq Y\}$ and $S[Y] = \bigcup_{f \in S} f[Y]$.

We define "layers" indexed by ordinals (i.e. by transfinite recursion):

$$X_0 = X$$
, $X_{\lambda+1} = X_\lambda \cup \mathcal{S}[X_\lambda]$,

Let $X \neq \emptyset$ be a set. Let S be a family of functions on X, where each function has finite or countable number of arguments. Functions may be partial (i.e. undefined for some values of arguments).

- The rule (MP) is a partial function on formulas with 2 arguments.
- The rule (R \wedge) is a partial function on formulas with ω arguments.

For
$$Y \subseteq X$$
, we define: $f[Y] = \{f(\vec{a}) \mid \vec{a} \subseteq Y\}$ and $S[Y] = \bigcup_{f \in S} f[Y]$.

We define "layers" indexed by ordinals (i.e. by transfinite recursion):

 $\begin{array}{ll} X_0 = X, & X_{\lambda+1} = X_{\lambda} \cup \mathcal{S}[X_{\lambda}], \\ X_{\lambda} = \bigcup_{\alpha < \lambda} X_{\alpha} \text{ for a limit ordinal } \lambda. \end{array}$

Let $X \neq \emptyset$ be a set. Let S be a family of functions on X, where each function has finite or countable number of arguments. Functions may be partial (i.e. undefined for some values of arguments).

- The rule (MP) is a partial function on formulas with 2 arguments.
- The rule (R \wedge) is a partial function on formulas with ω arguments.

For
$$Y \subseteq X$$
, we define: $f[Y] = \{f(\vec{a}) \mid \vec{a} \subseteq Y\}$ and $S[Y] = \bigcup_{f \in S} f[Y]$.

We define "layers" indexed by ordinals (i.e. by transfinite recursion):

 $\begin{array}{ll} X_0 = X, & X_{\lambda+1} = X_{\lambda} \cup \mathcal{S}[X_{\lambda}], \\ X_{\lambda} = \bigcup_{\alpha < \lambda} X_{\alpha} \text{ for a limit ordinal } \lambda. \end{array}$

Lemma (The closure of X is reached at step ω_1)

For any set X, the set X_{ω_1} is closed under all function from S.

We define "layers" indexed by ordinals (i.e. by transfinite recursion):

 $\begin{aligned} X_0 &= X, \qquad X_{\lambda+1} = X_{\lambda} \cup \mathcal{S}[X_{\lambda}], \\ X_{\lambda} &= \bigcup_{\alpha < \lambda} X_{\alpha} \text{ for a limit ordinal } \lambda. \end{aligned}$

Lemma (The closure of X is reached at step ω_1) For any set X, the set X_{ω_1} is closed under all function from S.

We define "layers" indexed by ordinals (i.e. by transfinite recursion):

 $\begin{aligned} X_0 &= X, \qquad X_{\lambda+1} = X_{\lambda} \cup \mathcal{S}[X_{\lambda}], \\ X_{\lambda} &= \bigcup_{\alpha < \lambda} X_{\alpha} \text{ for a limit ordinal } \lambda. \end{aligned}$

Lemma (The closure of X is reached at step ω_1) For any set X, the set X_{ω_1} is closed under all function from S.

Proof.

Take any $\vec{a} = (a_0, a_1, \ldots)$ from X_{ω_1} .

We define "layers" indexed by ordinals (i.e. by transfinite recursion):

 $\begin{array}{ll} X_0 = X, & X_{\lambda+1} = X_{\lambda} \cup \mathcal{S}[X_{\lambda}], \\ X_{\lambda} = \bigcup_{\alpha < \lambda} X_{\alpha} \text{ for a limit ordinal } \lambda. \end{array}$

Lemma (The closure of X is reached at step ω_1) For any set X, the set X_{ω_1} is closed under all function from S.

Proof.

Take any $\vec{a} = (a_0, a_1, ...)$ from X_{ω_1} . Then, for each $i \in \mathbb{N}$, $a_i \in X_{\lambda_i}$ for some countable ordinal $\lambda_i < \omega_1$.

We define "layers" indexed by ordinals (i.e. by transfinite recursion):

 $\begin{aligned} X_0 &= X, \qquad X_{\lambda+1} = X_{\lambda} \cup \mathcal{S}[X_{\lambda}], \\ X_{\lambda} &= \bigcup_{\alpha < \lambda} X_{\alpha} \text{ for a limit ordinal } \lambda. \end{aligned}$

Lemma (The closure of X is reached at step ω_1) For any set X, the set X_{ω_1} is closed under all function from S.

Proof.

Take any $\vec{a} = (a_0, a_1, ...)$ from X_{ω_1} . Then, for each $i \in \mathbb{N}$, $a_i \in X_{\lambda_i}$ for some countable ordinal $\lambda_i < \omega_1$. Then, for each $i \in \mathbb{N}$, we have $a_i \in X_{\lambda}$, where $\lambda = \sup\{\lambda_i \mid i \in \mathbb{N}\}$.

We define "layers" indexed by ordinals (i.e. by transfinite recursion):

 $\begin{array}{ll} X_0 = X, & X_{\lambda+1} = X_{\lambda} \cup \mathcal{S}[X_{\lambda}], \\ X_{\lambda} = \bigcup_{\alpha < \lambda} X_{\alpha} \text{ for a limit ordinal } \lambda. \end{array}$

Lemma (The closure of X is reached at step ω_1) For any set X, the set X_{ω_1} is closed under all function from S.

Proof.

Take any $\vec{a} = (a_0, a_1, ...)$ from X_{ω_1} . Then, for each $i \in \mathbb{N}$, $a_i \in X_{\lambda_i}$ for some countable ordinal $\lambda_i < \omega_1$. Then, for each $i \in \mathbb{N}$, we have $a_i \in X_{\lambda}$, where $\lambda = \sup\{\lambda_i \mid i \in \mathbb{N}\}$. So, $\vec{a} \subseteq X_{\lambda}$.

We define "layers" indexed by ordinals (i.e. by transfinite recursion):

 $\begin{array}{ll} X_0 = X, & X_{\lambda+1} = X_{\lambda} \cup \mathcal{S}[X_{\lambda}], \\ X_{\lambda} = \bigcup_{\alpha < \lambda} X_{\alpha} \text{ for a limit ordinal } \lambda. \end{array}$

Lemma (The closure of X is reached at step ω_1) For any set X, the set X_{ω_1} is closed under all function from S.

Proof.

Take any $\vec{a} = (a_0, a_1, ...)$ from X_{ω_1} . Then, for each $i \in \mathbb{N}$, $a_i \in X_{\lambda_i}$ for some countable ordinal $\lambda_i < \omega_1$. Then, for each $i \in \mathbb{N}$, we have $a_i \in X_{\lambda}$, where $\lambda = \sup\{\lambda_i \mid i \in \mathbb{N}\}$. So, $\vec{a} \subseteq X_{\lambda}$. Then $f(\vec{a}) \in X_{\lambda+1}$.

We define "layers" indexed by ordinals (i.e. by transfinite recursion):

 $\begin{aligned} X_0 &= X, \qquad X_{\lambda+1} = X_{\lambda} \cup \mathcal{S}[X_{\lambda}], \\ X_{\lambda} &= \bigcup_{\alpha < \lambda} X_{\alpha} \text{ for a limit ordinal } \lambda. \end{aligned}$

Lemma (The closure of X is reached at step ω_1) For any set X, the set X_{ω_1} is closed under all function from S.

Proof.

Take any $\vec{a} = (a_0, a_1, ...)$ from X_{ω_1} . Then, for each $i \in \mathbb{N}$, $a_i \in X_{\lambda_i}$ for some countable ordinal $\lambda_i < \omega_1$. Then, for each $i \in \mathbb{N}$, we have $a_i \in X_{\lambda}$, where $\lambda = \sup\{\lambda_i \mid i \in \mathbb{N}\}$. So, $\vec{a} \subseteq X_{\lambda}$. Then $f(\vec{a}) \in X_{\lambda+1}$. Therefore, $f(\vec{a}) \in X_{\omega_1}$. So X_{ω_1} is closed under f.

Theorem (Completeness)

(a) $\vdash A \iff A \text{ is valid.}$ (b) $\Gamma \vdash A \iff \Gamma \models A$. (here Γ is at most countable)

Theorem (Completeness)

(a) $\vdash A \iff A \text{ is valid.}$ (b) $\Gamma \vdash A \iff \Gamma \models A$. (here Γ is at most countable)

 $(a) \Rightarrow (b)$ by Deduction theorem (2). So we prove only (a).

Theorem (Completeness)

(a) $\vdash A \iff A \text{ is valid.}$ (b) $\Gamma \vdash A \iff \Gamma \models A$. (here Γ is at most countable)

Definition

A set of formulas Γ is called *consistent* if (two equivalent definitions): (1) $\Gamma \nvDash \bot$, (2) $\nvDash \neg(\land \Gamma)$.

Theorem (Completeness)

(a) $\vdash A \iff A \text{ is valid.}$ (b) $\Gamma \vdash A \iff \Gamma \models A$. (here Γ is at most countable)

Definition

A set of formulas Γ is called *consistent* if (two equivalent definitions): (1) $\Gamma \nvDash \bot$, (2) $\nvDash \neg (\land \Gamma)$.

Lemma 1 (Analogue of Lindenbaum lemma).

Any consistent set of formulas Γ is contained in some saturated set H.

Theorem (Completeness)

(a) $\vdash A \iff A \text{ is valid.}$ (b) $\Gamma \vdash A \iff \Gamma \models A$. (here Γ is at most countable)

Definition

A set of formulas Γ is called *consistent* if (two equivalent definitions): (1) $\Gamma \nvDash \bot$, (2) $\nvDash \neg (\land \Gamma)$.

Lemma 1 (Analogue of Lindenbaum lemma).

Any consistent set of formulas Γ is contained in some saturated set H.

Lemma 2 (Model existence theorem).

Any saturated set of formulas H is satisfiable.

Theorem (Completeness)

(a) $\vdash A \iff A \text{ is valid.}$ (b) $\Gamma \vdash A \iff \Gamma \models A$. (here Γ is at most countable)

Proof of theorem. If $\nvdash A$, then the set $\{\neg A\}$ is consistent.

Theorem (Completeness)

(a) $\vdash A \iff A \text{ is valid.}$ (b) $\Gamma \vdash A \iff \Gamma \models A$. (here Γ is at most countable)

Proof of theorem. If $\nvDash A$, then the set $\{\neg A\}$ is consistent. Then it is contained in some saturated set: $\{\neg A\} \subseteq H$. (Lemma 1)

Theorem (Completeness)

(a) $\vdash A \iff A \text{ is valid.}$ (b) $\Gamma \vdash A \iff \Gamma \models A$. (here Γ is at most countable)

Proof of theorem. If $\nvdash A$, then the set $\{\neg A\}$ is consistent.Then it is contained in some saturated set: $\{\neg A\} \subseteq H$.(Lemma 1)Then H is satisfiable.(Lemma 2)

Theorem (Completeness)

Proof of theorem. If $\nvdash A$, then the set $\{\neg A\}$ is consistent.Then it is contained in some saturated set: $\{\neg A\} \subseteq H$.(Lemma 1)Then H is satisfiable.(Lemma 2)Therefore, A is not valid.Q.E.D.

Definition

A set of formulas $H \subseteq Fm$ is called *saturated* (Hintikka set) if we have:

Definition

A set of formulas $H \subseteq Fm$ is called *saturated* (Hintikka set) if we have:

• There is no formula A such that $A, \neg A \in H$.

Definition

A set of formulas $H \subseteq Fm$ is called *saturated* (Hintikka set) if we have:

- There is no formula A such that $A, \neg A \in H$.
- If $\neg \neg A \in H$, then $A \in H$.

Definition

A set of formulas $H \subseteq Fm$ is called *saturated* (Hintikka set) if we have:

- There is no formula A such that $A, \neg A \in H$.
- If $\neg \neg A \in H$, then $A \in H$.
- If $\bigwedge \Phi \in H$, then $A \in H$ for every $A \in \Phi$.
Definition

A set of formulas $H \subseteq Fm$ is called *saturated* (Hintikka set) if we have:

- There is no formula A such that $A, \neg A \in H$.
- If $\neg \neg A \in H$, then $A \in H$.
- If $\bigwedge \Phi \in H$, then $A \in H$ for every $A \in \Phi$.
- If $\neg \land \Phi \in H$, then $\neg A \in H$ for some $A \in \Phi$.

Definition

A set of formulas $H \subseteq Fm$ is called *saturated* (Hintikka set) if we have:

- There is no formula A such that $A, \neg A \in H$.
- If $\neg \neg A \in H$, then $A \in H$.
- If $\bigwedge \Phi \in H$, then $A \in H$ for every $A \in \Phi$.
- If $\neg \land \Phi \in H$, then $\neg A \in H$ for some $A \in \Phi$.

We will saturate a consistent set Γ (at most countable).

Definition

A set of formulas $H \subseteq Fm$ is called *saturated* (Hintikka set) if we have:

- There is no formula A such that $A, \neg A \in H$.
- If $\neg \neg A \in H$, then $A \in H$.
- If $\bigwedge \Phi \in H$, then $A \in H$ for every $A \in \Phi$.
- If $\neg \land \Phi \in H$, then $\neg A \in H$ for some $A \in \Phi$.

We will saturate a consistent set Γ (at most countable). Take Γ (at most countable).

Definition

A set of formulas $H \subseteq Fm$ is called *saturated* (Hintikka set) if we have:

- There is no formula A such that $A, \neg A \in H$.
- If $\neg \neg A \in H$, then $A \in H$.
- If $\bigwedge \Phi \in H$, then $A \in H$ for every $A \in \Phi$.
- If $\neg \land \Phi \in H$, then $\neg A \in H$ for some $A \in \Phi$.

We will saturate a consistent set Γ (at most countable). Take Γ (at most countable). Take all its subformulas Sub(Γ).

Definition

A set of formulas $H \subseteq Fm$ is called *saturated* (Hintikka set) if we have:

- There is no formula A such that $A, \neg A \in H$.
- If $\neg \neg A \in H$, then $A \in H$.
- If $\bigwedge \Phi \in H$, then $A \in H$ for every $A \in \Phi$.
- If $\neg \land \Phi \in H$, then $\neg A \in H$ for some $A \in \Phi$.

We will saturate a consistent set Γ (at most countable). Take Γ (at most countable). Take all its subformulas Sub(Γ). Why Sub(Γ) is again at most countable?

Given a formula A, define the set of all its subformulas Sub(A) by induction:

Given a formula A, define the set of all its subformulas Sub(A) by induction:

 $Sub(p) = \{p\},\$

Given a formula A, define the set of all its subformulas Sub(A) by induction:

 $\operatorname{Sub}(p) = \{p\}, \quad \operatorname{Sub}(\neg A) = \{\neg A\} \cup \operatorname{Sub}(A),$

Given a formula A, define the set of all its subformulas Sub(A) by induction:

 $Sub(p) = \{p\}, \quad Sub(\neg A) = \{\neg A\} \cup Sub(A),$ $Sub(\land \Phi) = \{\land \Phi\} \cup \bigcup Sub(A).$

A∈Φ

Given a formula A, define the set of all its subformulas Sub(A) by induction: $Sub(p) = \{p\}, \quad Sub(\neg A) = \{\neg A\} \cup Sub(A),$ $Sub(\land \Phi) = \{\land \Phi\} \cup \bigcup_{A \in \Phi} Sub(A).$

Proposition. For any formula A, the set Sub(A) is at most countable.

Given a formula A, define the set of all its subformulas Sub(A) by induction: $Sub(p) = \{p\}, \quad Sub(\neg A) = \{\neg A\} \cup Sub(A),$ $Sub(\land \Phi) = \{\land \Phi\} \cup \bigcup_{A \in \Phi} Sub(A).$

Proposition. For any formula A, the set Sub(A) is at most countable.

Proof. By (transfinite) induction on A.

Given a formula A, define the set of all its subformulas Sub(A) by induction: $Sub(p) = \{p\}, \quad Sub(\neg A) = \{\neg A\} \cup Sub(A),$ $Sub(\land \Phi) = \{\land \Phi\} \cup \bigcup_{A \in \Phi} Sub(A).$

Proposition. For any formula A, the set Sub(A) is at most countable.

Proof. By (transfinite) induction on A.

Corollary. If $|\Gamma| \leq \omega$, then $|\operatorname{Sub}(\Gamma)| \leq \omega$.

Lemma 1 (Analogue of Lindenbaum lemma).

Any consistent set of formulas Γ is contained in some saturated set H.

Lemma 1 (Analogue of Lindenbaum lemma).

Any consistent set of formulas Γ is contained in some saturated set H.

Proof. Denote $\Sigma = \mathsf{Sub}(\Gamma) \cup \{\neg A \mid A \in \mathsf{Sub}(\Gamma)\} = \{A_0, A_1, \ldots\}.$

Lemma 1 (Analogue of Lindenbaum lemma).

Any consistent set of formulas Γ is contained in some saturated set H.

Proof. Denote $\Sigma = \operatorname{Sub}(\Gamma) \cup \{\neg A \mid A \in \operatorname{Sub}(\Gamma)\} = \{A_0, A_1, \ldots\}.$ It is a countable set: $\Sigma = \{A_0, A_1, \ldots\}.$

Lemma 1 (Analogue of Lindenbaum lemma).

Any consistent set of formulas Γ is contained in some saturated set H.

Proof. Denote $\Sigma = \text{Sub}(\Gamma) \cup \{\neg A \mid A \in \text{Sub}(\Gamma)\} = \{A_0, A_1, \ldots\}.$ It is a countable set: $\Sigma = \{A_0, A_1, \ldots\}.$ Build $\Gamma = \Gamma_0 \subseteq \Delta_0 \subseteq \Gamma_1 \subseteq \Delta_1 \subseteq \Gamma_2 \subseteq \ldots$ — each at most countable.

Lemma 1 (Analogue of Lindenbaum lemma).

Any consistent set of formulas Γ is contained in some saturated set H.

Proof. Denote $\Sigma = \operatorname{Sub}(\Gamma) \cup \{\neg A \mid A \in \operatorname{Sub}(\Gamma)\} = \{A_0, A_1, \ldots\}.$ It is a countable set: $\Sigma = \{A_0, A_1, \ldots\}.$ Build $\Gamma = \Gamma_0 \subseteq \Delta_0 \subseteq \Gamma_1 \subseteq \Delta_1 \subseteq \Gamma_2 \subseteq \ldots$ — each at most countable. Then put $H = \bigcup_{n \ge 0} \Gamma_n = \bigcup_{n \ge 0} \Delta_n$ — it will be saturated!

Lemma 1 (Analogue of Lindenbaum lemma).

Any consistent set of formulas Γ is contained in some saturated set H.

Proof. Denote $\Sigma = \operatorname{Sub}(\Gamma) \cup \{\neg A \mid A \in \operatorname{Sub}(\Gamma)\} = \{A_0, A_1, \ldots\}.$ It is a countable set: $\Sigma = \{A_0, A_1, \ldots\}.$ Build $\Gamma = \Gamma_0 \subseteq \Delta_0 \subseteq \Gamma_1 \subseteq \Delta_1 \subseteq \Gamma_2 \subseteq \ldots$ — each at most countable. Then put $H = \bigcup_{n \ge 0} \Gamma_n = \bigcup_{n \ge 0} \Delta_n$ — it will be saturated!

Construction:

• Put $\Delta_n := \begin{cases} \Gamma_n \cup \{A_n\}, & \text{if the resulting set is consistent;} \\ \Gamma_n & \text{otherwise.} \end{cases}$

Lemma 1 (Analogue of Lindenbaum lemma).

Any consistent set of formulas Γ is contained in some saturated set H.

Proof. Denote $\Sigma = \operatorname{Sub}(\Gamma) \cup \{\neg A \mid A \in \operatorname{Sub}(\Gamma)\} = \{A_0, A_1, \ldots\}.$ It is a countable set: $\Sigma = \{A_0, A_1, \ldots\}.$ Build $\Gamma = \Gamma_0 \subseteq \Delta_0 \subseteq \Gamma_1 \subseteq \Delta_1 \subseteq \Gamma_2 \subseteq \ldots$ — each at most countable. Then put $H = \bigcup_{n \ge 0} \Gamma_n = \bigcup_{n \ge 0} \Delta_n$ — it will be saturated!

Construction:

• Put $\Delta_n := \begin{cases} \Gamma_n \cup \{A_n\}, & \text{if the resulting set is consistent;} \\ \Gamma_n & \text{otherwise.} \end{cases}$

• If A_n is not of the form $\neg \bigwedge \Phi$, then put $\Gamma_{n+1} := \Delta_n$.

Lemma 1 (Analogue of Lindenbaum lemma).

Any consistent set of formulas Γ is contained in some saturated set H.

Proof. Denote $\Sigma = \operatorname{Sub}(\Gamma) \cup \{\neg A \mid A \in \operatorname{Sub}(\Gamma)\} = \{A_0, A_1, \ldots\}.$ It is a countable set: $\Sigma = \{A_0, A_1, \ldots\}.$ Build $\Gamma = \Gamma_0 \subseteq \Delta_0 \subseteq \Gamma_1 \subseteq \Delta_1 \subseteq \Gamma_2 \subseteq \ldots$ — each at most countable. Then put $H = \bigcup_{n \ge 0} \Gamma_n = \bigcup_{n \ge 0} \Delta_n$ — it will be saturated!

Construction:

• Put $\Delta_n := \begin{cases} \Gamma_n \cup \{A_n\}, & \text{if the resulting set is consistent;} \\ \Gamma_n & \text{otherwise.} \end{cases}$

• If A_n is not of the form $\neg \bigwedge \Phi$, then put $\Gamma_{n+1} := \Delta_n$.

If A_n = ¬∧Φ and A_n ∈ Δ_n, then pick any witness formula B ∈ Φ such that the set Γ_{n+1} := Δ_n ∪ {¬B} is consistent.

Lemma 1 (Analogue of Lindenbaum lemma).

Any consistent set of formulas Γ is contained in some saturated set H.

Proof. Denote $\Sigma = \operatorname{Sub}(\Gamma) \cup \{\neg A \mid A \in \operatorname{Sub}(\Gamma)\} = \{A_0, A_1, \ldots\}.$ It is a countable set: $\Sigma = \{A_0, A_1, \ldots\}.$ Build $\Gamma = \Gamma_0 \subseteq \Delta_0 \subseteq \Gamma_1 \subseteq \Delta_1 \subseteq \Gamma_2 \subseteq \ldots$ — each at most countable. Then put $H = \bigcup_{n \ge 0} \Gamma_n = \bigcup_{n \ge 0} \Delta_n$ — it will be saturated!

Construction:

• Put $\Delta_n := \begin{cases} \Gamma_n \cup \{A_n\}, & \text{if the resulting set is consistent;} \\ \Gamma_n & \text{otherwise.} \end{cases}$

• If A_n is not of the form $\neg \land \Phi$, then put $\Gamma_{n+1} := \Delta_n$.

If A_n = ¬∧Φ and A_n ∈ Δ_n, then pick any witness formula B ∈ Φ such that the set Γ_{n+1} := Δ_n ∪ {¬B} is consistent.
(!) Such a formula B exists by the rule (R∧).

Lemma 2 (Model existence theorem).

Any saturated set H is satisfiable.

Lemma 2 (Model existence theorem).

Any saturated set H is satisfiable.

Proof. Build a valuation v as follows: v(p) = 1 iff $p \in H$.

Lemma 2 (Model existence theorem).

Any saturated set H is satisfiable.

Proof. Build a valuation v as follows: v(p) = 1 iff $p \in H$. We need to prove: $v \models H$.

Lemma 2 (Model existence theorem).

Any saturated set H is satisfiable.

Proof. Build a valuation v as follows: v(p) = 1 iff $p \in H$. We need to prove: $v \models H$. This means: if $A \in H$ then v(A) = 1.

Lemma 2 (Model existence theorem).

Any saturated set H is satisfiable.

Proof. Build a valuation v as follows: v(p) = 1 iff $p \in H$. We need to prove: $v \models H$. This means: if $A \in H$ then v(A) = 1. Only one implication!

Lemma 2 (Model existence theorem).

Any saturated set H is satisfiable.

Proof. Build a valuation v as follows: v(p) = 1 iff $p \in H$. We need to prove: $v \models H$. This means: if $A \in H$ then v(A) = 1. The proof is by a strange induction: not by subformulas! By 'A is simpler than B' relation.

Lemma 2 (Model existence theorem).

Any saturated set H is satisfiable.

Proof. Build a valuation v as follows: v(p) = 1 iff $p \in H$. We need to prove: $v \models H$. This means: if $A \in H$ then v(A) = 1. The proof is by a strange induction: not by subformulas! By 'A is simpler than B' relation.

- A is simpler than $\neg A$,
- for any $B \in \Phi$, B is simpler than $\bigwedge \Phi$,

Lemma 2 (Model existence theorem).

Any saturated set H is satisfiable.

Proof. Build a valuation v as follows: v(p) = 1 iff $p \in H$. We need to prove: $v \models H$. This means: if $A \in H$ then v(A) = 1. The proof is by a strange induction: not by subformulas! By 'A is simpler than B' relation.

- A is simpler than $\neg A$,
- for any $B \in \Phi$, B is simpler than $\bigwedge \Phi$,
- for any $B \in \Phi$, $\neg B$ is simpler than $\neg \land \Phi$.

Lemma 2 (Model existence theorem).

Any saturated set H is satisfiable.

Proof. Build a valuation v as follows: v(p) = 1 iff $p \in H$. We need to prove: $v \models H$. This means: if $A \in H$ then v(A) = 1. The proof is by a strange induction: not by subformulas! By 'A is simpler than B' relation.

- A is simpler than $\neg A$,
- for any $B \in \Phi$, B is simpler than $\bigwedge \Phi$,
- for any $B \in \Phi$, $\neg B$ is simpler than $\neg \land \Phi$.

This relation 'simpler' is well-founded too, so that we can carry out a transfinite induction on 'simpler'.

Lemma 2 (Model existence theorem).

Any saturated set H is satisfiable.

Proof. Build a valuation v as follows: v(p) = 1 iff $p \in H$. We need to prove: $v \models H$. This means: if $A \in H$ then v(A) = 1. The proof is by a strange induction: not by subformulas! By 'A is simpler than B' relation.

- A is simpler than $\neg A$,
- for any $B \in \Phi$, B is simpler than $\bigwedge \Phi$,
- for any $B \in \Phi$, $\neg B$ is simpler than $\neg \land \Phi$.

This relation 'simpler' is well-founded too, so that we can carry out a transfinite induction on 'simpler'.

The remainder of the proof is in the lecture notes. Q.E.D.

Theorem (Completeness)

(a) $\vdash A \iff A \text{ is valid.}$ (b) $\Gamma \vdash A \iff \Gamma \models A$. (here Γ is at most countable)

Theorem (Completeness)

(a) $\vdash A \iff A \text{ is valid.}$ (b) $\Gamma \vdash A \iff \Gamma \models A$. (here Γ is at most countable)

This theorem (b) cannot be generalized to uncountable sets Γ !

Theorem (Completeness)

This theorem (b) cannot be generalized to uncountable sets Γ ! Moreover, no rules with the countable number of premises can make the calculus complete!

Theorem (Completeness)

(a) $\vdash A \iff A \text{ is valid.}$ (b) $\Gamma \vdash A \iff \Gamma \models A$. (here Γ is at most countable)

This theorem (b) cannot be generalized to uncountable sets Γ ! Moreover, no rules with the countable number of premises can make the calculus complete! We need rules with uncountably many premises!

Theorem (Completeness) (a) $\vdash A \iff A$ is valid.

(b) $\Gamma \vdash A \iff \Gamma \models A$. (here Γ is at most countable)

This theorem (b) cannot be generalized to uncountable sets Γ ! Moreover, no rules with the countable number of premises can make the calculus complete! We need rules with uncountably many premises!

Recall the set $\Gamma \subseteq$ Fm such that – each countable subset of Γ is satisfiable.
Theorem (Completeness) (a) $\vdash A \iff A$ is valid.

(b) $\Gamma \vdash A \iff \Gamma \models A$. (here Γ is at most countable)

This theorem (b) cannot be generalized to uncountable sets Γ ! Moreover, no rules with the countable number of premises can make the calculus complete! We need rules with uncountably many premises!

- Recall the set $\Gamma \subseteq Fm$ such that
- each countable subset of Γ is satisfiable,
- the whole set Γ is not satisfiable.

Theorem (Completeness) (a) $\vdash A \iff A \text{ is valid.}$ (b) $\Gamma \vdash A \iff \Gamma \models A$. (here Γ is at most countable)

This theorem (b) cannot be generalized to uncountable sets Γ ! Moreover, no rules with the countable number of premises can make the calculus complete! We need rules with uncountably many premises!

- Recall the set $\Gamma \subseteq Fm$ such that
- each countable subset of Γ is satisfiable,
- the whole set Γ is not satisfiable.

Then $\Gamma \models \bot$.

Theorem (Completeness) (a) $\vdash A \iff A \text{ is valid.}$ (b) $\Gamma \vdash A \iff \Gamma \models A$. (here Γ is at most countable)

This theorem (b) cannot be generalized to uncountable sets Γ ! Moreover, no rules with the countable number of premises can make the calculus complete! We need rules with uncountably many premises!

- Recall the set $\Gamma \subseteq Fm$ such that
- each countable subset of Γ is satisfiable,
- the whole set Γ is not satisfiable.

Then $\Gamma \models \bot$.

However, $\Gamma \nvDash \perp$. Indeed, otherwise \perp has a countable derivation from Γ .

Theorem (Completeness) (a) $\vdash A \iff A \text{ is valid.}$ (b) $\Gamma \vdash A \iff \Gamma \models A$. (here Γ is at most countable)

This theorem (b) cannot be generalized to uncountable sets Γ ! Moreover, no rules with the countable number of premises can make the calculus complete! We need rules with uncountably many premises!

- Recall the set $\Gamma \subseteq Fm$ such that
- each countable subset of Γ is satisfiable,
- the whole set Γ is not satisfiable.

Then $\Gamma \models \bot$.

However, $\Gamma \nvDash \perp$. Indeed, otherwise \perp has a countable derivation from Γ . This derivation uses only countable subset $\Gamma' \subseteq \Gamma$.

Theorem (Completeness) (a) $\vdash A \iff A \text{ is valid.}$ (b) $\Gamma \vdash A \iff \Gamma \models A$. (here Γ is at most countable)

This theorem (b) cannot be generalized to uncountable sets Γ ! Moreover, no rules with the countable number of premises can make the calculus complete! We need rules with uncountably many premises!

- Recall the set $\Gamma \subseteq Fm$ such that
- each countable subset of Γ is satisfiable,
- the whole set Γ is not satisfiable.

Then $\Gamma \models \bot$.

However, $\Gamma \nvDash \bot$. Indeed, otherwise \bot has a countable derivation from Γ . This derivation uses only countable subset $\Gamma' \subseteq \Gamma$. But we know that $\Gamma' \not\models \bot$.