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Warming up

f (x1) —

unary function (одноместная)
f (x1, x2) — binary function (двуместная)
f (x1, x2, x3) — ternary function (трехместная)
f (x1, x2, x3, x4) — quaternary function (четырехместная)
f (x1, x2, x3, x4, x5) — quinary function (пятиместная)
senary, septenary, octenary (or octal), nonary, denary (decimal), . . .

All of them are finitary functions (финитарная, конечноместная)

f (x1, x2, . . .) — infinitary function (инфинитарная, бесконечноместная)
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finite infinite

конечноместный бесконечноместный
finitary infinitary
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Infinitary propositional formulas: syntax

We will consider the language with countable conjunctions and disjunctions.

We have a countable set of variables: Var = {p0, p1, . . .}.

Definition
Formulas of the infinitary propositional language:
the set Fm is the smallest set, such that

every variable pi ∈ Var is a formula: pi ∈ Fm,
if A ∈ Fm, then ¬A ∈ Fm,
if Φ ⊆ Fm and Φ is at most countable: |Φ|6 𝜔, then (

⋀︀
Φ) ∈ Fm.
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Infinitary propositional formulas: semantics

A valuation is a function v : Var → {0, 1}.

It is extended from Var to all formulas Fm inductively:

v(¬A) = 1 − v(A), v(
⋀︀

Φ) =
∏︀
A∈Φ

v(A).

Denote: v |= A iff v(A) = 1. Then the semantics of
⋀︀

is:

v |=
⋀︀

Φ ⇐⇒ v |= A for every formula A ∈ Φ.

v |=
⋁︀

Φ ⇐⇒ v |= A for some formula A ∈ Φ.

Definition
A is a tautology if v(A) = 1 for all valuations v .
A is satisfiable if v(A) = 1 for some valuation v .
A set Γ ⊆ Fm is satisfiable if v |= Γ for some valuation v .
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What about compactness?

Compactness: If every finite subset of Γ is satisfiable, then Γ is satisfiable.

Does this hold for the infinitary logic?
No: Γ := {¬

⋀︀
Var, p0, p1, p2, . . .}

Moreover, ∃ an uncountable Γ, such that:
– every countable subset of Γ is satisfiable,
– moreover, every proper subset Γ′ ( Γ is satisfiable,
– but Γ is not satisfiable.
For every sequence of 0’s and 1’s: 𝜎 = (0, 1, 1, 1, 0, 1, 0, . . .) ∈ {0, 1}𝜔
we build an “elementary conjunction” A𝜎 = p𝜎0

0 ∧ p𝜎1
1 ∧ . . ..

This formula is true only on the “valuation” v = 𝜎, i.e. v(pi ) = 𝜎i for all i .
Take Γ = { ¬A𝜎 | 𝜎 ∈ {0, 1}𝜔}.
For every valuation v = 𝜎 we have v |̸= ¬A𝜎.
So, for every valuation v , we have v |̸= Γ. Thus Γ is unsatisfiable.
But every proper subset of Γ is satisfiable!
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Representing Boolean functions

In the usual finitary logic:
How many functions f (x1, . . . , xn) : {0, 1}n → {0, 1} does there exist?

22n

Theorem
Every finitary Boolean function f (x1, . . . , xn) is represented by some
(finitary) propositional formula A(p1, . . . , pn).

In the infinitary logic:
How many functions f (x0, x1, . . .) : {0, 1}𝜔 → {0, 1} does there exist?
22|N| (hypercontinuum = 2continuum)

How many formulas |Fm| do we have? Only continuum = 2|N|.

So, not every infinitary Boolean function is representable by an infinitary
formula.

Task. Try to build a concrete example of an non-expressible function.
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How many infinitary formulas
We build the set of all formulas Fm “step by step”.

Fm0 = Var

Fm𝜆+1 =

Fm𝜆 =
⋃︀

𝛽<𝜆 Fm𝛽 , if 𝜆 is a limit ordinal.

Ordinals (reminder) — order types of well-ordered sets:

0,1,2,3,. . . , 𝜔, 𝜔 + 1, 𝜔 + 2,. . .
𝜔 + 𝜔 = 𝜔 · 2, 𝜔 + 𝜔 + 1, . . .
𝜔 + 𝜔 + . . . = 𝜔 · 𝜔 = 𝜔2, . . .𝜔3, . . . , 𝜔𝜔, . . . , 𝜔𝜔𝜔

, . . .
A limit ordinal is an ordinal that has no maximal element.

At which ordinal 𝜆 the process of building Fm𝜆 stabilizes?
When Fm𝜆 = Fm?

Answer: at 𝜆 = 𝜔1 (the first uncountable ordinal).
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Cardinality of the set of all infinitary formulas

Theorem
There are continuum many infinitary formulas: |Fm| = c.

Lemma
For every (at most countable) ordinal 𝜆 > 0, we have |Fm𝜆| = c.

Lemma
The number of stages is 𝜔1. That is: Fm = Fm𝜔1 .
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Доказательство.
The cardinality of Fm1 = the cardinality of the set of all subsets of Var
formulas = continuum.
How many formulas does the set Fm𝜆+1 add to Fm𝜆?
Known fact. The set of all countable subsets of a contunuum =
continuum.

If |X | = c, then |{Y ⊆ X : |Y | = 𝜔}| = c
Indeed it is 6c × c × . . . =
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The number of stages

Lemma
The number of stages is 𝜔1. That is: Fm = Fm𝜔1 .

Доказательство.
We need to show that Fm𝜔1 is closed under taking ¬ and countable

⋀︀
.

Negation: If A ∈ Fm𝜔1 , then (since 𝜔1 is a limit ordinal)
A ∈ Fm𝜆 for some countable ordinal 𝜆 < 𝜔1.
Then ¬A ∈ Fm𝜆+1 and so A ∈ Fm𝜔1 .

Countable conjunction: Assume that Φ ⊆ Fm𝜔1 , Φ = {A0,A1, . . .}.
Every Ai is in some F𝜆i

, where 𝜆i is a countable ordinal: 𝜆i < 𝜔1.
Take their supremum (limit): 𝜆 := sup{𝜆i | i > 0}. Then 𝜆 is countable.
So all Ai ∈ Fm𝜆. Then Φ ⊆ Fm𝜆.
Hence (

⋀︀
Φ) ∈ Fm𝜆+1. So (

⋀︀
Φ) ∈ Fm𝜔1 .
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Axioms and rules for the infinitary propositional logic

Axioms:
∙ All tautologies for ∧,∨,→,¬

∙
⋀︀

Φ → A, for every A ∈ Φ, where Φ ⊆ Fm is at most countable

Rules: modus ponens and (R
⋀︀

): {A → B}B∈Φ
A →

⋀︀
Φ

Definition
A derivation is an at most countable sequence of formulas (A𝛽)𝛽6𝜆, where
𝜆 is some (at most) countable ordinal, such that each formula
– either is an axiom,
– or is obtained from the previous formulas by some rule of inference.
The formula A is provable (or derivable): ⊢ A.

A derivation from a set of hypothesis Γ ⊢ A — is defined similarly.
(here Γ is at most countable)
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Proof theory for the infinitary logic

Theorem (Deduction theorem)
If Γ,A ⊢ B then Γ ⊢ A → B .

Proof: see the lecture notes.

Theorem (Completeness)
(a) ⊢ A ⇐⇒ A is valid.
(b) Γ ⊢ A ⇐⇒ Γ |= A. (here Γ is at most countable)
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Home tasks

Task 1: If we allow for taking
⋀︀

Φ for at most continual sets: |Φ|6 c

then every infinitary Boolean function f (x0, x1, . . .) : {0, 1}𝜔 → {0, 1} is
representable by some formula.

How many formulas do we have here?

Task 2: Write an infinitary formula A with very big conjunctions /
disjunctions (continual, hypercontinual) such that

A is a tautology ⇐⇒ we believe in the Continuum Hypothesis.

Task 3: Do the same for the Axiom of Choice.

Task 4: Does interpolation theorem hold for Fm𝜔?

Thank you! Questions?
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