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Solving set equations and inclusions
Does the following always hold? Is it “the law of sets”?

X ∪ Y ∩ (X ∪ Z ) ⊆ Z ∪ (X ∩ (Y ∩ Z ))

“Always” means: for all sets X ,Y ,Z ⊆ W for every choice of W ̸= ∅.
Here X := W ∖ X .

Is it enough to consider only countable sets W ? Only finite sets?
Is this problem algorithmically decidable? Complexity?

The answer is: the problem is decidable!
Even singleton sets W are enough!
Simply replace the symbols ∩,∪, ,⊆ with the connectives ∧,∨,¬,→
and check whether the formula is a tautology.

In our example:

X ∨ ¬(Y ∧ (X ∨ Z )) → Z ∨ (¬X ∧ ¬(Y ∧ Z ))
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Propositional formulas: Syntax
Propositional variables: Var = {p0, p1, . . .} — a countable set.

Definition
Formulas are defined by induction:

the symbols ⊥ and ⊤ are formulas,
every variable pi is a formula,
if A is a formula, then ¬A is a formula,
if A,B are formulas, then (A ∧ B), (A ∨ B), (A → B) are formulas.

This definition can be written concisely:

A,B ::= ⊥ | ⊤ | pi | ¬A | (A ∧ B) | (A ∨ B) | (A → B).

The set of all formulas is denoted by Fm.
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Propositional formulas: Set semantics

Definition
Interpretation: (W , ℐ), where

W ̸= ∅ — a domain,
ℐ : Var → ℘(W ) — interpretation function. So ℐ(pi ) ⊆ W .

We extend the function ℐ from Var to Fm by induction (here X = W ∖ X ):

ℐ(⊥) = ∅
ℐ(⊤) = W

ℐ(¬A) = ℐ(A)
ℐ(A ∧ B) = ℐ(A) ∩ ℐ(B)
ℐ(A ∨ B) = ℐ(A) ∪ ℐ(B)

ℐ(A → B) = ℐ(A) ∪ ℐ(B)

If ℐ(A) = W , we write ℐ |= A and say: the formula A is true under int. ℐ.

ℐ(A) ⊆ ℐ(B) ⇐⇒ ℐ(A) ∪ ℐ(B) = W
⇐⇒ ℐ(A → B) = W ⇐⇒ ℐ |= A → B .
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Valid and satisfiable; consequence relation

Definition
A formula A is set-valid if ℐ |= A for all ℐ.

Notation |=s A.
A formula A is set-satisfiable if ℐ(A) ̸= ∅ for some ℐ.

Fact 1. A is set-valid ⇐⇒ ¬A is not set-satisfiable.
Let Γ ⊆ Fm. We write ℐ |= Γ if ℐ |= B for all formulas B ∈ Γ.

Definition
A set Γ set-implies (or set-entails) a formula A, in symbols: Γ |=s A, if

for every interpretation ℐ such that ℐ |= Γ, we have ℐ |= A.

A set of formulas Γ is set-satisfiable if ∃ℐ ∃e ∈ W : e ∈ ℐ(B) for all B ∈ Γ.

Fact 2. Γ |=s A ⇐⇒ Γ ∪ {¬A} is not set-satisfiable.

(⇐) Assume Γ |̸=s A. Then ∃ℐ: ℐ |= Γ and ℐ |̸= A. So, ℐ(A) ̸= W .
Hence ∃e ∈ W : e ∈ ℐ(¬A). Of course, e ∈ ℐ(B) for all B ∈ Γ. �
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A set of formulas Γ is set-satisfiable if ∃ℐ ∃e ∈ W : e ∈ ℐ(B) for all B ∈ Γ.

Fact 2. Γ |=s A ⇐⇒ Γ ∪ {¬A} is not set-satisfiable.

(⇐) Assume Γ |̸=s A. Then ∃ℐ: ℐ |= Γ and ℐ |̸= A. So, ℐ(A) ̸= W .
Hence ∃e ∈ W : e ∈ ℐ(¬A). Of course, e ∈ ℐ(B) for all B ∈ Γ. �
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Equivalence of 2-valued and set semantics

Theorem (Completeness of CPL for set semantics)
For every formula A ∈ Fm and every set of formulas Γ ⊆ Fm

(1) A is derivable in CPC ⇐⇒ A is valid ⇐⇒ A is set-valid:
⊢ A ⇐⇒ |= A ⇐⇒ |=s A

(2) Γ proves A ⇐⇒ Γ implies A ⇐⇒ Γ set-implies A:
Γ ⊢ A ⇐⇒ Γ |= A ⇐⇒ Γ |=s A

(3) Γ is satisfiable ⇐⇒ Γ is set-satisfiable.

The equivalence of ⊢ and |= is the usual Completeness theorem.

(1) ⇐= (2) for Γ = ∅.

(2) ⇐= (3): Because:

Γ |= A ⇐⇒ Γ ∪ {¬A} is not satisfiable
Γ |=s A ⇐⇒ Γ ∪ {¬A} is not set-satisfiable

So, it remains to prove (3).
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Theorem
For any Γ ⊆ Fm, Γ is satisfiable ⇐⇒ Γ is set-satisfiable.

Proof.
(⇒) Assume that Γ is satisfiable.
So, ∃ a valuation v : Var → {0, 1} such that v(Γ) = 1.

We build a singleton interpretation ({e}, ℐ). For every variable p ∈ Var

e ∈ ℐ(p) � v(p) = 1.

Lemma. The same holds for all formulas: e ∈ ℐ(A) � v(A) = 1.

Proof. By induction on A. (exercise)

Now, for all B ∈ Γ, since v(B) = 1, we obtain e ∈ ℐ(B).
So Γ is set-satisfiable.

Remark: If W = {e}, then ℐ(A) has 2 values: ∅ and W .
So, it behaves like a valuation with 2 values: 0 and 1.
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Boolean algebras
Definition
Boolean algebra: ℬ = (D,∧,∨,−, 0, 1), where D ̸= ∅ is a set, 0, 1 ∈ D,
the operations ∧,∨ : D × D → D and − : D → D satisfy the laws:

a ∧ b = b ∧ a a ∨ b = b ∨ a (commutativity laws)

(a ∧ b) ∧ c = a ∧ (b ∧ c)
(a ∨ b) ∨ c = a ∨ (b ∨ c) (associativity laws)

(a ∧ b) ∨ c = (a ∨ c) ∧ (b ∨ c)
(a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c) (distributivity laws)

a ∧ a = a a ∨ a = a (idempotent laws)

a ∧ (a ∨ b) = a a ∨ (a ∧ b) = a (absorption laws)

a ∧ a = 0 a ∨ a = 1 a = a (complement laws)

a ∧ c = a ∨ c a ∨ c = a ∧ c (de Morgan laws)

a ∧ 0 = 0 a ∧ 1 = a a ∨ 0 = a a ∨ 1 = 1 (zero-one laws)

We can define implication → : D → D by putting a → b := (a ∨ b).
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Boolean algebras: examples

Example (a)

ℬ = (2W ,∩,∪,−,∅,W ) is a Boolean algebra. Here a := X ∖ a.

Example (b)

Assume that S ⊆ 2W is closed under ∪,∩,−. Clearly, ∅,W ∈ S .
Then (S ,∩,∪,−,∅,W ) is a Boolean algebra, it is called a set algebra.

Later in this course we will show that:
any Boolean algebra is isomorphic to an algebra of the form (b),
any finite Boolean algebra is isomorphic to an algebra of the form (a).

Example
S = {X ⊆ N | X is finite or co-finite} is a Boolean algebra. Countable!

Hence it is not isomorphic to any algebra of the form (a).
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Propositional Logic: Algebraic semantics
Let ℬ = (D,∧,∨,−, 0, 1) be a Boolean algebra.

A Boolean interpretation is a function i : Var → D.
We extend i from variables Var to all formulas i : Fm → D by induction:

i(⊥) = 0, i(⊤) = 1, i(¬A) = i(A),
i(A ∧ B) = i(A) ∧ i(B), similarly for ∨ and →.

If i(A) = 1, we write i |= A and say: the formula A is true under i in ℬ.

The Algebraic semantics generalizes
– the 2-valued semantics,
– the set semantics.

Example
If D = {0, 1}, then this semantics = 2-valued semantics v : Var → {0, 1}.

Example

If D = 2W , then this semantics = set semantics ℐ(p) ⊆ W .
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Algebraic semantics: Validity, satisfiability

Definition
A formula A is BA-valid if i(A) = 1 for all ℬ and i .

A formula A is BA-satisfiable if i(A) ̸= 0 for some ℬ and i .

Fact 1. A is BA-valid ⇐⇒ ¬A is not BA-satisfiable.

Let Γ ⊆ Fm. We write i |= Γ if i |= B for all formulas B ∈ Γ.

Definition
A set Γ BA-implies (or BA-entails) a formula A, in symbols: Γ |=a A, if

for every BA-interpretation i such that i |= Γ, we have i |= A.
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Equivalence of 2-valued and algebraic semantics

Theorem (Completeness of CPL for algebraic semantics)
For every formula A ∈ Fm and every set of formulas Γ ⊆ Fm
(1) A is derivable ⇔ A is valid ⇔ A is set-valid ⇔ A is BA-valid:

⊢ A ⇐⇒ |= A ⇐⇒ |=s A ⇐⇒ |=a A

(2) Γ proves A ⇔ Γ implies A ⇔ Γ set-implies A ⇔ Γ BA-implies A:
Γ ⊢ A ⇐⇒ Γ |= A ⇐⇒ Γ |=s A ⇐⇒ Γ |=a A
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Theorem
For every formula A, the following are equivalent:

A is provable in CPC: ⊢ A,
A is valid in Boolean algebras: |=a A.

Proof.
(⇒)

Every axiom of CPC is true in every Boolean algebra.
(MP): if the formulas A and A → B are BA-valid, then B is BA-valid.

(⇐) We will build a special Boolean algebra with a special valuation in
which exactly the set of theorems of CPC is true.

So it will be one counter-model to all non-theorems.

Evgeny Zolin, MSU Classical propositional logic 03.03.2021 14 / 18



Theorem
For every formula A, the following are equivalent:

A is provable in CPC: ⊢ A,
A is valid in Boolean algebras: |=a A.

Proof.
(⇒)

Every axiom of CPC is true in every Boolean algebra.

(MP): if the formulas A and A → B are BA-valid, then B is BA-valid.

(⇐) We will build a special Boolean algebra with a special valuation in
which exactly the set of theorems of CPC is true.

So it will be one counter-model to all non-theorems.

Evgeny Zolin, MSU Classical propositional logic 03.03.2021 14 / 18



Theorem
For every formula A, the following are equivalent:

A is provable in CPC: ⊢ A,
A is valid in Boolean algebras: |=a A.

Proof.
(⇒)

Every axiom of CPC is true in every Boolean algebra.
(MP): if the formulas A and A → B are BA-valid, then B is BA-valid.

(⇐) We will build a special Boolean algebra with a special valuation in
which exactly the set of theorems of CPC is true.

So it will be one counter-model to all non-theorems.

Evgeny Zolin, MSU Classical propositional logic 03.03.2021 14 / 18



Theorem
For every formula A, the following are equivalent:

A is provable in CPC: ⊢ A,
A is valid in Boolean algebras: |=a A.

Proof.
(⇒)

Every axiom of CPC is true in every Boolean algebra.
(MP): if the formulas A and A → B are BA-valid, then B is BA-valid.

(⇐) We will build a special Boolean algebra with a special valuation in
which exactly the set of theorems of CPC is true.

So it will be one counter-model to all non-theorems.

Evgeny Zolin, MSU Classical propositional logic 03.03.2021 14 / 18



Theorem
For every formula A, the following are equivalent:

A is provable in CPC: ⊢ A,
A is valid in Boolean algebras: |=a A.

Proof.
(⇒)

Every axiom of CPC is true in every Boolean algebra.
(MP): if the formulas A and A → B are BA-valid, then B is BA-valid.

(⇐) We will build a special Boolean algebra with a special valuation in
which exactly the set of theorems of CPC is true.

So it will be one counter-model to all non-theorems.

Evgeny Zolin, MSU Classical propositional logic 03.03.2021 14 / 18



Lindenbaum algebra
The set of formulas: Fm.

Relation on formulas: put A ≡ B if ⊢ A ↔ B .
≡ is an equivalence relation on Fm. Moreover, it is a congruence:

if A ≡ A′ and B ≡ B ′, then (A ∧ B) ≡ (A′ ∧ B ′), etc.

The equivalence class of A is denoted by [A] = {B ∈ Fm A ≡ B}.
Quotient set: Fm/≡ = { [A] | A ∈ Fm } the set of all equivalence classes.

Definition
The Lindenbaum algebra for CPC is

ℒCPC =
(︀
Fm/≡,∧,∨,−, 0, 1

)︀
,

where the operations on classes are defined as

[A] ∧ [B] := [A ∧ B] [A] ∨ [B] := [A ∨ B]
−[A] := [¬A] 0 := [⊥] 1 := [⊤]

The canonical interpretation of variables: i(p) := [p].

Evgeny Zolin, MSU Classical propositional logic 03.03.2021 15 / 18



Lindenbaum algebra
The set of formulas: Fm. Relation on formulas: put A ≡ B if ⊢ A ↔ B .

≡ is an equivalence relation on Fm. Moreover, it is a congruence:

if A ≡ A′ and B ≡ B ′, then (A ∧ B) ≡ (A′ ∧ B ′), etc.

The equivalence class of A is denoted by [A] = {B ∈ Fm A ≡ B}.
Quotient set: Fm/≡ = { [A] | A ∈ Fm } the set of all equivalence classes.

Definition
The Lindenbaum algebra for CPC is

ℒCPC =
(︀
Fm/≡,∧,∨,−, 0, 1

)︀
,

where the operations on classes are defined as

[A] ∧ [B] := [A ∧ B] [A] ∨ [B] := [A ∨ B]
−[A] := [¬A] 0 := [⊥] 1 := [⊤]

The canonical interpretation of variables: i(p) := [p].

Evgeny Zolin, MSU Classical propositional logic 03.03.2021 15 / 18



Lindenbaum algebra
The set of formulas: Fm. Relation on formulas: put A ≡ B if ⊢ A ↔ B .
≡ is an equivalence relation on Fm.

Moreover, it is a congruence:

if A ≡ A′ and B ≡ B ′, then (A ∧ B) ≡ (A′ ∧ B ′), etc.

The equivalence class of A is denoted by [A] = {B ∈ Fm A ≡ B}.
Quotient set: Fm/≡ = { [A] | A ∈ Fm } the set of all equivalence classes.

Definition
The Lindenbaum algebra for CPC is

ℒCPC =
(︀
Fm/≡,∧,∨,−, 0, 1

)︀
,

where the operations on classes are defined as

[A] ∧ [B] := [A ∧ B] [A] ∨ [B] := [A ∨ B]
−[A] := [¬A] 0 := [⊥] 1 := [⊤]

The canonical interpretation of variables: i(p) := [p].

Evgeny Zolin, MSU Classical propositional logic 03.03.2021 15 / 18



Lindenbaum algebra
The set of formulas: Fm. Relation on formulas: put A ≡ B if ⊢ A ↔ B .
≡ is an equivalence relation on Fm. Moreover, it is a congruence:

if A ≡ A′ and B ≡ B ′, then (A ∧ B) ≡ (A′ ∧ B ′), etc.

The equivalence class of A is denoted by [A] = {B ∈ Fm A ≡ B}.
Quotient set: Fm/≡ = { [A] | A ∈ Fm } the set of all equivalence classes.

Definition
The Lindenbaum algebra for CPC is

ℒCPC =
(︀
Fm/≡,∧,∨,−, 0, 1

)︀
,

where the operations on classes are defined as

[A] ∧ [B] := [A ∧ B] [A] ∨ [B] := [A ∨ B]
−[A] := [¬A] 0 := [⊥] 1 := [⊤]

The canonical interpretation of variables: i(p) := [p].

Evgeny Zolin, MSU Classical propositional logic 03.03.2021 15 / 18



Lindenbaum algebra
The set of formulas: Fm. Relation on formulas: put A ≡ B if ⊢ A ↔ B .
≡ is an equivalence relation on Fm. Moreover, it is a congruence:

if A ≡ A′ and B ≡ B ′, then (A ∧ B) ≡ (A′ ∧ B ′), etc.

The equivalence class of A is denoted by [A] = {B ∈ Fm A ≡ B}.

Quotient set: Fm/≡ = { [A] | A ∈ Fm } the set of all equivalence classes.

Definition
The Lindenbaum algebra for CPC is

ℒCPC =
(︀
Fm/≡,∧,∨,−, 0, 1

)︀
,

where the operations on classes are defined as

[A] ∧ [B] := [A ∧ B] [A] ∨ [B] := [A ∨ B]
−[A] := [¬A] 0 := [⊥] 1 := [⊤]

The canonical interpretation of variables: i(p) := [p].

Evgeny Zolin, MSU Classical propositional logic 03.03.2021 15 / 18



Lindenbaum algebra
The set of formulas: Fm. Relation on formulas: put A ≡ B if ⊢ A ↔ B .
≡ is an equivalence relation on Fm. Moreover, it is a congruence:

if A ≡ A′ and B ≡ B ′, then (A ∧ B) ≡ (A′ ∧ B ′), etc.

The equivalence class of A is denoted by [A] = {B ∈ Fm A ≡ B}.
Quotient set: Fm/≡ = { [A] | A ∈ Fm } the set of all equivalence classes.

Definition
The Lindenbaum algebra for CPC is

ℒCPC =
(︀
Fm/≡,∧,∨,−, 0, 1

)︀
,

where the operations on classes are defined as

[A] ∧ [B] := [A ∧ B] [A] ∨ [B] := [A ∨ B]
−[A] := [¬A] 0 := [⊥] 1 := [⊤]

The canonical interpretation of variables: i(p) := [p].

Evgeny Zolin, MSU Classical propositional logic 03.03.2021 15 / 18



Lindenbaum algebra
The set of formulas: Fm. Relation on formulas: put A ≡ B if ⊢ A ↔ B .
≡ is an equivalence relation on Fm. Moreover, it is a congruence:

if A ≡ A′ and B ≡ B ′, then (A ∧ B) ≡ (A′ ∧ B ′), etc.

The equivalence class of A is denoted by [A] = {B ∈ Fm A ≡ B}.
Quotient set: Fm/≡ = { [A] | A ∈ Fm } the set of all equivalence classes.

Definition
The Lindenbaum algebra for CPC is

ℒCPC =
(︀
Fm/≡,∧,∨,−, 0, 1

)︀
,

where the operations on classes are defined as

[A] ∧ [B] := [A ∧ B] [A] ∨ [B] := [A ∨ B]
−[A] := [¬A] 0 := [⊥] 1 := [⊤]

The canonical interpretation of variables: i(p) := [p].

Evgeny Zolin, MSU Classical propositional logic 03.03.2021 15 / 18



Lindenbaum algebra
The set of formulas: Fm. Relation on formulas: put A ≡ B if ⊢ A ↔ B .
≡ is an equivalence relation on Fm. Moreover, it is a congruence:

if A ≡ A′ and B ≡ B ′, then (A ∧ B) ≡ (A′ ∧ B ′), etc.

The equivalence class of A is denoted by [A] = {B ∈ Fm A ≡ B}.
Quotient set: Fm/≡ = { [A] | A ∈ Fm } the set of all equivalence classes.

Definition
The Lindenbaum algebra for CPC is

ℒCPC =
(︀
Fm/≡,∧,∨,−, 0, 1

)︀
,

where the operations on classes are defined as

[A] ∧ [B] := [A ∧ B] [A] ∨ [B] := [A ∨ B]
−[A] := [¬A] 0 := [⊥] 1 := [⊤]

The canonical interpretation of variables: i(p) := [p].

Evgeny Zolin, MSU Classical propositional logic 03.03.2021 15 / 18



Lindenbaum algebra
The set of formulas: Fm. Relation on formulas: put A ≡ B if ⊢ A ↔ B .
≡ is an equivalence relation on Fm. Moreover, it is a congruence:

if A ≡ A′ and B ≡ B ′, then (A ∧ B) ≡ (A′ ∧ B ′), etc.

The equivalence class of A is denoted by [A] = {B ∈ Fm A ≡ B}.
Quotient set: Fm/≡ = { [A] | A ∈ Fm } the set of all equivalence classes.

Definition
The Lindenbaum algebra for CPC is

ℒCPC =
(︀
Fm/≡,∧,∨,−, 0, 1

)︀
,

where the operations on classes are defined as

[A] ∧ [B] := [A ∧ B] [A] ∨ [B] := [A ∨ B]
−[A] := [¬A] 0 := [⊥] 1 := [⊤]

The canonical interpretation of variables: i(p) := [p].

Evgeny Zolin, MSU Classical propositional logic 03.03.2021 15 / 18



Definition
The Lindenbaum algebra for CPC is

ℒCPC =
(︀
Fm/≡,∧,∨,−, 0, 1

)︀
,

where the operations on classes are defined as

[A] ∧ [B] := [A ∧ B] [A] ∨ [B] := [A ∨ B]
−[A] := [¬A] 0 := [⊥] 1 := [⊤]

The canonical interpretation of variables: i(p) := [p].

Fact. The same holds for any formula: i(A) = [A].

Now: ⊢ A iff ⊢ A ↔ ⊤ iff A ≡ ⊤ iff [A] = [⊤] = 1 iff i(A) = 1.

=⇒ A formula is true here ⇐⇒ it is a theorem of CPC.

What about Γ ⊢ A ⇐⇒ Γ |=a A ?
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Lindenbaum algebra for Γ

Theorem
For every A ∈ Fm and Γ ⊆ Fm, the following are equivalent:

A is derivable from Γ in CPC: Γ ⊢ A,
A follows from Γ in Boolean algebras: Γ |=a A.

Proof.
Relation on formulas:

put A ≡Γ B if Γ ⊢ A ↔ B .

We obtain the algebra:

ℒΓ
CPC =

(︀
Fm/≡Γ,∧,∨,−, 0, 1

)︀
.

Similarly we prove:

A is true in ℒΓ
CPC under i ⇐⇒ Γ ⊢ A.

This completes the proof of the Completeness Theorem.
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Conclusions

The Classical Propositional Logic axiomatizes not only the laws of
¬,∧,∨,→, but also the laws of set operations ,∩,∪,⊆.

Any Boolean valuation v : Var → {0, 1} can be regarded as a singleton
interpretation ({e}, ℐ).

Conversely, any interpretation (W , ℐ) is a collection of completely
independent Boolean valuations.

The problem of checking inclusions between set expressions is
decidable.

The Classical Propositional Logic is the logic of all Boolean algebras.

The end of lecture 2. Thank you!
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