ACCL Lecture 2: Classical Propositional Logic: Set semantics. Boolean algebras. Algebraic semantics

Evgeny Zolin

Department of Mathematical Logic and Theory of Algorithms
Faculty of Mechanics and Mathematics
Moscow State University

Advanced Course in Classical Logic 03.03.2021

Solving set equations and inclusions

Does the following always hold? Is it "the law of sets'?

$$
X \cup \overline{Y \cap(X \cup Z)} \subseteq Z \cup(\bar{X} \cap \overline{(Y \cap Z)})
$$

Solving set equations and inclusions

Does the following always hold? Is it "the law of sets'?

$$
X \cup \overline{Y \cap(X \cup Z)} \subseteq Z \cup(\bar{X} \cap \overline{(Y \cap Z)})
$$

"Always" means: for all sets $X, Y, Z \subseteq W$ for every choice of $W \neq \varnothing$.

Solving set equations and inclusions

Does the following always hold? Is it "the law of sets"?

$$
X \cup \overline{Y \cap(X \cup Z)} \subseteq Z \cup(\bar{X} \cap \overline{(Y \cap Z)})
$$

"Always" means: for all sets $X, Y, Z \subseteq W$ for every choice of $W \neq \varnothing$. Here $\bar{X}:=W \backslash X$.

Solving set equations and inclusions

Does the following always hold? Is it "the law of sets'?

$$
X \cup \overline{Y \cap(X \cup Z)} \subseteq Z \cup(\bar{X} \cap \overline{(Y \cap Z)})
$$

"Always" means: for all sets $X, Y, Z \subseteq W$ for every choice of $W \neq \varnothing$. Here $\bar{X}:=W \backslash X$.

- Is it enough to consider only countable sets W ? Only finite sets?

Solving set equations and inclusions

Does the following always hold? Is it "the law of sets'?

$$
X \cup \overline{Y \cap(X \cup Z)} \subseteq Z \cup(\bar{X} \cap \overline{(Y \cap Z)})
$$

"Always" means: for all sets $X, Y, Z \subseteq W$ for every choice of $W \neq \varnothing$. Here $\bar{X}:=W \backslash X$.

- Is it enough to consider only countable sets W? Only finite sets?
- Is this problem algorithmically decidable? Complexity?

Solving set equations and inclusions

Does the following always hold? Is it "the law of sets'?

$$
X \cup \overline{Y \cap(X \cup Z)} \subseteq Z \cup(\bar{X} \cap \overline{(Y \cap Z)})
$$

"Always" means: for all sets $X, Y, Z \subseteq W$ for every choice of $W \neq \varnothing$. Here $\bar{X}:=W \backslash X$.

- Is it enough to consider only countable sets W? Only finite sets?
- Is this problem algorithmically decidable? Complexity?

The answer is: the problem is decidable!

Solving set equations and inclusions

Does the following always hold? Is it "the law of sets'?

$$
X \cup \overline{Y \cap(X \cup Z)} \subseteq Z \cup(\bar{X} \cap \overline{(Y \cap Z)})
$$

"Always" means: for all sets $X, Y, Z \subseteq W$ for every choice of $W \neq \varnothing$. Here $\bar{X}:=W \backslash X$.

- Is it enough to consider only countable sets W? Only finite sets?
- Is this problem algorithmically decidable? Complexity?

The answer is: the problem is decidable!
Even singleton sets W are enough!

Solving set equations and inclusions

Does the following always hold? Is it "the law of sets"?

$$
X \cup \overline{Y \cap(X \cup Z)} \subseteq Z \cup(\bar{X} \cap \overline{(Y \cap Z)})
$$

"Always" means: for all sets $X, Y, Z \subseteq W$ for every choice of $W \neq \varnothing$. Here $\bar{X}:=W \backslash X$.

- Is it enough to consider only countable sets W? Only finite sets?
- Is this problem algorithmically decidable? Complexity?

The answer is: the problem is decidable! Even singleton sets W are enough! Simply replace the symbols $\cap, \cup,-, \subseteq$ with the connectives $\wedge, \vee, \neg, \rightarrow$ and check whether the formula is a tautology.

Solving set equations and inclusions

Does the following always hold? Is it "the law of sets'?

$$
X \cup \overline{Y \cap(X \cup Z)} \subseteq Z \cup(\bar{X} \cap \overline{(Y \cap Z)})
$$

"Always" means: for all sets $X, Y, Z \subseteq W$ for every choice of $W \neq \varnothing$. Here $\bar{X}:=W \backslash X$.

- Is it enough to consider only countable sets W? Only finite sets?
- Is this problem algorithmically decidable? Complexity?

The answer is: the problem is decidable!
Even singleton sets W are enough!
Simply replace the symbols $\cap, \cup,-, \subseteq$ with the connectives $\wedge, \vee, \neg, \rightarrow$ and check whether the formula is a tautology.

In our example:

$$
X \vee \neg(Y \wedge(X \vee Z)) \quad \rightarrow \quad Z \vee(\neg X \wedge \neg(Y \wedge Z))
$$

Propositional formulas: Syntax

Propositional variables: $\operatorname{Var}=\left\{p_{0}, p_{1}, \ldots\right\}-$ a countable set.

Propositional formulas: Syntax

Propositional variables: $\operatorname{Var}=\left\{p_{0}, p_{1}, \ldots\right\}-$ a countable set.

Definition

Formulas are defined by induction:

- the symbols \perp and T are formulas,
- every variable p_{i} is a formula,
- if A is a formula, then $\neg A$ is a formula,
- if A, B are formulas, then $(A \wedge B),(A \vee B),(A \rightarrow B)$ are formulas.

Propositional formulas: Syntax

Propositional variables: $\operatorname{Var}=\left\{p_{0}, p_{1}, \ldots\right\}-$ a countable set.

Definition

Formulas are defined by induction:

- the symbols \perp and T are formulas,
- every variable p_{i} is a formula,
- if A is a formula, then $\neg A$ is a formula,
- if A, B are formulas, then $(A \wedge B),(A \vee B),(A \rightarrow B)$ are formulas.

This definition can be written concisely:

$$
A, B::=\perp|\top| p_{i}|\neg A|(A \wedge B)|(A \vee B)|(A \rightarrow B)
$$

Propositional formulas: Syntax

Propositional variables: $\operatorname{Var}=\left\{p_{0}, p_{1}, \ldots\right\}-$ a countable set.

Definition

Formulas are defined by induction:

- the symbols \perp and T are formulas,
- every variable p_{i} is a formula,
- if A is a formula, then $\neg A$ is a formula,
- if A, B are formulas, then $(A \wedge B),(A \vee B),(A \rightarrow B)$ are formulas.

This definition can be written concisely:

$$
A, B::=\perp|\top| p_{i}|\neg A|(A \wedge B)|(A \vee B)|(A \rightarrow B)
$$

The set of all formulas is denoted by Fm.

Propositional formulas: Set semantics

Definition

Interpretation: (W, \mathcal{I}), where

- $W \neq \varnothing$ - a domain,
- $\mathcal{I}: \operatorname{Var} \rightarrow \wp(W)$ - interpretation function. So $\mathcal{I}\left(p_{i}\right) \subseteq W$.

Propositional formulas: Set semantics

Definition

Interpretation: (W, \mathcal{I}), where

- $W \neq \varnothing$ - a domain,
- $\mathcal{I}: \operatorname{Var} \rightarrow \wp(W)$ - interpretation function. So $\mathcal{I}\left(p_{i}\right) \subseteq W$.

We extend the function \mathcal{I} from Var to Fm by induction (here $\bar{X}=W \backslash X$):

$$
\begin{array}{ll}
\mathcal{I}(\perp) & =\varnothing \\
\mathcal{I}(\top) & =W
\end{array}
$$

Propositional formulas: Set semantics

Definition

Interpretation: (W, \mathcal{I}), where

- $W \neq \varnothing$ - a domain,
- $\mathcal{I}: \operatorname{Var} \rightarrow \wp(W)$ - interpretation function. So $\mathcal{I}\left(p_{i}\right) \subseteq W$.

We extend the function \mathcal{I} from Var to Fm by induction (here $\bar{X}=W \backslash X$):

$$
\begin{array}{ll}
\mathcal{I}(\perp) & =\varnothing \\
\mathcal{I}(\top) & =W \\
\mathcal{I}(\neg A) & =\frac{\mathcal{I}(A)}{}
\end{array}
$$

Propositional formulas: Set semantics

Definition

Interpretation: (W, \mathcal{I}), where

- $W \neq \varnothing$ - a domain,
- $\mathcal{I}: \operatorname{Var} \rightarrow \wp(W)$ - interpretation function. So $\mathcal{I}\left(p_{i}\right) \subseteq W$.

We extend the function \mathcal{I} from Var to Fm by induction (here $\bar{X}=W \backslash X$):

$$
\begin{array}{ll}
\mathcal{I}(\perp) & =\varnothing \\
\mathcal{I}(\top) & =W \\
\mathcal{I}(\neg A) & =\overline{\mathcal{I}(A)} \\
\mathcal{I}(A \wedge B) & =\mathcal{I}(A) \cap \mathcal{I}(B)
\end{array}
$$

Propositional formulas: Set semantics

Definition

Interpretation: (W, \mathcal{I}), where

- $W \neq \varnothing$ - a domain,
- $\mathcal{I}: \operatorname{Var} \rightarrow \wp(W)$ - interpretation function. So $\mathcal{I}\left(p_{i}\right) \subseteq W$.

We extend the function \mathcal{I} from Var to Fm by induction (here $\bar{X}=W \backslash X$):

$$
\begin{array}{ll}
\mathcal{I}(\perp) & =\varnothing \\
\mathcal{I}(\top) & =W \\
\mathcal{I}(\neg A) & =\overline{\mathcal{I}(A)} \\
\mathcal{I}(A \wedge B) & =\mathcal{I}(A) \cap \mathcal{I}(B) \\
\mathcal{I}(A \vee B) & =\mathcal{I}(A) \cup \mathcal{I}(B)
\end{array}
$$

Propositional formulas: Set semantics

Definition

Interpretation: (W, \mathcal{I}), where

- $W \neq \varnothing$ - a domain,
- $\mathcal{I}: \operatorname{Var} \rightarrow \wp(W)$ - interpretation function. So $\mathcal{I}\left(p_{i}\right) \subseteq W$.

We extend the function \mathcal{I} from Var to Fm by induction (here $\bar{X}=W \backslash X$):

$$
\begin{array}{ll}
\mathcal{I}(\perp) & =\varnothing \\
\mathcal{I}(\top) & =W \\
\mathcal{I}(\neg A) & =\overline{\mathcal{I}(A)} \\
\mathcal{I}(A \wedge B) & =\mathcal{I}(A) \cap \mathcal{I}(B) \\
\mathcal{I}(A \vee B) & =\mathcal{I}(A) \cup \mathcal{I}(B) \\
\mathcal{I}(A \rightarrow B) & =\overline{\mathcal{I}(A)} \cup \mathcal{I}(B)
\end{array}
$$

Propositional formulas: Set semantics

Definition

Interpretation: (W, \mathcal{I}), where

- $W \neq \varnothing$ - a domain,
- $\mathcal{I}: \operatorname{Var} \rightarrow \wp(W)$ - interpretation function. So $\mathcal{I}\left(p_{i}\right) \subseteq W$.

We extend the function \mathcal{I} from Var to Fm by induction (here $\bar{X}=W \backslash X$):

$$
\begin{array}{ll}
\mathcal{I}(\perp) & =\varnothing \\
\mathcal{I}(\top) & =\bar{W} \\
\mathcal{I}(\neg A) & =\overline{\mathcal{I}(A)} \\
\mathcal{I}(A \wedge B) & =\mathcal{I}(A) \cap \mathcal{I}(B) \\
\mathcal{I}(A \vee B) & =\mathcal{I}(A) \cup \mathcal{I}(B) \\
\mathcal{I}(A \rightarrow B) & =\overline{\mathcal{I}(A)} \cup \mathcal{I}(B)
\end{array}
$$

If $\mathcal{I}(A)=W$, we write $\mathcal{I} \models A$ and say: the formula A is true under int. \mathcal{I}.

Propositional formulas: Set semantics

Definition

Interpretation: (W, \mathcal{I}), where

- $W \neq \varnothing$ - a domain,
- $\mathcal{I}: \operatorname{Var} \rightarrow \wp(W)$ - interpretation function. So $\mathcal{I}\left(p_{i}\right) \subseteq W$.

We extend the function \mathcal{I} from Var to Fm by induction (here $\bar{X}=W \backslash X$):

$$
\begin{array}{ll}
\mathcal{I}(\perp) & =\varnothing \\
\mathcal{I}(\top) & =W \\
\mathcal{I}(\neg A) & =\overline{\mathcal{I}(A)} \\
\mathcal{I}(A \wedge B) & =\mathcal{I}(A) \cap \mathcal{I}(B) \\
\mathcal{I}(A \vee B) & =\mathcal{I}(A) \cup \mathcal{I}(B) \\
\mathcal{I}(A \rightarrow B) & =\overline{\mathcal{I}(A)} \cup \mathcal{I}(B)
\end{array}
$$

If $\mathcal{I}(A)=W$, we write $\mathcal{I} \models A$ and say: the formula A is true under int. \mathcal{I}.

$$
\mathcal{I}(A) \subseteq \mathcal{I}(B) \quad \Longleftrightarrow \overline{\mathcal{I}(A)} \cup \mathcal{I}(B)=W
$$

Propositional formulas: Set semantics

Definition

Interpretation: (W, \mathcal{I}), where

- $W \neq \varnothing$ - a domain,
- $\mathcal{I}: \operatorname{Var} \rightarrow \wp(W)$ - interpretation function. So $\mathcal{I}\left(p_{i}\right) \subseteq W$.

We extend the function \mathcal{I} from Var to Fm by induction (here $\bar{X}=W \backslash X$):

$$
\begin{array}{ll}
\mathcal{I}(\perp) & =\varnothing \\
\mathcal{I}(\top) & =W \\
\mathcal{I}(\neg A) & =\overline{\mathcal{I}(A)} \\
\mathcal{I}(A \wedge B) & =\mathcal{I}(A) \cap \mathcal{I}(B) \\
\mathcal{I}(A \vee B) & =\mathcal{I}(A) \cup \mathcal{I}(B) \\
\mathcal{I}(A \rightarrow B) & =\overline{\mathcal{I}(A)} \cup \mathcal{I}(B)
\end{array}
$$

If $\mathcal{I}(A)=W$, we write $\mathcal{I} \models A$ and say: the formula A is true under int. \mathcal{I}.

$$
\begin{aligned}
\mathcal{I}(A) \subseteq \mathcal{I}(B) & \Longleftrightarrow \overline{\mathcal{I}(A)} \cup \mathcal{I}(B)=W \\
& \Longleftrightarrow \mathcal{I}(A \rightarrow B)=W
\end{aligned}
$$

Propositional formulas: Set semantics

Definition

Interpretation: (W, \mathcal{I}), where

- $W \neq \varnothing$ - a domain,
- $\mathcal{I}: \operatorname{Var} \rightarrow \wp(W)$ - interpretation function. So $\mathcal{I}\left(p_{i}\right) \subseteq W$.

We extend the function \mathcal{I} from Var to Fm by induction (here $\bar{X}=W \backslash X$):

$$
\begin{array}{ll}
\mathcal{I}(\perp) & =\varnothing \\
\mathcal{I}(\top) & =W \\
\mathcal{I}(\neg A) & =\overline{\mathcal{I}(A)} \\
\mathcal{I}(A \wedge B) & =\mathcal{I}(A) \cap \mathcal{I}(B) \\
\mathcal{I}(A \vee B) & =\mathcal{I}(A) \cup \mathcal{I}(B) \\
\mathcal{I}(A \rightarrow B) & =\overline{\mathcal{I}(A)} \cup \mathcal{I}(B)
\end{array}
$$

If $\mathcal{I}(A)=W$, we write $\mathcal{I} \models A$ and say: the formula A is true under int. \mathcal{I}.

$$
\begin{aligned}
\mathcal{I}(A) \subseteq \mathcal{I}(B) & \Longleftrightarrow \overline{\mathcal{I}(A)} \cup \mathcal{I}(B)=W \\
& \Longleftrightarrow \mathcal{I}(A \rightarrow B)=W \quad \Longleftrightarrow \quad \mathcal{I} \models A \rightarrow B
\end{aligned}
$$

Valid and satisfiable; consequence relation

Definition

A formula A is set-valid if $\mathcal{I} \models A$ for all \mathcal{I}.

Valid and satisfiable; consequence relation

Definition

A formula A is set-valid if $\mathcal{I} \models A$ for all \mathcal{I}. Notation $\models{ }_{\mathrm{s}} A$.

Valid and satisfiable; consequence relation

Definition

A formula A is set-valid if $\mathcal{I} \models A$ for all \mathcal{I}. Notation $=_{\mathrm{s}} A$. A formula A is set-satisfiable if $\mathcal{I}(A) \neq \varnothing$ for some \mathcal{I}.

Valid and satisfiable; consequence relation

Definition
 A formula A is set-valid if $\mathcal{I} \models A$ for all \mathcal{I}. Notation $=_{\mathrm{s}} A$.
 A formula A is set-satisfiable if $\mathcal{I}(A) \neq \varnothing$ for some \mathcal{I}.

Fact 1. A is set-valid $\Longleftrightarrow \neg A$ is not set-satisfiable.

Valid and satisfiable; consequence relation

Definition

A formula A is set-valid if $\mathcal{I} \models A$ for all \mathcal{I}. Notation $=_{\mathrm{s}} A$.
A formula A is set-satisfiable if $\mathcal{I}(A) \neq \varnothing$ for some \mathcal{I}.
Fact 1. A is set-valid $\Longleftrightarrow \neg A$ is not set-satisfiable.
Let $\Gamma \subseteq$ Fm. We write $\mathcal{I} \models \Gamma$ if $\mathcal{I} \models B$ for all formulas $B \in \Gamma$.

Valid and satisfiable; consequence relation

Definition

A formula A is set-valid if $\mathcal{I} \models A$ for all \mathcal{I}. Notation $\models{ }_{\mathrm{s}} A$.
A formula A is set-satisfiable if $\mathcal{I}(A) \neq \varnothing$ for some \mathcal{I}.
Fact 1. A is set-valid $\Longleftrightarrow \neg A$ is not set-satisfiable.
Let $\Gamma \subseteq$ Fm. We write $\mathcal{I} \models \Gamma \quad$ if $\mathcal{I} \models B$ for all formulas $B \in \Gamma$.

Definition

A set Γ set-implies (or set-entails) a formula A, in symbols: $\Gamma \models_{\mathrm{s}} A$, if for every interpretation \mathcal{I} such that $\mathcal{I} \models \Gamma$, we have $\mathcal{I} \models A$.

Valid and satisfiable; consequence relation

Definition

A formula A is set-valid if $\mathcal{I} \models A$ for all \mathcal{I}. Notation $\models{ }_{\mathrm{s}} A$.
A formula A is set-satisfiable if $\mathcal{I}(A) \neq \varnothing$ for some \mathcal{I}.
Fact 1. A is set-valid $\Longleftrightarrow \neg A$ is not set-satisfiable.
Let $\Gamma \subseteq$ Fm. We write $\mathcal{I} \models \Gamma \quad$ if $\mathcal{I} \models B$ for all formulas $B \in \Gamma$.

Definition

A set Γ set-implies (or set-entails) a formula A, in symbols: $\Gamma \models_{\mathrm{s}} A$, if for every interpretation \mathcal{I} such that $\mathcal{I} \models \Gamma$, we have $\mathcal{I} \models A$.

A set of formulas Γ is set-satisfiable if $\exists \mathcal{I} \exists e \in W: e \in \mathcal{I}(B)$ for all $B \in \Gamma$.

Valid and satisfiable; consequence relation

Definition

A formula A is set-valid if $\mathcal{I} \models A$ for all \mathcal{I}. Notation $\models_{\mathrm{s}} A$.
A formula A is set-satisfiable if $\mathcal{I}(A) \neq \varnothing$ for some \mathcal{I}.
Fact 1. A is set-valid $\Longleftrightarrow \neg A$ is not set-satisfiable.
Let $\Gamma \subseteq$ Fm. We write $\mathcal{I} \models \Gamma \quad$ if $\mathcal{I} \models B$ for all formulas $B \in \Gamma$.

Definition

A set Γ set-implies (or set-entails) a formula A, in symbols: $\Gamma ~ \models_{\mathrm{s}} A$, if for every interpretation \mathcal{I} such that $\mathcal{I} \models \Gamma$, we have $\mathcal{I} \models A$.

A set of formulas Γ is set-satisfiable if $\exists \mathcal{I} \exists e \in W: e \in \mathcal{I}(B)$ for all $B \in \Gamma$.
Fact 2. $\Gamma \models_{\mathrm{s}} A \Longleftrightarrow \Gamma \cup\{\neg A\}$ is not set-satisfiable.

Valid and satisfiable; consequence relation

Definition

A formula A is set-valid if $\mathcal{I} \models A$ for all \mathcal{I}. Notation $\models{ }_{\mathrm{s}} A$.
A formula A is set-satisfiable if $\mathcal{I}(A) \neq \varnothing$ for some \mathcal{I}.
Fact 1. A is set-valid $\Longleftrightarrow \neg A$ is not set-satisfiable.
Let $\Gamma \subseteq$ Fm. We write $\mathcal{I} \models \Gamma \quad$ if $\mathcal{I} \models B$ for all formulas $B \in \Gamma$.

Definition

A set Γ set-implies (or set-entails) a formula A, in symbols: $\Gamma ~ \models_{\mathrm{s}} A$, if for every interpretation \mathcal{I} such that $\mathcal{I} \models \Gamma$, we have $\mathcal{I} \models A$.

A set of formulas Γ is set-satisfiable if $\exists \mathcal{I} \exists e \in W: e \in \mathcal{I}(B)$ for all $B \in \Gamma$.
Fact 2. $\Gamma \models_{\mathrm{s}} A \Longleftrightarrow \Gamma \cup\{\neg A\}$ is not set-satisfiable.
(\Leftarrow) Assume $\Gamma \not \neq \mathrm{s} A$.

Valid and satisfiable; consequence relation

Definition

A formula A is set-valid if $\mathcal{I} \models A$ for all \mathcal{I}. Notation $\models{ }_{\mathrm{s}} A$.
A formula A is set-satisfiable if $\mathcal{I}(A) \neq \varnothing$ for some \mathcal{I}.
Fact 1. A is set-valid $\Longleftrightarrow \neg A$ is not set-satisfiable.
Let $\Gamma \subseteq$ Fm. We write $\mathcal{I} \models \Gamma \quad$ if $\mathcal{I} \models B$ for all formulas $B \in \Gamma$.

Definition

A set Γ set-implies (or set-entails) a formula A, in symbols: $\Gamma ~ \models_{\mathrm{s}} A$, if for every interpretation \mathcal{I} such that $\mathcal{I} \models \Gamma$, we have $\mathcal{I} \models A$.

A set of formulas Γ is set-satisfiable if $\exists \mathcal{I} \exists e \in W: e \in \mathcal{I}(B)$ for all $B \in \Gamma$.
Fact 2. $\Gamma \models_{\mathrm{s}} A \Longleftrightarrow \Gamma \cup\{\neg A\}$ is not set-satisfiable.
(\Leftarrow) Assume $\Gamma \not \neq \mathrm{s} A$. Then $\exists \mathcal{I}: \mathcal{I} \models \Gamma$ and $\mathcal{I} \not \not \neq A$.

Valid and satisfiable; consequence relation

Definition

A formula A is set-valid if $\mathcal{I} \models A$ for all \mathcal{I}. Notation $\models{ }_{\mathrm{s}} A$.
A formula A is set-satisfiable if $\mathcal{I}(A) \neq \varnothing$ for some \mathcal{I}.
Fact 1. A is set-valid $\Longleftrightarrow \neg A$ is not set-satisfiable.
Let $\Gamma \subseteq$ Fm. We write $\mathcal{I} \models \Gamma \quad$ if $\mathcal{I} \models B$ for all formulas $B \in \Gamma$.

Definition

A set Γ set-implies (or set-entails) a formula A, in symbols: $\Gamma ~ \models_{\mathrm{s}} A$, if for every interpretation \mathcal{I} such that $\mathcal{I} \models \Gamma$, we have $\mathcal{I} \models A$.

A set of formulas Γ is set-satisfiable if $\exists \mathcal{I} \exists e \in W: e \in \mathcal{I}(B)$ for all $B \in \Gamma$.
Fact 2. $\Gamma \models_{\mathrm{s}} A \Longleftrightarrow \Gamma \cup\{\neg A\}$ is not set-satisfiable.
(\Leftarrow) Assume $\Gamma \not \neq \mathrm{s} A$. Then $\exists \mathcal{I}: \mathcal{I} \models \Gamma$ and $\mathcal{I} \not \neq A$. So, $\mathcal{I}(A) \neq W$.

Valid and satisfiable; consequence relation

Definition

A formula A is set-valid if $\mathcal{I} \models A$ for all \mathcal{I}. Notation $\models{ }_{\mathrm{s}} A$.
A formula A is set-satisfiable if $\mathcal{I}(A) \neq \varnothing$ for some \mathcal{I}.
Fact 1. A is set-valid $\Longleftrightarrow \neg A$ is not set-satisfiable.
Let $\Gamma \subseteq$ Fm. We write $\mathcal{I} \models \Gamma \quad$ if $\mathcal{I} \models B$ for all formulas $B \in \Gamma$.

Definition

A set Γ set-implies (or set-entails) a formula A, in symbols: $\Gamma ~ \models_{\mathrm{s}} A$, if for every interpretation \mathcal{I} such that $\mathcal{I} \models \Gamma$, we have $\mathcal{I} \models A$.

A set of formulas Γ is set-satisfiable if $\exists \mathcal{I} \exists e \in W: e \in \mathcal{I}(B)$ for all $B \in \Gamma$.
Fact 2. $\Gamma \models_{\mathrm{s}} A \Longleftrightarrow \Gamma \cup\{\neg A\}$ is not set-satisfiable.
(\Leftarrow) Assume $\Gamma \not \neq \mathrm{s} A$. Then $\exists \mathcal{I}: \mathcal{I} \models \Gamma$ and $\mathcal{I} \not \neq A$. So, $\mathcal{I}(A) \neq W$. Hence $\exists e \in W: e \in \mathcal{I}(\neg A)$.

Valid and satisfiable; consequence relation

Definition

A formula A is set-valid if $\mathcal{I} \models A$ for all \mathcal{I}. Notation $\models{ }_{\mathrm{s}} A$.
A formula A is set-satisfiable if $\mathcal{I}(A) \neq \varnothing$ for some \mathcal{I}.
Fact 1. A is set-valid $\Longleftrightarrow \neg A$ is not set-satisfiable.
Let $\Gamma \subseteq$ Fm. We write $\mathcal{I} \models \Gamma \quad$ if $\mathcal{I} \models B$ for all formulas $B \in \Gamma$.

Definition

A set Γ set-implies (or set-entails) a formula A, in symbols: $\Gamma ~ \models_{\mathrm{s}} A$, if for every interpretation \mathcal{I} such that $\mathcal{I} \models \Gamma$, we have $\mathcal{I} \models A$.

A set of formulas Γ is set-satisfiable if $\exists \mathcal{I} \exists e \in W: e \in \mathcal{I}(B)$ for all $B \in \Gamma$.
Fact 2. $\Gamma \models_{\mathrm{s}} A \Longleftrightarrow \Gamma \cup\{\neg A\}$ is not set-satisfiable.
(\Leftarrow) Assume $\Gamma \not \neq \mathrm{s} A$. Then $\exists \mathcal{I}: \mathcal{I} \models \Gamma$ and $\mathcal{I} \not \neq A$. So, $\mathcal{I}(A) \neq W$. Hence $\exists e \in W: e \in \mathcal{I}(\neg A)$. Of course, $e \in \mathcal{I}(B)$ for all $B \in \Gamma$.

Equivalence of 2-valued and set semantics

Theorem (Completeness of CPL for set semantics)
For every formula $A \in \mathrm{Fm}$ and every set of formulas $\Gamma \subseteq \mathrm{Fm}$

Equivalence of 2-valued and set semantics

Theorem (Completeness of CPL for set semantics)
For every formula $A \in \mathrm{Fm}$ and every set of formulas $\Gamma \subseteq \mathrm{Fm}$
(1) A is derivable in $C P C \Longleftrightarrow A$ is valid $\Longleftrightarrow A$ is set-valid: $\vdash A \quad \Longleftrightarrow \quad \vDash A \quad \Longleftrightarrow \quad \models_{\mathrm{s}} A$

Equivalence of 2－valued and set semantics

Theorem（Completeness of CPL for set semantics）
For every formula $A \in \mathrm{Fm}$ and every set of formulas $\Gamma \subseteq \mathrm{Fm}$
（1）A is derivable in $C P C \Longleftrightarrow A$ is valid $\Longleftrightarrow A$ is set－valid： $\vdash A \quad \Longleftrightarrow \quad \vDash A \quad \models_{\mathrm{s}} A$
（2）「 proves $A \Longleftrightarrow$ 「 implies $A \Longleftrightarrow$ 「 set－implies A ：

$$
\Gamma \vdash A \quad \Longleftrightarrow \quad \Gamma \models A \quad \Longleftrightarrow \quad \Gamma \models_{\mathrm{s}} A
$$

Equivalence of 2－valued and set semantics

Theorem（Completeness of CPL for set semantics）
For every formula $A \in \mathrm{Fm}$ and every set of formulas $\Gamma \subseteq \mathrm{Fm}$
（1）A is derivable in $C P C \Longleftrightarrow A$ is valid $\Longleftrightarrow A$ is set－valid：

$$
\vdash A \quad \Longleftrightarrow \quad \vDash A \quad \Longleftrightarrow \quad \models_{\mathrm{s}} A
$$

（2）「 proves $A \Longleftrightarrow$ 「 implies $A \Longleftrightarrow$ 「 set－implies A ：
$\Gamma \vdash A$

$\Gamma \models A$
\Longleftrightarrow
$\Gamma \models{ }_{\mathrm{s}} A$
（3）Γ is satisfiable
\Longleftrightarrow Γ is set－satisfiable．

Equivalence of 2－valued and set semantics

Theorem（Completeness of CPL for set semantics）
For every formula $A \in \mathrm{Fm}$ and every set of formulas $\Gamma \subseteq \mathrm{Fm}$
（1）A is derivable in $C P C \Longleftrightarrow A$ is valid $\Longleftrightarrow A$ is set－valid：

$$
\vdash A \quad \Longleftrightarrow \quad \vDash A \quad \Longleftrightarrow \quad \models_{\mathrm{s}} A
$$

（2）「 proves $A \Longleftrightarrow$ 「 implies $A \Longleftrightarrow$ 「 set－implies A ：
$\Gamma \vdash A$

$\Gamma \models A$
\Longleftrightarrow
$\Gamma \not \models_{\mathrm{s}} A$
（3）Γ is satisfiable

Γ is set－satisfiable．
The equivalence of \vdash and \models is the usual Completeness theorem．

Equivalence of 2－valued and set semantics

Theorem（Completeness of CPL for set semantics）
For every formula $A \in \mathrm{Fm}$ and every set of formulas $\Gamma \subseteq \mathrm{Fm}$
（1）A is derivable in $C P C \Longleftrightarrow A$ is valid $\Longleftrightarrow A$ is set－valid：

$$
\vdash A \quad \Longleftrightarrow \quad \vDash A \quad \Longleftrightarrow \quad \models_{\mathrm{s}} A
$$

（2）「 proves $A \Longleftrightarrow$ 「 implies $A \Longleftrightarrow$ 「 set－implies A ：
$\Gamma \vdash A$

$\Gamma \models A$
\Longleftrightarrow
$\Gamma \not \models_{\mathrm{s}} A$
（3）Γ is satisfiable

Γ is set－satisfiable．
The equivalence of \vdash and \models is the usual Completeness theorem．
$(1) \Longleftarrow(2)$ for $\Gamma=\varnothing$ ．

Equivalence of 2-valued and set semantics

Theorem (Completeness of CPL for set semantics)

For every formula $A \in \mathrm{Fm}$ and every set of formulas $\Gamma \subseteq \mathrm{Fm}$
(1) A is derivable in CPC $\Longleftrightarrow A$ is valid $\Longleftrightarrow A$ is set-valid:

$$
\vdash A \quad \Longleftrightarrow \quad \vDash A \quad \Longleftrightarrow \quad \models_{\mathrm{s}} A
$$

(2) Г proves $A \Longleftrightarrow$ 「 implies $A \Longleftrightarrow$ 「 set-implies A :
$\Gamma \vdash A$

$\Gamma \models A$
\Longleftrightarrow
$\Gamma \not \models_{\mathrm{s}} A$
(3) Γ is satisfiable
\Longleftrightarrow
Γ is set-satisfiable.
The equivalence of \vdash and \models is the usual Completeness theorem.
$(1) \Longleftarrow(2)$ for $\Gamma=\varnothing$.
$(2) \Longleftarrow(3):$ Because:

$$
\begin{array}{ll}
\Gamma \models A & \Longleftrightarrow \Gamma \cup\{\neg A\} \text { is not satisfiable } \\
\Gamma \models_{\mathrm{s}} A & \Longleftrightarrow \Gamma \cup\{\neg A\} \text { is not set-satisfiable }
\end{array}
$$

Equivalence of 2-valued and set semantics

Theorem (Completeness of CPL for set semantics)

For every formula $A \in \mathrm{Fm}$ and every set of formulas $\Gamma \subseteq \mathrm{Fm}$
(1) A is derivable in CPC $\Longleftrightarrow A$ is valid $\Longleftrightarrow A$ is set-valid:

$$
\vdash A \quad \Longleftrightarrow \quad \vDash A \quad \Longleftrightarrow \quad \models_{\mathrm{s}} A
$$

(2) Г proves $A \Longleftrightarrow$ 「 implies $A \Longleftrightarrow$ 「 set-implies A :
$\Gamma \vdash A$

$\Gamma \models A$
\Longleftrightarrow
$\Gamma \not \models_{\mathrm{s}} A$
(3) Γ is satisfiable
\Longleftrightarrow
Γ is set-satisfiable.
The equivalence of \vdash and \models is the usual Completeness theorem.
$(1) \Longleftarrow(2)$ for $\Gamma=\varnothing$.
$(2) \Longleftarrow(3)$: Because:

$$
\begin{array}{ll}
\Gamma \models A & \Longleftrightarrow \Gamma \cup\{\neg A\} \text { is not satisfiable } \\
\Gamma \models_{s} A & \Longleftrightarrow \Gamma \cup\{\neg A\} \text { is not set-satisfiable }
\end{array}
$$

So, it remains to prove (3).

Proof.

(\Rightarrow) Assume that Γ is satisfiable.

Theorem
For any $\Gamma \subseteq \mathrm{Fm}, \quad$ 「 is satisfiable $\quad \Longleftrightarrow \quad$ 「 is set-satisfiable.

Proof.

(\Rightarrow) Assume that Γ is satisfiable.
So, \exists a valuation $v: \operatorname{Var} \rightarrow\{0,1\}$ such that $v(\Gamma)=1$.

Theorem
For any $\Gamma \subseteq$ Fm, 「 is satisfiable $\quad \Longleftrightarrow \quad$ 「 is set-satisfiable.

Proof.

(\Rightarrow) Assume that Γ is satisfiable.
So, \exists a valuation $v: \operatorname{Var} \rightarrow\{0,1\}$ such that $v(\Gamma)=1$.
We build a singleton interpretation $(\{e\}, \mathcal{I})$.

Theorem
For any $\Gamma \subseteq \mathrm{Fm}, \quad$ 「 is satisfiable $\quad \Longleftrightarrow \quad$ 「 is set-satisfiable.

Proof.

(\Rightarrow) Assume that Γ is satisfiable.
So, \exists a valuation $v: \operatorname{Var} \rightarrow\{0,1\}$ such that $v(\Gamma)=1$.
We build a singleton interpretation $(\{e\}, \mathcal{I})$. For every variable $p \in \operatorname{Var}$

$$
e \in \mathcal{I}(p) \leftrightharpoons \quad v(p)=1 .
$$

Theorem
For any $\Gamma \subseteq \mathrm{Fm}, \quad$ 「 is satisfiable $\quad \Longleftrightarrow \quad$ 「 is set-satisfiable.

Proof.

(\Rightarrow) Assume that Γ is satisfiable.
So, \exists a valuation $v: \operatorname{Var} \rightarrow\{0,1\}$ such that $v(\Gamma)=1$.
We build a singleton interpretation $(\{e\}, \mathcal{I})$. For every variable $p \in \operatorname{Var}$

$$
e \in \mathcal{I}(p) \leftrightharpoons v(p)=1 .
$$

Lemma. The same holds for all formulas: $e \in \mathcal{I}(A) \leftrightharpoons v(A)=1$.

Theorem
For any $\Gamma \subseteq$ Fm, \quad is satisfiable $\quad \Longleftrightarrow \quad$ 「 is set-satisfiable.

Proof.

(\Rightarrow) Assume that Γ is satisfiable.
So, \exists a valuation $v: \operatorname{Var} \rightarrow\{0,1\}$ such that $v(\Gamma)=1$.
We build a singleton interpretation $(\{e\}, \mathcal{I})$. For every variable $p \in \operatorname{Var}$

$$
e \in \mathcal{I}(p) \leftrightharpoons v(p)=1 .
$$

Lemma. The same holds for all formulas: $e \in \mathcal{I}(A) \leftrightharpoons v(A)=1$.

Proof. By induction on A. (exercise)

Theorem
For any $\Gamma \subseteq$ Fm, \quad is satisfiable $\quad \Longleftrightarrow \quad$ 「 is set-satisfiable.

Proof.

(\Rightarrow) Assume that Γ is satisfiable.
So, \exists a valuation $v: \operatorname{Var} \rightarrow\{0,1\}$ such that $v(\Gamma)=1$.
We build a singleton interpretation $(\{e\}, \mathcal{I})$. For every variable $p \in \operatorname{Var}$

$$
e \in \mathcal{I}(p) \leftrightharpoons v(p)=1 .
$$

Lemma. The same holds for all formulas: $e \in \mathcal{I}(A) \leftrightharpoons v(A)=1$.

Proof. By induction on A. (exercise)
Now, for all $B \in \Gamma$, since $v(B)=1$, we obtain $e \in \mathcal{I}(B)$.

Theorem
For any $\Gamma \subseteq$ Fm, \quad is satisfiable $\quad \Longleftrightarrow \quad$ 「 is set-satisfiable.

Proof.

(\Rightarrow) Assume that Γ is satisfiable.
So, \exists a valuation $v: \operatorname{Var} \rightarrow\{0,1\}$ such that $v(\Gamma)=1$.
We build a singleton interpretation $(\{e\}, \mathcal{I})$. For every variable $p \in \operatorname{Var}$

$$
e \in \mathcal{I}(p) \leftrightharpoons v(p)=1 .
$$

Lemma. The same holds for all formulas: $e \in \mathcal{I}(A) \leftrightharpoons v(A)=1$.

Proof. By induction on A. (exercise)
Now, for all $B \in \Gamma$, since $v(B)=1$, we obtain $e \in \mathcal{I}(B)$.
So Γ is set-satisfiable.

Theorem
For any $\Gamma \subseteq$ Fm, \quad is satisfiable $\quad \Longleftrightarrow \quad$ 「 is set-satisfiable.

Proof.

(\Rightarrow) Assume that Γ is satisfiable.
So, \exists a valuation $v: \operatorname{Var} \rightarrow\{0,1\}$ such that $v(\Gamma)=1$.
We build a singleton interpretation $(\{e\}, \mathcal{I})$. For every variable $p \in \operatorname{Var}$

$$
e \in \mathcal{I}(p) \leftrightharpoons v(p)=1 .
$$

Lemma. The same holds for all formulas: $e \in \mathcal{I}(A) \leftrightharpoons v(A)=1$.

Proof. By induction on A. (exercise)
Now, for all $B \in \Gamma$, since $v(B)=1$, we obtain $e \in \mathcal{I}(B)$.
So Γ is set-satisfiable.
Remark: If $W=\{e\}$, then $\mathcal{I}(A)$ has 2 values: \varnothing and W.
So, it behaves like a valuation with 2 values: 0 and 1 .

For any $\Gamma \subseteq \mathrm{Fm}, \quad \Gamma$ is satisfiable $\quad \Longleftrightarrow \quad \Gamma$ is set-satisfiable.

Proof.

(\Leftarrow) Assume that Γ is set-satisfiable.

Proof.

(\Leftarrow) Assume that Γ is set-satisfiable. So, \exists an interpretation (W, \mathcal{I}) and an element $e \in W$ such that $e \in \mathcal{I}(B)$ for all formulas $B \in \Gamma$.

Proof.

(\Leftarrow) Assume that Γ is set-satisfiable. So, \exists an interpretation (W, \mathcal{I}) and an element $e \in W$ such that $e \in \mathcal{I}(B)$ for all formulas $B \in \Gamma$.

We build a valuation $v: \operatorname{Var} \rightarrow\{0,1\}$.

Theorem

For any $\Gamma \subseteq \mathrm{Fm}, \quad$ 「 is satisfiable $\Longleftrightarrow \quad$ 「 is set-satisfiable.

Proof.

(\Leftarrow) Assume that Γ is set-satisfiable. So, \exists an interpretation (W, \mathcal{I}) and an element $e \in W$ such that $e \in \mathcal{I}(B)$ for all formulas $B \in \Gamma$.

We build a valuation $v: \operatorname{Var} \rightarrow\{0,1\}$. For every variable $p \in \operatorname{Var}$:

$$
v(p)=1 \quad \leftrightharpoons \quad e \in \mathcal{I}(p)
$$

Theorem

For any $\Gamma \subseteq \mathrm{Fm}, \quad$ 「 is satisfiable $\Longleftrightarrow \quad$ 「 is set-satisfiable.

Proof.

(\Leftarrow) Assume that Γ is set-satisfiable. So, \exists an interpretation (W, \mathcal{I}) and an element $e \in W$ such that $e \in \mathcal{I}(B)$ for all formulas $B \in \Gamma$.

We build a valuation $v: \operatorname{Var} \rightarrow\{0,1\}$. For every variable $p \in \operatorname{Var}$:

$$
v(p)=1 \quad \leftrightharpoons \quad e \in \mathcal{I}(p)
$$

Lemma. The same holds for all formulas: $\quad v(A)=1 \leftrightharpoons e \in \mathcal{I}(A)$.

Theorem

For any $\Gamma \subseteq \mathrm{Fm}, \quad$ 「 is satisfiable $\Longleftrightarrow \quad$ 「 is set-satisfiable.

Proof.

(\Leftarrow) Assume that Γ is set-satisfiable. So, \exists an interpretation (W, \mathcal{I}) and an element $e \in W$ such that $e \in \mathcal{I}(B)$ for all formulas $B \in \Gamma$.

We build a valuation $v: \operatorname{Var} \rightarrow\{0,1\}$. For every variable $p \in \operatorname{Var}$:

$$
v(p)=1 \quad \leftrightharpoons \quad e \in \mathcal{I}(p)
$$

Lemma. The same holds for all formulas: $\quad v(A)=1 \leftrightharpoons e \in \mathcal{I}(A)$.

Proof. By induction on A. (exercise)

Theorem

For any $\Gamma \subseteq \mathrm{Fm}, \quad$ 「 is satisfiable $\Longleftrightarrow \quad$ 「 is set-satisfiable.

Proof.

(\Leftarrow) Assume that Γ is set-satisfiable. So, \exists an interpretation (W, \mathcal{I}) and an element $e \in W$ such that $e \in \mathcal{I}(B)$ for all formulas $B \in \Gamma$.

We build a valuation $v: \operatorname{Var} \rightarrow\{0,1\}$. For every variable $p \in \operatorname{Var}:$

$$
v(p)=1 \quad \leftrightharpoons \quad e \in \mathcal{I}(p)
$$

Lemma. The same holds for all formulas: $\quad v(A)=1 \leftrightharpoons e \in \mathcal{I}(A)$.

Proof. By induction on A. (exercise)
Now, for all $B \in \Gamma$, we have $e \in \mathcal{I}(B)$. Hence $v(B)=1$.

Theorem

For any $\Gamma \subseteq \mathrm{Fm}, \quad$ 「 is satisfiable $\quad \Longleftrightarrow \quad$ 「 is set-satisfiable.

Proof.

(\Leftarrow) Assume that Γ is set-satisfiable. So, \exists an interpretation (W, \mathcal{I}) and an element $e \in W$ such that $e \in \mathcal{I}(B)$ for all formulas $B \in \Gamma$.

We build a valuation $v: \operatorname{Var} \rightarrow\{0,1\}$. For every variable $p \in \operatorname{Var}:$

$$
v(p)=1 \quad \leftrightharpoons \quad e \in \mathcal{I}(p)
$$

Lemma. The same holds for all formulas: $\quad v(A)=1 \leftrightharpoons e \in \mathcal{I}(A)$.

Proof. By induction on A. (exercise)
Now, for all $B \in \Gamma$, we have $e \in \mathcal{I}(B)$. Hence $v(B)=1$.
Thus $v(\Gamma)=1$ and so Γ is satisfiable.

Theorem

For any $\Gamma \subseteq \mathrm{Fm}, \quad$ 「 is satisfiable $\quad \Longleftrightarrow \quad$ 「 is set-satisfiable.

Proof.

(\Leftarrow) Assume that Γ is set-satisfiable. So, \exists an interpretation (W, \mathcal{I}) and an element $e \in W$ such that $e \in \mathcal{I}(B)$ for all formulas $B \in \Gamma$.

We build a valuation $v: \operatorname{Var} \rightarrow\{0,1\}$. For every variable $p \in \operatorname{Var}:$

$$
v(p)=1 \quad \leftrightharpoons \quad e \in \mathcal{I}(p)
$$

Lemma. The same holds for all formulas: $\quad v(A)=1 \leftrightharpoons e \in \mathcal{I}(A)$.

Proof. By induction on A. (exercise)
Now, for all $B \in \Gamma$, we have $e \in \mathcal{I}(B)$. Hence $v(B)=1$.
Thus $v(\Gamma)=1$ and so Γ is satisfiable.
Conclusion: The Classical Propositional Logic axiomatizes not only the laws of $\neg, \wedge, \vee, \rightarrow$, but also the laws of set operations ${ }^{-}, \cap, \cup, \subseteq$.

Boolean algebras

Definition

Boolean algebra: $\mathcal{B}=(D, \wedge, \vee,-, 0,1)$, where $D \neq \varnothing$ is a set, $0,1 \in D$, the operations $\wedge, \vee: D \times D \rightarrow D$ and $-: D \rightarrow D$ satisfy the laws:

Boolean algebras

Definition

Boolean algebra: $\mathcal{B}=(D, \wedge, \vee,-, 0,1)$, where $D \neq \varnothing$ is a set, $0,1 \in D$, the operations $\wedge, \vee: D \times D \rightarrow D$ and $-: D \rightarrow D$ satisfy the laws:
$a \wedge b=b \wedge a \quad a \vee b=b \vee a$
(commutativity laws)

Boolean algebras

Definition

Boolean algebra: $\mathcal{B}=(D, \wedge, \vee,-, 0,1)$, where $D \neq \varnothing$ is a set, $0,1 \in D$, the operations $\wedge, \vee: D \times D \rightarrow D$ and $-: D \rightarrow D$ satisfy the laws:
$a \wedge b=b \wedge a \quad a \vee b$
$(a \wedge b) \wedge c=a \wedge(b \wedge c)$
$(a \vee b) \vee c=a \vee(b \vee c)$
(commutativity laws)
(associativity laws)

Boolean algebras

Definition

Boolean algebra: $\mathcal{B}=(D, \wedge, \vee,-, 0,1)$, where $D \neq \varnothing$ is a set, $0,1 \in D$, the operations $\wedge, \vee: D \times D \rightarrow D$ and $-: D \rightarrow D$ satisfy the laws:

$a \wedge b=b \wedge a \quad a \vee b=b \vee a$	(commutativity laws)
$(a \wedge b) \wedge c=a \wedge(b \wedge c)$	
$(a \vee b) \vee c=a \vee(b \vee c)$	(associativity laws)
$(a \wedge b) \vee c=(a \vee c) \wedge(b \vee c)$	(distributivity laws)
$(a \vee b) \wedge c=(a \wedge c) \vee(b \wedge c)$	

Boolean algebras

Definition

Boolean algebra: $\mathcal{B}=(D, \wedge, \vee,-, 0,1)$, where $D \neq \varnothing$ is a set, $0,1 \in D$, the operations $\wedge, \vee: D \times D \rightarrow D$ and $-: D \rightarrow D$ satisfy the laws:

$a \wedge b=b \wedge a \quad a \vee b=b \vee a$	(commutativity laws)
$(a \wedge b) \wedge c=a \wedge(b \wedge c)$	
$(a \vee b) \vee c=a \vee(b \vee c)$	(associativity laws)
$(a \wedge b) \vee c=(a \vee c) \wedge(b \vee c)$	
$(a \vee b) \wedge c=(a \wedge c) \vee(b \wedge c)$	(distributivity laws)
$a \wedge a=a \quad a \vee a=a$	(idempotent laws)

Boolean algebras

Definition

Boolean algebra: $\mathcal{B}=(D, \wedge, \vee,-, 0,1)$, where $D \neq \varnothing$ is a set, $0,1 \in D$, the operations $\wedge, \vee: D \times D \rightarrow D$ and $-: D \rightarrow D$ satisfy the laws:

$a \wedge b=b \wedge a \quad a \vee b=b \vee a$	(commutativity laws)
$(a \wedge b) \wedge c=a \wedge(b \wedge c)$	(associativity laws)
$(a \vee b) \vee c=a \vee(b \vee c)$	(distributivity laws)
$(a \wedge b) \vee c=(a \vee c) \wedge(b \vee c)$	(idempotent laws)
$(a \vee b) \wedge c=(a \wedge c) \vee(b \wedge c)$	(absorption laws)

Boolean algebras

Definition

Boolean algebra: $\mathcal{B}=(D, \wedge, \vee,-, 0,1)$, where $D \neq \varnothing$ is a set, $0,1 \in D$, the operations $\wedge, \vee: D \times D \rightarrow D$ and $-: D \rightarrow D$ satisfy the laws:

$a \wedge b=b \wedge a \quad a \vee b=b \vee a$	(commutativity laws)
$(a \wedge b) \wedge c=a \wedge(b \wedge c)$	(associativity laws)
$(a \vee b) \vee c=a \vee(b \vee c)$	(distributivity laws)
$(a \wedge b) \vee c=(a \vee c) \wedge(b \vee c)$	(idempotent laws)
$(a \vee b) \wedge c=(a \wedge c) \vee(b \wedge c)$	(absorption laws)
$a \wedge a=a \quad a \vee a=a$	(complement laws)

Boolean algebras

Definition

Boolean algebra: $\mathcal{B}=(D, \wedge, \vee,-, 0,1)$, where $D \neq \varnothing$ is a set, $0,1 \in D$, the operations $\wedge, \vee: D \times D \rightarrow D$ and $-: D \rightarrow D$ satisfy the laws:

$a \wedge b=b \wedge a \quad a \vee b=b \vee a$	(commutativity laws)
$(a \wedge b) \wedge c=a \wedge(b \wedge c)$	(associativity laws)
$(a \vee b) \vee c=a \vee(b \vee c)$	(distributivity laws)
$(a \wedge b) \vee c=(a \vee c) \wedge(b \vee c)$	(idempotent laws)
$(a \vee b) \wedge c=(a \wedge c) \vee(b \wedge c)$	(absorption laws)
$a \wedge a=a \quad a \vee a=a$	(complement laws)
$a \wedge(a \vee b)=a \quad a \vee(a \wedge b)=a$	(de Morgan laws)
$a \wedge \bar{a}=0 \quad a \vee \bar{a}=1 \quad \overline{\bar{a}}=a$	
$\overline{a \wedge c}=\bar{a} \vee \bar{a} \quad \bar{a} \vee c=\bar{a} \wedge \bar{c}$	

Boolean algebras

Definition

Boolean algebra: $\mathcal{B}=(D, \wedge, \vee,-, 0,1)$, where $D \neq \varnothing$ is a set, $0,1 \in D$, the operations $\wedge, \vee: D \times D \rightarrow D$ and $-: D \rightarrow D$ satisfy the laws:

$a \wedge b=b \wedge a \quad a \vee b=b \vee a$	(commutativity laws)
$(a \wedge b) \wedge c=a \wedge(b \wedge c)$	(associativity laws)
$(a \vee b) \vee c=a \vee(b \vee c)$	(distributivity laws)
$(a \wedge b) \vee c=(a \vee c) \wedge(b \vee c)$	(idempotent laws)
$(a \vee b) \wedge c=(a \wedge c) \vee(b \wedge c)$	(absorption laws)
$a \wedge a=a \quad a \vee a=a$	(complement laws)
$a \wedge(a \vee b)=a \quad a \vee(a \wedge b)=a$	(de Morgan laws)
$a \wedge \bar{a}=0 \quad a \vee \bar{a}=1 \quad \overline{\bar{a}}=a$	(zero-one laws)
$\overline{a \wedge c}=\bar{a} \vee \bar{c} \quad \overline{a \vee c}=\bar{a} \wedge \bar{c}$	
$a \wedge 0=0 \quad a \wedge 1=a \quad a \vee 0=a \quad a \vee 1=1$	

Boolean algebras

Definition

Boolean algebra: $\mathcal{B}=(D, \wedge, \vee,-, 0,1)$, where $D \neq \varnothing$ is a set, $0,1 \in D$, the operations $\wedge, \vee: D \times D \rightarrow D$ and $-: D \rightarrow D$ satisfy the laws:

$a \wedge b=b \wedge a \quad a \vee b=b \vee a$	(commutativity laws)
$(a \wedge b) \wedge c=a \wedge(b \wedge c)$	(associativity laws)
$(a \vee b) \vee c=a \vee(b \vee c)$	(distributivity laws)
$(a \wedge b) \vee c=(a \vee c) \wedge(b \vee c)$	(idempotent laws)
$(a \vee b) \wedge c=(a \wedge c) \vee(b \wedge c)$	(absorption laws)
$a \wedge a=a \quad a \vee a=a$	(complement laws)
$a \wedge(a \vee b)=a \quad a \vee(a \wedge b)=a$	(de Morgan laws)
$a \wedge \bar{a}=0 \quad a \vee \bar{a}=1 \quad \bar{a}=a$	(zero-one laws)

We can define implication $\rightarrow: D \rightarrow D$ by putting $a \rightarrow b:=(\bar{a} \vee b)$.

Boolean algebras: examples

Example (a)

$\mathcal{B}=\left(2^{W}, \cap, \cup,-, \varnothing, W\right)$ is a Boolean algebra. Here $\overline{\mathrm{a}}:=X \backslash$ a.

Boolean algebras: examples

Example (a)
$\mathcal{B}=\left(2^{W}, \cap, \cup,-, \varnothing, W\right)$ is a Boolean algebra. Here $\bar{a}:=X \backslash a$.

Example (b)

Assume that $S \subseteq 2^{W}$ is closed under $\cup, \cap,-$. Clearly, $\varnothing, W \in S$.

Boolean algebras: examples

Example (a)

$\mathcal{B}=\left(2^{W}, \cap, \cup,-, \varnothing, W\right)$ is a Boolean algebra. Here $\bar{a}:=X \backslash$ a.

Example (b)

Assume that $S \subseteq 2^{W}$ is closed under $\cup, \cap,-$. Clearly, $\varnothing, W \in S$. Then $(S, \cap, \cup,-, \varnothing, W)$ is a Boolean algebra, it is called a set algebra.

Boolean algebras: examples

Example (a)

$\mathcal{B}=\left(2^{W}, \cap, \cup,-, \varnothing, W\right)$ is a Boolean algebra. Here $\bar{a}:=X \backslash$ a.

Example (b)

Assume that $S \subseteq 2^{W}$ is closed under $\cup, \cap,-$. Clearly, $\varnothing, W \in S$. Then $(S, \cap, \cup,-, \varnothing, W)$ is a Boolean algebra, it is called a set algebra.

Later in this course we will show that:

- any Boolean algebra is isomorphic to an algebra of the form (b),

Boolean algebras: examples

Example (a)

$\mathcal{B}=\left(2^{W}, \cap, \cup,-, \varnothing, W\right)$ is a Boolean algebra. Here $\bar{a}:=X \backslash$ a.

Example (b)

Assume that $S \subseteq 2^{W}$ is closed under $\cup, \cap,-$. Clearly, $\varnothing, W \in S$. Then $(S, \cap, \cup,-, \varnothing, W)$ is a Boolean algebra, it is called a set algebra.

Later in this course we will show that:

- any Boolean algebra is isomorphic to an algebra of the form (b),
- any finite Boolean algebra is isomorphic to an algebra of the form (a).

Boolean algebras: examples

$$
\begin{aligned}
& \text { Example }(\mathrm{a}) \\
& \mathcal{B}=\left(2^{W}, \cap, \cup,-, \varnothing, W\right) \text { is a Boolean algebra. Here } \overline{\mathrm{a}}:=X \backslash a .
\end{aligned}
$$

Example (b)

Assume that $S \subseteq 2^{W}$ is closed under $\cup, \cap,-$. Clearly, $\varnothing, W \in S$. Then $(S, \cap, \cup,-, \varnothing, W)$ is a Boolean algebra, it is called a set algebra.

Later in this course we will show that:

- any Boolean algebra is isomorphic to an algebra of the form (b),
- any finite Boolean algebra is isomorphic to an algebra of the form (a).

Example

$S=\{X \subseteq \mathbb{N} \mid X$ is finite or co-finite $\}$ is a Boolean algebra.

Boolean algebras: examples

$$
\begin{aligned}
& \text { Example }(\mathrm{a}) \\
& \mathcal{B}=\left(2^{W}, \cap, \cup,-, \varnothing, W\right) \text { is a Boolean algebra. Here } \overline{\mathrm{a}}:=X \backslash a .
\end{aligned}
$$

Example (b)

Assume that $S \subseteq 2^{W}$ is closed under $\cup, \cap,-$. Clearly, $\varnothing, W \in S$. Then $(S, \cap, \cup,-, \varnothing, W)$ is a Boolean algebra, it is called a set algebra.

Later in this course we will show that:

- any Boolean algebra is isomorphic to an algebra of the form (b),
- any finite Boolean algebra is isomorphic to an algebra of the form (a).

Example

$S=\{X \subseteq \mathbb{N} \mid X$ is finite or co-finite $\}$ is a Boolean algebra. Countable!

Boolean algebras: examples

$$
\begin{aligned}
& \text { Example }(\mathrm{a}) \\
& \mathcal{B}=\left(2^{W}, \cap, \cup,-, \varnothing, W\right) \text { is a Boolean algebra. Here } \overline{\mathrm{a}}:=X \backslash a .
\end{aligned}
$$

Example (b)

Assume that $S \subseteq 2^{W}$ is closed under $\cup, \cap,-$. Clearly, $\varnothing, W \in S$. Then $(S, \cap, \cup,-, \varnothing, W)$ is a Boolean algebra, it is called a set algebra.

Later in this course we will show that:

- any Boolean algebra is isomorphic to an algebra of the form (b),
- any finite Boolean algebra is isomorphic to an algebra of the form (a).

Example

$S=\{X \subseteq \mathbb{N} \mid X$ is finite or co-finite $\}$ is a Boolean algebra. Countable! Hence it is not isomorphic to any algebra of the form (a).

Propositional Logic: Algebraic semantics

Let $\mathcal{B}=(D, \wedge, \vee,-, 0,1)$ be a Boolean algebra.

Propositional Logic: Algebraic semantics

Let $\mathcal{B}=(D, \wedge, \vee,-, 0,1)$ be a Boolean algebra.
A Boolean interpretation is a function $i: \mathrm{Var} \rightarrow D$.

Propositional Logic: Algebraic semantics

Let $\mathcal{B}=(D, \wedge, \vee,-, 0,1)$ be a Boolean algebra.
A Boolean interpretation is a function $i: \operatorname{Var} \rightarrow D$.
We extend i from variables Var to all formulas $i: \mathrm{Fm} \rightarrow D$ by induction:

$$
\begin{gathered}
i(\perp)=0, \quad i(\top)=1, \quad i(\neg A)=\overline{i(A)}, \\
i(A \wedge B)=i(A) \wedge i(B), \quad \text { similarly for } \vee \text { and } \rightarrow .
\end{gathered}
$$

Propositional Logic: Algebraic semantics

Let $\mathcal{B}=(D, \wedge, \vee,-, 0,1)$ be a Boolean algebra.
A Boolean interpretation is a function $i: \operatorname{Var} \rightarrow D$.
We extend i from variables Var to all formulas $i: \mathrm{Fm} \rightarrow D$ by induction:

$$
\begin{gathered}
i(\perp)=0, \quad i(\top)=1, \quad i(\neg A)=\overline{i(A)}, \\
i(A \wedge B)=i(A) \wedge i(B), \quad \text { similarly for } \vee \text { and } \rightarrow .
\end{gathered}
$$

If $i(A)=1$, we write $i \models A$ and say: the formula A is true under i in \mathcal{B}.

Propositional Logic: Algebraic semantics

Let $\mathcal{B}=(D, \wedge, \vee,-, 0,1)$ be a Boolean algebra.
A Boolean interpretation is a function $i: \operatorname{Var} \rightarrow D$.
We extend i from variables Var to all formulas $i: \mathrm{Fm} \rightarrow D$ by induction:

$$
\begin{gathered}
i(\perp)=0, \quad i(\top)=1, \quad i(\neg A)=\overline{i(A)}, \\
i(A \wedge B)=i(A) \wedge i(B), \quad \text { similarly for } \vee \text { and } \rightarrow .
\end{gathered}
$$

If $i(A)=1$, we write $i \models A$ and say: the formula A is true under i in \mathcal{B}.
The Algebraic semantics generalizes

- the 2 -valued semantics,
- the set semantics.

Propositional Logic: Algebraic semantics

Let $\mathcal{B}=(D, \wedge, \vee,-, 0,1)$ be a Boolean algebra.
A Boolean interpretation is a function $i: \operatorname{Var} \rightarrow D$.
We extend i from variables Var to all formulas $i: \mathrm{Fm} \rightarrow D$ by induction:

$$
\begin{gathered}
i(\perp)=0, \quad i(\top)=1, \quad i(\neg A)=\overline{i(A)}, \\
i(A \wedge B)=i(A) \wedge i(B), \quad \text { similarly for } \vee \text { and } \rightarrow .
\end{gathered}
$$

If $i(A)=1$, we write $i \models A$ and say: the formula A is true under i in \mathcal{B}.
The Algebraic semantics generalizes

- the 2 -valued semantics,
- the set semantics.

> Example
> If $D=\{0,1\}$, then this semantics $=2$-valued semantics $v: \operatorname{Var} \rightarrow\{0,1\}$.

Propositional Logic: Algebraic semantics

Let $\mathcal{B}=(D, \wedge, \vee,-, 0,1)$ be a Boolean algebra.
A Boolean interpretation is a function $i: \mathrm{Var} \rightarrow D$.
We extend i from variables Var to all formulas $i: \mathrm{Fm} \rightarrow D$ by induction:

$$
\begin{gathered}
i(\perp)=0, \quad i(\top)=1, \quad i(\neg A)=\overline{i(A)}, \\
i(A \wedge B)=i(A) \wedge i(B), \quad \text { similarly for } \vee \text { and } \rightarrow .
\end{gathered}
$$

If $i(A)=1$, we write $i \models A$ and say: the formula A is true under i in \mathcal{B}.
The Algebraic semantics generalizes

- the 2 -valued semantics,
- the set semantics.

Example

If $D=\{0,1\}$, then this semantics $=2$-valued semantics $v: \operatorname{Var} \rightarrow\{0,1\}$.

Example

If $D=2^{W}$, then this semantics $=$ set semantics $\mathcal{I}(p) \subseteq W$.

Algebraic semantics: Validity, satisfiability

Definition

A formula A is BA-valid if $i(A)=1$ for all \mathcal{B} and i.

Algebraic semantics: Validity, satisfiability

Definition

A formula A is $B A$-valid if $i(A)=1$ for all \mathcal{B} and i.
A formula A is $B A$-satisfiable if $i(A) \neq 0$ for some \mathcal{B} and i.

Algebraic semantics: Validity, satisfiability

Definition

A formula A is $B A$-valid if $i(A)=1$ for all \mathcal{B} and i.
A formula A is $B A$-satisfiable if $i(A) \neq 0$ for some \mathcal{B} and i.
Fact 1. A is $B A$-valid $\Longleftrightarrow \neg A$ is not $B A$-satisfiable.

Algebraic semantics: Validity, satisfiability

Definition

A formula A is BA-valid if $i(A)=1$ for all \mathcal{B} and i.
A formula A is $B A$-satisfiable if $i(A) \neq 0$ for some \mathcal{B} and i.
Fact 1. A is $B A$-valid $\Longleftrightarrow \neg A$ is not $B A$-satisfiable.
Let $\Gamma \subseteq$ Fm. We write $i \models \Gamma$ if $i \models B$ for all formulas $B \in \Gamma$.

Algebraic semantics: Validity, satisfiability

Definition

A formula A is BA-valid if $i(A)=1$ for all \mathcal{B} and i.
A formula A is BA-satisfiable if $i(A) \neq 0$ for some \mathcal{B} and i.
Fact 1. A is $B A$-valid $\Longleftrightarrow \neg A$ is not $B A$-satisfiable.
Let $\Gamma \subseteq$ Fm. We write $i \models \Gamma \quad$ if $\quad i \models B$ for all formulas $B \in \Gamma$.

Definition

A set Γ BA-implies (or BA-entails) a formula A, in symbols: $\Gamma \models{ }_{\mathrm{a}} A$, if for every BA-interpretation i such that $i \models \Gamma$, we have $i \neq A$.

Equivalence of 2-valued and algebraic semantics

Theorem (Completeness of CPL for algebraic semantics)
For every formula $A \in \mathrm{Fm}$ and every set of formulas $\Gamma \subseteq \mathrm{Fm}$
(1) A is derivable $\Leftrightarrow A$ is valid $\Leftrightarrow A$ is set-valid $\Leftrightarrow A$ is $B A$-valid:
$\vdash A \quad \Longleftrightarrow \quad \vDash A \quad \Longleftrightarrow \quad \models_{\mathrm{s}} A \quad \Longleftrightarrow \quad \models_{\mathrm{a}} A$

Equivalence of 2－valued and algebraic semantics

Theorem（Completeness of CPL for algebraic semantics）
For every formula $A \in \mathrm{Fm}$ and every set of formulas $\Gamma \subseteq \mathrm{Fm}$
（1）A is derivable $\Leftrightarrow A$ is valid $\Leftrightarrow A$ is set－valid $\Leftrightarrow A$ is $B A$－valid：

$$
\vdash A \quad \Longleftrightarrow \quad \vDash A \quad \Longleftrightarrow \quad \models_{\mathrm{s}} A \quad \Longleftrightarrow \quad \models_{\mathrm{a}} A
$$

（2）「 proves $A \Leftrightarrow$ 「 implies $A \Leftrightarrow$ 「 set－implies $A \Leftrightarrow$ 「 BA－implies A ： $\Gamma \vdash A \Longleftrightarrow \Gamma \vDash A \Longleftrightarrow \Gamma \models_{\mathrm{s}} A \Longleftrightarrow \Gamma \models_{\mathrm{a}} A$

Theorem

For every formula A, the following are equivalent:

- A is provable in CPC: $\vdash A$,
- A is valid in Boolean algebras: $\models_{\mathrm{a}} A$.

Theorem
For every formula A, the following are equivalent:

- A is provable in CPC: $\vdash A$,
- A is valid in Boolean algebras: $\models{ }_{\mathrm{a}} A$.

Proof.
 (\Rightarrow)

- Every axiom of CPC is true in every Boolean algebra.

Theorem

For every formula A, the following are equivalent:

- A is provable in CPC: $\vdash A$,
- A is valid in Boolean algebras: $\vDash{ }_{\mathrm{a}} A$.

Proof.

(\Rightarrow)

- Every axiom of CPC is true in every Boolean algebra.
- (MP): if the formulas A and $A \rightarrow B$ are $B A$-valid, then B is $B A$-valid.

Theorem

For every formula A, the following are equivalent:

- A is provable in CPC: $\vdash A$,
- A is valid in Boolean algebras: $\models_{\mathrm{a}} A$.

Proof.

(\Rightarrow)

- Every axiom of CPC is true in every Boolean algebra.
- (MP): if the formulas A and $A \rightarrow B$ are $B A$-valid, then B is $B A$-valid.
(\Leftarrow) We will build a special Boolean algebra with a special valuation in which exactly the set of theorems of CPC is true.

Theorem

For every formula A, the following are equivalent:

- A is provable in CPC: $\vdash A$,
- A is valid in Boolean algebras: $\models_{a} A$.

Proof.

(\Rightarrow)

- Every axiom of CPC is true in every Boolean algebra.
- (MP): if the formulas A and $A \rightarrow B$ are $B A$-valid, then B is $B A$-valid.
(\Leftarrow) We will build a special Boolean algebra with a special valuation in which exactly the set of theorems of CPC is true.

So it will be one counter-model to all non-theorems.

Lindenbaum algebra

The set of formulas: Fm.

Lindenbaum algebra

The set of formulas: Fm. Relation on formulas: put $A \equiv B$ if $\vdash A \leftrightarrow B$.

Lindenbaum algebra

The set of formulas: Fm. Relation on formulas: put $A \equiv B$ if $\vdash A \leftrightarrow B$. \equiv is an equivalence relation on Fm.

Lindenbaum algebra

The set of formulas: Fm. Relation on formulas: put $A \equiv B$ if $\vdash A \leftrightarrow B$. \equiv is an equivalence relation on Fm. Moreover, it is a congruence:

$$
\text { if } A \equiv A^{\prime} \text { and } B \equiv B^{\prime} \text {, then }(A \wedge B) \equiv\left(A^{\prime} \wedge B^{\prime}\right), \quad \text { etc. }
$$

Lindenbaum algebra

The set of formulas: Fm. Relation on formulas: put $A \equiv B$ if $\vdash A \leftrightarrow B$. \equiv is an equivalence relation on Fm. Moreover, it is a congruence:

$$
\text { if } A \equiv A^{\prime} \text { and } B \equiv B^{\prime} \text {, then }(A \wedge B) \equiv\left(A^{\prime} \wedge B^{\prime}\right), \quad \text { etc. }
$$

The equivalence class of A is denoted by $[A]=\{B \in \mathrm{Fm} A \equiv B\}$.

Lindenbaum algebra

The set of formulas: Fm. Relation on formulas: put $A \equiv B$ if $\vdash A \leftrightarrow B$.
\equiv is an equivalence relation on Fm. Moreover, it is a congruence:

$$
\text { if } A \equiv A^{\prime} \text { and } B \equiv B^{\prime} \text {, then }(A \wedge B) \equiv\left(A^{\prime} \wedge B^{\prime}\right), \quad \text { etc. }
$$

The equivalence class of A is denoted by $[A]=\{B \in \operatorname{Fm} A \equiv B\}$. Quotient set: $\mathrm{Fm} / \equiv=\{[A] \mid A \in \mathrm{Fm}\}$ the set of all equivalence classes.

Lindenbaum algebra

The set of formulas: Fm. Relation on formulas: put $A \equiv B$ if $\vdash A \leftrightarrow B$.
\equiv is an equivalence relation on Fm. Moreover, it is a congruence:

$$
\text { if } A \equiv A^{\prime} \text { and } B \equiv B^{\prime}, \text { then }(A \wedge B) \equiv\left(A^{\prime} \wedge B^{\prime}\right), \quad \text { etc. }
$$

The equivalence class of A is denoted by $[A]=\{B \in \mathrm{Fm} A \equiv B\}$. Quotient set: $\mathrm{Fm} / \equiv=\{[A] \mid A \in \mathrm{Fm}\}$ the set of all equivalence classes.

Definition

The Lindenbaum algebra for CPC is

$$
\mathcal{L}_{\mathrm{CPC}}=(\mathrm{Fm} / \equiv, \wedge, \vee,-, \mathbf{0}, \mathbf{1})
$$

Lindenbaum algebra

The set of formulas: Fm. Relation on formulas: put $A \equiv B$ if $\vdash A \leftrightarrow B$.
\equiv is an equivalence relation on Fm. Moreover, it is a congruence:

$$
\text { if } A \equiv A^{\prime} \text { and } B \equiv B^{\prime} \text {, then }(A \wedge B) \equiv\left(A^{\prime} \wedge B^{\prime}\right), \quad \text { etc. }
$$

The equivalence class of A is denoted by $[A]=\{B \in \mathrm{Fm} A \equiv B\}$. Quotient set: $\mathrm{Fm} / \equiv=\{[A] \mid A \in \mathrm{Fm}\}$ the set of all equivalence classes.

Definition

The Lindenbaum algebra for CPC is

$$
\mathcal{L}_{\mathrm{CPC}}=(\mathrm{Fm} / \equiv, \wedge, \vee,-, \mathbf{0}, \mathbf{1})
$$

where the operations on classes are defined as

$$
\begin{array}{cc}
{[A] \wedge[B]:=[A \wedge B]} & {[A] \vee[B]:=[A \vee B]} \\
-[A]:=[\neg A] & 0:=[\perp] \\
& \mathbf{1}:=[\top]
\end{array}
$$

Lindenbaum algebra

The set of formulas: Fm. Relation on formulas: put $A \equiv B$ if $\vdash A \leftrightarrow B$. \equiv is an equivalence relation on Fm. Moreover, it is a congruence:

$$
\text { if } A \equiv A^{\prime} \text { and } B \equiv B^{\prime} \text {, then }(A \wedge B) \equiv\left(A^{\prime} \wedge B^{\prime}\right), \quad \text { etc. }
$$

The equivalence class of A is denoted by $[A]=\{B \in$ Fm $A \equiv B\}$. Quotient set: $\mathrm{Fm} / \equiv=\{[A] \mid A \in \mathrm{Fm}\}$ the set of all equivalence classes.

Definition

The Lindenbaum algebra for CPC is

$$
\mathcal{L}_{\mathrm{CPC}}=(\mathrm{Fm} / \equiv, \wedge, \vee,-, \mathbf{0}, \mathbf{1}),
$$

where the operations on classes are defined as

$$
\begin{array}{ccc}
{[A] \wedge[B]:=[A \wedge B]} & {[A] \vee[B]:=[A \vee B]} \\
-[A]:=[\neg A] & 0:=[\perp] & 1:=[\top]
\end{array}
$$

The canonical interpretation of variables: $i(p):=[p]$.

Definition

The Lindenbaum algebra for CPC is

$$
\mathcal{L}_{\mathrm{CPC}}=(\mathrm{Fm} / \equiv, \wedge, \vee,-, \mathbf{0}, \mathbf{1})
$$

where the operations on classes are defined as

$$
\begin{array}{ccc}
{[A] \wedge[B]:=[A \wedge B]} & {[A] \vee[B]:=[A \vee B]} \\
-[A]:=[\neg A] & 0:=[\perp] & 1:=[\top]
\end{array}
$$

The canonical interpretation of variables: $i(p):=[p]$.

Definition

The Lindenbaum algebra for CPC is

$$
\mathcal{L}_{\mathrm{CPC}}=(\mathrm{Fm} / \equiv, \wedge, \vee,-, \mathbf{0}, \mathbf{1})
$$

where the operations on classes are defined as

$$
\begin{array}{ccc}
{[A] \wedge[B]:=[A \wedge B]} & {[A] \vee[B]:=[A \vee B]} \\
-[A]:=[\neg A] & 0:=[\perp] & 1:=[\top]
\end{array}
$$

The canonical interpretation of variables: $i(p):=[p]$.
Fact. The same holds for any formula: $i(A)=[A]$.

Definition

The Lindenbaum algebra for CPC is

$$
\mathcal{L}_{\mathrm{CPC}}=(\mathrm{Fm} / \equiv, \wedge, \vee,-, \mathbf{0}, \mathbf{1})
$$

where the operations on classes are defined as

$$
\begin{array}{ccc}
{[A] \wedge[B]:=[A \wedge B]} & {[A] \vee[B]:=[A \vee B]} \\
-[A]:=[\neg A] & 0:=[\perp] & 1:=[\top]
\end{array}
$$

The canonical interpretation of variables: $i(p):=[p]$.
Fact. The same holds for any formula: $i(A)=[A]$.
Now: $\vdash A$ iff $\vdash A \leftrightarrow T$ iff $A \equiv T$ iff $[A]=[T]=1$ iff $i(A)=\mathbf{1}$.

Definition

The Lindenbaum algebra for CPC is

$$
\mathcal{L}_{\mathrm{CPC}}=(\mathrm{Fm} / \equiv, \wedge, \vee,-, \mathbf{0}, \mathbf{1})
$$

where the operations on classes are defined as

$$
\begin{array}{cc}
{[A] \wedge[B]:=[A \wedge B]} & {[A] \vee[B]:=[A \vee B]} \\
-[A]:=[\neg A] & 0:=[\perp] \\
& 1:=[\top]
\end{array}
$$

The canonical interpretation of variables: $i(p):=[p]$.
Fact. The same holds for any formula: $i(A)=[A]$.
Now: $\vdash A$ iff $\vdash A \leftrightarrow T$ iff $A \equiv T$ iff $[A]=[T]=1$ iff $i(A)=\mathbf{1}$.
\Longrightarrow A formula is true here \Longleftrightarrow it is a theorem of CPC.

Definition

The Lindenbaum algebra for CPC is

$$
\mathcal{L}_{\mathrm{CPC}}=(\mathrm{Fm} / \equiv, \wedge, \vee,-, \mathbf{0}, \mathbf{1})
$$

where the operations on classes are defined as

$$
\begin{array}{ccc}
{[A] \wedge[B]:=[A \wedge B]} & {[A] \vee[B]:=[A \vee B]} \\
-[A]:=[\neg A] & 0:=[\perp] & 1:=[\top]
\end{array}
$$

The canonical interpretation of variables: $i(p):=[p]$.
Fact. The same holds for any formula: $i(A)=[A]$.
Now: $\vdash A$ iff $\vdash A \leftrightarrow T$ iff $A \equiv T$ iff $[A]=[T]=1$ iff $i(A)=\mathbf{1}$.
\Longrightarrow A formula is true here \Longleftrightarrow it is a theorem of CPC.
What about $\Gamma \vdash A \Longleftrightarrow \Gamma \not{ }_{\mathrm{a}} A$?

Lindenbaum algebra for Γ

Theorem

For every $A \in \mathrm{Fm}$ and $\Gamma \subseteq \mathrm{Fm}$, the following are equivalent:

- A is derivable from Γ in CPC: $\Gamma \vdash A$,
- A follows from Γ in Boolean algebras: $\Gamma \models{ }_{\mathrm{a}} A$.

Lindenbaum algebra for Γ

Theorem

For every $A \in \mathrm{Fm}$ and $\Gamma \subseteq \mathrm{Fm}$, the following are equivalent:

- A is derivable from Γ in $C P C$: $\ulcorner\vdash A$,
- A follows from Γ in Boolean algebras: $\Gamma \models_{\mathrm{a}} A$.

Proof.

Relation on formulas:

$$
\text { put } A \equiv\ulcorner B \text { if } \Gamma \vdash A \leftrightarrow B \text {. }
$$

Lindenbaum algebra for Γ

Theorem

For every $A \in \mathrm{Fm}$ and $\Gamma \subseteq \mathrm{Fm}$, the following are equivalent:

- A is derivable from Γ in $C P C: \Gamma \vdash A$,
- A follows from Γ in Boolean algebras: $\Gamma \models_{\mathrm{a}} A$.

Proof.

Relation on formulas:

$$
\text { put } A \equiv\ulcorner B \text { if } \Gamma \vdash A \leftrightarrow B .
$$

We obtain the algebra:

$$
\mathcal{L}_{\mathrm{CPC}}^{\ulcorner }=(\mathrm{Fm} / \equiv\ulcorner, \wedge, \vee,-, \mathbf{0}, \mathbf{1})
$$

Lindenbaum algebra for Γ

Theorem

For every $A \in \mathrm{Fm}$ and $\Gamma \subseteq \mathrm{Fm}$, the following are equivalent:

- A is derivable from Γ in $C P C: \Gamma \vdash A$,
- A follows from Γ in Boolean algebras: $\Gamma \models_{\mathrm{a}} A$.

Proof.

Relation on formulas:

$$
\text { put } A \equiv\ulcorner B \text { if } \Gamma \vdash A \leftrightarrow B .
$$

We obtain the algebra:

$$
\mathcal{L}_{\mathrm{CPC}}^{\ulcorner }=\left(\mathrm{Fm} / \equiv_{\ulcorner }, \wedge, \vee,-, \mathbf{0}, \mathbf{1}\right)
$$

Similarly we prove:
A is true in $\mathcal{L}_{\mathrm{CPC}}^{\Gamma}$ under $i \Longleftrightarrow \Gamma \vdash A$.

Lindenbaum algebra for Γ

Theorem

For every $A \in \mathrm{Fm}$ and $\Gamma \subseteq \mathrm{Fm}$, the following are equivalent:

- A is derivable from Γ in CPC: $\Gamma \vdash A$,
- A follows from Γ in Boolean algebras: $\Gamma \models_{\mathrm{a}} A$.

Proof.

Relation on formulas:

$$
\text { put } A \equiv\ulcorner B \text { if } \Gamma \vdash A \leftrightarrow B .
$$

We obtain the algebra:

$$
\mathcal{L}_{\mathrm{CPC}}^{\ulcorner }=\left(\mathrm{Fm} / \equiv_{\ulcorner }, \wedge, \vee,-, \mathbf{0}, \mathbf{1}\right)
$$

Similarly we prove:
A is true in $\mathcal{L}_{\text {CPC }}^{\Gamma}$ under $i \Longleftrightarrow \Gamma \vdash A$.

Conclusions

- The Classical Propositional Logic axiomatizes not only the laws of $\neg, \wedge, \vee, \rightarrow$, but also the laws of set operations ${ }^{-}, \cap, \cup, \subseteq$.

Conclusions

- The Classical Propositional Logic axiomatizes not only the laws of $\neg, \wedge, \vee, \rightarrow$, but also the laws of set operations ${ }^{-}, \cap, \cup, \subseteq$.
- Any Boolean valuation $v: \operatorname{Var} \rightarrow\{0,1\}$ can be regarded as a singleton interpretation $(\{e\}, \mathcal{I})$.

Conclusions

- The Classical Propositional Logic axiomatizes not only the laws of $\neg, \wedge, \vee, \rightarrow$, but also the laws of set operations ${ }^{-}, \cap, \cup, \subseteq$.
- Any Boolean valuation $v: \operatorname{Var} \rightarrow\{0,1\}$ can be regarded as a singleton interpretation $(\{e\}, \mathcal{I})$.
- Conversely, any interpretation (W, \mathcal{I}) is a collection of completely independent Boolean valuations.

Conclusions

- The Classical Propositional Logic axiomatizes not only the laws of $\neg, \wedge, \vee, \rightarrow$, but also the laws of set operations ${ }^{-}, \cap, \cup, \subseteq$.
- Any Boolean valuation $v: \operatorname{Var} \rightarrow\{0,1\}$ can be regarded as a singleton interpretation $(\{e\}, \mathcal{I})$.
- Conversely, any interpretation (W, \mathcal{I}) is a collection of completely independent Boolean valuations.
- The problem of checking inclusions between set expressions is decidable.

Conclusions

- The Classical Propositional Logic axiomatizes not only the laws of $\neg, \wedge, \vee, \rightarrow$, but also the laws of set operations ${ }^{-}, \cap, \cup, \subseteq$.
- Any Boolean valuation $v: \operatorname{Var} \rightarrow\{0,1\}$ can be regarded as a singleton interpretation $(\{e\}, \mathcal{I})$.
- Conversely, any interpretation (W, \mathcal{I}) is a collection of completely independent Boolean valuations.
- The problem of checking inclusions between set expressions is decidable.
- The Classical Propositional Logic is the logic of all Boolean algebras.

Conclusions

- The Classical Propositional Logic axiomatizes not only the laws of $\neg, \wedge, \vee, \rightarrow$, but also the laws of set operations ${ }^{-}, \cap, \cup, \subseteq$.
- Any Boolean valuation $v: \operatorname{Var} \rightarrow\{0,1\}$ can be regarded as a singleton interpretation $(\{e\}, \mathcal{I})$.
- Conversely, any interpretation (W, \mathcal{I}) is a collection of completely independent Boolean valuations.
- The problem of checking inclusions between set expressions is decidable.
- The Classical Propositional Logic is the logic of all Boolean algebras.

The end of lecture 2. Thank you!

