УДК 547.1+544.344.016.4

Сравнительный анализ фазовых диаграмм систем органохлорсилан/органоалкоксисилан—растворитель—вода*

П. В. Иванов,^а Н. Г. Мажорова^{а,6*}

^аМИРЭА — Российский технологический университет, Российская Федерация, 119571 Москва, просп. Вернадского, 86 ^бИнститут элементоорганических соединений им. А. Н. Несмеянова Российской академии наук, Российская Федерация, 119334 Москва, ул. Вавилова, 28. Факс: (499) 135 5085. E-mail: ngmazhorova@mail.ru

Проведено сравнение фазовых диаграмм систем $R_nSi(OR')_{4-n}$ —Me₂CO—H₂O и R_nSiCl_{4-n} —Me₂CO—H₂O, где R = Me, Ph; R' = Me, Et; n = 0-2. Выполнено моделирование фазового равновесия указанных систем на основе уравнений UNIFAC и NRTL. Определены области расслаивания, коноды фазового равновесия и составы сосуществующих фаз. На примере фазовых диаграмм систем MeSi(OEt)₃/Si(OEt)₄—Me₂CO—H₂O показано удовлетворительное описание экспериментальных данных параметрами моделей фазового равновесия, полученных на основе уравнений NRTL. Общим для двух изучаемых систем является гетерофазность, которая обусловлена взаимной нерастворимостью мономеров и воды. При этом область расслаивания системы $R_nSi(OR')_{4-n}$ —Me₂CO—H₂O меньше, чем R_nSiCl_{4-n} —Me₂CO—H₂O (расчет методом UNIFAC). При одинаковой концентрации ацетона концентрация воды выше в органических фазах «алкоксильных» систем, чем в «хлорсилановых». Замена Me₂CO на EtOH и AcOH приводит к резкому сокращению области расслаивания.

Ключевые слова: фазовое равновесие, уравнения UNIFAC, NRTL, органохлорсиланы, органоалкоксисиланы, макрокинетика, гетерофазный гидролиз, эмульсионная поли-конденсация, олигоорганосилоксаны.

Гидролитическая поликонденсация (ГПК) органохлор- и органоалкоксисиланов с общей формулой $R_n SiX_{4-n}$ (X = Cl, OR'; R = Me, Ph; R' = Me, Et; n = 0 - 2) является основным способом получения полиорганосилоксанов различного строения. Он отличается от большинства органических поликонденсационных процессов тем, что органохлор- и органоалкоксисиланы — мономеры со скрытой функциональностью¹. Гидролиз приводит к образованию первых и наиболее важных интермедиатов процесса^{2,3}, содержащих одновременно два разных типа реакционных центров =Si(OH)X (X = Cl; OR'). Поэтому образование олигоорганосилоксанов (схема 1) может проходить по механизму гомофункциональной конденсации силанолов (ГМФК) (реакции 3, 5, 7) и/или по механизму гетерофункциональной конденсации продуктов гидролиза (ГТФК) (реакции 4, 6).

Кроме того, общей характеристикой органохлор- и органоалкоксисиланов является их ограниченная взаимная растворимость с водой, обусловливающая гетерофазность процесса. В 1980-х годах благодаря развитию исследований в области макрокинетики гетерофазного гидролиза органохлорсиланов установлено, что при реально используемых на практике со-

© 2020 «Известия Академии наук. Серия химическая»

отношениях воды, органохлорсилана и растворителя органические фазы реакционной системы характеризуются недостатком воды по отношению к органохлорсилану. Поэтому основной реакцией образования олигоорганосилоксанов является гетерофункциональная конденсация продуктов гидролиза^{4,5}, а не гомофункциональная, как считали долгие годы.

Поскольку реакционная способность органоалкоксисиланов меньше, чем органохлорсиланов, то в этом случае соотношение скоростей химической реакции и межфазного переноса может обусловливать иное соотношение скоростей гомо- и гетерофункциональной конденсации продуктов гидролиза органоалкоксисиланов. В связи с этим целью настоящей работы является проведение сравнительного анализа теоретических и экспериментальных данных по взаимной растворимости органохлор- и органоалкоксисиланов с водой и органическим растворителем.

Экспериментальная часть

Толуол, ацетон, этанол, уксусная кислота приобретены в ООО «Компонент-Реактив» (Россия). Перед использованием реагенты подвергали предварительной подготовке согласно опубликованным ранее методикам⁶.

Чистота растворителей и уксусной кислоты составила ≥99.8%. Используемые в работе органоалкоксисиланы — метилфенилдиметоксисилан, метилтриэтоксисилан, фенил-

^{*} К 65-летию Института элементоорганических соединений им. А. Н. Несмеянова Российской академии наук.

Схема 1

OH OH
$$X-SI-O-SI-OH + HX$$
 (4)
R R

$$\begin{array}{c} R & R \\ X - Si - O - Si - OH + H_2O \quad (5) \\ R_2Si + R_2Si \\ H \\ R_2Si \\$$

$$HO-SI-O-SI-OH + HX (6)$$

X = Cl, OR'; R = Me, Et; n = 0-2

триметоксисилан, тетраэтоксисилан — приобретены в «Nanjing Union Silicon Chemical Co.» (Китай). Непосредственно перед использованием органоалкоксисиланы перегоняли, чистота каждого из мономеров составила ≥99.5%.

Тонкослойную хроматографию (TCX) проводили на высокоэффективных хроматографических пластинах размером 50×200 мм марки «HPTLC-Fertigplatten RP-18» фирмы «Merck» (Германия) с использованием двухлучевого сканера «CS-9000» («Shimadzu», Япония). Взаимную растворимость компонентов системы $R_n Si(OR')_{4-n}$ -растворитель— H_2O (R = Me, Ph; R' = Me, Et; n = 0-2) определяли по стандартным методикам методом титрования⁷. В термостатируемый микросмеситель загружали бинарную смесь (растворитель—вода или мономер— растворитель) определенного состава. К данной смеси при интенсивном перемешивании добавляли третий компонент (мономер или воду) и наблюдали за изменением фазового состояния системы. При непрерывном перемешивании отмечали количество третьего компонента, при котором наблюдалось помутнение (или появление первых микрокапель второй фазы). Затем отбирали пробу полученной смеси и определяли показатель преломления.

Измерение показателя преломления веществ при температуре 20 °C (n_D^{20}) проводили на рефрактометре марки «ИРФ-22». Среднее значение показателя преломления (n_D^{20}) определяли по трем параллельным опытам при 20 °C (расхождение показателей преломления не превышало 0.0003).

По полученным экспериментальным данным строили калибровочные зависимости для установления составов сосуществующих равновесных фаз: $X = f(n_D)$ (X — мольная доля мономера в водно-ацетоновой смеси), а также кривую растворимости системы мономер—растворитель—вода. Показатели преломления чистых веществ (n_D^{20}) имели следующие значения: Me₂CO — 1.3590; H₂O — 1.3328; MePhSi(OMe)₂ — 1.4752, MeSi(OEt)₃ — 1.3825; Si(OEt)₄ — 1.3800.

Составы равновесных фаз мономер—ацетон—вода определяли путем серии опытов при разных брутто-составах смеси с использованием калибровочных зависимостей, уравнений материального баланса, правила Тарасенкова. Для установления составов равновесных фаз трехкомпонентную смесь, состоящую из ацетона, воды, мономера, при интенсивном перемешивании термостатировали при 30 °C, затем разделяли на органический и водный слои, брали пробы из каждого слоя для измерения показателя преломления. При измерении показателя преломления проб при 30 °C (n_D^{30}) учитывали поправку к показателю прибора на температуру (7.3 • 10⁻⁵).

Используя калибровочные зависимости (рис. 1), находили составы равновесных фаз и строили хорды фазового равновесия на диаграмме Гиббса (см. Обсуждение полученных результатов).

Моделирование равновесия жидкость—жидкость (ж—ж) в трехкомпонентных системах $R_n Si(OR')_{4-n} - Me_2CO - H_2O$ (R = Me; R' = Et; n = 0-1) проводили на основе уравнения NRTL в программном пакете Aspen Plus[®]V10. Расчет фазового равновесия $R_n SiCl_{4-n} - Me_2CO - H_2O$ (R = Me, Ph; R' = Me, Et; n = 0-2) выполняли по уравнению UNIFAC.

Рис. 1. Калибровочные кривые содержания мономера (X, мол. доля): MePhSi(OMe)₂ (a), MeSi(OEt)₃ (b), Si(OEt)₄ (c) в водноацетоновой смеси.

Обсуждение полученных результатов

Ранее⁴ нами был сделан вывод о том, что из-за недостатка воды в органической фазе реакционной системы полиорганосилоксаны (ПОС) образуются преимущественно по реакции ГТФК продуктов гидролиза =Si-Cl(OH) с исходным мономером R₂SiCl₂ (см. схему 1, реакция 4). Кроме того, исходя из общих закономерностей S_{N2}—Si-механизма константы скорости приведенных реакций можно расположить в порядке их уменьшения: гидролиз >> ГТФК > > ГМФК². По этой причине ПОС образуются преимущественно по реакции ГТФК (см. схему 1, реакции 4, 6), а не ГМФК (см. схему 1, реакции 3, 5, 7). Поэтому молекулярная масса и структура полимера зависят от мольного соотношения $[H_2O]$: $[R_2SiX_2]$ (*m*) в реакционной фазе О1, которое опосредованно задается брутто-составом реакционной системы С₁ (рис. 2). Вследствие того, что фаза W₁ характеризуется большим избытком воды по отношению к мономеру, образование ПОС здесь проходит по механизму ГМФК продуктов гидролиза органосиланолов (см. схему 1, реакции 3, 5, 7). Оценка относительного вклада ГТФК, ГМФК и полимеризации силанона (см. схему 1, реакция 8) в образование ПОС дана в работе².

Руководствуясь методологией исследования макрокинетики гидролиза метилфенилдихлорсилана⁴ и метилфенилдиметоксисилана⁸, мы изучили фазовые квазиравновесия реакционных систем R_nSiX_{4-n} — Me₂CO/EtOH—H₂O (R = Me; Ph; X = Cl; OMe; OEt; n = 0-2) и их влияние на состав продуктов гидролиза.

Системы мономер—растворитель—вода являются гетерофазными системами, в которых массопередача компонентов сопровождается одновременно протекающими реакциями гидролиза и поликонденсации. С момента смешения компонентов состав реакционной системы меняется, поэтому ее фазовое состояние является динамичным. В термодинамике необратимых процессов такие системы рассматриваются с позиций локального термодинамического

Рис. 2. Тройная диаграмма для системы R₂SiCl₂— Me₂CO-H₂O.

равновесия или, иначе говоря, квазиравновесия⁷. Условием равновесия двух жидких фаз является равенство активностей компонентов в этих фазах:

$$C_j^{\mathbf{W}} \boldsymbol{\cdot} \gamma_j^{\mathbf{W}} = C_j^{\mathbf{O}} \boldsymbol{\cdot} \gamma_j^{\mathbf{O}}$$

где $C_j^{W,O}$ *и* $\gamma_j^{W,O}$ — концентрации и коэффициенты активности компонента *j* в водной (W) и органической (O) фазах соответственно. Зная коэффициенты активности компонентов системы, можно рассчитать и квазиравновесные составы. Экспериментально определить коэффициенты активности компонентов системы $H_2O-R_nSiCl_{4-n}$ или $R_nSi(OH)_{4-n}-R_nSiCl_{4-n}$ невозможно из-за их быстрого химического взаимодействия (например, эффективные константы скорости гидролиза (k_r) MePhSiCl₂ и PhSiCl₃ составляют 0.14 и 4.5 с⁻¹ соответственно)⁹. Однако коэффициенты активности быстро реагирующих компонентов предложено¹⁰ рассчитывать на основе групповых моделей по уравнению UNIFAC (UNIquac Functional-group Activity Coefficients)^{7,11,12}.

Для оценки групповых параметров нами использованы появившиеся в начале 90-х годов литературные данные для кремнийорганических соединений и собственные экспериментальные данные¹⁰ по фазовым равновесиям нескольких систем, на основе которых определены энергетические параметры для групп, входящих в молекулы органохлорсиланов и органосиланолов (табл. 1, 2). Для проверки адекватности уравнения UNIFAC экспериментальным данным проведены расчеты фазового равновесия нереакционных водно-органических систем.

Сопоставление расчетных и экспериментальных данных фазового равновесия нереакционных водноорганических (в качестве примера) и водно-кремнийорганических систем ж—ж показало хорошее их совпадение (рис. 3).

С помощью расчетов фазового квазиравновесия систем ацетон (А)—вода (W)—органохлорсилан (X) выявлено¹⁰: 1) наличие области расслаивания в системах ж—ж с участием воды (ацетон—вода—органохлорсилан, ацетон—вода—органосиланол и вода органохлорсилан—органосиланол); 2) отсутствие ге-

Таблица 1. Геометрические параметры групп для расчета фазового равновесия систем органохлорсилан—вода—растворитель—продукты реакции

Группа	Номер группы ⁷	R _k	$Q_{\rm k}$
-CH ₃	1	0.9011	0.8480
-CH- (аром.)	3	0.5313	0.4000
—C— (аром.)	3	0.3652	0.1200
-OH	5	1.0000	1.2000
H ₂ O	7	0.9200	1.4000
CH ₃ (O)HC-	9	1.6724	1.4880
-0-	11	0.2439	0.2400
-Cl	50	0.7660	0.7200
—Si—	60	1.0470	0.4099

 $\mathit{O}\mathit{fo}\mathit{shauehus}$: $R_{\rm k}$ — параметр объема группы, $\mathit{Q}_{\rm k}$ — параметр «поверхности» группы.

Группа	1	3	5	7	9	11	50	60
1	0.0	-114.8	644.6	1300.0	472.6	472.6	523.2	-450.4
3	156.5	0.0	703.9	859.4	593.7	37.24	124.0	-432.3
5	328.2	-9.2	0.0	28.73	67.00	341.3	195.2	-817.7
7	342.4	372.8	-122.4	0.0	-171.8	165.6	158.4	347.9
9	66.56	-78.3	216.0	6324.8	0.0	169.4	-62.3	-588.9
11	2.160	-75.5	-71.9	-326.0	-342.6	0.0	2678.0	100.0
50	-119.6	-90.4	428.1	618.2	61.36	3922.0	0.0	-346.1
60	-34.7	787.9	1913.0	1380.0	992.4	1050.0	748.0	0.0

Таблица 2. Энергетические параметры взаимодействия уравнения UNIFAC

терогенности (гомогенность) во всем интервале концентраций компонентов в системах без воды (ацетон—органохлорсилан—органосиланол и органохлорсилан—органосиланол); 3) увеличение области гомогенных составов при замене хлора в молекуле органохлорсилана на гидроксильную группу; 4) лучшая растворимость воды в органических фазах, чем органохлорсилана в водных фазах (рис. 4).

Так, вычисленная растворимость MePhSiCl₂ в воде и воды в MePhSiCl₂ составляют 0.0002 и 0.9 мол.% соответственно, а растворимость MePhSi(OH)Cl в воде и воды в последнем — 0.005 и 25.7 мол.% соответственно. С увеличением объема заместителя у атома кремния возрастает область гетерогенности как в системах A—W—X, так и в системах A—W—S (см. рис. 4).

Значения эффективных констант скоростей гидролиза различных органоалкоксисиланов намного меньше, чем органохлорсиланов, и находятся в интервале $10^{-6}-10^{-3}$ с⁻¹. Например, эффективная константа скорости гидролиза Si(OEt)₄ (pH = 7) составляет $4.12 \cdot 10^{-6}$ с⁻¹, MeSi(OMe)₃ — $6.40 \cdot 10^{-6}$ с⁻¹, MePhSi(OMe)₂ — $0.5 \cdot 10^{-3}$ с⁻¹.^{8,14,17} В отсутствие кислого или основного катализатора гидролиз органоалкоксисиланов идет достаточно медленно, что позволяет обычными методами определить фазовое равновесие системы растворитель—вода—органоалкоксисилан. Однако работ, посвященных изучению фазового равновесия в ГПК органоалкоксисиланов и его влияния на состав и свойства ПОС, крайне мало^{8,14–16}, что свидетельствует о недостаточном внимании к значению этого фактора в золь—гель-технологиях.

Относительная устойчивость органоалкоксисиланов к гидролизу при отсутствии катализатора позволила нам изучить фазовое равновесие ряда систем органоалкоксисилан—растворитель—вода экспериментально, методом титрования, т.е. путем добавления третьего компонента к бинарной смеси до момента расслаивания. Отсутствие продуктов гидролиза в исследуемой смеси контролировали методом TCX. Экспериментальные данные по фазовому равновесию систем MePhSi(OMe)₂—Me₂CO—H₂O приведены на рисунке 5, *b* и в работе⁸.

Из тройной диаграммы (см. рис. 5, *a*, *b*) видно, что области гетерогенности системы органохлорсилан/ органоалкоксисилан—ацетон—вода являются достаточно большими — левая и правая часть бинодали близко подходят к сторонам треугольника. Это свидетельствует об ограниченной взаимной растворимости воды и органоалкоксисилана даже в присутствии общего растворителя (ацетона).

Бинодали систем $R_n Si(OR')_{4-n}$ —Me₂CO—H₂O (см. рис. 5) находятся ниже, чем в системах $R_n SiCl_{4-n}$ —Me₂CO—H₂O. Это закономерно и объясняется тем, что замена атомов хлора в $R_n SiCl_{4-n}$ на алкоксигруппы приводит к усилению межмолекулярных взаимо-

Рис. 3. Диаграммы фазового равновесия систем Me₂CO (A)—PhMe (T)—H₂O (W) (*a*) и Me₂CO—CHCl₃ (X)—H₂O (*b*) при 25 °C (1 -эксперимент¹³, 2 -расчет по уравнению UNIFAC).

Рис. 4. Диаграммы фазового квазиравновесия (расчет) систем Me₂CO (A)—вода (W)—X (органохлорсилан)—S (силанол): $a - X = Me_3SiCl (I)$, Me₂PhSiCl (2), MePh₂SiCl (3); $b - X = Me_2SiCl_2 (I)$, MePhSiCl₂ (2), PhSiCl₃ (3), Ph₂SiCl₂ (4); $c - S = Me_2SiCl(OH) (I)$, MePhSiCl(OH) (2), Ph₂SiCl(OH) (3), PhSiCl₂(OH) (4), PhSiCl(OH)₂ (5).

действий (например, за счет водородных связей) между мономером, водой и ацетоном, тем самым увеличивая взаимную растворимость компонентов. В таблице 3 приведены данные о взаимной растворимости ряда мономеров и воды.

Рис. 5. Диаграммы фазового равновесия систем X—Me₂CO— H₂O: $a - X = PhSiCl_3$ (UNIFAC)¹⁰, Si(OEt)₄, PhSi(OMe)₃; MeSi(OEt)₃ (эксперимент)¹⁶; $b - X = MePhSiCl_2$, MePhSiCl(OH) (UNIFAC)¹⁰; MePhSi(OMe)₂ (эксперимент)⁸.

Растворимость MePhSiCl₂ в воде, вычисленная методом UNIFAC, составляет 0.0002 мол.%, а растворимость MePhSi(OMe)₂ в воде, найденная экспериментально⁸, -0.01 мол.%.

На основе экспериментальных данных, включающих информацию о равновесии ж—ж при температу-

Таблица 3. Расчетные данные по растворимости мономеров и воды (мол.%)

Мономер	Вода в мономере (органическая фаза)	Мономер в воде (водная фаза)
Me ₂ SiCl ₂	0.9	$2 \cdot 10^{-2}$
Me ₂ Si(OH)Cl	56.7	$4 \cdot 10^{-1}$
MePhSiCl ₂	0.9	$2 \cdot 10^{-4}$
MePhSi(OH)Cl	25.7	$5 \cdot 10^{-3}$
Ph ₂ SiCl ₂	0.9	$2 \cdot 10^{-6}$
Ph ₂ Si(OH)Cl	18.4	$7 \cdot 10^{-5}$
PhSiCl ₃	1.2	$3 \cdot 10^{-4}$
PhSi(OH)Cl ₂	28.0	$9 \cdot 10^{-3}$
PhSi(OH) ₂ Cl	60.0	$6 \cdot 10^{-1}$

Состав	Орг	Органическая фаза			Водная фаза			
	Si(OEt) ₄	Me ₂ CO	H ₂ O	Si(OEt) ₄	Me ₂ CO	H ₂ O		
1	0.766	0.2280	0.0060	0.000743	0.088	0.911257		
2	0.603	0.3696	0.0274	0.001195	0.1717	0.827105		
3	0.555	0.4210	0.0240	0.001397	0.209	0.789603		
4	0.691	0.2869	0.0221	0.000938	0.1241	0.874962		
5	0.999	$7.30 \cdot 10^{-5}$	$8.3 \cdot 10^{-4}$	0.000268	$3.20 \cdot 10^{-5}$	0.99970		

Таблица 4. Исходные экспериментальные данные о равновесии ж-ж в системе Si(OEt)₄-Me₂CO-H₂O при 30 °C и давлении 1бар (в мол. долях)

ре 30 °С и давлении 1 бар, для трехкомпонентных систем $Si(OEt)_4/MeSi(OEt)_3-Me_2CO-H_2O$ (табл. 4, 5) впервые было опробовано моделирование равновесия на основе уравнения NRTL¹⁶.

Для систем Si(OEt)₄/MeSi(OEt)₃—Me₂CO—H₂O с помощью расчетов определяли параметры уравнения NRTL для двух бинарных составляющих трехком-понентных смесей: Si(OEt)₄/MeSi(OEt)₃—Me₂CO и Si(OEt)₄/MeSi(OEt)₃—H₂O. Для системы Me₂CO—H₂O параметры уравнения NRTL брали из базы данных программного комплекса Aspen One®. Расчет параметров проводили на основе метода максимального правдоподобия. Имеющиеся в базе данных APV80 и полученные в результате моделирования фазового равновесия параметры уравнения NRTL для двух рассматриваемых систем приведены в таблицах 6 и 7.

Параметры бинарного взаимодействия (см. табл. 6, 7) использовали для расчета равновесия ж—ж в трехкомпонентных системах с целью сопоставления расчетных величин (табл. 8, 9) с экспериментальными данными (см. табл. 4, 5), а также для построения диаграмм ж—ж, включающих бинодаль и коноды (рис. 6).

Точность описания фазового равновесия ж—ж иллюстрируют рисунки 6 *a*, *b*, на которых в виде точек представлены экспериментальные данные, характеризующие составы сосуществующих жидких фаз, и расчетная кривая, полученная на основе параметров уравнения **NRTL (см. табл. 6, 7). Параметры исполь**зованы для воспроизведения фазового равновесия ж—ж во всей концентрационной диаграмме (см. рис. 6). При этом проведено построение бинодалей (кривых растворимостей), а также конод — отрезков прямых, соединяющих составы равновесных жидких фаз. Составы граничных точек конод представлены в таблицах 8, 9.

Хорошее соответствие экспериментальных результатов с данными расчета по уравнению NRTL (см. рис. 6) подтверждает адекватность такого расчета и

Puc. 6. Расчетные и экспериментальные данные на диаграммах равновесия ж—ж в системах $Si(OEt)_4$ — Me_2CO — $H_2O(a)$ и $MeSi(OEt)_3$ — Me_2CO — $H_2O(b)$.

Таблица 5. Исходные экспериментальные данные о равновесии ж—ж в системе MeSi(OEt)₃—Me₂CO—H₂O при 30 °C и давлении 1 бар (в мол. долях)

Состав	Органическая фаза			Вод	ная фаза	
	MeSi(OEt) ₃	Me ₂ CO	H ₂ O	MeSi(OEt) ₃	Me ₂ CO	H ₂
1	0.9993	0.0000	0.0007	0.0019	0.0000	0.9981
2	0.7121	0.2741	0.0138	0.0053	0.0149	0.9798
3	0.5750	0.3940	0.0310	0.0062	0.0264	0.9674
4	0.4810	0.4600	0.0590	0.0070	0.0430	0.9500

Таблица 6. Параметры бинарного взаимодействия уравнения NRTL для системы Si(OEt)₄—Me₂CO—H₂O*

Параметр	Значение					
	Me ₂ CO (<i>i</i>)– H ₂ O (<i>j</i>)	Si(OEt) ₄ (<i>i</i>)– H ₂ O (<i>i</i>)	$Si(OEt)_4(i) - Me_2CO(j)$			
AIJ	6.3981	-80	-0.99137891			
AJI	0.0544	48.7642439	-41.6139743			
BIJ	-1808.991	3069.66566	10000			
BJI	419.9716	10000	3398.47216			
CIJ	0.3	0.0007311	0.000563816			

*Для Me₂CO (*i*)—H₂O (*j*) использовали источник APV80 VLE-IG, для Si(OEt)4 (*i*)—H₂O (*j*) и Si(OEt)₄ (*i*)—Me₂CO (*j*) — источник R-R-1.

Таблица 7. Параметры бинарного взаимодействия уравнения NRTL для системы MeSi(OEt)—Me₂CO—H₂O

Параметр	Значение				
	$\frac{\text{Me}_2\text{CO }(i)-}{\text{H}_2\text{O }(j)}$	$\frac{\text{MeSi(OEt)}_3(i) - H_2O(j)}{\text{H}_2O(j)}$	$\frac{\text{MeSi(OEt)}_3(i) - }{\text{Me}_2 \text{CO}(j)}$		
AIJ AJI BIJ BJI CIJ	0.0544 6.3981 419.9716 -1808.99 0.3	841.115 -760.142 -20000 3761.669 3.72 • 10 ⁻⁵	-71.5918 62.70492 3793.214 -753.822 1.06 • 10 ⁻³		

*Для Me₂CO (*i*)—H₂O (*j*) использовали источник APV73 VLE-IG, для MeSi(OEt)₃ (*i*)—H₂O (*j*) и MeSi(OEt)₃ (*i*)— Me₂CO (*j*) — источник R-R-1.

возможность построения подобных диаграмм для других систем.

Представляло интерес рассмотреть влияние разных растворителей на фазовые равновесия систем MePhSi(OMe)₂—растворитель—H₂O. Так, замена

Рис. 7. Экспериментальные бинодали на диаграмме равновесия ж—ж в системах MePhSi(OMe)₂—растворитель—H₂O (растворитель — Me₂CO, EtOH, AcOH).

Me₂CO на EtOH или AcOH в такой системе приводит к уменьшению области гетерогенности (рис. 7).

Это означает, что спирт и уксусная кислота, выделяющиеся в процессе гидролиза органоалкоксисиланов и органоацетоксисиланов соответственно, уменьшают область гетерогенности реакционных систем в ходе процесса. Подобная картина наблюдается и при переходе реакционной системы от исходной MePhSiCl₂—Me₂CO—H₂O к продуктам реакции MePhSiCl(OH)—Me₂CO—H₂O (рис. 8, *a*), а также от исходной PhSiCl₃—Me₂CO—H₂O (рис. 8, *a*), а также от исходной PhSiCl₃—Me₂CO—H₂O (рис. 8, *b*)¹⁰. Оценка динамики фазового состояния системы MeSiCl₃— MeSiCl₂(OH)—Me₂CO—H₂O приведена на рисунке 8, *c*. С увеличением доли MeSiCl₂(OH) (*S*) в реакционной системе по мере прохождения гидролиза область

Таблица 8. Составы, соответствующие расчетным конодам в системе Si(OEt)₄—Me₂CO—H₂O при 30 °C и давлении 1бар

Состав	Or	Органическая фаза			Водная фаза			
	Si(OEt) ₄	Me ₂ CO	H ₂ O	Si(OEt) ₄	Me ₂ CO	H ₂ O		
1	0.999195	0	0.000805	0.000272	0	0.9997282		
2	0.818979	0.176388	0.004633	0.000579	0.083074	0.9163472		
3	0.594483	0.377346	0.028171	0.001166	0.155378	0.8434563		
4	0.001558	0.189302	0.809141	0.289251	0.576712	0.1340377		
5	0.011813	0.448707	0.53948	0.036046	0.566107	0.3978471		

Таблица 9. Составы, соответствующие расчетным конодам в системе MeSi(OEt)₃—Me₂CO— H₂O при 30 °C и давлении 1 бар

Состав	Органическая фаза			Водная фаза		
	MeSi(OEt) ₃	Me ₂ CO	H ₂ O	MeSi(OEt) ₃	Me ₂ CO	H ₂ O
1	0.9982	0	0.0018	0.0048	0	0.9952
2	0.6877	0.3090	0,0032	0.0038	0.0167	0.9795
3	0.4584	0.5334	0.0082	0.0050	0.0737	0.9212
4	0.2854	0.6900	0.246	0.0278	0.2996	0.6726

Рис. 8. Диаграммы фазового равновесия систем X—Me₂CO— H₂O (UNIFAC)¹⁰ (мас.%): a - X = MePhSiCl₂, MePh-SiCl(OH)); b - X = PhSiCl₃, PhSiCl₂(OH),PhSiCl(OH)₂. c - Динамика фазового состояния системы (1-*s*) MeSiCl₃ + + *s*MeSiCl₂(OH) с шагом S = 0.1 в интервале 0.2–0.9.

гетерогенности уменьшается. Из расчета методом UNIFAC следует, что системы MeSiCl(OH)₂—Me₂CO—

H₂O и MeSi(OH)₃—Me₂CO—H₂O являются гомогенными¹⁰ (см. рис. 8, *c*).

Отметим, что наличие объемного заместителя, например в MePhSi(OH)₂, обусловливает ограниченную растворимость MePhSi(OH)₂ в H₂O, Me₂CO, PhMe и их смесях (табл. 10, 11).

Данные таблиц 10 и 11 использовали для оценки групповых параметров уравнения UNIFAC. Дополнительно были изучены бинарные, тройные и пяти-компонентные системы, состоящие из смесей Me₃SiOH, H₂O, Me₂CO, Me₃SiOSiMe₃, CHCl₃, а также система Me₂CO—H₂O—[PhMe₂Si]₂O.

На основе полученных данных проведена оценка энергетических параметров взаимодействия, необходимых для расчета коэффициентов активности компонентов реакционных систем органохлорсилан вода—ацетон—органосиланол—органодисилоксан¹⁰.

Таким образом, расчеты фазового квазиравновесия и экспериментальные данные позволили установить наличие гетерогенности в системах R_nSiX_{4-n} растворитель— H_2O , где X = Cl или OR', а растворитель — Me₂CO, EtOH, AcOH. Выявлено, что в ходе гидролиза $R_nSi(OR')_{4-n}$ область расслаивания уменьшается за счет замещения X на OH и особенно за счет выделения R'OH. Это приводит к постоянному увеличению концентрации воды в органической фазе.

Для направленного синтеза олигоорганосилоксанов различного состава и строения важно правильно задать мольное соотношение $[H_2O] : [R_nSiX_{4-n}]$ в зоне реакции^{5,16}. Данное соотношение можно варьировать за счет изменения концентрации общего растворителя (ацетона, спиртов, диоксана, тетрагидрофурана и т.д.). На рисунках 9, *a*—*d* в качестве примера представлена зависимость мольного соотношения H_2O : $:Me_2SiCl_2 u H_2O : MePh_2SiCl в органических фазах <math>O_j$ при изменении концентрации Me_2CO в исходной смеси брутто-состава C_{ij} . Расчет проведен для $X_i = 50$, что соответствует $m = [H_2O] : [MePh_2SiCl] = 12.9$.

Расчет выполнен для четырехкомпонентных смесей органохлорсилан— H_2O — Me_2CO —органосиланол с различным относительным содержанием (*S*, мол. доли) MePhSi₂OH и Me₂Si(OH)₂. На рисунке 9 приведены данные по зависимости относительного объема (V_W , мол. доли) водной фазы от молярной концентрации ацетона (A_i).

Из рисунка 9 видно, что с увеличением концентрации Me₂CO резко увеличивается относительное количество H₂O в органической фазе и уменьшается объем водной фазы. При A = const переход реакционной системы к продукту реакции (т.е. от S = 0 к S = 0.9) сопровождается резким увеличением величины m, от которой зависит соотношение функциональных групп Si—X и Si—OH и полнота протекания ГТФК. Вычисление поля концентраций компонентов реакционной системы легло в основу принципов управления составом продуктов ГПК R_nSiX_{4-n}.⁵

Следует отметить, что в рамках настоящего сравнительного анализа относительное количество воды в органических фазах «алкоксильной» системы заметно больше, чем в «хлорсилановой» системе. Из рисун-

Растворители	Состав	Растворимо	Растворимость (г на 100 г раствора) при температуре				
	(мас.%)	10 °C	20 °C	30 °C	40 °C		
Me ₂ CO : PhMe	0:100	0.12	0.23	0.49	0.94		
2	5:95	4.53	4.66	_	4.86		
	10:90	8.63	_	_	_		
	20:80	16.17	16.96	17.40	18.51		
	40:60	29.17	31.00	32.38	34.70		
	60:40	39.76	42.60	44.90	48.08		
	80:20	48.07	52.34	56.30	60.22		
PhMe : H_2O	100:0	54.48	59.16	63.95	69.71		
-	80:20	60.76	64.90	69.56	72.45		
	60:40	60.19	64.42	70.31	74.04		
	40:60	54.26	61.32	68.47	74.08		
	20:80	37.58	50.18	62.04	73.07		
	5:95	_	_	_	5.60		
	0:100	1.79	2.61	1.72	—		

Рис. 9. Расчетные зависимости мольного соотношения (*m*) $[H_2O]$: $[Me_2SiCl_2]$ (*a*) и $[H_2O]$: $MePh_2SiCl$ (*b*) в органических фазах четырехкомпонентных систем Me_2SiCl_2 ($MePhSiCl_2$)— $Me_2CO-H_2O-Me_2Si(OH)_2$ ($MePh_2SiOH$) и относительного объема водной фазы (V_W , мол. доли) от молярной концентрации Me_2CO (*c*, *d*) (интервал варьирования относительного содержания силанолов (*S*) в смеси — 0.1 мол. доли; точки B_i — точки бинодали).

Таблица 10. Растворимость $MePhSi(OH)_2$ в разных смесях растворителей¹⁰

Таблица 11. Взаимная растворимость системы PhMe—H₂O—насыщенный раствор MePhSi(OH)₂ в Me₂CO (Д_{нас}, мас.%) при 20 °C¹⁰

Состав	Взаимная растворимость (мас.%)					
	Д _{нас}	PhMe	H ₂ O			
1	20.72	78.38	0.90			
2	38.80	56.70	4.50			
3	47.72	44.51	7.77			
4	55.43	32.26	12.3			
5	59.26	32.17	17.67			
6	61.91	8.90	29.19			
7	44.60	1.60	53.80			
8	35.68	1.17	63.15			
9	22.29	0.36	77.35			
10	12.44	0.39	87.17			

ков 9 и 10 видно, что мольное соотношение (*m*) [H₂O] : [R_nSi(OR')_{4-n}] значительно больше, чем [H₂O] : [R_nSiCl_{4-n}]. Так, в случае MePhSiCl₂ *m* = 2 достигается при концентрации ацетона *A* = 70 мол.% (см. рис. 9, *b*), а в случае MePhSi(OMe)₂ при концентрации Me₂O, равной 36 мол.% (рис. 10). При гидролизе MePhSi(OMe)₂ в EtOH количество воды в органической фазе, необходимое для полного процесса, будет достигнуто всего лишь при 17 мол.% EtOH.¹⁶ Поскольку в ходе гидролиза выделяется MeOH, то необходимое количество H₂O будет доставлено в органическую фазу, в которой сосредоточен мономер, за его счет.

На основании полученных результатов можно сделать вывод о том, что общая зависимость относительного содержания продуктов начальных стадий гетерофазной ГПК органохлорсиланов и органоалкоксисиланов от концентрации и природы раст-

Рис. 10. Зависимость мольного соотношения $[H_2O]$: [MePhSi(OMe)₂] от концентрации (*A* (мол.%)) EtOH и Me₂CO в смеси.

ворителя определяется совокупностью ряда конкретных факторов, а именно соотношением воды и мономера в органических фазах, соотношением объемов сосуществующих (органической и водной) фаз, а также констант скоростей гидролиза и ГТФК.

Таким образом, нами проведено сравнение фазовых диаграмм жидкофазных систем $R_n Si(OR')_{4-n}$ — H_2O-Me_2O и $R_n SiCl_{4-n}$ — H_2O-Me_2O (R = Me, Ph; R' = Me, Et; n = 0-2). Математическое моделирование фазового равновесия этих систем на основе уравнения UNIFAC и NRTL выявило удовлетворительное соответствие расчетных и экспериментальных данных. Общей особенностью двух изучаемых процессов синтеза является гетерофазность, которая обусловлена взаимной нерастворимостью мономеров и воды. При этом область гетерогенности системы $R_n Si(OR')_{4-n}$ — Me_2O-H_2O меньше, чем системы $R_n SiCl_{4-n}$ — Me_2O-H_2O меньше, чем сокращает эту область.

Установлено, что уменьшение области гетерогенности в обеих изучаемых системах $R_n SiX_{4-n}$ — растворитель-вода происходит и в процессе гидролиза исходных мономеров R_nSiX_{4-n} (замещение X-групп на ОН-группы и выделение побочных веществ HX). В целом при одинаковых концентрациях общего растворителя системы $R_n Si(OR')_{4-n}$ —растворитель—вода характеризуются большим содержанием воды по отношению к мономеру в органических фазах, чем системы R_nSiCl_{4-n}-растворитель-вода. Следует отметить, что в обычно используемом на практике интервале концентраций компонентов реакционной системы количество воды в органической (реакционной) фазе системы R_nSiX_{4-n}-растворитель-вода недостаточно для полного гидролиза функциональных групп мономера.

Рассмотренные фазовые диаграммы жидкофазных систем органохлорсилан/органоалкоксисилан—растворитель—вода могут иметь прикладное значение для оптимизации технологических процессов и проведения направленного синтеза олигоорганосилоксанов различного состава и строения.

Авторы выражают благодарность Л. В. Костиковой (МИТХТ) за выполнение расчетов фазового равновесия R_nSiCl_{4-n} —Me₂O—H₂O методом UNIFAC, а также Ю. А. Писаренко (МИТХТ) за проведение математического моделирования фазового равновесия $R_nSi(OR')_{4-n}$ —Me₂O—H₂O на основе уравнения NRTL.

Список литературы

- 1. Л. Б. Соколов, Поликонденсационный метод синтеза полимеров, Химия, Москва, 1966, 332 с.
- 2. П. В. Иванов, Д. Н. Голубых, Е. А.Чернышев, *Изв. РАН. Сер. хим.*, 2001, 1909 [P. V. Ivanov, D. N. Golubykh, Е. А. Chernyshev, *Russ. Chem. Bull.* (*Int. Ed.*), 2001, **50**, 1998].
- K. J. McNeil, J. A. DiCaprio, D. A. Walsh, R. F. Pratt, J. Am. Chem. Soc., 1980, 102, 1859.
- П. В. Иванов, Н. И. Гельперин, В. В. Киреев, Высокомолекуляр. соединения, Сер. А, 1985, 27, 1041 [Polym. Sci. USSR, Ser. A (Engl. Transl.), 1985, 27].

- П. В. Иванов, В. И. Маслова, Н. М. Бузырева, Н. Г. Мажорова, Д. Н. Голубых, Л. В. Костикова, А. С. Мозжухин, Е. А. Чернышев, *Журн. Всесоюз. хим. о-ва им. Д. И. Менделеева*, 1998, **42**, № 6, 87 [*Mendeleev Chem. J.* (*Engl. Transl.*), 1998, **42**, № 6].
- А. Гордон, Р. Форд, Спутник химика, Мир, Москва, 1976, 541 [A. J. Gordon, R. A. Ford, The Chemist's Companion: A Handbook of Practical Data, Techniques, and References, 1973, Wiley, New York, 560].
- С. Уэйлес, Фазовые равновесия в химической технологии, Мир, Москва, 1989, 664 [S. M. Walas, *Phase Equilibria in Chemical Engineering*, Butter Worth Publishers, London, 1985, 664].
- 8. Н. Г. Мажорова, П. В. Иванов, *Вестн. МИТХТ*, 2013, **8**, № 5, 55.
- Т. И. Сунеканц, Г. А. Уварова, О. В. Уткин, В. В. Северный, Н. В. Варламова, В. С. Колобков, Н. В. Павлова, Т. Л. Краснова, Е. А. Чернышев, *Журн. приклад. химии*, 1985, **58**, 341 [*J. Appl. Chem. USSR (Engl. Transl.*), 1985, **58**].
- П. В. Иванов, Дис. докт. хим. наук, Моск. госуд. акад. тонк. хим. технологий им. М. В. Ломоносова, Москва, 1998, 250.

- A. A. Fredenslung, R. L. Jones, J. M. Prausnits, *AIChE J.*, 1975, **21**, 1086.
- A. A. Fredenslung, J. Gmehling, D. Russmussen, Vapour-Liquid Equilibria, Elsever, 1977, 392.
- В. Б. Коган, С. К. Огородников, В. В. Кафаров, Справочник по растворимости, Том 2, Тройные многокомпонентные системы, Изд-во АН СССР, Москва, 1963, 946.
- 14. K. A. Smith, J. Org. Chem., 1986, 51, 3827.
- 15. H. D. Cogan, Setterston Chemical and Eng. News, 1946, 24, 2499.
- Н. Г. Мажорова, Дис. канд. хим. наук, Моск. госуд. ун-т тонких химических технологий им. М. В. Ломоносова, Москва, 2015, 133.
- 17. L. L. Hench, Y. K. West, Chem. Rev., 1990, 90, 33.

Поступила в редакцию 18 октября 2019; после доработки — 22 января 2020; принята к публикации 5 марта 2020