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ABSTRACT

This paper presents a method for generating stereoscopic or
multi-angle video frames using a computer game (Grand Theft
Auto V). We developed a mod that captures synthetic frames
allows us to create geometric distortions like those that oc-
cur in a real video. These distortions are the main cause
of viewer discomfort when watching 3D movies. Datasets
generated in this way can aid in solving problems related to
machine-learning-based assessment of stereoscopic- or multi-
angle-video quality. We trained a convolutional neural net-
work to evaluate perspective distortions and converged cam-
era axes in stereoscopic video, then tested it on real 3D movies.
The neural network discovered multiple examples of these
distortions.

Index Terms— Perspective distortion, converged axes,
geometric distortions, stereoscopic video, deep learning.

1. INTRODUCTION

Recent years have seen a tremendous leap in the use of deep
learning to analyze and process stereoscopic video. For ex-
ample, Zbontar and LeCun [1] used this approach to solve
the problem of stereo matching. Li et al. [2] trained a con-
volutional neural network that predicts the right-image seg-
mentation on the basis of the left-image segmentation. Also,
neural networks can assess the quality of stereoscopic im-
ages [3]. This technique, however, has disadvantages. For
instance, training the model requires a set of data labeled for
a specific task. Researchers must either create such a dataset
on their own or use an existing one, if available. Until re-
cently, there were no large sets of stereoscopic sequences.
Kits such as KITTI stereo 2012 (194 training-image pairs and
195 test-image pairs) [4], KITTI stereo 2015 (800 training
scenes and 800 test scenes) [5] and Middlebury Stereo (33
short sequences) [6] are too small for many tasks. But in
recent years, datasets containing over 100,000 stereoscopic
pairs have emerged, including IRS (103,316 synthetic sam-
ples) [7] and DrivingStereo (182,188 real samples) [8]. Un-
fortunately, they are unsuitable for some tasks: stereoscopic-
video analysis and processing, for example, require special
frames that such datasets lack. For instance, when training
a model to detect converged camera axes, stereoscopic pairs

(a) Perspective distortion

(b) Shooting with converged camera axes

Fig. 1: Schematic representation of distortions.

must have an angle between the views. These tasks are im-
portant because stereoscopic-frame distortion leads to viewer
discomfort, and many types of distortions can afflict stereo-
scopic video [9]. In such cases, creating even small datasets
with real sequences can be too inefficient.

One solution to this problem is to automatically generate
synthetic stereoscopic-video sequences. A convenient envi-
ronment is the Grand Theft Auto V (GTA V) computer game,
which allows the use of mods to capture frames of the sur-
rounding space and the associated data. Because of the game’s
realism, these frames are high definition and lifelike. The
single-angle frame sequences Playing for Benchmarks [10],
PreSIL [11] and GTA-3D [12] have already employed this
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Fig. 2: A captured image and its depth map.

approach.
In this article, we propose a method that uses GTA V

to automatically generate a synthetic set of frame sequences
with the following variable characteristics:

• Time step between frames

• Number of camera angles

• Camera direction (can be random for each frame)

• Horizontal/vertical camera rotation for some angles (can
be random for each frame)

• Horizontal/vertical/depth camera shift for some angles
(can be random for each frame)

• Weather (can be random for each frame)

• Time of day (can be random for each frame)

This variability is achievable through a convenient mod-cre-
ation interface that controls the weather, time of day, camera
position and speed of object movement. The interface can
also freeze the scene completely enable shooting from multi-
ple angles. Employing a small time step with a fixed cam-
era direction, fixed weather conditions and a fixed time of
day yields a video sequence, whereas a large time step with
random camera directions, random weather conditions and a
random time of day yields a set of dissimilar frames. This
method can produce frames with 1,920×1,080 resolution or
lower. Each image is annotated with the following:

• Time of day and weather conditions

• Depth map (Figure 2)

• Horizontal and vertical camera-rotation angle (in de-
grees)

• Horizontal/vertical/depth camera shift (in centimeters)

As an experiment, we used this method to generate data for
solving problems related to evaluating perspective distortion
(Figure 1a) and converged camera axes (Figure 1b). Perspec-
tive distortion occurs when the left and right cameras have a
vertical offset, creating incorrect occlusions. When shooting
close-ups with converged axes, vertical parallax and unpleas-
ant distortions of object shapes can occur. These effects can
cause viewers to suffer headaches or nausea.

We modified the resulting sequences by adding noise and
blur to make the frames more realistic, then divided them into
training and validation samples. Next, we trained a convolu-
tional neural network on the synthetic sequences with appro-
priate distortions. It showed high accuracy when tested on a
validation set. We also tested the model on real stereoscopic
films, manually selecting frames from among those in which
the model exhibited a high distortion score.

2. RELATED WORK

2.1. Synthetic datasets

Because of the need to obtain large datasets, synthetic data
generation is often the method of choice. It greatly reduces
ground-truth annotation. Naturally, the problem is how to
generate sufficiently realistic annotated ground-truth frames.
Synthetic-data-set creators employ different techniques to make
the generated data realistic.

A particularly famous artificial-video set is MPI-Sintel
[13]. It contains multiple sequences and serves as a bench-
mark for evaluating algorithms that construct optical-flow and
disparity maps. To obtain this dataset, its creators used the
Sintel animation engine, which is open source. Wrenninge
et al. [14] went the other way: they designed a method for
procedurally generating street landscapes, forming the basis
of the Synscapes dataset. The advantage of this method is
its numerous independently adjustable parameters, but it can
only produce static images, not video sequences.

The engines that drive modern video games can create
highly realistic frames, making them of great interest. For
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(a) Enlarged area

(b) Left and right images.

Fig. 3: Processed frame with perspective distortion. The right
camera is 8 cm higher than the left.

(a) Enlarged area

(b) Left image

Fig. 4: Processed frame from cameras with axes converging at
a 5-degree angle. Vertical parallax is noticeable in the frame’s
lower-left corner.

example, Qiu and Yuille [15] developed the UnrealCV plugin
to produce annotated datasets using Unreal Engine 4. Shafaei
et al. [16] generated a VG dataset containing over 60,000
frames from the game Half-Life 2. Particularly relevant to
researchers is GTA V, which has a large, open world and re-
alistic graphics. Unfortunately the source code is closed, but
modifications are possible. Johnson-Roberson et al. [17] de-
veloped the GTAVisionExport plugin, which can create from
the game a depth map and pixel-wise object stencil buffer of
frames. Of special note, this plugin aided in creating the Pre-
cise Synthetic Image and LiDAR (PreSIL) [11] dataset for
autonomous-vehicle perception, as well as a set of omnidi-
rectional images with semantic segmentation and a depth map
(OmniScape) [18]. Richter et al. produced two sets of video
sequences: Playing for Data [19], which contains semantic
maps, and Playing for Benchmarks [10], which is annotated
with ground-truth data for both low- and high-level vision
tasks, including optical flow, semantic-instance segmentation,
object detection and tracking, object-level 3D-scene layout,
and visual odometry. GTA V was also the source for the GTA-
3D [12] dataset containing 2D frames, 3D point-cloud data,
and 3D vehicle-bounding-box labels.

2.2. Distortion estimation

Because geometric distortions of stereoscopic-video angles
cause viewer discomfort, detecting them and evaluating their
magnitude is important. Until now, machine-learning meth-
ods have seldom been a tool for solving this problem. Stereo
rectification is a common approach to correcting geometric
distortion: it involves projection of the left and right images
onto a common plane parallel to the line connecting the opti-
cal centers. It then searches for the corresponding point pairs
between the two views. Most such methods focus on esti-
mating the fundamental matrix that easily corrects a stereo
pair. Evaluating this matrix requires numerous correspon-
dences between the two angles. For example, Zilli et al. [20]
developed a stereo-rectification method by evaluating the fun-
damental matrix. The method shows relatively high accuracy,
but it only works for small angles. Georgiev et al. [21] pro-
posed an approach that imposes restrictions on the camera po-
sitions while still remaining practical. It therefore avoided the
need to evaluate the fundamental matrix and thus accelerated
the algorithm. Napieralski and Kowalczyk [22] suggested the
sliding-window method to estimate the vertical shift. This
technique avoids difficulties that arise when the image has
many repeating patterns, which can cause incorrect matching
of the fragments.

3. PROPOSED METHOD

3.1. Mod description

We developed our own mod to extract data from GTA V. As
with the PreSIL and OmniScape datasets, our approach used
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Fig. 5: Schematic of trained convolutional neural network.

the GTAVisionExport [17] plugin to generate depth maps. The
virtual camera is fixed on an invisible machine, and it takes
pictures at regular intervals from a given number of angles.
To automate the process, we employed the VAutodrive mod,
which can control a car via autopilot, choosing a random di-
rection at each turn.

To create datasets for different tasks, we included in the
mod a set of parameters for adjusting the camera, listed in
the Section 1. As mentioned, our method allows genera-
tion of stereoscopic sequences with various geometric distor-
tions. It therefore simplifies creation of training datasets and
use of machine learning to evaluate stereoscopic-video dis-
tortion. The proposed method for creating synthetic datasets
can generate various distortions, including perspective distor-
tion, scale mismatch, rotation mismatch and converged cam-
era axes. If one camera is closer than the other, the result
will be a stereo pair with scale mismatch. Tilting one camera
slightly to the left or right generates frames with rotation mis-
match. Or the camera axes can converge. Combining various
distortion types can yield a dataset for a more general method.
By adjusting the number of angles, we can create datasets of
not only stereoscopic frames but also polygonal frames.

Since the mod API can set the weather conditions and
time of day, we included this feature in our mod to generate
more- varied frames. The following are the possible weather
types: extra sunny, clear, clouds, smog, foggy, overcast, rain,
thunderstorm, clear, snow, light snow. We excluded some of
the available weather types to avoid excessive artificiality.

The time-step setting allows us to adjust the video’s frame
rate. A large step yields frames with little relation to each
other. A small step is necessary to generate video; stopping
movement in the game to allow shooting from multiple an-
gles, however, makes video recording slower than real time.
Setting a random shooting direction also increases the dissim-
ilarity of the captured frames. In this case, the camera turns a
randomly selected angle of 0 to 360 degrees for each frame.
In addition, randomly changing weather conditions and time
of day generates highly disparate frames, allowing us to train
the neural network without shifting the domain toward frames
of the same type.

3.2. Dataset generation

To test our data-set-generation method, we trained a neural
network to estimate perspective distortion and converged cam-
era axes. To this end, we created a set of stereoscopic frames
containing these distortions. The amount of perspective dis-
tortion and the angle of the converged axes were random. The
convergence angle of the camera axes was between 0 and 10
degrees (Figure 4); the perspective distortion of one cham-
ber, up or down, was no more than 20 centimeters (Figure 3).
Most frames exhibited both distortions, but some exhibited
just one or neither. Since we developed a model that predicts
the distortion amount on the basis of one frame, we tuned the
mod to prevent adjacent frames from being similar: they were
captured with a time step of 1,000 ms, each with a random
camera direction, random weather conditions and a random
time of day. The result was a total of 4,500 frames with a res-
olution of 1,920×1,080: 4,000 were for the training set and
500 for the test set. We included images of both city streets
and countryside landscapes. The generation process took just
over three hours.

For more-realistic views, we modified most frames with
noise and/or blur. In particular, we added Gaussian noise to
80% of the frames. To fluctuate the noise power, the variance
was random in the range 0 to 0.01 with an average value of 0.
Gaussian blur was in 80% of the frames as well. To imitate
the camera’s operation, the image blur was only in the fore-
ground or background rather than both. Information about
object distance came from the depth maps we generated with
the frames. The Gaussian-kernel size was (11, 11) with a ran-
domly chosen standard deviation of 1 to 4 in the horizontal
direction. After these transformations, the synthetic images
were more similar to the real ones.

3.3. Model architecture

The model’s architecture (Figure 5) is a convolutional neural
network. The input data is a calculated disparity map [23] for
the left view, scaled down to 480×272, and a corresponding
confidence map. The model returns two numbers normalized
from -1 to 1: the angle between the converging optical axes
(in degrees) and the perspective distortion (in centimeters).
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(a) Enlarged area

(b) Left and right images.

Fig. 6: A scene from Pirates of the Caribbean: On Stranger
Tides with perspective distortion.

In the first experiments, the model estimated only one of two
distortions. But we settled on such an option to simultane-
ously detect perspective distortion and converged axes, since
the resulting model showed good results on the validation set.
The neural network has 2,886,754 trainable parameters. For
the loss function, we chose mean squared error (MSE):

LMSE =
1

2
((perspest − perspgt)

2 + (convest − convgt)
2).

4. RESULTS

4.1. Limitations

The speed of the mod depends on the time step between frames
— the period during which there is no image capture or depth
measurement but the car is moving. Also, the greater the
number of shooting angles, the longer it takes to produce the
frames. The Table 1 shows the number of frames the mod
generates per minute as these parameters change. We took the
measurements using a system with a 2.80GHz Intel Core i7-
7700HQ processor, an Nvidia GeForce GTX 1050 Ti graphics
card and 16 GB of RAM.

Because a car can move autonomously, data generation
can proceed without operator participation. We can therefore
efficiently create synthetic datasets.

4.2. Training results

We trained the model on 4000 prepared samples over 70 epochs
using the Adam optimizer with an initial learning rate of 10−4.

(a) Enlarged area

(b) Left and right images.

Fig. 7: A scene from Drive Angry with perspective distortion.

Time step between
frames (ms)

Number of views
1 2 3 4

40 58 30 22 18
1,000 28 22 16 13

Table 1: Number of frames the mod generates per minute.

Every 10 epochs without a fall in the validation error, we re-
duced the learning rate by 10 times. Testing of the trained
model employed a validation sample of 500 frames. For accu-
racy metric we use the Pearson correlation coefficients (PCCs)
between ground-truth distortion and model-estimated values.
For converged axes, the PCC was 0.956, and for perspective
distortion, it was 0.859. This indicates a high correlation of
the predicted values with ground-truth values.

4.3. Checking movies

We also used the trained model to find distortion examples in
stereoscopic films: Drive Angry and Pirates of the Caribbean:
On Stranger Tides. For each frame in these movies, we esti-
mated the magnitude of the perspective distortion and the con-
vergence angle of the cameras. To select the frames of inter-
est to us, we estimated threshold values — any frames below
those thresholds received no further considered. Moreover,
among the rest of the frames, we manually selected those that
contain the distortions of interest.

Examples of perspective distortion can be seen in Figures
6 and 7. Magnified objects show that the camera has moved
up or down. Figures 8 and 9 show frames with converged
camera axes. Vertical parallax occurs in the corners of the
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(a) Enlarged area

(b) Left image

Fig. 8: A scene from Pirates of the Caribbean: On Stranger
Tides with converged axes.

frame.

5. CONCLUSION

Our proposed method facilitates creation of datasets to aid in
processing and analyzing stereoscopic and multi-angle video.
Programmatically setting camera parameters is much more
convenient than working with real cameras. The GTA V com-
puter game enables automatic generation of large synthetic
datasets with specified characteristics at a minimal cost. This
capability opens new avenues for applying machine learning
to various problems. In particular, we showed this technique
can help search for perspective distortion and converged cam-
era axes in stereoscopic video, and we used the trained mod-
els to find these artifacts in films. We plan to improve our
approach to assessing stereoscopic-video quality by, for ex-
ample, considering more distortion types.
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(a) Enlarged area

(b) Left image

Fig. 9: A scene from Drive Angry with converged axes.
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