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 Introduction. Brain–computer interface (BCI) tech-
nology allows people to learn to produce transient changes 
in brain activity which are read by recording the electroen-
cephalogram (EEG) and transformed into commands for 
external executive systems [Wolpaw et al., 2002; Kaplan et 
al., 2013]. An effective method for voluntary triggering of 
EEG changes is provided by focusing attention on an exter-
nal stimulus or mental image of a movement. Furthermore, 
it has long been known that assimilation of new motor acts 

in sportsmen is promoted by repeated performance of the 
corresponding movements in the imagination – ideomotor 
training [Schuster et al., 2011]. It is therefore no surprise 
that the use of brain–computer interface technology based 
on motor imagery relating to the subject’s own body is pop-
ular for training and for restoration of impaired motor func-
tions, for example in patients with neurological trauma and 
after stroke [Mulder et al., 2007; Simmons et al., 2008; 
Kaplan, 2016].
 Patients with pareses and even people with limb am-
putations have been found to be able to imagine movements 
in both the visual and kinesthetic modalities and to be only 
slightly less good at this skill than healthy people [Malouin et 
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nel may be occupied processing the information required 
for the ongoing activity. For example, in the situation of 
controlling a wheelchair using a BCI, the patient must con-
tinuously follow displacements in space and possible ob-
structions in the path. This impels investigators to consider 
variants on the formation of feedback in other sensory mo-
dalities, for example, the tactile. The fi rst brain–computer 
interface with eight vibrotactile stimulators applied to the 
skin of the shoulder girdle around the subject’s body was 
presented by Cincotti et al. [2007a]. The authors noted 
that tactile information is recognized well by subjects, was 
comfortable for prolonged training sessions lasting up to an 
hour, and provided accurate control comparable with that 
obtained with the classical paradigm using visual feedback. 
A wider-ranging study was reported by the same group 
[Cincotti et al., 2007b], involving 33 subjects (including pa-
tients with paraplegia) and vibrotactile feedback was found 
to have advantages over visual feedback in complex visual 
tasks (closer to real-life situations). The authors noted that 
training to motor imagery was equally successful using 
the visual and vibrotactile means of delivering feedback, 
though vibration responses were perceived subjectively as 
more natural. Thus, selection of feedback modality must 
take account of subjects’ preferences, the availability of the 
visual channel, and the design of the device to be controlled 
by the BCI.
 However, the use of vibrotactile stimuli in the motor 
imagery-based brain–computer interface loop can in and of 
itself lead to the occurrence of EEG reactions of the desyn-
chronization type, which can complicate classifi cation of 
EEG patterns in the BCI [McCormick et al., 2007]. Yao et 
al. [2013] tested how vibrotactile stimulation delivered to 
the wrist was combined with motor imagery in EEG reac-
tions. These studies showed that classifi cation of motor im-
agery patterns of the right and left hands was accurate in 
conditions of selective attention by the subjects to vibration 
stimulation of the target hand during motor imagery. The 
subjects noted that this stimulation did not distract them 
from the main task. Furthermore, tactile stimulation was 
particularly effective for subjects with “BCI incompetence,” 
thus widening the potential applications and availability of 
this brain–computer interface for larger numbers of patients 
[Yao et al., 2013].
 Similar results evidencing successful use of vibrotac-
tile feedback in BCI construction projects based on motor 
imagery were presented by Leeb et al. [2013]. These au-
thors did not fi nd any statistically signifi cant differences 
between systems using visual and vibrational feedback. 
Chatterjee et al. [2007] emphasized that vibrotactile feed-
back can be convenient in modeling control of a neuropros-
thesis using a BCI, providing the patient with adequate sen-
sory information. Apart from vibration sensors, feedback 
for the BCI could also consist of functional electric stimula-
tion of muscles, which, as compared with the use of visual 
feedback, improves both learning of motor imagery and the 

al., 2009]. Despite the fact that a number of laboratories and 
clinics have made attempts to develop poststroke rehabilita-
tion programs using neurological training devices based on 
brain–computer interfaces, only some of these have yielded 
positive clinical effects [Page et al., 2007; Frolov et al., 2013].
 Motor imagery is known to be associated with well-de-
veloped EEG desynchronization of the sensorimotor μ 
rhythm, which also underlies the recognition of the cor-
responding mental act by the BCI [Friedrich et al., 2013; 
Pfurtscheller and Neuper, 1997]. It has also been shown that 
repeated training to mental motor imagery with feedback in 
the BCI loop leads to formation of the corresponding skill 
with enhanced EEG desynchronization and consequent im-
provement in the classifi cation of EEG patterns [Mokienko 
et al., 2013; Toppi et al., 2014]. However, BCI methods 
based on motor imagery are quite complex to assimilate, 
especially by poststroke patients, and require improvement 
in training protocols and increased user involvement in the 
task in order to form a stable skill [Simmons et al., 2008]. 
Thus, it is important to develop specialized training regimes 
for motor imagery oriented, on the one hand, to maximizing 
the effectiveness of subsequent training with BCI and, on 
the other, to the potential for using neurotrainers in domes-
tic conditions without the need for medical staff.
 Many investigations have drawn attention to the need 
to provide suitable feedback to subjects during training to 
motor imagery and training in the BCI loop [Ono et al., 
2013; Vuckovic and Osuagwu, 2013]. The presence of this 
feedback increases the accuracy of command classifi cation 
in the brain–computer interface [Gonzalez-Franco et al., 
2011], which appears to be related to formation of the motor 
imagery skill. In addition, feedback helps to increase the 
subject’s motivation, his or her involvement in the task, and 
makes the training process interactive. The most widely 
used and best studied type of feedback is visual, which re-
quires the subject to focus attention and gaze on the BCI 
control system (for example, changes in a marker on a 
screen) [López-Larraz et al., 2011]. Realistic tasks oriented 
to a concrete aim have been shown to work best (for exam-
ple, the subject is given the task of imagining not simply 
clenching the fi st, but is shown a ball on the screen which 
has to be thrown into a basket mentally) [Mulder, 2007; 
Vuckovic and Osuagwu, 2013]. As in the real motor act, eye 
and hand movement must be clearly correlated with each 
other and the same eye movements are needed in the mental 
imagery. Experiments with motor imagery of the hands with 
the gaze fi xed [Heremans et al., 2011] showed that high 
learning accuracy and effectiveness can only be achieved in 
conditions of free eye movements. Correlations between 
motor imagery and eye movements are so strong that 
Poiroux et al. [2015] even suggested monitoring subjects’ 
involvement and understanding of the task in terms of ocu-
lographic characteristics.
 However, in real practice, it is not always possible 
to provide additional visual feedback, as the visual chan-
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Cl/Ag active electrodes positioned according to the 10–10 
system. Reference electrodes were TP9 + TP10 and the 
ground electrode was Afz. Electrodes were mounted using 
conducting gel to give contact resistance of no more than 
20 kΩ. Signal sampling frequency was 500 Hz, and traces 
were made using a fi lter passing frequencies of 0.1–60 Hz 
and a 50-Hz electrical network rejection fi lter. Data were 
recorded in BCI2000 software [Schalk et al., 2004].
 Recording of EMG and event-related motor respons-
es. The electromyogram (EMG) was recorded using pairs 
of superfi cial Ag/AgCl electrodes (ED6, EasyCap GmbH, 
Germany) from the fl exor digitorum superfi cialis muscle of 
the right hand. The skin beneath the electrodes was washed 
with alcohol wipes and abrasive paper to decrease con-
tact resistance; resistance was no greater than 5 kΩ. The 
signal was recorded using an NVX52 amplifi er (Medical 
Computer Systems, Russia). The signal sampling frequency 
was 10 kHz and recordings used a fi lter passing 5–350 Hz 
with a fourth-order digital Butterworth fi lter.
 Single-pulse transcranial magnetic stimulation (TMS) 
was performed using a Neuro-MS/D magnetic stimulator 
(Neurosoft, Russia) with a fi gure-eight coil. The “hot point” 
for the fl exor digitorum superfi cialis muscle of the right 
hand was found and the stimulation parameters were estab-
lished such that motor event-related potentials (MEP) in the 
resting state were 0.4–0.8 mV (~110–115% of the motor re-
sponse threshold). EMG recording and processing were run 
on the Resonance platform (developed by Yu O. Nuzhdin).
 Study protocol. Each subject took part in seven exper-
imental sessions each of duration 90–150 min. During ex-
periments, subjects sat in a comfortable chair with armrests. 
Throughout the session, the subject was trained to imagine 
the same movement – sequentially tapping the support with 
the fi ngers from an initially relaxed hand position – using 
the right and left hands separately. Our previous studies 
[Vasilyev et al., 2016] showed that this movement was not 
only subjectively easier to carry out by users, but was also 
classifi ed better. The reference state was the cognitive task of 
carrying out mental arithmetic. The cognitive task provided 
better distraction from motor imagery and created an easily 
reproducible baseline EEG pattern without motor activity.
 Experimental sessions consisted of 10–22 recordings 
of duration 2–4 min. In each trace the subject was asked to 
perform two types of command in sequence: to imagine the 
movement of one hand and carry out mental arithmetic or 
to sequentially imagine the movement of each hand. This 
recording regime provided constant focusing of the user on 
the task and prevented drowsiness (which could be expect-
ed given the lack of visual information input with the eyes 
closed). Each trace consisted of a sequence of 12 commands. 
The duration of command presentation was 10–13 sec.
 During traces, the signal to start performing motor im-
agery of the right or left hand was given using the vibromo-
tors (3 V, 12000 rpm, motor diameter 10 mm, surrounded by 
a metal body of diameter 24 mm) positioned on the wrist of 

accuracy of control in the brain–computer interface loop 
[Bhattacharyya et al., 2016]. These authors also noted that 
the use of the proprioceptive channel aids subjects’ concen-
tration on the task and their ability to maintain a high level 
of motivation during training.
 However, in these studies only feedback for the BCI 
was tactile; delivery of the stimulus designating the start 
of the command still used the visual sensory channel. This 
construction of neurocomputer interfaces makes them un-
suitable for people with various visual impairments: blind-
ness, as well as diffi culties with eye movement and focus-
ing [Rutkowski and Mori, 2015]. At the same time, even 
completely blind patients have been found to be capable of 
motor imagery. Malouin et al. [2009] found that both visual 
and kinesthetic motor imagery in a group of subjects with 
late-onset blindness was greater than that in a control group 
of healthy subjects of the same age. Kober et al. [2004] found 
that EEG desynchronization patterns in the central areas of 
the cortex in kinesthetic motor imagery of the hands showed 
no differences between groups of blind and seeing subjects.
 An extensive systematic review [Schuster et al., 2011] 
addressed 133 experimental studies of training based on 
motor imagery in education, medicine, music, psychology, 
and sport, and indicated that motor imagery in most studies 
was performed with the eyes closed. This practice led to 
more successful training results. This can evidently be ex-
plained by the fact that decreases in incoming sensory infor-
mation lead people to form a brighter kinesthetic image, 
which correlates with the extent of the physiological effect 
[Vasilyev et al., 2017]. At the same time, the typical practice 
of working in the BCI loop involves having the eyes open. 
We did not fi nd any published data on brain–computer inter-
faces based on motor imagery in which the subjects were 
asked to work with the eyes closed.
 Thus, the aim of the present work was to study the for-
mation of the motor imagery skill in users of a brain–com-
puter interface with vibrotactile delivery of stimuli and 
feedback in the same modality, as well as to evaluate the 
electrophysiological characteristics of the formation of the 
motor imagery skill with the eyes closed.
 Methods. Subjects. A total of 11 volunteers (10 wom-
en, one man) aged 19–27 (mean 24.4 ± 0.7) years took part 
in the study. None of the subjects had previous experience 
of working with neurocomputer interfaces. None had been 
diagnosed with neurological or mental diseases. All were 
right-handed on the Edinburgh manual asymmetry ques-
tionnaire [Oldfi eld, 1971]: coeffi cients of asymmetry aver-
aged +73 ± 8. Subjects were familiarized with general infor-
mation on the experiment and signed voluntary informed 
consent to take part in the study. The study protocol was 
approved by the Ethics Committee of the Faculty of Biology, 
Lomonosov Moscow State University.
 EEG recording. The electroencephalogram (EEG) was 
recorded during studies using a BrainVision actiCHamp en-
cephalograph (Brain Products GmbH, Germany) using 64 
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 During sessions with TMS, the monitor in front of the 
subject and experimenter displayed real-time EMG activity. 
The EMG was presented as vertical bars with mean square 
values (computed online) of signal amplitudes (in a sliding 
window of length 300 msec with a 100-msec step). At the 
beginning of the session subjects had to fi nd the hand posi-
tion producing the minimal baseline EMG amplitude; 
throughout all recordings the experimenter monitored main-
tenance of the ongoing level of muscle activity detected.
 EEG analysis. Data were analyzed using the Resonance 
platform (developed by Yu. O. Nuzhdin). Analysis of EEG 
traces identifi ed epochs corresponding to subjects’ attempts 
at states; the time segment of 1.5 sec from stimulus delivery 
(to the beginning of the trial) was excluded from analysis. 
The method used for analysis of individual EEG character-
istics is described below.
 Classifi cation and analysis of EEG patterns. Charac-
teristics of EEG patterns signifi cant for classifi cation were 
identifi ed by fi ltering the trace in the band 6–40 Hz and then 
computing transformation matrixes for individual spatial 
CSP (common spatial pattern) fi lters [Koles, 1991], which 
has been used successfully for recognizing motor imagery 
patterns [Ramoser et al., 2000]. After transformation of the 
spatial domain of the signal (by multiplication by the trans-
formation matrix), each channel was identifi ed separately in 
the spectral domain. For each of the two states being com-
pared, the probability density of each spectral component in 
the range 7–30 Hz was regenerated (coeffi cients of the 

the corresponding hand, while the signal to carry out the 
cognitive task was delivered using an analogous vibromotor 
positioned on the back of the subject’s neck (beneath the 
collar). The vibromotors were attached to the skin of the 
hand using fl exible Velcro tapes of the appropriate size. The 
beginning of a command was marked by giving a triple vi-
brational signal of duration 1000 msec (three signals each of 
200 msec with pauses of 20 msec).
 The aim of the fi rst two sessions was to familiarize the 
subject with the process of motor imagery with the eyes 
closed. The subject initially performed the movement for 
real, at full amplitude, concentrating on the kinesthetic sen-
sations; the amplitude of the muscle contractions was then 
decreased all the way to complete disappearance (identifi ed 
by electromyograms). During performance of any kind of 
movement, the subject told him- or herself which fi nger to 
use at each moment of the motor image with the aim of 
increasing concentration (delivery of the mental command). 
Each motor imagery trial consisted of sequential images 
of fi nger movements in the order specifi ed to the subject 
arbitrarily.
 In the third and fourth sessions, the BCI loop included 
vibrational feedback delivered via the same vibromotors as 
the commands. The signal for confi rming correct classifi ca-
tion of state consisted of a single prolonged (600 msec) vi-
bration. Confi rmation was given at the end of the command 
only when it was correctly recognized (above the specifi ed 
threshold level).
 In the fi fth and sixth sessions, formation of a stable 
motor imagery skill with the eyes closed was monitored by 
making traces with analogous sequences of commands with 
the eyes open. Signals identifying the beginnings of com-
mands were still presented using the vibromotors rather 
than visually. During traces with the eyes open, the subject 
had to avoid directing the gaze to the hands (to avoid pro-
voking visual imagery in place of kinesthetic).
 In the seventh session, the dynamics of corticospinal 
excitability were measured by TMS during motor imagery. 
During each trace with TMS, the subject carried out two 
types of command – motor imagery of one hand (the exper-
imental condition) and the cognitive mental arithmetic task 
(control condition). Commands for subjects were delivered 
using vibromotors with the same vibration patterns as in 
previous sessions. Commands were given in sequences of 
three (AAABBBAAABBB... to a total of 30 commands in 
each trace), and during each command a TMS discharge 
was delivered at a random time point in the period 2–5 sec 
from the beginning of vibration. A total of 150 motor re-
sponses were recorded from each subject during the seventh 
session: 15 during motor imagery of the left hand with the 
eyes closed, 30 during motor imagery of the right hand with 
the eyes closed, 45 during performance of the cognitive task 
with the eyes closed, 30 during motor imagery of the right 
hand with the eyes open, and 30 during performance of the 
cognitive task with the eyes open.

Fig. 1. Example Showing calculation OF ERDd for a trace from one sub-
ject. The spectral power distribution in the band 8–12 Hz in the spatially 
fi ltered channel (CSP) is shown for two states: motor imagery and cogni-
tive task (reference state). Areas under the distribution curves (S) are taken 
as 100%. ERDd takes values from 0 to 100.
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assessed in terms of changes in the amplitudes of motor 
event-related potentials. MEP amplitudes were computed 
by the peak-to-peak method (from the positive peak to the 
negative peak of the potential). Changes in amplitude were 
evaluated in comparison to the reference state (mental arith-
metic) as the ratio of mean values of potentials obtained 
during a single trace (30 stimuli). Potentials with preceding 
TMS pulses of muscle activity (10–20%) were excluded 
from the analysis.
 Statistical analysis. Study results were processed 
statistically in Statistica 10 (StatSoft). The signifi cance of 
subjects’ individual results (increases in MEP, comparison 
of classifi cation accuracy in two conditions in individu-
al subjects) was assessed using the Mann–Whitney test. 
The Friedman test was used for multiple linked sets (ses-
sion-by-session analysis of ERDd, mean excitability in three 
presentation conditions). The Wilcoxon test for paired com-
parisons was used when the signifi cance threshold of the 
Friedman test was exceeded and for testing pairs of linked 
sets (group effects by classifi cation accuracy). Correlation 
of parameters was assessed using the Spearman coeffi cient. 
The threshold of statistical signifi cance for all tests was p < 
< 0.05. For convenience, data are presented using Microsoft 
Offi ce Excel 2010 and MathWorks MATLAB2016b.
 Psychological testing. In the middle of each session, 
subjects were given the “Scale of States” questionnaire 
[Leonova and Kuznetsova, 2015]. This method was used to 
assess the level of subjective comfort of the functional state 
experienced by the person during the experimental session.
 Results. Characteristics of EEG patterns in motor 
imagery. Results were analyzed using a mean of 90 separate 
EEG traces from each of 11 subjects: motor imagery for the 
right hand in 38 of these was classifi ed against the cognitive 
task, in 34, motor imagery of the left hand was classifi ed 
against the cognitive task, and in 18 motor imagery of one 
hand was classifi ed against that of the other.
 Spearman correlation analysis showed that ERDd and 
BCI classifi cation effectiveness values were tightly related 

Fourier decomposition window extracted using a rectangu-
lar window function of width 1 sec with 0.1-sec displace-
ments). The resulting densities for each component were 
compared for the two patterns of the states being classifi ed, 
with subtraction of the overlap region (see Fig. 1 for graph-
ical explanation). The value corresponding to 100% minus 
the overlap area (percentage of the area under the probabil-
ity density curve) was termed ERDd and was used in studies 
for quantitative assessment of the extent of the EEG reac-
tion arising on motor imagery.
 The three spatial-spectral metrics with the greatest 
ERDd values were used for training a Bayesian classifi er. 
The sampling frequency of the classifi er was 10 Hz with a 
sliding average of fi ve sequential values. The a posteriori 
probabilities of each of the two classes (A and B) for the 
vector of metrics (ö) computed by the classifi er was con-
verted to binary form using a threshold established individ-
ually for each subject (for example, P(A|ö) > 0.65 ⇒ “Class 
A,” P(A|ö) > 0.60 ⇒ “Class B,” otherwise “Ø” – no class).
 Assessment of classifi cation accuracy. Cross-validation 
using a 5 × 2 scheme was used for consistent assessment of 
classifi cation accuracy achieved by subjects working with the 
BCI. Ongoing traces were sequentially identifi ed containing 
trials of the two states being classifi ed – motor imagery with 
determination of the stimulus delivery mode and the cogni-
tive task (mental arithmetic) state. The resulting blocks con-
tained 3–4 traces including 18–24 trials for each state. Cross-
validation was performed by randomly dividing the block 
into two equal parts containing identical numbers of trials 
of one class. The classifi er was then trained using one part, 
followed by testing with the other, followed by training and 
testing the other way round. This operation, including “split-
ting” of the block and the following two “training–testing” 
stages, was performed fi ve times. A posteriori probabilities 
obtained by testing the classifi er were averaged over time in 
the framework of each trial and were transformed into binary 
solutions – trials were regarded as successfully classifi ed if 
the probability of a correct classifi cation was greater than 0.5. 
Classifi cation accuracy was taken as the ratio of the number 
of trials classifi ed correctly to the total number of trials. The 
time dynamics of classifi cation of a posteriori probabilities 
were averaged for trials (point by point).
 Topographic mapping of EEG patterns. The spatial 
(topographic) locations of features used for classifi cation 
were evaluated by projecting coeffi cients of the computed 
spatial fi lter (the CSP) onto the positions of the initial leads. 
The vectors of the spatial fi lter corresponding to the fi ve 
best features were multiplied by their ERDd values, abso-
lute values were summed, and the results were applied to a 
two-dimensional model of the EEG recordings.
 The resulting topographic maps provide assessments 
of the quantitative contributions of individual EEG leads to 
classifi cation features.
 Analysis of motor event-related potentials. Changes 
in corticospinal excitability in the test conditions were 

Fig. 2. Topographic maps of EEG patterns averaged for all subjects (N = 11) 
on motor imagery of the fi ngers of the right and left hands with the eyes 
closed. Weighted channel coeffi cients are shown: dark areas show greater 
values and light areas show smaller values.
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analysis of the results for assessment of classifi cation accu-
racy by the BCI.
 Comparison of ERDd in traces with motor imagery for 
the right or left hands did not identify any signifi cant differ-
ences between them (Mann–Whitney test, U = 74650 p < 
< 0.63). For further analysis, all measures were therefore 
computed for trials with motor imagery for either hand.
 The topographic distribution of ERDd in motor imag-
ery of the left hand as compared with the cognitive task with 
the eyes closed and with vibrotactile delivery of stimuli re-
vealed characteristic patterns of desynchronization in the 
central leads (Fig. 2). Activation was bihemispheric, though 
for motor imagery of the fi ngers of the right hand activation 
was stronger in the dominant (left) hemisphere. Similar 
topographic maps were also seen for motor imagery of fi n-
ger tapping in the classical paradigm (with the eyes open 
and visual stimuli) [Vasilyev et al., 2016].
 Learning effect. This is the fi rst study reporting attempts 
to develop a stable motor imagery skill in users in condition 
of vibrational stimulus delivery with the eyes closed.
 A learning effect was seen, in that the expression of 
patterns (in terms of ERDd) associated with motor imagery 
of the hand increased with the number of sessions. Mean 
ERDd for motor imagery of the hand on the background of 
the cognitive task by study days was assessed relative to the 
value on day 2, and these results are shown in Fig. 3. The 
fi rst and last days of the study were excluded from the anal-
ysis: on day 1, subjects performed real movements in most 
traces as training to the method; an insuffi cient number of 
EEG traces was made on the last day, because of TMS test-

to each other (correlation coeffi cient 0.91). This linkage be-
tween these parameters allowed ERDd to be used for further 

Fig. 3. Relationship between ERDd for motor imagery of the fi ngers and 
session number. Values for all sequential sessions for each subject are rel-
ative to the mean values for the second session. Error bars show standard 
errors of the mean.

Fig. 4. Amplitude of MEP (fl exor digitorum superfi cialis, right hand) on 
motor imagery of the fi ngers (left to right): right hand with eyes closed, 
right hand with eyes open, left hand with eyes closed. Rectangles show 
medians ± interquartile ranges; bars show ranges of values (minimal to 
maximal). Mean values for subjects are shown by crosses; values for two 
subjects circled) were excluded from analysis. Statistical signifi cance of 
group differences is shown for the Wilcoxon signed-rank test (N = 9).

TABLE 1. Classifi cation Accuracy (vs. cognitive task) in BCI and 
ERDd for Motor Imagery of Fingers with the Eyes Open and Closed 
for All Subjects. Figures in Bold Show Classifi cation Accuracies 
Statistically Signifi cantly Different for the Conditions Open Eyes 
and Closed Eyes (Mann–Whitney test, p < 0.05) for That Subject. 
Mean Values ± Standard Errors Are Shown for ERDd
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This comparison was run using the Mann–Whitney test 
used for the output values of the classifi er (a posteriori prob-
abilities) for separate trials in a given subject.
 All subjects taking part in the study demonstrated suf-
fi cient online classifi cation accuracy for two states (motor 
imagery of the hand or the cognitive task). In traces in 
which motor imagery tasks with the right and left hands al-
ternated (without trials using the cognitive task), classifi ca-
tion effectiveness was lower (mean 0.66, range 0.51–0.99). 
This result is consistent with data obtained in our previous 
study using the classical BCI paradigm (open eyes, visual 
stimulation on a monitor) [Vasilyev et al., 2016] and with 
data from other investigators [Ahn and Jun, 2015].
 Effects of motor imagery on corticospinal excitabili-
ty. Transcranial magnetic stimulation studies showed that 
nine of 11 subjects displayed signifi cant (Mann–Whitney 
test, p < 0.05) increases in the motor response amplitude of 
the fl exor digitorum superfi cialis of the right hand on motor 

ing. Due to high between-session variation in some subjects, 
no statistically signifi cant relationships between values and 
session number were seen at the group level. However, an 
increase was characteristic of most subjects, indicating that 
there was a learning effect.
 Effectiveness of BCI classifi cation. As stimuli at the 
beginnings of commands were delivered by vibration, not 
acting on the subject’s visual attention, the study provided 
the opportunity to compare whether changes in EEG pat-
terns during motor imagery of the hand occurred on block-
ade of the visual channel (with the eyes closed). On motor 
imagery of either hand on the background of the cognitive 
task, mean classifi cation accuracy was 0.86 (with a be-
tween-individual range of 0.54 to 0.99) (see Table 1). At the 
group level, there were no statistically signifi cant differenc-
es between regimes with the eyes closed and open. However, 
analysis of individual values for four subjects showed that 
one regime gave statistically signifi cantly better results. 

Fig. 5. Dynamics of classifi er output for recognition of motor imagery trials specifi ed using visual (13 subjects, 20 trials/subject) 
and vibrotactile (11 subjects, 24 trials/subjects) stimuli. Curves show mean values, along with standard errors and fi rst derivatives. 
The threshold for correct recognition is shown by the horizontal dotted line (p > 0.5).
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fi eld. Our task was to study whether or not it is possible to 
create an operative BCI paradigm with the eyes closed and 
vibrational delivery of stimuli.
 This study showed that typical EEG patterns in motor 
imagery [Vasilyev et al., 2016] also persist in the new BCI 
paradigm: motor imagery of the fi ngers induced bilateral de-
synchronization of sensorimotor rhythms (Fig. 2). Vibration 
on the wrists did not lead to any additional changes in corti-
cal activity, as might be expected considering somatosenso-
ry event-related potentials [Yao et al., 2014].
 Thus, we can conclude that using vibrational delivery 
of stimuli to the wrists both with the eyes closed and with 
the eyes open produces EEG reactions typical of motor im-
agery, which is consistent with previous data from experi-
ments with visual encoding of commands.
 Learning effect. We showed that ERDd for motor 
imagery on the background of a cognitive task increases 
with increases in session number (Fig. 3), pointing to the 
development of a learning effect. Previous studies of the 
classical BCI paradigm (with visual presentation of com-
mands) demonstrated analogous results [Angulo-Sherman 
and Gutiérrez, 2015; Toppi et al., 2014]. The learning effect 
is important both for the practical application of BCI devic-
es and in neurorehabilitation procedures [Mokienko et al., 
2013]. Our results show that vibrational delivery of com-
mands and vibrational feedback are successfully perceived 
by users and can motivate subjects to continue BCI training.
 BCI classifi cation effectiveness. The present studies 
showed that use of vibrotactile stimulus delivery achieved 
identical levels of command classifi cation accuracy by BCI 
regardless of the presence of a visual information stream 
(which changes on opening and closing the eyes). This is 
consistent with previous studies showing that people can 
successfully perceive vibrotactile information as a signal 
for conscious changes in cortical activity [Cincotti et al., 
2007a; Leeb et al., 2013; Pichiorri et al., 2011]. Subjects 
successfully recognized vibrational stimuli and could re-
spond by changing their mental state without long delays.
 For most subjects, classifi cation of states was success-
ful regardless of the working regime (eyes closed or open), 
though it will be interesting consider the results of four sub-
jects with the lowest BCI classifi cation accuracy in more 
detail (MA, AB, KM, and EV). We performed additional 
statistical analysis, comparing classifi cation success for mo-
tor imagery of the hand on the background of the cognitive 
task with the eyes open and closed for these subjects. This 
showed that EEG pattern recognition improved signifi cant-
ly in subjects MA and AB in the regime working with the 
eyes open (Mann–Whitney test, p < 0.00002). At the same 
time, the opposite result was typical of KM and EV: classi-
fi cation was more accurate with the eyes closed (Mann–
Whitney test, p < 0.00003).
 Brain–computer interface developers are of the view 
that individual tuning of parameters and operating regimes 
are of fundamental importance for creating working BCI 

imagery of this same hand. Conversely, excitability in any 
motor imagery regime decreased in two subjects, so for fur-
ther analysis these were excluded from the cohort. On aver-
age, the amplitude of the motor response with the eyes 
closed was 149 ± 13% compared with the reference state; 
with the eyes open it was 125 ± 14% of this state (Fig. 4).
 At the same time, motor imagery of the contralateral 
(left) hand gave a motor response in the right hand which 
was lower than that on stimulation on the background of 
the cognitive task (on average, 87 ± 11% of the reference 
state). Comparison of three conditions (motor imagery of 
the right hand with the eyes open; motor imagery of the 
right hand with the eyes closed; motor imagery of the left 
hand with the eyes closed) revealed signifi cant differences 
(Friedman test [χ2 (N = 9, df = 2) = 10.89, p = 0.00432]), 
and subsequent pairwise comparisons using the Wilcoxon 
test demonstrated statistically signifi cant differences in all 
pairs (p < 0.02).
 Thus, these studies demonstrate increased corticospi-
nal excitability on motor imagery, which is consistent with 
our previous results using the classical BCI paradigm [Vasi-
lyev et al., 2017]. It is important to note that with the eyes 
closed, MEP amplitude was statistically signifi cantly great-
er than on motor imagery with the eyes open.
 Comparison of classifi cation speed for two BCI para-
digms. In the studies reported here, the signal for the start of 
motor imagery with the fi ngers of the right or left hand were 
provided by the tactile input to the same hand. The stim-
ulus-induced afferent reaction may therefore be the cause 
of the unwanted activation of the sensorimotor area of the 
cortex, thus affecting the classifi cation accuracy of motor 
imagery-associated patterns. To assess this infl uence we 
compared the time dynamics of the classifi er output values 
(a posteriori probabilities) after delivery of the stimulus for 
motor imagery in different BCI paradigms: with vibrational 
and with visual stimulus delivery (data from [Vasilyev et al., 
2017]). The plot in Fig. 5 shows that there is no difference 
in classifi cation speeds – the time taken for the classifi er to 
reach a plateau was 1.7–2 sec after stimulus delivery both 
on visual coding and via tactile actions. Thus, in this stimu-
lus delivery regime, it appears that on solution of the classi-
fi cation task there was no interference between the patterns 
of the target tasks (motor imagery and the cognitive task) 
and responses to vibrotactile stimuli.
 Discussion. Characteristics of EEG patterns during 
motor imagery. Studies have shown that characteristic pat-
terns of desynchronization of the μ rhythm can be distin-
guished in the sensorimotor (central) leads during kinesthet-
ic motor imagery of the hands [Pfurtscheller and Neuper, 
1997]. Psychological studies of motor imagery have mainly 
been performed in subjects with their eyes closed [Schuster 
et al., 2011], while in studies using BCI based on motor 
imagery, people generally perform tasks with the eyes open 
[Cincotti et al., 2007b], as it is easier to construct a suitable 
system for encoding commands and feedback in the visual 
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closed, and that vibrational stimulation is suitable for prac-
tical devices.
 Comparison of classifi cation speeds for two BCI par-
adigms. Vibrational stimulation in and of itself can generate 
somatosensory event-related potentials [Yao et al., 2014]. 
With the aim of evaluating the contributions of such EEG 
reactions to classifying motor imagery patterns, we com-
pared the time dynamics of a posteriori probabilities of the 
classifi er after delivery of stimuli in the new BCI paradigm 
(with vibrational delivery of stimuli with the eyes closed) 
with the classical version (visual stimulus encoding), as de-
scribed in our previous report [Vasilyev et al., 2017].
 Classifi cation speed using vibrational stimulus deliv-
ery was no different from that observed with visual com-
mand encoding (this was 1.7–2 sec from the start of the 
stimulus in both cases), which shows that vibrational stimu-
lation in the BCI presentation paradigm has no effect on the 
EEG patterns used for classifi cation of mental states. Thus, 
vibrational stimulation can be used with success in BCI de-
vices requiring rapid program responses.
 This present study demonstrated that users can learn to 
operate in the BCI loop with the eyes closed and with vibra-
tional delivery of coπmmands and feedback. The character-
istics of EEG activity, corticospinal excitability, session- 
by-session dynamics, and the accuracy of BCI operation in 
this approach were at least no different from those in the 
classical scheme with visual stimulus delivery, and for some 
users the new paradigm had advantages in terms of a num-
ber of indicators. This BCI paradigm opens up potentials for 
use by people with poor vision and expands the variants for 
practical BCI devices (especially in tasks requiring constant 
attention to changing visual information).
 Conclusions. A new brain–computer interface para-
digm based on motor imagery in which stimuli to perform 
and feedback were delivered using vibration bracelets was 
developed and tested in 11 healthy volunteers. All subjects 
succeeded in assimilating the skill of motor imagery of the 
hands in the training regime with the eyes closed.
 The characteristics of EEG patterns during motor im-
agery in this BCI corresponded to those in classical BCI 
based on visual encoding of commands and feedback: 
marked desynchronization of sensorimotor rhythms was 
seen, along with a learning effect.
 Seven of the 11 users showed equal success in motor 
imagery of the hands with both closed and open eyes. 
Among those subjects with lower BCI classifi cation effec-
tiveness, two demonstrated better results with the eyes 
closed and two with the eyes open.
 Motor imagery leads to increases in corticospinal ex-
citability, this phenomenon being more marked with the 
eyes closed.
 Vibrotactile stimulation delivered at the beginning of 
the motor imagery trial had no effect on the rate of reaching 
peak pattern recognition accuracy as compared with classi-
cal BCI based on visual stimuli.

devices [Vuckovic and Osuagwu, 2013; Yao et al., 2013]. In 
this study, we showed that the use of vibrotactile feedback 
in BCI devices allows an operating regime to be selected 
taking account of subjects’ individual characteristics. For 
those users working better in the BCI loop with the eyes 
closed, use of nonvisual commend encoding is needed, and 
this need is well fi lled by vibrational stimulation. Thus, the 
boundaries of the application of this technology are expand-
ed to include those people who were previously regarded as 
“BCI incompetent.”
 Effects of motor imagery on corticospinal excitability. 
Desynchronization of the μ rhythm is known to correlate 
positively with increases in corticospinal conductivity (mea-
sured in terms of the amplitude of the myographic response 
to transcranial magnetic stimulation of the motor cortex) 
[Takemi et al., 2013]. Our study showed that that users suc-
cessfully learned to imagine hand movements in the new 
BCI paradigm: cortical excitability increased signifi cantly 
on imagination of fl exion of the fi ngers of the right hand 
as compared with the control state, which was apparent 
as an increase in the amplitude of the motor event-related 
response of the fl exor digitorum superfi cialis of the corre-
sponding hand, while motor imagery of the contralateral 
(left) hand did not induce any such increase in the amplitude 
of the motor response.
 While assessment of increases in corticospinal excit-
ability on motor imagery in most literature sources is per-
formed with the eyes open, our study provided the opportu-
nity to compare this measure with users’ eyes closed. Thus, 
our subjects showed that increases in excitability on motor 
imagery with the eyes closed were greater than those ob-
tained with the eyes open.
 One study [Bashir et al., 2017] using an analogous pro-
tocol to test corticospinal excitability (TMS, power at 120% 
of the motor threshold) showed that in the resting state, mo-
tor event-related potentials with the eyes open were greater 
than those with the eyes closed. However, studies reported 
by Mercier et al. [2008] addressed the increase in MEP on 
motor imagery with the eyes closed and open in healthy 
subjects and found a tendency to a greater increase in corti-
cospinal excitability when motor imagery was performed 
with the eyes closed. Our result is consistent with the obser-
vations demonstrated in this study, though in our larger co-
hort (N = 9 for comparison of TMS indicators) the effect 
was statistically signifi cant and was not linked to decreased 
excitability in the resting state with the eyes closed. Thus, 
the greater increase in excitability on motor imagery with 
the eyes closed can be explained as a result of subjects’ bet-
ter concentration on the sensorimotor image in the absence 
of a visual information stream.
 This result allows us to suggest that ideomotor training 
(used both in rehabilitating patients with poststroke move-
ment disorders [Dijkerman et al., 2010] and with the aim of 
improving sporting performance in healthy people [Holmes 
and Calmels, 2008]) may be more effective with the eyes 
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