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MATHEMATICAL MODELLING

OF MULTILAYER THIN BODY DEFORMATION

M. U. Nikabadze UDC 517.958: 539.3

Abstract. We construct a theory of multilayer thin bodies within the framework of the three-

dimensional moment theory by using an efficient parametrization of a multilayer thin domain; in

contrast to classic approaches, several base surfaces and an analytic method with Legendre and Cheby-

shev polynomial systems are used. Geometric characteristics typical for the proposed parametrizations

are introduced into consideration. A fundamental theorem for a multilayer thin domain is formulated.

Various representations of the equations of motion, the heat influx, and the constitutive relations of

physical and heat content are presented for the new body domain parametrization. The definition of

the kth order moment of a certain quantity with respect to an orthonormal system of second-kind

Chebyshev polynomials is given. The expressions of moments of first- and second-order partial deriva-

tives of a certain tensor field are obtained, and this is also done for some important expressions required

for constructing different variants of the thin body theory. Various variants of the equations of mo-

tion in moments with respect to Legendre and Chebyshev polynomial systems are also obtained. The

interlayer conditions are written down under various connections of adjacent layers of a multilayer

body.
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An important problem of modern industry is reducing the weight of structures while preserving their

operation reliability [58]. In this connection, for a complete study of the real strained-deformed state, it

is necessary to consider theories of higher (second, third, etc.) approximations, geometric and physical

nonlinearities, moment theories of a deformable rigid body, and also refined methods for reducing

three-dimensional problems to two-dimensional ones. Obviously, this new mechanical content leads

to new problems requiring mathematical study. At present, a whole number of variants of theories of

rods, plates, shells, and multilayer constructions (bodies) have been developed. Analysis of published

works shows that the creation of refined theories of these bodies is actively being developed. Moreover,
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nonlinear theories are more widely considered in the literature. The mathematical techniques used

are essentially extended both for implementation of already posed problem and in searching for new

statements. The experimental way of studying is used in parallel with the theoretical one. Numerical

methods and discrete computational models are widely used. Works focused on multilayer bodies

allow us to reveal several basic methods for constructing theories of these bodies. They are reduced

to the following.

1. Theories constructed on the basis of the Kirchhoff–Love conjecture for the whole layer package.

2. Theories taking into account the transversal shift and rarely transversal normal deformations

and stresses in layers (refined theories) on the basis of “integral” assumptions on the character of dis-

tribution of tangential transversal stresses or displacements in the layer package as a whole. The order

of the equations obtained in this process is independent of the number of layers. Such a construction

method is now called a phenomenological or continuous structural method.

3. Theories taking into account the transversal shift (and often transversal and normal deformations

and stresses in layers) on the basis of kinematic assumptions for each separate layer. In this case, the

order of the system of equations depends on the number of layers. This approach was developed for

the first time in the paper of Grigolyuk and Chulkov [33]. It is now called the discrete, or discrete

structural, method. A detailed analysis of works of the discrete structural direction is given in [34–36].

4. The theory constructed by independent application of kinematic and static assumptions and the

mixed variational principle. If these assumptions are applied for the layer package as a whole, then the

order of the system of equations is independent of the number of layers. If displacements and stresses

in each separate layer are approximated independently, then the order of the system of equations

depends on the number of layers. The disadvantage of the structural method based on kinematic

assumptions for each layer is that at the boundaries of layer contact the continuity conditions of

transversal stresses do not hold strictly. The complexity of the equations obtained in this process and

the relative simplicity and restricted range of applicability of phenomenological models lead to the

appearance of works in which independent kinematic and static assumptions and the mixed variational

Reissner method are applied simultaneously. Note that such a method can be considered as a further

development of the discrete structural method.

5. Theories constructed on the base of the analytic method. In this case a three-dimensional problem

of elasticity theory is reduced to a two-dimensional problem of shell theory by a series expansion of

the desired functions. The order of the obtained system of equations depends on the number of layers

and on the number of terms remaining in the expansions.

6. Theories to which the relations of the three-dimensional theory are applied for analyzing the

strained-deformed state and stability of multilayer shells. The application of the spatial approach to

calculating layered anisotropic thin-walled constructions was difficult because of the following two cir-

cumstances [83]: the absence of sufficiently powerful computational tools and insufficient justification

of numerical methods for solving the indicated class of problems. Starting from 1980, the appearance

of powerful computers and efficient mathematical software allowed one to eliminate the first circum-

stance. Research into the convergence and stability of the boundary element method in calculating

thin-walled composite constructions allow one to assume that the second problem is solved for this

method (including that for geometrically nonlinear problems). The works in this direction showed

that the strained-deformed state of multilayer composite shells and plates has an essentially three-

dimensional character, so that the transversal stresses and deformations cannot be neglected. The

determination and study of exact solutions and also the error estimate of approximate solutions are
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essential because intuitive auxiliary assumptions introduced to simplify the equations are not justified

and lead to mistakes of not only quantitative but qualitative character.

7. Theories constructed via asymptotic integration of the equations of elasticity theory [27–32].

From the mathematical viewpoint, this method leads to a uniform approximation of solution in all

elements of the theory (kinematic and force) because terms of the same order are always considered.

All the methods listed above were applied in the construction of theories of one-layer thin bodies.

Also, the following two methods for constructing the theory of one-layer thin bodies (rods, plates, and

shells) should be mentioned.

8. Theories in the construction of which the method of sequential differentiation of relations of

the three-dimensional theory is used [117]. This method proposed by Vekua [117] constructs a non-

contradictory moment shell theory. Vekua deduced a system of equations of the tenth order that

is in concordance with five physical or kinematic conditions given independently. This method can

obviously be used in constructing the rod theory, as well as the multilayer thin body theory.

9. The general nonlinear thin shell theory, which is mainly applied for calculating elastomer shells

(rubber-like materials) [17–19], and the general nonlinear theory of thin (Kirchhoff) rods [18], which

can be applied for description of large deformations. The basis of these theories consists of the modified

geometric Kirchhoff assumptions proposed by Chernykh, the author of these papers. Therefore, these

assumptions can be extended to the theory of multilayer thin bodies composed of the corresponding

materials. In general, all papers of Chernykh are of special interest. For reviews of works in the theories

of one- and multilayer bodies, see [64, 72, 73]. In these papers, there are references to reviews of other

authors. In this connection, we do not dwell on a detailed review of the literature here. In principle,

any problem of the thin body theory1 can be considered (solved) in a three-dimensional statement,

which is more precise compared to the two-dimensional one. However, it is not always possible to

implement this approach in practice because of the complexity of solving three-dimensional problems

and the large variety of statements of problems that are necessary. In connection with what was

said above and with the wide use of thin bodies (one-, two, three-, and multilayer constructions),

there arises a necessity to create new refined thin body theories within the framework of the classic

theory, as well as the moment theory and improved methods for their calculation. Therefore, the

construction of refined thin body theories and development of efficient methods for their computation

are important and urgent problems. It should be noted that the analytic method with the use of the

Legendre polynomial system in constructing the one-layer thin body theory [3–8, 20, 24, 38–42, 55,

57, 104, 106, 111–115, 117–123] and multilayer thin body theory [11–16, 25, 88–90] was also applied

by other authors. In this direction, the author published the papers [65–68, 72, 74–76, 81, 82] and

others with the application of Legendre and Chebyshev polynomial systems. These expansions can be

successfully used in constructing any thin body theory. Despite this, the classical theories constructed

by this method are far from complete, the more so the moment theories [56].

1. Parametrization of a Multilayer Thin Domain

of the Three-Dimensional Euclidean Space

with Several Base Surfaces

Consider a multilayer thin domain of the Euclidean space consisting of no more than countably

many layers. We perform the parametrization of this domain in the same way as in [63, 73]. Let the

layers be enumerated in the ascending order, i.e., for example, if α is the serial number of a certain

1Three-dimensional bodies where one or two dimensions are less than the others are called thin bodies, and a two-

dimensional domain where one dimension is less than the other is called a thin domain.
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layer, then the serial number of the previous layer is α− 1 and the serial number of the next layer is

α+1. Each layer has two frontal surfaces. The frontal surface of the layer α, which lies to the side of

the previous layer α − 1, is called the interior base surface and is denoted by
(−)

S
α
, whereas the frontal

surface of the layer α, which lies to the side of the next layer α+ 1, is called the exterior base surface

and is denoted by
(+)

S
α
. We assume that the frontal surfaces of each layer are regular surfaces and its

lateral surface is a ruled surface in the case where the layer is bounded and unclosed.

1.1. Vector parametric equation of the layer α and the system of vector parametric

equations of a multilayer thin domain. The position vector of an arbitrary point M
α

of the layer

α is represented in the form

r
α
(x1, x2, x3) =

(−)

r
α
(x1, x2) + x3h

α
(x1, x2) = (1− x3)

(−)

r
α
(x1, x2) + x3

(+)

r
α
(x1, x2) (1.1)

for all α ∈ N and ∀x3 ∈ [0, 1], where the vector relations

(−)

r
α

=
(−)

r
α
(x1, x2),

(+)

r
α

=
(+)

r
α
(x1, x2), α ∈ N, (1.2)

are the vector equations of the base surfaces
(−)

S
α

and
(+)

S
α
, respectively, x1 and x2 are curvilinear (Gauss-

ian) coordinates on the interior base surface
(−)

S
α
, and N is the set of natural numbers. The vector

h
α
(x1, x2) =

(+)

r
α
(x1, x2)− (−)

r
α
(x1, x2),

which topologically maps the interior base surface
(−)

S
α

onto the exterior base surface
(+)

S
α
, is, in general,

not orthogonal to the base surfaces, and, moreover, the endpoint of each h
α
(x1, x2) is the initial point

of h
α+1

(x1, x2), ∀α, i.e., the following relation holds:

(+)

r
α+δ

(x1, x2) =
(−)

r
α
(x1, x2) +

α+δ∑

ν=α

h
ν
=

(+)

r
α
(x1, x2) +

α+δ∑

ν=α+1

h
ν

=
(−)

r
α
(x1, x2) +

α+δ∑

ν=α

[
(+)

r
ν
(x1, x2)− (−)

r
ν
(x1, x2)

]

=
(+)

r
α
(x1, x2) +

α+δ∑

ν=α+1

[
(+)

r
ν
(x1, x2)− (−)

r
ν
(x1, x2)

]
∀α, δ. (1.3)

Let a multilayer domain2 consist of K layers. Then introducing the notation

h =

K∑

ν=1

h
ν
=

K∑

ν=1

[
(+)

r
ν
(x1, x2)− (−)

r
ν
(x1, x2)

]
, (1.4)

2We use the usual rules of tensor calculus [54, 92, 93, 116]. We mainly preserve the notation and conventions of the

previous works. Under symbols, we write indices denoting the serial numbers of layers. The Greek indices under symbols

assume their values according to circumstances, and capital and small Latin indices assume the values 1, 2 and 1, 2, 3,

respectively.
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we have

(+)

r
K
(x1, x2) =

(−)

r
1
(x1, x2) + h(x1, x2) =

(−)

r
1
(x1, x2) +

K∑

ν=1

[
(+)

r
ν
(x1, x2)− (−)

r
ν
(x1, x2)

]
. (1.5)

Note that (1.1) for a fixed α is the vector parametric equation of the layer α, and when α varies in

the corresponding range and conditions (1.3) hold, it is the system of vector parametric equations of

the multilayer thin domain considered. It is easy to see that (1.1) for any x1, x2, and x3 = 0 defines

the interior base surface
(−)

S
α
, and for any x1, x2, and x3 = 1, it defines the exterior lateral surface

α
(+)

S ,

whereas for any x1, x2 and x3 = const, where x3 ∈ (0, 1), it defines the equidistance surface for the

base surfaces
(−)

S
α

and
(+)

S
α
, which is denoted by S

α
.

1.2. Two-dimensional families of bases and the families of parametrizations of the sur-

face of the layer α generated by them. For the derivatives of relations (1.1) and (1.2) in xP at

the points
(�)

M
α
∈

(�)

S
α
, � ∈ {−, ∅,+} ∀α, let us introduce the notation

r
αP

≡ ∂P r
α
≡
∂
P
r
α

∂xP
, r

α
�
P
≡ ∂

P

(�)

r
α
≡

∂
(�)

r
α

∂xP
, � ∈ {−,+}, ∀α. (1.6)

The pair of vectors r
α

�
1
and r

α
�
2
, � ∈ {−, ∅,+} ∀α, defined at the points

(�)

M
α

∈
(�)

S
α
, � ∈ {−, ∅,+}, ∀α,

obviously compose two-dimensional covariant surface bases, and
(�)

M
α
r
α

�
1
, r
α

�
2
, � ∈ {−, ∅,+} ∀α, are two-

dimensional covariant surface frames, which, in turn, generate the corresponding parametrizations

of the surfaces considered. As is known [54, 92, 93, 116], according to these frames (bases), we can

construct the corresponding contravariant frames
(�)

M
α
r
α

�
1 r
α

�
2 (bases r

α

�
1 r
α

�
2), � ∈ {−, ∅,+}, ∀α. Naturally,

the covariant and contravariant bases generate their inherent geometric characteristics. Defining the

frames (bases) at each point of the surfaces
(�)

S
α
, � ∈ {−, ∅,+}, ∀α, we obtain the corresponding families

of frames (bases), which, in turn, generate the corresponding parametrizations.

1.3. Three-dimensional families of bases and the families of parametrization of the do-

main of the layer α generated by them. Taking into account the expression of the position vector

r
α
(1.1) in the first relation in (1.6) and introducing the notation h

αP
≡ ∂h/∂xP ≡ ∂

P
h
α
, we obtain

r
αP

= r
α
−
P
+ x3h

αP
= (1− x3)r

α
−
P
+ x3r

α
+
P
, ∀α. (1.7)

Now, differentiating (1.1) in x3, we have

r
α3

≡ ∂3 rα
≡

∂r
α

∂x3
= h

α
(x1, x2), ∀x3 ∈ [0, 1], ∀α. (1.8)

According to (1.8), we can assume that

r
α
−
3
≡ r

α3
≡ r

α
+
3
≡ ∂3 rα

= h
α
(x1, x2), ∀x3 ∈ [0, 1], ∀α. (1.9)

Relation (1.9) allows us to define the spatial covariant bases r
α
�
p
, � ∈ {−, +}, ∀α at the points

(�)

M
α

∈
(�)

S
α
,

� ∈ {−, +}, ∀α, respectively. Therefore, the third basis vector of the spatial covariant bases at the
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points
(�)

M
α

∈
(�)

S
α
, � ∈ {−, ∅, +}, for each layer α is the same vector h

α
(x1, x2). In view of (1.9), we can

combine relations (1.7) and (1.8) and represent them as

r
α
p = r

α
−
p
+ x3h

α
p = (1− x3)

(−)

r
α

−
p
+ x3

(+)

r
α

+
p
, ∀α. (1.10)

The triples of vectors r
α

�
1
r
α

�
2
r
α

�
3
, � ∈ {−, ∅,+}, ∀α defined at the points

(�)

M
α

∈
(�)

S
α
, � ∈ {−, ∅,+},

∀α obviously compose three-dimensional covariant spatial bases, and
(�)

M
α
r
α

�
1
r
α

�
2
r
α

�
3
, � ∈ {−, ∅, +},

∀α, compose three-dimensional spatial covariant frames, which, in turn, generate the corresponding

parametrizations. As is known [54, 92, 116], according to these frames(bases), we can construct the

corresponding contravariant frames
(�)

M
α

r
α

�
1 r

α

�
2 r

α
�
3
(bases r

α

�
1 r

α

�
2 r

α

�
3), � ∈ {−, ∅, +}, ∀α.Indeed, by their

definition [54, 92, 116], we have

r
α

k̃ =
1

2

(∼)

C
α

k̃p̃q̃r
αp̃

× r
αq̃
, ∼ ∈ {−, ∅,+}, ∀α, (1.11)

where
(∼)

C
α

k̃p̃q̃ = (r
α

k̃ × r
α

p̃) · r
α

q̃, ∼ ∈ {−, ∅,+}, ∀α, are contravariant components of the discriminant

tensors [116] of the layer α at the points
(�)

M
α

∈
(�)

S
α
, � ∈ {−, ∅,+}, ∀α. It is easy to see that (1.10) is

briefly represented in the form

r
α
p = g

α

�
q
p
r
α
�
q
= g

αp
�
q
r
α

�
q, � ∈ {−, +}, ∀α, (1.12)

where we have introduced the notation

g
αp̆q̃

= r
αp̆

· r
α
q̃, g

α

q̃

p̆
= r

αp̆
· r
α

q̃, � ∈ {−, ∅,+}, ∼ ∈ {−,+}, ∀α. (1.13)

In view of (1.10) and (1.13), for g
α
pq̃

and g
α

q̃
p
, we have

g
αpq̆

= (1− x3)g
α
−
pq̆

+ x3g
α
+
pq̆
, g

α

q̆
p
= (1− x3)g

α

q̆
−
p
+ x3g

α

q̆
+
p
, � ∈ {−, +}, ∀α. (1.14)

Also, it is easy to obtain the expressions for g
αpq

. Indeed, by (1.12) and (1.14), we have

g
α pq

= r
α
p · r

α
q = g

αp
�
n
g
α

�
n
q = (1− x3)2g

α
−
p
−
q
+ x3(1− x3)(g

α
−
p
+
q
+ g

α
+
p
−
q
) + (x3)2g

α
+
p
+
q
, � ∈ {−,+}, ∀α. (1.15)

Let us find the expressions for
√
g
α
= (r

α1
× r

α2
) · r

α3
. By the first relation in (1.12), we obtain

√
g
α
=

1

2
εIJ(r

αI
× r

αJ
) · r

α3
=

1

2

√
(∼)
g
α
εIJε

KL
g
α

K̃
I
g
α

L̃
J
=

=

√
(∼)
g
α
det(g

α

q̃
p
) =

√
(∼)
g
α
det(g

α

Q̃

P
), ∼ ∈ {−,+}, ∀α, (1.16)

where εIJ and ε
KL

are the Levi-Civita symbols and
√

(∼)
g
α

= (r
α1̃

× r
α2̃
) · r

α3̃
, ∼ ∈ {−,+},

√
(−)
g
α

=
√
g
α

∣∣∣
x3=0

,

√
(+)
g
α

=
√
g
α

∣∣∣
x3=1

, ∀α.
In turn, from (1.16), we have

(∼)

ϑ
α

≡
√
g
α

(∼)
g
α

−1 =
1

2
εIJε

KL
g
α

K̃
I
g
α

L̃
J
= det(g

α

Q̃

P
), ∼ ∈ {−,+}, ∀α. (1.17)
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It should be noted that analogously to (1.16), in a more general case, we have
√

(∼)
g
α

=
1

2

√
(�)
g
α
εIJε

KL
g
α

K̆

Ĩ
g
α

L̆

J̃
=

√
(�)
g
α
det(g

α

Q̆

P̃
), ∼, � ∈ {−, ∅,+}, ∀α. (1.18)

It is easy to see from this that

(�∼)

ϑ
α

≡
√

(∼)
g
α

(�)
g
α

−1 =
1

2
εIJε

KL
g
α

K̆
Ĩ
g
α

L̆
J̃
= det(g

α

Q̆

P̃
) = det(g

α

q̆

p̃
), �, ∼ ∈ {−, ∅,+}, ∀α. (1.19)

IT is seen that for ∼ = ∅, � ∈ {−,+}, from (1.18) we obtain (1.16), and from (1.19), we obtain (1.17).

It is easy to verify that by (1.19), we have

(�∼)

ϑ
α

=
(∼�)

ϑ
α

−1, �, ∼ ∈ {−,+}, ∀α;
(≈)

ϑ
α

= 1, ∼ ∈ {−,+}, ∀α. (1.20)

Using (1.19), we can write relations (1.17) in the following more detailed form:

(−)

ϑ
α

=

√
g
α

(−)
g
α

−1 = (1− x3)2
(=)

ϑ
α
+ x3(1− x3)g

α

−
I
+
I
+ (x3)2

(∓)

ϑ
α
,

(+)

ϑ
α

=

√
g
α

(+)
g
α

−1 = (1− x3)2
(±)

ϑ
α
+ x3(1− x3)g

α

+
I
−
I
+ (x3)2

(+
+
)

ϑ
α
, ∀α.

(1.21)

It is easy to express r
α

k, ∀α, through the vectors r
αm̃

or r
α

m̃, ∼ ∈ {−,+}, ∀α. Indeed, taking into

account the first relation in (1.12) in relation (1.11) for ∼ = ∅, we obtain

r
α

k =
1

2

(∼)

ϑ
α

−1εkpqε
lmn

g
α

m̃
p g

α

ñ
q rα

l̃, ∼ ∈ {−,+}, ∀α, (1.22)

where εkpq, ε
lmn

are the Levi-Civita symbols. By (1.22), we can introduce the notation

g
α

k
l̃
=

1

2

(∼)

ϑ
α

−1εkpqε
lmn

g
α

m̃
p g

α

ñ
q , g

α

kl̃ =
1

2

(∼)

ϑ
α

−1εkpqεsmng
α

m̃
p g

α

ñ
q g
α

s̃l̃, ∼ ∈ {−,+}, ∀α. (1.23)

Using this notation, we represent relation (1.22) in the desired form

r
α

p = g
α

p

q̃
r
α

q̃ = g
α

pq̃r
αq̃
, ∼ ∈ {−,+}, ∀α. (1.24)

It is easy to see that from the first relation in (1.23), we have

g
α

K

K̃
=

(∼)

ϑ
α

−1g
α

Ĩ
I
, ⇒ g

α

K̆

K̃
=

(∼�)

ϑ
α

−1g
α

Ĩ

Ĭ
=

(�∼)

ϑ
α
g
α

Ĩ

Ĭ
, ∼ ∈ {−,+}, ∀α. (1.25)

Note that in writing the second relation in (1.25), (1.19) and (1.20) were taken into account. Also, let

us introduce into consideration the following objects (matrices):

g
αβ

· q̃
p̆ · = r

αp̆
· r
β

q̃, �, ∼ ∈ {−, ∅,+}, ∀α, β, (1.26)

and the objects obtained from (1.26) by alternating the indices. It is easy to calculate that the number

of such objects is equal to 36. It is easy to see that for α = β, (1.26) contains (1.13), (1.15), and

(1.23). Indeed, from (1.26), we have

g
α

q̃

p̆
= g

αα

· q̃
p̆ · = r

αp̆
· r
α

q̃, �, ∼ ∈ {−, ∅,+}, ∀α, (1.27)
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and alternating the indices, we obviously obtain the objects considered above and also g
α

pq = r
α

p · r
α

q,

∀α, i.e., in this case, the number of the introduced quantities is equal to 36. It is easy to see that by

(1.26) and (1.27), the connections between the families of bases are represented in the form

r
αp̃

= g
α

n̆
p̃
r
αn̆

= g
αβ

· n̆
p̃ · rβn̆

, �, ∼ ∈ {−, ∅,+}, ∀α, β, (1.28)

which remains valid under index alternation. By (1.28), it is easy to show that the following relation

holds:

g
αβ

· q̆
p̃ · = g

αδ

· �n
p̃ · g

ββ

· q̆
�
n ·, �, ∼, � ∈ {−, ∅,+}, ∀α, β, δ. (1.29)

Differentiating (1.3)–(1.5) in xI and taking into account (1.28), we obtain

r
α+β

+
I
= r

α
−
I
+

α+β∑

ν=α

[
g
ν

−
k
+
I
− g

ν

−
k
−
I

]
r
ν
−
k
= r

α
+
I
+

α+β∑

ν=α+1

[
g
ν

−
k
+
I
− g

ν

−
k
−
I

]
r
ν
−
k
,

∂
I
h(x1, x2) =

N∑

ν=1

∂
I
h
ν
(x1, x2) =

N∑

ν=1

[
r
ν
+
I
(x1, x2)− r

ν
−
I
(x1, x2)

]
=

=

N∑

ν=1

[
g
ν

−
k
+
I
(x1, x2)− g

ν

−
k
−
I
(x1, x2)

]
r
ν
−
k
(x1, x2),

r
N

+
I
(x1, x2) = r

1
−
I
(x1, x2) +

N∑

ν=1

[
g
ν

−
k
+
I
(x1, x2)− g

ν

−
k
−
I
(x1, x2)

]
r
ν
−
k
(x1, x2).

(1.30)

Naturally, all spatial covariant and contravariant bases constructed above have geometric characteris-

tics specific for the parametrizations generated by them. Defining the spatial frames (bases) at each

point of the surfaces
(�)

S
α
, � ∈ {−, ∅, +}, ∀α, we obtain the corresponding families of spatial frames

(bases), which, in turn generate the corresponding families of parametrizations. Once more, we note

that the structure of
(∼)

S
α

(∼)
g
α

-family frames (bases), ∼ ∈ {−, ∅,+}, ∀α, is such that the third basis vec-

tors r
α3̃

= h
α
(x1, x2), ∼ ∈ {−, ∅,+}, ∀α, are not perpendicular to the corresponding base surface

(∼)

S
α
,

∼ ∈ {−, ∅,+}, ∀α, in general. However, in a particular case, they can be perpendicular, and in a

more particular case, they can be unit normal vectors to the surfaces
(∼)

S
α
, ∼ ∈ {−, ∅,+}, ∀α, which

are denoted by
(∼)
n
α
, ∼ ∈ {−, ∅,+}, ∀α, respectively. It is seen from the material presented above that

in the parametrization of the multilayer domain considered, for each layer all the relations of the first

chapter in [72] or the second chapter in [70] hold under the condition that the root letters of quantities

entering these relations must be equipped with the bottom index, which denotes the number of the

layer considered. In this connection, we do not consider the problems on the parametrization of a

multilayer domain in detail. In what follows, if necessary, we write the necessary formulas from the

corresponding relations of the works mentioned in this paragraph by the above method (equipping the

root letters of quantities with the bottom index of the layer considered) and obtain some relations,

which do not enter into the above works.

1.4. Representation of the unit tensor of the second rank. It is easy to find this represen-

tation. Indeed, starting from the usual representation of this tensor [54, 92], by (1.28) and (1.29), we
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obtain the relation

E
˜
= E

α̃
= g

α

n̆
p̃
r
α

p̃r
αn̆

= E
β̃
= g

β

n̆
p̃
r
β

p̃r
βn̆

= g
αβ

· n̆
p̃ ·rα

p̃r
βn̆
, ∼, � ∈ {−, ∅,+}, ∀α, β, (1.31)

which remains valid under index alternating. As is seen from (1.31), the quantities (1.26) and (1.27)

introduced above represent the components of the unit tensor of the second rank (UTSR) for a mul-

tilayer thin domain of the three-dimensional Euclidean space. Now let us introduce the following

definitions.

Definition 1.1. The parametrization considered above, which is characterized by assigning the radius-

vector of an arbitrary point of any layer α in the form (1.1) and by the fulfillment of relation (1.3), is

called the new parametrization of a multilayer thin domain.

Definition 1.2. The components g
αβ

· n̆
p̃ · , for p̃ ∈ {−p, p, +p}, n̆ ∈ {−n, n, +n}, ∀α 	= β, and also the

components g
α

· n̆
p̃ · , ∀α, for ∼ 	=�, where ∼,� ∈ {+, ∅,−}, and the images obtained from them by

index alternating are called the components of the unit second-rank tensor translation under the new

parametrization of a multilayer thin domain.

Definition 1.3. The components g
αβ

· ·
p̃q̃
, g
αβ

· q̃
p̃ · , gαβ

p̃q̃
· · for ∼ = − (∼ = +), ∀α, β, and the components of

the translation g
αβ

· ·
p̃q̆
, g
αβ

· q̆
p̃ · , for ∼ = +,� = − (∼ = −,� = +), ∀α, β, are called the basic components

of the second-rank unit tensor under the new parametrization of a multilayer thin domain if, as the

base surface, the inner (exterior) base surface of layers are taken.

It is easy to find the expressions for g
αβ

pq
via basic translation components. Indeed, by (1.14),

(1.26), and (1.29), we have

g
αβ

pq
= g

α

m̆
p g

β

ñ
q g
αβ

m̆ñ
= (1− x3)2 g

αβ
−
p
−
q
+ x3(1− x3)

(
g
αβ

−
p
+
q
+ g

αβ
+
p
−
q

)
+ (x3)2 g

αβ
+
p
+
q
, (1.32)

where ∼, � ∈ {−,+}, ∀α, β. Whence, for α = β, we obtain (1.15). It is easy to prove that by UTSR

components, the components of the second tensors of surfaces of multilayer constructions [73] are

defined. In turn, this implies the following theorem.

Theorem (fundamental theorem for a multilayer thin domain in R
3 under its new parametrization).

The existence of the unit second-rank tensor represented in the form

E
˜
= g

α

n̆
p̃
r
α

p̃r
αn̆

= g
β

n̆
p̃
r
β

p̃r
βn̆

= g
αβ

· n̆
p̃ ·rα

p̃r
βn̆
, ∼, � ∈ {−, ∅,+}, ∀α, β,

whose translation components satisfy the equations of [70], which are analogous to the Gauss and

Peterson–Codazzi equations, is necessary and sufficient for the existence and for the uniqueness up to

a motion in R
3 of a certain regular multilayer thin domain under its new parametrization. Moreover,

the number of independent basis components of UTSR depends on the type of parametrization and the

number of layers.

1.5. Representation of isotropic tensors of the fourth rank. These tensors play a special

role in deformable rigid body mechanics. In particular, they are used, e.g., in writing the constitutive

relations (CR) of linear isotropic elasticity theory. Therefore, it is appropriate to have their repre-

sentation in the proposed variant of the theory. It is easy to write these representations. Indeed, as

is easily seen, under a complete contraction of indices to multiplicative bases composed of an even
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number of basis vectors, under the condition that each pair of linked indices belongs, e.g. to one of the
(∼)
g
α
-families of indices, ∼ ∈ {−, ∅,+}, ∀α, the multiplicative bases become isotropic tensors. Having

revealed such a nature of multiplicative bases, we can expect that under a complete contraction of

indices to a multiplicative basis consisting of four basis vectors, all isotropic tensors of the fourth rank

are obtained. Since the number of isomers of a multiplicative basis of four vectors is equal to 24, it is

easy to show that under a complete contraction of indices with respect to isomers, only the following

three tensors are not reducible to each other:

C
˜̃αβI

= R
αβ

· m̃
m̃ ·

n̆ ·
· n̆ = r

αm̃
r
α

m̃r
β

n̆r
βn̆

= E
α̃
E
β̃
= E

˜
E
˜
, C

˜̃αβII
= R

αβ

· ·
m̃ n̆

m̃ n̆
· · = r

αm̃
r
βn̆

r
α

m̃r
β

n̆,

C
˜̃αβIII

= R
αβ

· ·
n̆ m̃

m̃ n̆
· · = r

αm̃
E
β̃
r
α

m̃ = r
αm̃

E
˜
r
α

m̃, ∼, � ∈ {−, ∅,+}, ∀α, β.
(1.33)

It is easy to see that for example, by (1.31), the relation r
α

n̆r
αn̆

= r
β

p̃r
βp̃
, holds, and using it, we obtain

C
˜̃α I

= C
˜̃αβI
, C

˜̃α II
= C

˜̃αβII
, C

˜̃α III
= C

˜̃αβIII
, ∀α, β.

If we omit the indices α, β, and ∼, �, then tensors (1.33) evidently coincide with the fourth-rank

isotropic tensors considered in [54].

1.6. On components of UTSR. As was said above, we do not write all relations of this section,

since for a given layer, they can be obtained from the corresponding relations of the first chapter

in [72] or second chapter in [70] if the root letters in these relations are equipped with the bottom

index denoting the number of layer. Therefore, assuming that these relations are known, and taking

the base interior surface
(−)

S
α

of the layer α as the base surface, by Definition 3, for β = α, we obtain that

the basic components of UTSR of the layer α are the components g
α
−
p
−
q
, g
α

−
q
−
p
, g
α

−
p
−
q and the translation

components g
α
+
p
−
q
, g
α

−
q
+
p
, which play an important role in the sense that the other components and the

most geometric characteristics are expressed through them. Also, the components g
αβ

·−q
+
p ·

= r
α
+
p
· r
β

−
q for

β = α + 1 ( g
αα+1

·−q
+
p ·

= r
α
+
p
· r
α+1

−
q ) are of interest; they characterize the connections between surfaces

in contact; owing to this, they can be called the contact components of UTSR. Note that a complete

presentation of parametrization problems for one- and multilayer three-dimensional domains with one

small dimension is contained in [59, 67, 70, 72, 75] (see also [61, 62]) and [63, 73], for a plane domain

in [60, 76], and for a three-dimensional domain with two small dimensions, in [74]. To obtain a

certain relation (system of equation, CR, boundary and initial conditions) in moments for multilayer

thin bodies under the considered parametrization of the thin body domain, it suffices to equip the

root letters of quantities with the bottom index α, which denotes the number of the layer α in the

corresponding relation, and vary this index in the range from 1 up to K, where K is the number of

layers. Hence for a correct statement of problems, to the equations of motion and boundary and initial

conditions in moments, we need to add the inter-layer contact conditions. In what follows, using this

rule, we write certain systems of equations in moments for multilayer thin bodies, and also consider

the inter-layer contact conditions for various conditions of neighboring layer connection.
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2. Representation of Equations of Motion and Heat Influx

and Constitutive Relations of Physical and Heat Contents

of Micropolar Theory of Multilayer Elastic Thin Bodies with One Small Dimension

In what follows, for brevity, we present certain representations of equations of motion and consti-

tutive relations in the case of a one-layer thin body, and then we show how one can obtain the desired

relations using the rule presented above and write certain relations.

2.1. Representation of equations of motion and constitutive relations of physical and

heat contents of the micropolar theory of one-layertic thin bodies with one small dimen-

sion. The new parametrization of a one-layer thin domain [67, 70, 72] is performed by the relation

obtained from (1.1) under the absence of index α under the symbols. To obtain the representations

of equations of motion and constitutive relations, we need the representations of the gradient and the

divergence under the parametrization considered. Let us obtain the representations of these operators.

Omitting the index α, from (1.12) and (1.24), we find that

rp = g
−
m
p r−

m
= g

p
+
m
r

+
m, rp = gp−

m
r

−
m = gp+

m
r

+
m, (2.1)

and also from (1.23), we have

gP−
M

=
(−)

ϑ −1AP
−
M
,

(−)

ϑ = det(g
−
J
I
), g3−

M
= −g

−
3
P
gP−
M
, g

−
3
P
= x3g

−
3
+
P
,

g
−
3
+
P
= ∂

P
lnh, h = |h|, AP

−
M

≡ g
−
P
−
M

+ x3aP+
M
, aP+

M
≡ (g

−
I
+
I
− 1)g

−
P
−
M

− g
−
P
+
M
.

(2.2)

Moreover, it is easy to note that the following relations hold [67, 70, 72]:

gP−
M

=
∞∑

s=0

A
(s)

−
P
+
M
(x3)s, A

(s)

−
P
+
M

= (g
−
P
−
N1

− g
−
P
+
N1

) · (g
−
N1
−
N2

− g
−
N1
+
N2

) · . . . · (g
−
Ns−1
−
M

− g
−
Ns−1
+
M

), A
(0)

−
P
+
M

= g
−
P
−
M
. (2.3)

By the first and third relations in (2.2) and the second relation in (2.1), we find that

rP = gP−
M
r

−
M , r3 = g3−

M
r

−
M + r

−
3 = r

−
3 − g

−
3
P
rP = r

−
3 − g

−
3
P
gP−
M
r

−
M . (2.4)

The gradient operator can be applied to any tensor. Therefore, denoting a certain tensor quantity

by F(x′, x3), by the definition of the gradient [54, 92, 116] and by (2.4), we have

gradF = ∇F = rp∂pF = rP∂
P
F+ r3∂3F = r

−
MgP−

M
(∂

P
− g

−
3
P
∂3)F+ r

−
3∂3F.

Whence, introducing the differential operator

Np = ∂p − g
−
3
p ∂3, N = rpNp = rPN

P
= r

−
MgP−

M
N

P
, N3 = 0, (2.5)

we obtain the desired representation of the gradient in the form

gradF = ∇F = NF+ r
−
3∂3F = rPN

P
F+ r

−
3∂3F = r

−
MgP−

M
N

P
F+ r

−
3∂3F. (2.6)

The divergence operator is applied to a tensor whose rank is no less than 1. Applying this operator,

e.g. to a second-rank tensor P
˜
, by the definition, the third relation in (2.2), and (2.5), we obtain

divP
˜
= ∇ ·P

˜
= gP−

M
N

P
P

−
M + ∂3P

−
3 (P

−
m = r

−
m ·P

˜
). (2.7)
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Note that (2.7) can also be easily obtained from (2.6) if in this relation, we replace the sign of the

tensor product, which is omitted, by the sign of the inner product.

2.1.1. Representations of equations of motion. As is known [1, 2, 49, 84, 85], the equations of motion

of moment deformable rigid body mechanics in stress tensors and moment stress tensors are represented

in the form

∇ ·P
˜
+ ρF = ρ∂2t u, ∇ ·μμμ

˜
+C�

2⊗P
˜
+ ρm = J

˜
· ∂2tϕϕϕ. (2.8)

Here, P
˜

and μμμ
˜
are tensors of true stresses and moment stresses, C� is the discriminant tensor (third-

rank tensor) [116], u is the vector of displacements, ϕϕϕ is the vector of (inner) rotation, ρ is the

material density, F is the mass force density, m is the mass moment density, and
2⊗ is the inner

2-product (for example, C�
2⊗ P
˜

= riCijkP
jk). The definition of inner r-product and the problems

related to it are considered in [69, 77, 78, 116]. Proceeding analogously to [117], for the equations

of the classical deformable rigid body mechanics (DRBM) under the classical parametrization of the

thin body domain, in the case considered, from (2.8), we find the following form of representation of

equations of moment DRMB:

(
1/

√
(−)
g
)
∂P (

√
(−)
g

(−)

ϑPP ) + ∂3(
(−)

ϑP3) + ρ
(−)

ϑ F = ρ
(−)

ϑ ∂2t u,

(
1/

√
(−)
g
)
∂P (

√
(−)
g

(−)

ϑ μμμP ) + ∂3(
(−)

ϑ μμμ3) +C�
2⊗ (

(−)

ϑP
˜
) + ρ

(−)

ϑm =
(−)

ϑ J
˜
· ∂2tϕϕϕ,

(−)
g = det(g−

m
−
n
), g−

m
−
n
= r−

m
· r−

n
.

(2.9)

It is easy to see that by (2.7), Eqs. (2.8) can be rewritten in the form

gP−
M
N

P
P

−
M + ∂3P

−
3 + ρF = ρ∂2t u, gP−

M
N

P
μμμ

−
M + ∂3μμμ

−
3 +C�

2⊗P
˜
+ ρm = J

˜
· ∂2tϕϕϕ. (2.10)

It is easy to note that the following relations hold:

gP−
M
N

P
P

−
M = gP−

m
N

P
P

−
m = N

P
(gP−

m
P

−
m) = N

P
(gP−

M
P

−
M ) = N

P
PP ;

using them, we can represent Eqs. (2.10) in the form

N
P
PP + ∂3P

−
3 + ρF = ρ∂2t u, N

P
μμμP + ∂3μμμ

−
3 +C�

2⊗P
˜
+ ρm = J

˜
· ∂2tϕϕϕ,

N
P
(gP−

M
P

−
M ) + ∂3P

−
3 + ρF = ρ∂2t u, N

P
(gP−

M
μμμ

−
M ) + ∂3μμμ

−
3 +C�

2⊗P
˜
+ ρm = J

˜
· ∂2tϕϕϕ.

(2.11)

Multiplying each relation in (2.10) by
(−)

ϑ and taking into account the first relation in (2.2), we have

AP
−
M
N

P
P

−
M +

(−)

ϑ ∂3P
−
3 + ρ

(−)

ϑ F = ρ
(−)

ϑ ∂2t u,

AP
−
M
N

P
μμμ

−
M +

(−)

ϑ ∂3μμμ
−
3 +C�

2⊗ (
(−)

ϑP
˜
) + ρ

(−)

ϑm =
(−)

ϑ J
˜
· ∂2tϕϕϕ.

(2.12)

Note that (2.9) – (2.12) are different forms of representation of the equations of moment DRBM (2.8)

for the parametrization of the thin body domain considered. They are called the different forms of

equations of moment deformable rigid thin body mechanic (DRTBM) under the new parametrization
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of thin body domain. Taking into account the first relation in (2.3), we can write Eqs. (2.10) in the

form ∞∑

s=0

A
−
P
+
M
(x3)sN

P
P

−
M + ∂3P

−
3 + ρF = ρ∂2t u,

∞∑

s=0

A
−
P
+
M
(x3)sN

P
μμμ

−
M + ∂3μμμ

−
3 +C�

2⊗P
˜
+ ρm = J

˜
· ∂2tϕϕϕ.

(2.13)

It is seen that Eqs. (2.13) contain infinitely many summands. Therefore, they cannot be used in

practice. Naturally, we need to consider approximate equations with finitely many summands. In this

connection, let us introduce the following definition.

Definition 2.1. The equations, which are obtained from (2.10) if, in the expansion of gP−
M

(see the

first formula in (2.3)), we preserve the first s+ 1 terms, are called the equations of approximation of

order s.

Obviously, the equation of approximation of order s are represented in the form

g
(s)

P
−
M
N

P
P

−
M + ∂3P

−
3 + ρF = ρ∂2t u, g

(s)

P
−
M
N

P
μμμ

−
M + ∂3μμμ

−
3 +C�

2⊗P
˜
+ ρm = J

˜
· ∂2tϕϕϕ, (2.14)

where

g
(s)

P
−
M

=
s∑

m=0

A
−
P
+
M
(x3)m, (2.15)

From (2.14), for s = 0, we obtain the equations of zero approximation, for s = 1, the equations of first

approximation, etc.

2.1.2. Representation of the equation of heat influx in moment DRTBM. In the general case, the

heat influx equation in moment DRBM can be represented in the form [95]

−∇ · q+ ρq − T
d

dt
(a
˜

2⊗P
˜
+ d
˜

2⊗μμμ
˜
) +W ∗ = ρcp∂tT, (2.16)

where q is the vector of exterior heat influx, q is the mass heat influx, T is the temperature, a
˜
, d
˜are the tensors of heat extension, P

˜
	= P

˜
T is the stress tensor, μμμ

˜
	= μμμ

˜
T is the moment stress tensor,

W ∗ is the scattering function, ρ is the medium density, and cp is the heat capacity under constant

pressure. If we consider the physically linear medium, then the nonlinearity in (2.16) is in the third

summand of the left-hand side. A similar situation holds in a particular variant of this equation,

which is obtained from (2.16) for d
˜
= 0 (see [93]). In the latter case, since both heat capacities cp

and cv (heat capacity under constant volume) cannot be constant simultaneously (independent of the

temperature), very often one assumes that in this summand the temperature T is replaced by the

temperature T0 = const. Taking into account this assumption, we see that the desired representation

of the heat influx equation has the following form similar to (2.10):

−gP−
M
N

P
q

−
M − ∂3q

−
3 + ρq − T0

d

dt
(a
˜

2⊗P
˜
+ d
˜

2⊗μμμ
˜
) +W ∗ = ρcp∂tT. (2.17)

If necessary, it is easy to write the relations similar to (2.9) and (2.12). Therefore, for brevity, we do

not dwell on this. Note that by (2.17), analogously to (2.14), the heat influx equation of approximation

of order s is represented in the form

− g
(s)

P
−
M
N

P
q

−
M − ∂3q

−
3 + ρq − T0

d

dt
(a
˜

2⊗P
˜
+ d
˜

2⊗μμμ
˜
) +W ∗ = ρcp∂tT. (2.18)
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2.1.3. Representations of constitutive relations of physical and heat content. In linear moment elas-

ticity theory, the constitutive relations of physical content under nonisothermal processes can be

represented in the following form by the generalized Duhamel–Neumann principle [93, 95]:

P
˜
= C

˜̃
2⊗ (γγγ

˜
− a
˜
ϑ) +A

˜̃
2⊗ (κκκ

˜
− d
˜
ϑ), μμμ

˜
= D

˜̃
2⊗ (κκκ

˜
− d
˜
ϑ) +B

˜̃
2⊗ (γγγ

˜
− a
˜
ϑ), (2.19)

where γγγ
˜
= ∇u − C� · ϕϕϕ is the deformation tensor in moment theory (see [49]), κκκ

˜
= ∇ϕϕϕ is the bend-

torsion tensor, C
˜̃
, A
˜̃
, D
˜̃
, B
˜̃

are material tensors of the fourth rank, and ϑ is the temperature drop.

Taking into account the expression for γγγ
˜
, we can write (2.19) in the form

P
˜
= C

˜̃
2⊗∇u+A

˜̃
2⊗∇ϕϕϕ−C

˜̃
2⊗C� ·ϕϕϕ− b

˜
ϑ, μμμ

˜
= D

˜̃
2⊗∇ϕϕϕ+B

˜̃
2⊗∇u−B

˜̃
2⊗C� ·ϕϕϕ− βββ

˜
ϑ, (2.20)

where

b
˜
= C

˜̃
2⊗ a
˜
+A

˜̃
2⊗ d
˜
, βββ

˜
= D

˜̃
2⊗ d
˜
+B

˜̃
2⊗ a
˜
,

which are called the tensors of thermomechanical properties. Note that a particular case of law (2.20)

was considered in [49, 84], and more general relations were presented in [94, 95]. Now it is easy to

find the desired representations of the Hooke’s law (2.20) under the new parametrization of thin body

domain. Indeed, taking into account the representation of the gradient operator (2.6), after simple

transformations, from (2.20), we have

P
˜
= C

˜̃
2⊗ (gP−

M
r

−
MN

P
u+ r

−
3∂3u) +A

˜̃
2⊗ (gP−

M
r

−
MN

P
ϕϕϕ+ r

−
3∂3ϕϕϕ)−C

˜̃
2⊗C� ·ϕϕϕ− b

˜
ϑ,

μμμ
˜
= D

˜̃
2⊗ (gP−

M
r

−
MN

P
ϕϕϕ+ r

−
3∂3ϕϕϕ) +B

˜̃
2⊗ (gP−

M
r

−
MN

P
u+ r

−
3∂3u)−B

˜̃
2⊗C� ·ϕϕϕ− βββ

˜
ϑ.

(2.21)

Taking into account the first relation in (2.3), it is easy to note that relations (2.21) contain infinitely

many summands. Therefore, they cannot be used in such a form. In applications, one uses approximate

constitutive relations (CR), i.e., relations represented by finitely many summands. In this connection,

we introduce the following definition.

Definition 2.2. The relations obtained from (2.21) under the condition that in the expansion of gP−
M

(see the first formula in (2.3)), the first s+ 1 terms are preserved are called the CR of approximation

of order s.

It is easy to see that analogously to Eqs. (2.14) and (2.18), CR of approximation of order s are

represented in the form

P
˜ (s) = C

˜̃
2⊗ ( g

(s)

P
−
M
r

−
MN

P
u+ r

−
3∂3u) +A

˜̃
2⊗ ( g

(s)

P
−
M
r

−
MN

P
ϕϕϕ+ r

−
3∂3ϕϕϕ)−C

˜̃
2⊗C� ·ϕϕϕ− b

˜
ϑ,

μμμ
˜

(s) = D
˜̃

2⊗ ( g
(s)

P
−
M
r

−
MN

P
ϕϕϕ+ r

−
3∂3ϕϕϕ) +B

˜̃
2⊗ ( g

(s)

P
−
M
r

−
MN

P
u+ r

−
3∂3u)−B

˜̃
2⊗C� ·ϕϕϕ− βββ

˜
ϑ.

(2.22)

Definition 2.3. The relations obtained from (2.22) for s = 0 are called CR of zero approximation,

and for s = 1, they are called CR of the first approximation.

It is easy to see that CR of zero approximation have the form

P
˜ (0) = C

˜̃
2⊗ (r

−
MN

P
u+ r

−
3∂3u) +A

˜̃
2⊗ (r

−
MN

P
ϕϕϕ+ r

−
3∂3ϕϕϕ)−C

˜̃
2⊗C� ·ϕϕϕ− b

˜
ϑ,

μμμ
˜

(0) = D
˜̃

2⊗ (r
−
MN

P
ϕϕϕ+ r

−
3∂3ϕϕϕ) +B

˜̃
2⊗ (r

−
MN

P
u+ r

−
3∂3u)−B

˜̃
2⊗C� ·ϕϕϕ− βββ

˜
ϑ.
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Note that if we consider a body with center of symmetry [49, 84], then A
˜̃

= 0, B
˜̃

= 0, and in this

case, the CR presented above simplify. Let us find the corresponding representation for the Fourier

heat conduction law (which defines the relations of heat content) under the new parametrization of

the thin body domain. Since the Fourier heat conduction law [84, 93] has the form q=−Λ
˜
·∇T , where

the second-rank positive-definite tensor ΛΛΛ
˜
is called the heat conduction tensor, by (2.6), the Fourier

heat conduction law of zero approximation and approximation of order s is represented in the form

q(0) = −ΛΛΛ
−
MN

P
T −ΛΛΛ

−
3∂3T, q(s) = −ΛΛΛ

−
M g

(s)

P
−
M
N

P
T −ΛΛΛ

−
3∂3T, ΛΛΛ

−
m = ΛΛΛ

˜
· r

−
m. (2.23)

3. Moment Theory with Respect to System

of Orthonormal Chebyshev Polynomials of Second Kind

To construct the moment theory with respect to a certain system of orthogonal polynomials (Le-

gendre, Chebyshev, etc.), we need recursive relations for these polynomials. For example, for the

shifted Chebyshev polynomials, the main recursive relations on the orthogonality closed interval [0,1]

are represented in the following form [67, 72]:

4tU∗
n(t) = U∗

n−1(t) + 2U∗
n(t) + U∗

n+1(t), n ≥ 1,

2tU∗′
n (t) = 2nU∗

n(t) + U∗′
n−1(t) + U∗′

n (t), n ≥ 1,

U∗′
n (t) = 4nU∗

n−1(t) + U∗′
n−2(t), n ≥ 2, 0 ≤ t ≤ 1.

(3.1)

Note that formulas (3.1) are obtained in the same way as analogous formulas for Legendre polynomials

on the orthogonality closed interval [−1, 1], e.g, in [105] (see also [65]). Using the main recursive

relations (3.1), it is easy to obtain the following relations, which are necessary for constructing thin

body theories [67, 72]:

22stsU∗
n(t) =

2s∑

p=0

Cp
2sU

∗
n−s+p(t), s, n ∈ N0; (3.2)

22stsU∗
m(t)U∗

n(t) =
m∑

p=0

2s∑

q=0

Cq
2sU

∗
n−m−s+2p+q(t), n,m, s ∈ N0; (3.3)

U∗′
n (t) = 4

[(n−1)/2]∑

k=0

(n− 2k)U∗
n−(2k+1)(t) = 4

[(n−1)/2]∑

k=0

(2k + 1 + a)U∗
2k+a(t), n ≥ 1; (3.4)

22stsU∗′
n (t) = 4

[(n−1)/2]∑

k=0

2s∑

p=0

(n− 2k)Cp
2sU

∗
n−(s+2k+1)+p(t) =

= 4

[(n−1)/2]∑

k=0

(2k + 1 + a)U∗
2k+a−s+p, n ≥ 1, s ≥ 0; (3.5)

U∗′′
n (t) = 24

[(n−2)/2]∑

k=0

(k + 1)(n− k)[n− (2k + 1)]U∗
n−(2k+2)(t) =

= 22
[(n−2)/2]∑

k=0

(2k + 2− a)[(n+ 1)2 − (2k + 2− a)2]U∗
2k+1−a(t), n ≥ 2; (3.6)
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22stsU∗′′
n (t) = 24

[(n−2)/2]∑

k=0

2s∑

p=0

(k + 1)(n− k)[n− (2k + 1)]Cp
2sU

∗
n−(s+2k+2)+p =

= 22
[(n−2)/2]∑

k=0

(2k + 2− a)[(n+ 1)2 − (2k + 2− a)2]Cp
2sU

∗
2k+1−a−s+p, n ≥ 2, s ≥ 0. (3.7)

Here, a = n−1−2
[
(n− 1)/2

]
, [x] is the integral part of x, and Cn

m are the binomial coefficients. Note

that all relations (3.2)–(3.7), which also hold for the system of orthonormal Chebyshev polynomials of

the second kind {Û∗
k}∞k=0, except for (3.3), can be proved by induction. For a system of orthonormal

polynomials, (3.3) is represented in the form

22stsÛ∗
m(t)Û∗

n(t) = Û∗
0

m∑

p=0

2s∑

q=0

Cq
2sÛ

∗
n−m−s+2p+q(t), n,m, s ∈ N0. (3.8)

Note that extending the definition of the system of Chebyshev polynomials of the second kind to the

set of negative numbers, we obtain the relation U∗−n = −U∗
n−2, n ∈ N0, under which (3.2)–(3.7) were

obtained.

Consider a certain tensor field F(x1, x2, x3), which depends on the coordinates x1, x2, x3 of the thin

body domain under its new parametrization. For brevity, instead of F(x1, x2, x3), we write F(x′, x3),
where x′ = (x1, x2), x3 ∈ [0, 1]. Moreover, we assume that the tensor fields considered are sufficiently

smooth. For example, F(x′, x3) ∈ Cm(V ∪ ∂V ), m ≥ 1; V is the domain occupied by the thin body

considered and ∂V is its boundary. Then the tensor field F(x′, x3) can be expanded in a series with

respect to the system of shifted Chebyshev polynomials of the second kind {Û∗
k}∞k=0 with respect to

the coordinate x3 ∈ [0, 1] for each fixed point x′ ∈
(−)

S (of the inner base surface) [105]. This expansion

is represented in the form

F(x′, x3) =
∞∑

k=0

(k)

F (x′)Û∗
k(x

3), x′ ∈
(−)

S , x3 ∈ [0, 1], (3.9)

where
(k)

F (x′) is called the coefficient with number k in the expansion of F(x′, x3) in the series with

respect to the polynomial system {Û∗
k}∞k=0.

Definition 3.1. The moment of the kth order of a certain tensor field F(x′, x3) with respect to the

polynomial system {Û∗
k}∞k=0, which is denoted by

(k)

M(F), is the integral

(k)

M(F) =

1∫

0

F(x′, x3)Û∗
k(x

3)h∗(x3)dx3, k ∈ N0. (3.10)

It is easy to prove that the following assertions hold.

Assertion 3.1. For any tensor fields F(x′, x3) and G(x′, x3) and any functions α(x′) and β(x′), the
following relation holds :

(k)

M[α(x′)F+ β(x′)G] = α(x′)
(k)

M(F) + β(x′)
(k)

M(G), k ∈ N0. (3.11)

This implies that the moment operator is a linear operator.
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Assertion 3.2. The kth-order moment of a tensor field F(x′, x3) with respect to the polynomial system

{Û∗
k}∞k=0 is equal to the coefficient with number k in the expansion of F(x′, x3) with respect to x3 in

this polynomial system, i.e.,

(k)

M(F) =

1∫

0

F(x′, x3)Û∗
k(x

3)h∗(x3)dx3 =
(k)

F (x′), k ∈ N0. (3.12)

Relation (3.11) follows from definition (3.10), whereas relation (3.12) is proved by using (3.9) and

(3.10) and taking into account the fact that the system {Û∗
k}∞k=0 is orthonormal. It is easy to prove

that the following relations hold:

(k)

M(∂iF) =

⎧
⎨

⎩
∂I

(k)

F (x′), i = I,
(k)

F
′(x′), i = 3,

(k)

M(∂i∂jF) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂I∂J
(k)

F (x′), i = I, j = J,

∂I
(k)

F
′(x′), i = I, j = 3,

(k)

F
′′(x′), i = j = 3,

(3.13)

where we have introduced the following notation:

(k)

F
′(x′) = 22(k + 1)

∞∑

p=0

(k+2p+1)

F (x′) = 2(k + 1)
∞∑

p=k

[
1− (−1)k+p

](p)
F (x′)

= 2(k + 1)

⎡

⎣
N∑

p=k

(
1− (−1)k+p

)(p)
F (x′) +

(+)

F
′(x′)− (−1)k

(−)

F
′(x′)

⎤

⎦ ,

(k)

F
′′(x′) =

((k)
F

′)′ = 24(k + 1)
∞∑

p=0

(p+ 1)(k + p+ 2)
(k+2p+2)

F (x′)

= 2(k + 1)

⎡

⎣
N∑

p=k

(p− k)(k + p+ 2)
(
1 + (−1)k+p

)(p)
F (x′) +

(+)

F
′′(x′)+(−1)k

(−)

F
′′(x′)

⎤

⎦ ,

(3.14)

(+)

F
′(x′) =

∞∑

p=N+1

(p)

F (x′),
(+)

F
′′(x′) =

∞∑

p=N+1

(p− k)(k + p+ 2)
(p)

F (x′),

(−)

F
′(x′) =

∞∑

p=N+1

(−1)p
(p)

F (x′),
(−)

F
′′(x′) =

∞∑

p=N+1

(−1)p(p− k)(k + p+ 2)
(p)

F (x′).

(3.15)

Note that the first relation in (3.14) can be taken as the definition of the “prime” operator, and the

second can be obtained by applying the “prime” operator to
(k)

F two times. The following relations are

generalizations of (3.13):

(k)

M[PN (x3)∂pi ∂
q
jF] =

⎡

⎢⎢⎢⎢⎢⎣

∂pI∂
q
J

(k)

M
[
PN (x3)F

]
, i = I, j = J,

∂I
{(k)

M
[
PN (x3)F

]}(q)
, i = I, j = 3,

{(k)

M
[
PN (x3)F

]}(p+q)
, i = j = 3,

(3.16)

where PN (x3) is a polynomial of degree N , k, N , p, q ∈ N0, and
{(k)

M
[
PN (x3)F

]}(m)
, m ∈ N0, means

that the “prime” operator is applied m times. To prove the first lines of (3.13) and (3.16), we use

definition (3.10). The second and third lines of (3.13) are proved by using (3.4) and (3.6), respectively,
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and the second and third lines of (3.16) are proved by induction. Using (3.2) and the last relation in

(3.16), we can prove the relations

(n)

M
[
(x3)s∂m3 F

]
=

2s∑

p=0

2−2sCp
2s

(n−s+p)

F
(m)(x′), n− s ≥ 0, s, m ∈ N0,

(n)

M
[
(x3)s∂m3 F

]
=

2n+2∑

p=1

2−2(n+1)Cp
2n+2

(p−1)

F
(m)(x′), s = n+ 1, n,m ∈ N0,

(n)

M
[
(x3)s∂m3 F

]
= −

s−n∑

q=2

2−2sCq−2
2s

(s−n−q)

F
(m)(x′)

+
2s∑

p=s−n

2−2sCp
2s

(n−s+p)

F
(m)(x′), s ≥ n+ 2, n,m ∈ N0.

(3.17)

Let us represent (3.17) for m = 1 in another form. Using easy transformations, the first relation in

(3.14), and the first two relations in (3.15), from (3.17), for m = 1, we obtain

(k)

M
[
(x3)s+1∂3F

]
=

(k)

M
′[(x3)s+1

F
]
=

2s+2∑

p=0

N∑

q=l−1

2−(2s+1)Cp
2s+2l

[
1 + (−1)l+q

](q)
F (x′)+

+ (2k − s+ 1)
(+)

F
′, l ≡ k − s+ p, k ≥ s+ 1, N ≥ k + s+ 1, s ≥ 0,

(k)

M
[
(x3)k+1∂3F

]
=

(k)

M
′[(x3)k+1

F
]
=

2k+2∑

p=1

N∑

q=p−1

2−(2k+1)Cp
2k+2p

[
1 + (−1)p+q

](q)
F (x′)+

+ (k + 1)
(+)

F
′, N ≥ 2k + 1, k ≥ 0,

(k)

M
[
(x3)s+1∂3F

]
=

(k)

M
′[(x3)s+1

F
]
= −

s−k−1∑

p=0

N∑

q=p

2−(2s+1)Cs−k−1−p
2s+2 (p+ 1)

[
1− (−1)p+q

](q)
F+

+
s+k+1∑

p=s+1−k

N∑

q=p

2−(2s+1)Cs+1−k+p
2s+2 (p+ 1)

[
1− (−1)p+q

](q)
F + a(s,k)

(−)

F
′ + b(s,k)

(+)

F
′,

s ≥ k + 1, N ≥ s+ k + 1, k ≥ 0,

(3.18)

where we have introduced the notation

a(s,k) = 2−(2s+1)

⎡

⎣−
s−k−1∑

p=0

Cs−k−1−p
2s+2 (p+ 1)(−1)p+1 +

s+k+1∑

p=s+1−k

Cs+1−k+p
2s+2 (p+ 1)(−1)p+1

⎤

⎦ ,

b(s,k) = 2−(2s+1)

⎡

⎣−
s−k−1∑

p=0

Cs−k−1−p
2s+2 (p+ 1) +

s+k+1∑

p=s+1−k

Cs+1−k+p
2s+2 (p+ 1)

⎤

⎦ , s ≥ k + 1.

Let us find the expression for
(k)

M( g
(s)

P
−
M
N

P
F). By (2.5) and (3.11), we obtain

(k)

M( g
(s)

P
−
M
N

P
F) =

(k)

M( g
(s)

P
−
M
∂
P
F)− g

−
3
+
P

(k)

M(x3 g
(s)

P
−
M
∂3F). (3.19)
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Furthermore, by (2.15), (3.11), (3.16), and (3.17), for m = 1, we find that

(k)

M( g
(s)

P
−
M
∂
P
F) =

s∑

m=0

A
(m)

−
P
+
M
∂
P

(k)

M[(x3)mF] =
k+1∑

m=0

2m∑

p=0

A
(m)

−
P
+
M
2−2mCp

2m
∂
P

(k−m+p)

F

+
s∑

m=k+2

A
(m)

−
P
+
M

(
−

m−k∑

p=2

2−2mCq−2

2m
∂
P

(m−k−q)

F +
2m∑

p=m−k

2−2mCp

2m
∂
P

(k−m+p)

F

)
, k ≥ 0, s ≥ 0. (3.20)

Whence, for s = 0 and s = 1, we obtain

(k)

M( g
(0)

P
−
M
∂
P
F) =

(k)

M(∂
M
F), k ≥ 0,

(k)

M( g
(1)

P
−
M
∂
P
F) =

(k)

M[(g
−
P
−
M

+ x3A
−
P
+
M
)∂

P
F] = ∂

P

(k)

F +
1

4
A

−
P
+
M
∂
M
(
(k−1)

F + 2
(k)

F +
(k+1)

F ), k ≥ 0.

(3.21)

Here, we have introduced the notation

A
−
P
+
M

≡ A
(1)

−
P
+
M

= g
−
P
−
M

− g
−
P
+
M
.

Moreover, we assume that
(m)

F = 0 if m < 0. In what follows, we assume that this condition holds.

Similarly, by (2.15), (3.11), (3.16), and (3.18), we have

(k)

M(x3 g
(s)

P
−
M
∂3F) =

s∑

m=0

A
(m)

−
P
+
M

(k)

M
′[(x3)m+1

F]

=
k∑

m=0

A
(m)

−
P
+
M

2m+2∑

p=0

N∑

q=l−1

2−(2m+1)Cp
2m+2l

(
1+(−1)l+q

)(q)

F (x′)

+

s∑

m=0

A
(m)

−
P
+
M

⎡

⎣−
m−k−1∑

p=0

N∑

q=p

2−(2m+1)Cm−k−1−p
2m+2 (p+ 1)

(
1− (−1)p+q

)(q)

F (x′)

+
m+k+1∑

p=m+1−k

N∑

q=p

2−(2m+1)Cm+1−k+p
2m+2 (p+ 1)

(
1− (−1)p+q

)(q)

F (x′)

⎤

⎦

+
( s∑

m=k+1

A
(m)

−
P
+
M
a(s,k)

)(−)

F
′ +

[
k∑

m=0

(2k −m+ 1) A
(m)

−
P
+
M

+
s∑

m=k+1

A
(m)

−
P
+
M
b(s,k)

]
(+)

F
′,

l ≡ k −m+ p, N ≥ s+ k + 1, k ≥ 0, s ≥ 0. (3.22)

Whence, for s = 0 and s = 1, we find that

(k)

M(x3 g
(0)

P
−
M
∂3F) = g

−
P
−
M

(k)

M
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1
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F
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P
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⎡

⎣k
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⎛

⎝
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p=k

(p)

F −
(k)

F +
(+)

F
′

⎞

⎠

⎤

⎦ , k ≥ 0, (3.23)
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(k)

M(x3 g
(1)

P
−
M
∂3F) =

(k)

M

[(
g

−
P
−
M
x3 +A

−
P
+
M
(x3)2

)
∂3F

]

= g
−
P
−
M

(k)

M
′(x3F) +A

−
P
+
M

(k)

M
′[(x3)2F] = g

−
P
−
M

⎡
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(k)

F + 2(k + 1)

⎛

⎝
N∑

p=k

(p)

F −
(k)

F +
(+)

F
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⎞

⎠

⎤

⎦

+
1

4
A

−
P
+
M

⎡

⎣(k − 1)
(k−1)

F − 4(k + 2)
(k)

F − (k + 3)
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F + 8(k + 1)

⎛

⎝
N∑

p=k

(p)

F +
(+)

F
′

⎞

⎠

⎤

⎦ , k ≥ 0. (3.24)

Taking into account (3.20) and (3.22), from (3.19), we obtain the desired relation in the form

(k)

M( g
(s)

P
−
M
N

P
F) =

k+1∑

m=0

2m∑

p=0

A
(m)

−
P
+
M
2−2mCp

2m
∂
P

(k−m+p)

F

+
s∑

m=k+2

A
(m)

−
P
+
M

⎛

⎝−
m−k∑

p=2

2−2mCp−2

2m
∂
P

(m−k−p)

F +
2m∑

p=m−k

2−2mCp

2m
∂
P

(k−m+p)

F

⎞

⎠

− g
−
3
+
P

⎧
⎨

⎩

k∑

m=0

A
(m)

−
P
+
M

2m+2∑

p=0

N∑

q=l−1

2−(2m+1)Cp
2m+2l

(
1 + (−1)l+q

)(q)

F (x′)

+

s∑

m=k+1

A
(m)

−
P
+
M

⎡

⎣−
m−k−1∑

p=0

N∑

q=p

2−(2m+1)Cm−k−1−p
2m+2 (p+ 1)

(
1− (−1)p+q

)(q)

F (x′)

+
m+k+1∑

p=m+1−k

N∑

q=p

2−(2m+1)Cm+1−k+p
2m+2 (p+ 1)

(
1− (−1)p+q

)(q)

F (x′)
]}

− g
−
3
+
P

{(
s∑

m=k+1

A
(m)

−
P
+
M
a(m,k)

)
(−)

F
′ +

[
k∑

m=0

(2k −m+ 1) A
(m)

−
P
+
M

+
s∑

m=k+1

A
(m)

−
P
+
M
b(m,k)

]
(+)

F
′
}
,

l ≡ k −m+ p, N ≥ s+ k + 1, k ≥ 0, s ≥ 0. (3.25)

Whence, for s = 0 and s = 1, by (3.21), (3.23), and (3.24), we find that

(k)

M( g
(0)

J
−
I
N

J
F) =

(k)

M(N
I
F) = ∇

I

(k)

F − g
−
3
+
I

⎡

⎣k
(k)

F + 2(k + 1)

⎛

⎝
N∑

p=k

(p)

F −
(k)

F +
(+)

F
′

⎞

⎠

⎤

⎦ , k ≥ 0, (3.26)

(k)

M( g
(1)

J
−
I
N

J
F) =

(k)

M[(g
−
J
−
I
+ x3A

−
J
+
I
)N

J
F]

= ∇
I

(k)

F +
1

4
A

−
J
+
I
∇

J

((k−1)

F + 2
(k)

F +
(k+1)

F
)− g

−
3
+
J

⎧
⎨

⎩g
−
J
−
I

⎡

⎣k
(k)

F + 2(k + 1)

⎛

⎝
N∑

p=k

(p)
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(k)

F +
(+)

F
′

⎞

⎠

⎤

⎦

+
1

4
A

−
J
+
I

⎡

⎣(k − 1)
(k−1)

F − 4(k + 2)
(k)

F − (k + 3)
(k+1)

F + 8(k + 1)

⎛

⎝
N∑

p=k

(p)

F +
(+)

F
′

⎞

⎠

⎤

⎦

⎫
⎬

⎭ , k ≥ 0. (3.27)

Therefore, we have deduced the main relation in the form (3.25); using this relation from the equations

of motion (2.14), the heat influx equation (2.18), CR of physical content (2.22), and CR of heat content
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(2.23) (second formula) of approximation of order s, we obtain the corresponding relations in moments;

in turn by using the above rule, from them, we obtain the corresponding relations for multilayer thin

bodies. Analogously, we obtain the boundary conditions of physical and heat contents in moments.

Formulas (3.26) and (3.27) are applied in deducing the above relations from the corresponding relations

of zero and first approximations. Formulas analogous to (3.26) and (3.27) certainly hold for the

Legendre polynomial system. The relation for Legendre polynomial system analogous to (3.25) is very

cumbersome,and so we do not write it.

4. Systems of Equations of Motion in Moments

for Multilayer Thin Bodies with One Small Dimension

4.1. Systems of equations of motion in moments of contravariant components of stress

tensors and moment stresses with respect with respect to Chebyshev polynomial systems

for multilayer thin bodies with one small dimension. We restrict ourselves to obtaining the

systems of equations of motion of approximations (0, N) and (1, N) in moments. Using the rule

presented above, by analogous systems of equations from [72],we represent the desired systems of

equations in the form

{
∇

I

(k)

P
α

−
I − g

α

−
3
+
P

[
k

(k)

P
α

−
I + 2(k + 1)
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p=k

(p)

P
α
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P
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−
I
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[
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](p)
P
α

−
3

}
+ ρ

α

(k)

F
α
= ρ

α
∂2t

(k)

u
α
, (4.1)

{
P ⇒ μμμ

}
+C�

α

2⊗
(k)

P
α̃
+ ρ

α

(k)

m
α

= J
α̃
· ∂2t

(k)

ϕϕϕ
α
, k = 0, N, α = 0,K;

{
∇

I
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P
α
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1

4
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g
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J
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I
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∇∇
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P
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−
I +
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P
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−
I
)
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α

−
3
+
I

{
g
α

−
I
−
J

[
k
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P
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−
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(
N∑
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(p)

P
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−
J −

(k)

P
α

−
J
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+
1

4

(
g
α
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I
−
J
− g

α

−
I
+
J

)[
(k − 1)

(k−1)

P
α

−
J − 4(k + 2)

(k)

P
α

−
J − (k + 3)

(k+1)

P
α

−
J + 8(k + 1)

(
N∑

p=k

(p)

P
α

−
J

)]}
+

+ 2(k + 1)
[ N∑

p=k

(1− (−1)k+p)
(p)

P
α

−
3
]}

+ ρ
α

(k)

F
α
= ρ

α
∂2t

(k)

u
α
, (4.2)

{
P ⇒ μμμ

}
+C�

α

2⊗
(k)

P
α̃
+ ρ

α

(k)

m
α

= J
α̃
· ∂2t

(k)

ϕϕϕ
α
, k = 0, N, α = 0,K.

Here, the notation
{
P ⇒ μμμ

}
means that the expression in brackets is obtained from the expression

in brackets of the previous relation if the letter Pis replaced by μμμ; this notation is also used in what

follows. Note that Eqs. (4.1) and (4.2) are also obtained by using formulas (3.26) and (3.27).
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4.2. Systems of equations of motion in moments of contravariant components of stress

tensors and moment stresses with respect to Legendre polynomial systems for multilayer

thin bodies with one small dimension. Let us write the systems of equations of motion of ap-

proximations (0, N) and (1, N) in moments taking into account only boundary conditions of physical

content on frontal surface, since the systems of equations without boundary conditions on frontal

surfaces, which can be obtained by using the corresponding systems of equations from [72], have a

form analogous to (4.1) and (4.2). It is easy to prove that similarly to the system of equations for a

one-layer classical elastic body [117], the desired systems of equations are represented in the form

{
∇

I

(k)

P
α

−
I − g

α

−
3
+
I

[
k
(k)

P
α

−
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−
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+ ρ
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F
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= ρ
α
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u
α
, (4.3)
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}
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α
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(k)

ϕϕϕ
α
, k = 0, N, α = 0,K;
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+ ρ

α

(k)

F
α

= ρ
α
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u
α
, (4.4)

{
P ⇒ μμμ

}
+C�

α

2⊗
(k)

P
α̃
+ ρ

α

(k)

m
α

= J
α̃
· ∂2t

(k)

ϕϕϕ
α
, k = 0, N, α = 0,K.

Note that Eqs. (4.3) and (4.4) are deduced by using formulas for Legendre polynomials that are similar

to (3.26) and (3.27). Also, note that
(+)

P
α

(
(+)

μμμ
α
) and

(−)

P
α+1

(
(−)

μμμ
α+1

), where α = 1,K − 1, are stress vectors

(moment stresses) of interaction between the layers α and α+1, which act on the surfaces
(+)

S
α

and
(−)

S
α+1

,

respectively, and
(+)

P
1
(
(+)

μμμ
1
) and

(−)

P
K

(
(−)

μμμ
K
) are given stress vectors (moment stresses) on the frontal surfaces

(+)

S
1

and
(−)

S
K
, respectively. The systems of equations of heat influx of approximations (0, N) and (1, N),

and also CR of heat content for multilayer thin bodies are obtained similarly to (4.1)–(4.4). Therefore,

for brevity, we do not dwell on them. To help the reader understand this work (if the large work [72]

is not available for and what was said is not sufficient to completely understand this work), we refer

to [67], where for the theory of one-layer thin body with one small size with the use of the Chebyshev

polynomial system of the second kind, similar problems are presented in detail. In particular, using the

deduced recursive relations for the Chebyshev polynomial system, Nikabadze obtained the moments

of derivatives of the first and second order of a scalar function, tensors of the first and second ranks
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and their components, and also some differential operators of these quantities.Also, this work obtained

constitutive relations of physical and heat contents, equations of motion and heat influx, boundary

conditions of various kind in moments with respect to the Chebyshev polynomial system of the second

kind, and also initial conditions of kinematic and heat contents. Moreover, the constitutive relations

were also obtained for an inhomogeneous material. This work presented the statements of related and

nonrelated dynamical problems in moments of approximation (r,N) of moment thermomechanics of a

deformable rigid thin body and also the statement of nonstationary temperature problem in moments

of approximation (r,N), where r and N are arbitrary nonnegative integers. All relations for one-layer

thin body presented in this paragraph are automatically transferred to the case of multilayer thin

body theory by using the rule presented above .

4.3. Systems of equations in moments of the displacement vector with respect to Le-

gendre and Chebyshev polynomial systems for multilayer thin bodies with one small

dimension. Let us write systems of equations of zero and first approximation in moments for the

displacement vector. The system of equations of zero approximation in moments with respect to

Legendre and Chebyshev polynomials has the form

C
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−
I ·

−
J · · ∇I∇J

(k)
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+
(
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α
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α
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(k)
u
α
, k ∈ N0, α = 0,K.

(4.5)

Taking into account the formulas for moments of the kth order of first and second derivatives of a

vector(vector components, a scalar function) with respect to these polynomial systems [72], from (4.5),

we obtain the desired systems of equations of zero approximation in moments. For brevity, we do not

write them. Similarly to (4.5), the system of equations of the first approximation is represented in the

form
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(4.6)

where we have introduced the following notation:

B
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+
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(
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Q
−
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−
Q
+
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)
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+
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+
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P
+
M
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Q
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P
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Q
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P
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M
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Q
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N
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A
(1α)

−
P
+
M

= g
α

−
P
−
M

− g
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−
P
+
M
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(2α)

−
P
+
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g
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−
P
−
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−
P
+
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)(
g
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N
−
M

− g
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−
N
+
M

)
.

Taking into account the expressions for the kth-order moments entering (4.6) and using the corre-

sponding formulas for Legendre and Chebyshev polynomial systems of the second kind [72], from

(4.6), we obtain various representations of the equations of first approximation of the displacement
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vector in moments with respect to these polynomial systems. Also, it is easy to deduce the equations

of motion of first approximation in moments for the displacement vector with respect to the systems

of Chebyshev polynomials of the first kind. For brevity, we do not write the equations in moments

mentioned in this paragraph. It should be noted that to close systems (4.1)–(4.4), we need to add to

them the system of equations of heat influx, CR, boundary and initial conditions of physical and heat

contents in moments of the corresponding approximations, and also inter-layer contact conditions de-

pending on the connections of neighboring surfaces. Hence to close systems (4.5) and (4.6), we need to

add to them all relations of the previous proposition, except for CR in the case of first boundary-value

problem where kinematic boundary conditions are given on the whole surface . Of course, it is easy to

write all missed relations and formulate the statement of problems analogous to those presented in [67,

72, 74–76] (CR; see also above) for one-layer domains, except for inter-layer contact conditions, by

using the rule presented above. Otherwise, we need to repeat almost all presentations in [67] applied

to multilayer thin body theory. Owing to this, we do not dwell on them and consider inter-layer

contact conditions below.

5. Inter-Layer Contact Conditions

In studying strained-deformed states of multilayer constructions and composite media, as a rule,

one assumes that component layers (elements, phases) work jointly, without sliding. Obviously, such

a model does not cover the variety of connection methods used in technology and does not take into

account the existence of interphase defects, which manifest themselves in nonperfect connection of

phases in contact. Defects of such a type are often inevitable because of peculiarities of technological

character (see [9, 46, 101]). Therefore, the deformation of multilayer thin bodies can be without

violation or with violation of complete layer contact owing to their separation in normal or tangential

direction. Between the layers, there can arise contact domain and contact-free domain. Moreover,

the boundaries of these domains can vary in the deformation process, the layer can slide with respect

to each other, the sliding can be with friction, etc. All these phenomena can essentially influence

the mechanical behavior of a thin body, its strained-deformed state. Of course, account of these

phenomena is necessary in studying strained-deformed state of multilayer bodies. In contrast to other

parametrizations, the use of frontal surfaces as base surfaces in the parametrization of a multilayer thin

body domain allows one to easily take into account these phenomena. In considering the phenomena

occurring on frontal surfaces, the main problem is the problem of modelling the interface. In this

direction, there exist two approaches. The first approach is physical, which takes into account thin

adhesion layers via the generalized weld condition of the elements in contact. For the first time,

such an approach was proposed for heat conduction problems in [96]. Later on, it was generalized to

mechanical problems [97]. The second approach is phenomenological; it is based on the assumption

that, a priori, discontinuity zones of displacements exist. To study these problems, we assume that a

multilayer thin construction consists of K layers. Denote by
(+)

S
α

and
(−)

S
α

(α = 1,K) the exterior and

inner surfaces of the layer α (α = 1,K), respectively, and consider several cases of mutual relation of

neighboring surfaces
(+)

S
α

(−)

S
α+1

(α = 1,K − 1), which are important in practice.

5.1. Weld conditions (complete ideal contact conditions). In this case the forces and mo-

ments of interaction between the layers α and α + 1 (α = 1,K − 1) are unknown. These forces and

moments are evidently equal and have opposite directions. Therefore, there additionally arise six

unknown functions. However, in the case considered, we have six additional conditions, which express
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the continuity of displacement vectors and the rotation of welded surface points. In other words,

displacement vectors and rotation vectors of contacting surfaces are equal. Denoting the forces and

moments of interaction of the contacted surfaces
(+)

S
α

and
(−)

S
α+1

(α = 1,K − 1) by
(+)

P
α
,

(+)

μμμ
α

and
(−)

P
α+1

,
(−)

μμμ
α+1

(α = 1,K − 1), respectively, and the displacement and rotation vectors of points of these surfaces by
(+)

u
α
,

(+)

ϕϕϕ
α

and
(−)

u
α+1

,
(−)

ϕϕϕ
α+1

(α = 1,K − 1), we can represent the complete contact conditions in the moment

theory of multilayer thin bodies in the form

(+)

P
α

= −
(−)

P
α+1

,
(+)

μμμ
α

= − (−)

μμμ
α+1

,
(+)

u
α

=
(−)

u
α+1

,
(+)

ϕϕϕ
α

=
(−)

ϕϕϕ
α+1

, α = 1,K − 1. (5.1)

Neglecting the characteristics of moment theory (the second and fourth relations) in (5.1), we obtain

the ideal contact conditions for the classical theory (the first and third relations).

5.2. Conditions under relative displacement of contacted layer surfaces. As was said

above, in the process of deformation of a multilayer construction, relative displacements of points

of the surfaces
(+)

S
α

and
(−)

S
α+1

with the same Gaussian coordinates (x1, x2) are possible. Let us consider

various variants. First of all, we note that there exist bounded limit intensities of coupling forces of

the layers α and α + 1 (α = 1,K − 1) in normal and tangential direction. Denote the normal and

tangent components of the limit force of action of the layer α on the layer α+ 1 by

(−)

P
α+1

∗
(n) =

(−)

P
α+1

∗
(n)(x

1, x2)
(−)

n
α+1

,
(−)

P
α+1

∗
(s) =

(−)

P
α+1

∗
(s)(x

1, x2,
(−)

s
α+1

)
(−)

s
α+1

, α = 1,K − 1,

respectively. Here,
(−)

n
α+1

and
(−)

s
α+1

are unit exterior normal and tangent vectors to the surface
(−)

S
α+1

. Note

that we take into account the possibility of dependence of the limit tangent force preventing the mutual

sliding of layers on the direction in the tangent plane (anisotropy of the limit tangent force).

5.3. Conditions under relative displacement of points of ideal (smooth) contacted layer

surfaces. In this case, a free slipping of layers with respect to each other can take place in the process

of deformation of a multilayer thin body. The parametrization preserves the validity of all relations

of the theory of thin bodies in the case considered here; only the required and given functions are

changed. Obviously, if the layers are joined, then the following equalities hold:

(+)

r
α
(x1, x2) =

(
◦
+)

r
α
(x1, x2) +

(+)

u
α
(x1, x2),

(−)

r
α
(x1, x2) =

(
◦−)

r
α
(x1, x2) +

(−)

u
α
(x1, x2), α = 1,K,

(
◦
+)

r
α
(x1, x2) =

(
◦−)

r
α+1

(x1, x2),
(+)

r
α
(x1, x2) =

(−)

r
α+1

(x1, x2), (
(+)

u
α

=
(−)

u
α+1

), α = 1,K − 1.

(5.2)

where
(+)

r
α

(
(
◦
+)

r
α
) and

(−)

r
α

(
(
◦−)

r
α
) are the radius-vectors of the surfaces

(+)

S
α

(
(
◦
+)

S
α
) and

(−)

S
α

(
(
◦−)

S
α
), respectively, in

the deformed (nondeformed) state of the multilayer thin body. It is not difficult to see that in this

case (under slipping of absolutely smooth contacting surfaces) we have the following relations instead
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of (5.2):

(+)

r
α
(x1, x2) =

(
◦
+)

r
α
(x1, x2) +

(+)

u
α
(x1, x2),

(−)

r
α
(x1, x2) =

(
◦−)

r
α
(x1, x2) +

(−)

u
α
(x1, x2), α = 1,K,

(
◦
+)

r
α
(x1, x2) =

(
◦−)

r
α+1

(x1, x2),
(+)

r
α
(x1, x2) 	= (−)

r
α+1

(x1, x2),
(+)

u
α
(x1, x2) 	= (−)

u
α+1

(x1, x2),

v
α
(x1, x2) =

(−)

u
α+1

(x1, x2)− (+)

u
α
(x1, x2), α = 1,K − 1.

(5.3)

Obviously, v
α
(x1, x2) is the vector of the relative displacement of the corresponding points of the

contacted surfaces
(+)

S
α

and
(−)

S
α

(α = 1,K − 1), which is an unknown in the considered case. The

absence of friction between the layers allows us to write the following additional relations:

(−)
u

α+1
(n) =

(+)
u
α

(n) (v
α
(n) = 0),

(+)

P
α

(s) = 0,
(−)

P
α+1

(s) = 0,
(+)

P
α

(n) = −
(−)

P
α+1

(n),

α = 1,K − 1, x′ ∈
(+)

S
α

0 ⊂
(+)

S
α
,

(5.4)

where
(+)

P
α

(s) (
(−)

P
α+1

(s)) and
(+)

P
α

(n) (
(−)

P
α+1

(n)) are the tangent and normal components of the stress vector

(the interaction force intensity)
(+)

P
α

(
(−)

P
α+1

), i.e.,

(+)

P
α

=
(+)

P
α

(s) +
(+)

P
α

(n),
(−)

P
α+1

=
(−)

P
α+1

(s) +
(−)

P
α+1

(n), α = 1,K − 1.

It is not difficult to see that (5.4) implies the following relations:

(−)
u

α+1
(n) =

(+)
u
α

(n), v
α
(n) = 0),

(−)

n
α+1

·
(−)

P
˜α+1

( u
α+1

, ϑ
α+1

) · (−)

s
α+1

= 0,
(+)

n
α
·
(+)

P
α̃
(u
α
, ϑ
α
) · (+)

s
α

= 0,

(+)

n
α
·
(+)

P
α̃
(u
α
, ϑ
α
) · (+)

n
α

=
(+)

n
α
·

(−)

P
˜α+1

( u
α+1

, ϑ
α+1

) · (+)

n
α
, α = 1,K − 1, x′ ∈

(+)

S
α

0 ⊂
(+)

S
α
.

(5.5)

Here the notation
(∼)

P
α̃
(u
α
, ϑ
α
), ∼ ∈ {−,+} means the dependence of

(∼)

P
α̃

on u
α
and ϑ

α
, and

(−)

P
α̃

= P
α̃
|x3=0,

(+)

P
α̃

= P
α̃
|x3=1 (this notation is also further used). The corresponding relations are obtained from the

first equality of (2.21) with A
˜̃̃α
= 0, ϕϕϕ

α
= 0. In the case considered here, relations (5.5) close the system

of equations of the classical theory of multilayer thin bodies. In the case of the moment theory of

multilayer thin bodies, equalities (5.5) should be replaced by the following ones:

(−)
u

α+1
(n) =

(+)
u
α

(n),
(−)
ϕ

α+1
(n) =

(+)
ϕ
α

(n),
(−)

n
α+1

·
(−)

P
˜α+1

( u
α+1

, ϕϕϕ
α+1

, ϑ
α+1

) · (−)

s
α+1

= 0,

(+)

n
α
·
(+)

P
α̃
(u
α
,ϕϕϕ
α
, ϑ
α
) · (+)

s
α

= 0,
(+)

n
α
·
(+)

P
α̃
(u
α
,ϕϕϕ
α
, ϑ
α
) · (+)

n
α

=
(+)

n
α
·

(−)

P
˜α+1

( u
α+1

, ϕϕϕ
α+1

, ϑ
α
) · (+)

n
α
,

(−)

n
α+1

· (−)

μμμ
˜α+1

( ϕϕϕ
α+1

) · (−)

n
α+1

= 0,
(+)

n
α
· (+)

μμμ
α̃

(ϕϕϕ
α
) · (+)

n
α

= 0,

(+)

n
α
· (+)

μμμ
α̃

(ϕϕϕ
α
) · (+)

s
α

=
(+)

n
α
· (−)

μμμ
˜α+1

( ϕϕϕ
α+1

) · (+)

s
α
, α = 1,K − 1, x′ ∈

(+)

S
α

0 ⊂
(+)

S
α
.

(5.6)
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In this case, along with the vector of relative displacement, the vector of relative rotation ψψψ
α
=

(−)

ϕϕϕ
α+1

− (+)

ϕϕϕ
α

of the corresponding points of the contacted surfaces is introduced into consideration;
(−)
ϕ

α+1
(n) and

(+)
ϕ
α

(n)

are the normal components of the vectors
(−)

ϕϕϕ
α+1

and
(+)

ϕϕϕ
α
, respectively. Note that relations (5.6) are

written subject to the fact that each layer has a center of symmetry, i.e., the tensors A
˜̃̃α

= 0 and

B
˜̃̃α
= 0 in (2.21) for all α. If this is not the case, then these relations should be replaced by other ones

depending on the considered governing relations. For example, if relations (2.21) are considered as

governing ones for a material having no center of symmetry (see [72]), then instead of (5.6) we have

(−)
u

α+1
(n) =

(+)
u
α

(n),
(−)
ϕ

α+1
(n) =

(+)
ϕ
α

(n),
(−)

n
α+1

·
(−)

P
˜α+1

( u
α+1

, ϕϕϕ
α+1

, ϑ
α+1

) · (−)

s
α+1

= 0,

(+)

n
α
·
(+)

P
α̃
(u
α
,ϕϕϕ
α
, ϑ
α
) · (+)

s
α

= 0,
(+)

n
α
·
(+)

P
α̃
(u
α
,ϕϕϕ
α
, ϑ
α
) · (+)

n
α

=
(+)

n
α
·

(−)

P
˜α+1

( u
α+1

, ϕϕϕ
α+1

, ϑ
α
) · (+)

n
α
,

(−)

n
α+1

· (−)

μμμ
˜α+1

( ϕϕϕ
α+1

, u
α+1

, ϑ
α+1

)· (−)

n
α+1

= 0,
(+)

n
α
· (+)

μμμ
α̃

(ϕϕϕ
α
,u
α
, ϑ
α
)·(+)

n
α

= 0,

(+)

n
α
· (+)

μμμ
α̃

(ϕϕϕ
α
,u
α
, ϑ
α
) · (+)

s
α

=
(+)

n
α
· (−)

μμμ
˜α+1

( ϕϕϕ
α+1

, u
α+1

, ϑ
α
) · (+)

s
α
, α = 1,K−1, x′ ∈

(+)

S
α

0 ⊂
(+)

S
α
.

(5.7)

Note also that the contact conditions should be supplied with the conditions of heat content on the

contacted surfaces, which is not difficult. Therefore, in order to shorten the presentation, we do not

consider them here.

5.4. Conditions under relative displacement of points of uneven contacted surfaces of

layers. In the case considered here, slipping with friction of the layers with respect to each other

can take place in the process of deformation of the multilayer thin body. The relative slipping does

not occur until the magnitude of the tangent component of the interaction force
(+)

P
α

(s) (
(−)

P
α+1

(s)) (force

of friction) between the contacted surfaces reaches its limit (maximal possible) value
∣∣(+)

P
α

∗∣∣ (∣∣ (−)

P
α+1

∗∣∣),
therefore,

v
α
(x1, x2) = 0, α = 1,K − 1. (5.8)

When the force of friction reaches its limit value, slipping begins, and the relations presented above

should be replaced by other ones. First of all, note that for the case of the classical theory of multilayer

thin bodies instead of (5.5) we have

(−)
u

α+1
(n) =

(+)
u
α

(n),
(−)

n
α+1

·
(−)

P
˜α+1

( u
α+1

, ϑ
α+1

) · (−)

s
α+1

=
(−)

P
α+1

∗
(s),

(+)

n
α
·
(+)

P
α̃
(u
α
, ϑ
α
) · (+)

s
α

=
(+)

P
α

∗
(s),

(+)

n
α
·
(+)

P
α̃
(u
α
, ϑ
α
) · (+)

n
α

=
(+)

n
α
·

(−)

P
˜α+1

( u
α+1

, ϑ
α+1

) · (+)

n
α
, α = 1,K − 1, x′ ∈

(+)

S
α

0 ⊂
(+)

S
α
,

(5.9)
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and in the case of the moment theory of multilayer thin bodies whose layers do not have a center of

symmetry, we assume the following relations instead of (5.7):

(−)
u

α+1
(n) =

(+)
u
α

(n),
(−)
ϕ

α+1
(n) =

(+)
ϕ
α

(n),
(−)

n
α+1

·
(−)

P
˜α+1

( u
α+1

, ϕϕϕ
α+1

, ϑ
α+1

) · (−)

s
α+1

=
(−)

P
α+1

∗
(s),

(+)

n
α
·
(+)

P
α̃
(u
α
,ϕϕϕ
α
, ϑ
α
) · (+)

s
α

=
(+)

P
α

∗
(s),

(+)

n
α
·
(+)

P
α̃
(u
α
,ϕϕϕ
α
, ϑ
α
) · (+)

n
α

=
(+)

n
α
·

(−)

P
˜α+1

( u
α+1

, ϕϕϕ
α+1

, ϑ
α+1

) · (+)

n
α
,

(−)

n
α+1

· (−)

μμμ
˜α+1

( ϕϕϕ
α+1

, u
α+1

, ϑ
α+1

) · (−)

n
α+1

=
(−)
μ

α+1

∗
(n),

(+)

n
α
· (+)

μμμ
α̃

(ϕϕϕ
α
,u
α
, ϑ
α
) · (+)

n
α

=
(+)
μ
α

∗
(n),

(+)

n
α
· (+)

μμμ
α̃

(ϕϕϕ
α
,u
α
, ϑ
α
) · (+)

s
α

=
(+)

n
α
· (−)

μμμ
˜α+1

( ϕϕϕ
α+1

,u
α
, ϑ
α+1

) · (+)

s
α
, α = 1,K − 1, x′ ∈

(+)

S
α

0 ⊂
(+)

S
α
.

(5.10)

Here, naturally,
(+)
μ
α

∗
(n) =

(+)

μμμ
α

∗ · (+)

n
α
,

(−)
μ

α+1

∗
(n) =

(−)

μμμ
α+1

∗ · (+)

n
α+1

,

where
(+)

μμμ
α

∗ (
(−)

μμμ
α+1

∗) is the intensity of the limit momentum. Therefore,
(+)

P
α

∗
(s),

(−)

P
α+1

∗
(s),

(+)
μ
α

∗
(n), and

(−)
μ

α+1

∗
(n) are

unknown values in relations (5.9) and (5.10) determined from some a priori dependences, conditions

of slipping with friction, which, generally speaking, must depend on the geometric and physical-

mechanical properties of the contacting bodies. In the classic case we may assume that the following

relations hold:

L(x1, x2,vs, v̇s, [T ],P
(l)∗, . . . ) = 0, (5.11)

where vs and v̇s are the tangent components of the vectors of the relative displacement and relative

velocity, [T ] is the temperature jump, P(l)∗ is the limit stress vector on a plane element with the

normal l, and the ellipsis denotes dependence on some other parameters. Based on (5.11), we can

accept that the generalized model of Coulomb friction is valid:

P∗
(s) = f

˜
(x1, x2, [T ],P∗

(n)) · v̇s, (5.12)

which takes into account the anisotropy of the friction. Here P∗
(s) and P∗

(n) are the limit tangent and

normal components of the stress vector P(l)∗. The second-rank tensor f
˜
(x1, x2, [T ],P∗

(n)) is called the

tensor of friction coefficients. Obviously, in the isotropic case we have f
˜
= fE

˜
, where E

˜
is the unit

second-rank tensor. Representing (5.12) for contacting surfaces of a multilayer thin body, we obtain

the missing required relations. Based on similar arguments in the case of the moment theory, we can

assert that the following a priori relations are valid:

L(x1, x2,vs, v̇s,ψψψn, ψ̇̇ψ̇ψn, [T ],P
(l)∗, . . . ) = 0, M(x1, x2,vs, v̇s,ψψψn, ψ̇̇ψ̇ψn, [T ],μμμ

(l)∗, . . . ) = 0, (5.13)

where ψψψn and ψ̇̇ψ̇ψn are the normal components of the vectors of the relative internal rotation and relative

internal rotation velocity of adjacent layers, μμμ(l)∗ is the limit vector of the moment stress on a plane

element with the normal l, and the other parameters are the same as in (5.11). Based on (5.13) and

similar to (5.12), for the moment theory we can assume that the following relations are valid:

P∗
(s) = f

˜
(x1, x2, [T ],P∗

(n)) · v̇s + h
˜
(x1, x2, [T ],P∗

(n)) · ψ̇ψψn,

μμμ∗(n) = g
˜
(x1, x2, [T ],μμμ∗(s)) · ψ̇ψψn + l

˜
(x1, x2, [T ],μμμ∗(s)) · v̇s,

(5.14)

which take into account the anisotropy of the friction. Here f
˜
, h
˜
, g
˜
, and l

˜
are the second-rank tensors,

called the tensors of friction coefficients. Therefore, in the case of isotropic friction we have f
˜
= fE

˜
,

h
˜
= hE

˜
, g
˜
= gE

˜
, and l

˜
= lE

˜
, where E

˜
is the unit second-rank tensor. It should be noted here that the
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coefficients of friction are determined by experiments and are given in tables. The author knows little

in this direction for the moment theory, but for the classical theory these coefficients can be obtained,

e.g., from [10, 44, 45]. Representing (5.14) for the contacting surfaces of a multilayer thin body, we

get the missing required relations in the case of the moment theory.

5.5. Conditions under a partial exfoliation of contacted surfaces of layers. For the classical

theory of multilayer thin bodies in this case we have the conditions

v
α
(x1, x2) =

(−)

u
α+1

(x1, x2)− (+)

u
α
(x1, x2) 	= 0,

(+)

P
α
(x1, x2) = 0,

(−)

P
α+1

(x1, x2) = 0,

(x1, x2) ⊂
(+)

S
α

0 ⊂
(+)

S
α
, α = 1,K − 1,

(5.15)

and for the moment theory of multilayer thin bodies we get the conditions

v
α
(x1, x2) =

(−)

u
α+1

(x1, x2)− (+)

u
α
(x1, x2) 	= 0,

(+)

P
α
(x1, x2) = 0,

(−)

P
α+1

(x1, x2) = 0,

ψψψ
α
(x1, x2) =

(−)

ϕϕϕ
α+1

(x1, x2)− (+)

ϕϕϕ
α
(x1, x2) 	= 0,

(+)

μμμ
α
(x1, x2) = 0,

(−)

μμμ
α+1

(x1, x2) = 0,

(x1, x2) ⊂
(+)

S
α

0 ⊂
(+)

S
α
, α = 1,K − 1.

(5.16)

Note also that if
(+)

S
α

0 =
(+)

S
α
, then we have complete exfoliation of contacting layers. Other conditions

posed on deformed and force states of exterior surfaces of multilayer thin bodies are also possible:

contact with rigid or elastic bodies, forced displacement of points, etc. It should be noted that before

the presentation of the problems concerning the conditions on contacting surfaces of thin bodies the

author had acquainted himself with papers [10, 21, 43, 47, 51–53, 86, 87, 91, 96–100, 103, 107–110].

Based on [74, 76] and quite similarly to this paper, one can construct moment theories of multilayer thin

bodies with two small dimensions and those of plane domains with one small dimension, respectively

(it remains to write down the corresponding relations). We do not pay attention to this in the present

paper. In conclusion we note that the classic theory of elasticity predicts sufficiently well the behavior

of actual rigid bodies under different loads in all the cases where the “granularity” of the structure of

the considered real bodies is not typical. However, the classical theory of elasticity is unable to explain

satisfactorily the mechanism of some phenomena observed in actual elastic bodies, not to mention for

bodies with other rheology. For example, from the viewpoint of theoretical solutions of the classical

theory of elasticity, one cannot explain and predict the laws of propagation of short acoustic waves

in crystalline rigid bodies, polycrystalline metals, and high polymers. The classical theory also gives

no satisfactory concordance of its results with experimental data for bodies with clearly expressed

polycrystalline structure under the conditions of a stressed state with a large stress gradient. In

particular, this theory cannot give any intelligible explanation of the influence of the stress gradient

on the fatigue characteristics of polycrystalline materials. The reason for such unconformity of the

theory and experience should evidently be sought in the fact that a continuous elastic model of a rigid

body lying based on the classical theory of elasticity is unable to represent the elastic properties of

real bodies determined by their discrete structure. Therefore, the explanation of these phenomena

requires a new model of a rigid body in continuum mechanics so that the properties stemming from

the discrete structure of real bodies can be explicitly represented [102]. A series of observed effects

(phenomena) that cannot be explained on the base of the classic theory was indicated in [58]. As is

known, all real bodies have a “granular” structure, and hence they can be considered as a collection

of spatial material compounds consisted of particular “grains,” material particles positioned relative
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to each other at distances comparable to their sizes and linked with each other by a complicated

system of interconnections. Such “grains” can be molecules of the substance, separate crystals and

crystal blocks in polycrystalline materials, etc. It should also be noted that the dispersion of elastic

surface Rayleigh waves cannot be explained within the classical model of continuous media [23, 48].

However, this effect receives an explanation in a Cosserat medium (or a more generalized medium). In

this case the attenuation rate of the Rayleigh wave amplitude with the depth and also the ellipticity

of the wave depend on material constants of the medium, including the parameters describing the

moment properties. This fact allows us to hope for an efficient application of such waves in possible

experimental studies directed to the determination of moment behavior of materials and further to

the determination of material parameters. Thus, the practical application of the theories constructed

by the author requires the determination of the material functions entering the systems of equations

and determining relations. A review of the corresponding papers [22, 23, 26, 48, 50] and others in

this direction indicates that there exist several experimental methods [26, 50] for their determination

and an active work is undertaken for the determination of material constants of various media (for

some material they had been determined, see [22, 23, 26, 48, 50]). Therefore, we can assume that

in the nearest future they will be obtained for most required materials, and the moment theories of

thin bodies constructed by the author will have practical applications. Staying within the classical

three-dimensional theory, we can get different improved theories from the moment ones under neglect

of the moment characteristics, and these theories can be used in practice. In addition, it is necessary

to point out, similarly to [37], some problems requiring further development and remaining urgent

at present. The further development of mathematical methods reducing three-dimensional problems

of the mechanics of a deformable rigid body to two- and one-dimensional ones is an urgent problem.

This includes analytic and asymptotic methods and also the method of sequential differentiation of

relations of the three-dimensional theory. Such methods should be developed not only for bodies with

one small dimension, but also for bodies with two small dimensions. Obviously, the latter problem

is more laborious. The main attention should be paid to dynamic theories of such bodies. Reducing

three-dimensional theories to two-dimensional ones, we find variational methods very efficient for

the determination of internally consistent and mathematically well-posed models. It is necessary to

carry out further studies in the direction of mathematical justification of reduction methods, i.e.,

the study of convergence problems, error estimates, boundary conditions, convergence acceleration,

etc. The necessity to compare the results of approximate theories with the results of analytic and

numerical solutions to problems of the three-dimensional theory remains urgent. It is reasonable to

compare the results of approximate theories with exact solutions for bodies with one small dimension

of different cross-sections. The available comparisons in the case of the classical theory based on the

plane deformation equations, or on those of the generalized plane stressed state, are unconvincing

because these equations are approximate themselves. An important direction is the reduction of

three-dimensional models to two-dimensional ones in the case of various rheological properties of the

material, of geometrically and physically nonlinear bodies, and also materials subject to the influence

of temperature, electromagnetic, and other fields. The other important direction is the determination

of eigenvalues and eigentensors for the elasticity modulus tensor (elastic compliances) for different

cases of material anisotropy and the representation of the relations of the deformable rigid body

mechanics (determining relations, equations, problem statements, etc.) in these terms. The problem

of determination of eigenvalues and eigentensors for a tensor of arbitrary even rank and also some

problems of tensor calculus were considered in [69, 71, 77–79]. Finally, we note the considerable gap
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existing now in the field of experimental studies. Note also that the major portion of the material

presented here was published in [80].
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