ИГЕМ РАН СМУиС ИГЕМ РАН

НОВОЕ В ПОЗНАНИИ ПРОЦЕССОВ РУДООБРАЗОВАНИЯ

Сборник материалов

VIII Российской молодёжной научно-практической Школы с международным участием

Научное электронное издание

26 - 30 ноября 2018 г. ИГЕМ РАН, Москва

Федеральное государственное бюджетное учреждение науки Институт геологии рудных месторождений, петрографии, минералогии и геохимии Российской академии наук (ИГЕМ РАН)

Новое в познании процессов рудообразования

Восьмая Российская молодёжная научно-практическая школы

26 – 30 ноября 2018 г.

Москва-2018

УДК 553+552+548/549+550.4+550.3+502/504+550.93 ББК 26.3 Н 74

Новое в познании процессов рудообразования: Восьмая Российская молодёжная научно-практическая Школа, Москва, 26-30 ноября 2018 г. Сборник материалов - Электрон. дан. (1 файл: 45 Мб) - М.: ИГЕМ РАН, 2018.

В сборнике представлены материалы Восьмой Российской молодежной научнопрактической Школы «Новое в познании процессов рудообразования». Пленарные лекции и доклады посвящены изучению различных вопросов геологии, минералогии и геохимии рудных месторождений, а также вопросам геоэкологии. Задача Восьмой Школы – знакомство студентов, аспирантов и молодых специалистов с новейшими достижениями в изучении процессов рудообразования.

Издание осуществлено при финансовой поддержке Российского Фонда Фундаментальных Исследований (РФФИ).

Редакторы: В.А. Петров, Е.Е. Амплиева, С.А. Устинов, Е.В. Ковальчук

УДК 553+552+548/549+550.4+550.3+502/504+550.93 ББК 26.3 Н 74

ISBN 978-5-88918-053-1

© Коллектив авторов, 2018 © ИГЕМ РАН, 2018 © СМУиС ИГЕМ РАН, 2018

Структурно-химическое состояние примеси серебра и индия в синтетических сфалеритах по данным рентгеновской спектроскопии поглощения.

Трофимов Н.Д. 1,2 , Филимонова О.Н. 1 , Ковальчук Е.В. 1 , Абрамова В.Д. 1 , Квашина К.О. 3 , Чареев Д.А. 4 , Никольский М.С. 1 , Евстигнеева П.В. 1 , Згурский Н.А. 5 , Тагиров Б.Р. 1

Введение

За последние десятилетия In стал одним из наиболее востребованных элементов, используемых в области высоких технологий. Главным источником In является сфалерит - основной минерал колчеданных Zn и Zn-Cu руд, при переработке которых попутно извлекается In. Содержание In в сфалерите коррелирует с концентрацией Cu: концентрация обоих металлов может достигать десятых долей масс.% при их совместном нахождении. Повышенные концентрации In и Cu в сфалерите связывают с образованием изоморфного твёрдого раствора с компенсацией заряда по схеме: Cu⁺+In³+↔2Zn²+ (Cook et. al., 2009). Другим элементом 1b подгруппы периодической системы, встречающимся в сфалерите, является Ag. На основании схожих химических свойств Cu и Ag можно предположить, что аналогичный механизм замещения с образованием твёрдого раствора в In-содержащем сфалерите реализуется и для Ag. Задачей данной работы является определение структурнохимического состояния (степени окисления, позиции в структуре, межатомных расстояний) Ag и In при совместном присутствии в синтетических кристаллах сфалерита методом рентгеновской спектроскопии поглощения (XAS). Экспериментальные и аналитические методы

Легированные Ag и In кристаллы сфалерита были синтезированы методом газового транспорта (образцы № 4152 и 4169) в печах сопротивления с горизонтальным температурным градиентом. Порошкообразная шихта, состоящая из 0,5 г. ZnS и примесей Ag2S и In2S3, вместе с 10 мг транспортного реагента (кристаллический І2) были помещены в ампулы из кварцевого стекла (8 мм внутренний диаметр, 11 мм внешний диаметр, 110 мм длина). Ампулы с образцами № 4152 и 4169 были запаяны под вакуумом в пламени кислородной горелки и на 20 дней помещены в печи. Температура на горячем (шихта) и холодном (кристаллы) концах составила соответственно 850 и 750°C. Порошкообразный образец № 4197 был приготовлен методом сухого синтеза в вакуумированных ампулах из кварцевого стекла из сульфидов, взвешенных в необходимых мольных соотношениях, при температуре 550°C в течение четырёх недель с одним промежуточным перетиранием. По окончании эксперимента ампулы были закалены в холодной воде. По данным рентгеноструктурного фазового анализа фазовый состав кристаллов отвечал чистому сфалериту (предел обнаружения ~5 об.%). Полученные кристаллы были исследованы методами рентгеноспектрального микроанализа (РСМА), масс-спектрометрическим методом с индуктивно связанной плазмой и лазерным пробоотбором (ЛА-ИСП-МС) и методом рентгеновской спектроскопии поглощения XANES и EXAFS (спектроскопия околокраевой и дальней тонкой структуры соответственно)

Результаты и обсуждение

Химический состав синтезированных сфалеритов приведён в табл.1. СЭМ-изображения не выявили металлического Ag в синтезированных кристаллах. Данные ЛА-ИСП-МС

¹ИГЕМ РАН, г. Москва, trofim-kol@mail.ru

²МГУ им. М.В. Ломоносова, г. Москва

³Европейский источник синхротронного излучения (ESRF), г. Гренобль, Франция

⁴ИЭМ РАН г. Черноголовка

 $^{^{5}}$ Международный университет «Дубна», г. Дубна

подтвердили гомогенность распределения 113 In и 107 Ag вдоль профиля относительно основных компонентов (Zn, S).

$N_{\underline{0}}$	Состав стартовой	РСМА масс.%±2σ					ЛА-ИСП-МС	
образца	смеси						ppm±2σ	
		Zn	S	In	Ag	Всего	107 A g	113 In
4152	ZnS+1%Ag ₂ S	66,43±	33,77±	1	н.п.о.	100,2±0,9	23±	1
		0,54	0,37			0	1	
4169	ZnS+0.125% Ag ₂ S+	65.76±	33.90±	$0.02 \pm$	$0.03 \pm$	99.71±	180±7	160±8
	$0.125\% \text{In}_2 \text{S}_3$	0.050	0.32	0.01	0.02	0.84		
4197	$ZnS+6\%Ag_2S+$	Состав образца соответствует составу исходной шихты.						
	$8\% \operatorname{In}_2 S_3$							

Таблица 1 Состав шихты и результаты анализов РСМА и ЛА-ИСП-МС

Измерения рентгеновских спектров поглощения для Ag K-края и In K-края проводились на линии BM20 Европейского центра синхротронного излучения (ESRF, Гренобль, Франция). Спектры XANES для Ag и In в синтетических сфалеритах и в стандартах (Ag, AgInS2, In2S3) показаны на рис. 1а и б соответственно. Форма спектров XANES K-края поглощения Ag (рис. 1a) указывает на присутствие двух форм нахождения серебра: Ag⁰ (является основной в Обр. № 4152, 4169) и Ag⁺ (Обр. № 4197). При этом наблюдается закономерное смещение положения первого интенсивного пика (белой линии, БЛ) ряду образцов стандартов: БЛаgInS2 < БЛ4197 < БЛ4169 < БЛ4152 < БЛаg.Эта зависимость связана увеличением c металлического Ag^0 в этом ряду. Отметим, что спектр XANES K-края поглощения Ag для образца № 4197, в котором Ад находится в степени окисления +1, отличается от спектра стандарта AgInS2. Этот факт свидетельствует в пользу того, что в образце № 4197 Ag находится в виде твёрдого раствора в сфалерите. Форма спектров *К*-края поглощения In в образцах отличается от In₂S₃ (рис. 16). В то же время, спектры образцов близки по форме и по положению края поглощения (КП) и БЛ к спектру AgInS2. Таким образом, «формальная» степень окисления In отвечает +3, а локальное атомное окружение In в образцах сфалерита близко к фазе AgInS2.

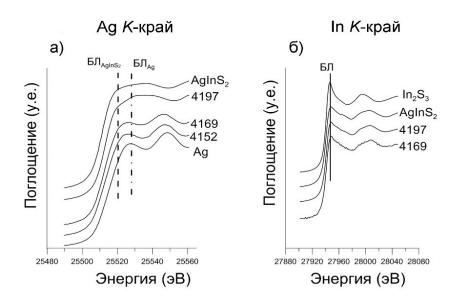


Рисунок. 1. Околокраевая структура рентгеновских спектров поглощения Ag K-края (а) и In K-края (б) в сфалеритах и стандартах (AgInS2, Ag, In2S3).

Вертикальными линиями отмечены максимумы белой линии (БЛ) в стандартах (для $Ag\ K$ края) и синтезированных образцах (для $In\ K$ -края).

Анализ EXAFS-спектров, записанных на Ag K-крае поглощения (рис. 2 а) показал, что в образце № 4197 Ag изоморфно замещает Zn в катионной позиции. Ag находится в тетраэдрическом окружении атомов серы, расположенных на расстоянии 2.49 ± 0.02 Å. Вторая координационная сфера незначительно расширяется (Nzn ~12, RAg-zn~3.91 ±0.01 Å), а межатомные расстояния в третьей координационной сфере (Ns ~12, RAg-s ~4.19 ±0.01 Å) существенно занижены относительно чистого сфалерита (Rzn-s ~4.43Å). В образце № 4152 большая часть Ag присутствует в форме Ag⁰ (NAg~8.3 ±1.5 , RAg-Ag=2.86 ±0.01 Å; параметры локального атомного окружения для металлического Ag: NAg=12, RAg-Ag=2.88Å). В образце сфалерита № 4169 локальное окружение Ag наследуется от металлического серебра и Ag, находящегося в твёрдом растворе в катионной позиции Zn.

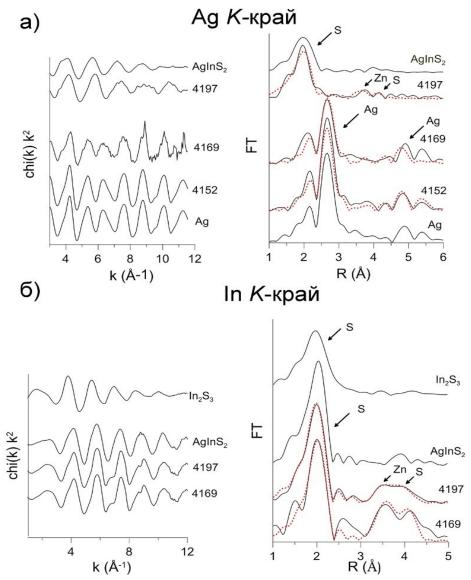


Рисунок. 2. Сравнение осциллирующих частей EXAFS спектров (слева) и их Фурьетрансформант (справа) для Ag K-края (а) и In K-края поглощения (б).

Сплошные линии – эксперимент, пунктир – результат подгонки.

Наилучшее описание EXAFS-спектров, записанных на K-крае поглощения In (рис. 2б), достигается при изоморфном замещении в катионной позиции Zn↔In. Локальное атомное окружение In в образцах № 4197 и 4169 идентично независимо от концентрации Ag (для первой сферы $Ns\sim4$, $R_{In-s}\sim2.48$ Å). Отметим, что межатомное расстояние In-S существенно возрастает относительно расстояния Zn-S в чистом сфалерите (2.31Å). В образце № 4197 (Ag в виде твёрдого раствора) вторая координационная сфера In состоит из 12 атомов Zn ($R_{In}z_n\sim3.93\pm0.01$), а третья

из 12 атомов S (R_{In} -s~4.48±0.01Å). В образце № 4169, содержащем Ag^0 , во второй координационной сфере In наблюдается вклад тяжёлого атома Ag. Таким образом, нами показано, что в случае совместного присутствия Ag и In в сфалерите происходит образование твёрдого раствора с компенсацией заряда: $Ag^+ + In^{3+} \leftrightarrow 2Zn^{2+}$. Образование твёрдого раствора приводит к изменению межатомных расстояний, а симметрия координационных полиэдров наследуется от сфалерита. Эта схема идентична для Cu и Ag. В образце, не содержащем In, доминирующей формой Ag становится металл (Ag^0).

Работа выполнена при финансовой поддержке $PH\Phi$ (грант 18-77-00078) и ESRF (эксперимент ES-703).

Cook N. J., Ciobanu C. L., PringA., Skinner W., Shimizu M., Danyushevsky L., Melcher F. Trace and minor elements in sphalerite: A LA-ICPMS study //Geochimica et CosmochimicaActa. 2009. T. 73. №. 16. C. 4761-4791.