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Abstract: The objective of this study was to synthesize iron (hydr)oxide nanoparticles (IONPs) 
stabilized by humic substances, and to estimate the feasibility of their use for foliar application on 
iron deficient plants. The IONPs were synthesized by rapid hydrolysis of iron(III) nitrate in a 
solution of potassium humate. The iron speciation and nanoparticle morphologies were 
characterized using X-ray diffraction, transmission electron microscopy, and Mössbauer 
spectroscopy. The obtained sample of IONPs was applied at concentrations of 1- and 10-mM Fe, 
and 0.2% urea was used as an adjuvant. Wheat plants (Triticum aestivum L. cv. L15) were used for 
the iron uptake test. For both of the concentrations tested, spraying the nanoparticles resulted in a 
70–75% higher iron content in wheat leaves compared to ferric ammonium salt of 
ethylenediaminetetraacetic acid (Fe-EDTA). The synergistic effect of humic substances acting as a 
surfactant seemed to promote an increase in the iron uptake of the ferrihydrite nanoparticles 
compared to the aqueous Fe-EDTA solution used in this study. We concluded that humic-stabilized 
IONPs are much better suited to foliar application as compared to soil amendment when applied as 
a source of iron for plants. This is because humic substances act as a capping agent for nanoparticles 
and the surfactants enhance iron penetration into the leaf. 

Keywords: humic substances; capping agents; ferrihydrite; nanoparticles; iron deficiency; nutrition; 
biofortification; foliar application; wheat 
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1. Introduction 

Fe deficiency is a frequent issue in numerous crops, particularly in calcareous soils [1,2]. This is 
because of the poor bioavailability of Fe, which produces insoluble Fe(III) oxides and oxohydroxides 
in soil [3,4]. At the same time, iron (hydr)oxide nanoparticles (IONPs) measuring < 5–20 nm are the 
most frequently used as iron-containing nanofertilizers [5–8]. Bare IONPs are prone to aggregation 
due to their high surface energy; this tendency is more pronounced near the point of zero charge 
(PZC), which usually ranges between pH 7 and 9 for synthetic iron oxides [9], and at elevated salt 
concentrations [10]. Among the different ligands used for nanoparticle stabilization, humic 
substances (HS) deserve particular attention as they are eco-friendly natural polyelectrolytes. HS 
stabilize iron (hydr)oxides in soils [11–13], and they are widely used for stabilization of synthetic 
IONPs [10,14–16]. Substantial efforts have been undertaken in the last decade to combine the benefits 
of HS and IONPs in designing eco-friendly nanofertilizers [6,8,17–20] that meet the demands of 
sustainable chemistry [21]. Despite the progress made in this area, and well documented increases in 
iron uptake by plants, the efficacy of HS-based iron nanofertilizers remains much lower compared to 
that of iron chelates. The main reason is aggregation of HS-stabilized IONPs on the root surface upon 
soil application as well as interaction with soil particles [22,23]. 

Foliar application of micronutrients, including their nano-forms is an advanced fertilization 
technology that has great potential for the production of nutritious and safe foods [24–31]. It also 
provides a more efficient route for the application of nanoparticles, whose bioavailability is much 
higher when applied via leaf sprays as compared to soil amendments, as has been shown in two 
recent reviews [22,23]. Comparative investigations of nanoparticle delivery to plants by foliar versus 
soil applications have indicated that leaf spraying has significant advantages for nanoscale nutrient 
uptake [32,33]. This effect was consistent for different crops including brown rice [34], wheat grain 
[35], soybean (Glycine max (L.) Merr.) [32], and black-eyed peas [36]. 

Numerous reports have shown the benefits of foliar application for both soluble forms of 
micronutrients and for nanoparticles [37–41]. HS were used for improving iron uptake upon foliar 
application of Fe-chelates [42,43]. Moreover, complexes of Fe-HS [44] and Fe-lignosulfonate [45] were 
successfully tested as foliar iron fertilizers. However, so far, we have not found reports on the foliar 
application of HS-stabilized IONPs. The combination of surface-active HS and IONPs is expected to 
be particularly beneficial for the foliar spray, which requires improved wettability of a moderately 
hydrophobic leaf surface and strong adhesion of the fertilizing component. According to a recent 
study [46], the combined particle-and-surfactant systems exhibited (i) a decreasing contact angle 
along with increasing nanoparticle concentration, and (ii) a much lower wetting angle than that of 
the only-surfactant system at the same surfactant concentration (in the whole range of nanoparticle 
concentrations studied). Mixtures of surface-active nanoparticles and surfactants also stabilize the 
liquid–liquid interface in emulsions [47] applied in the oil industry [48] and commercial formulations 
including agrochemical suspoemulsions [49]. Therefore, humic-stabilized IONPs might be suited for 
the droplet design of foliar spraying. 

The objective of this study was to synthesize humic-stabilized IONPs and to estimate iron uptake 
as compared to ferric ammonium salt of ethylenediaminetetraacetic acid (Fe-EDTA) upon foliar 
application on wheat plants (Triticum aestivum L. cv. L15). 

2. Materials and Methods 

2.1. Humic Material Characterization 

Potassium humate (“Sakhalin Humate”, Moscow, Russia) was used as the humic source material 
and designated as CHS-K. The elemental composition of CHS-K was determined using a Vario 
MicroCube elemental analyzer (Elementar, Langenselbold, Germany). The contents of the elements 
were (%, mass): C—32, H—2.8, N—1.3. The ash content was 22.9%. The contents of the elements on 
an ash-free basis were (% wt): C—47.1, H—3.63, N—1.69, O—47.58. The corresponding atomic ratios 
were: H/C—1.05, O/C—0.76, C/N—28.8. The values of H/C and O/C ratios obtained for CHS-K are 
indicative of a low degree of condensation and high oxidation of this humic material, which is typical 
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for the low-ranked oxidized coal used for its extraction. The structural-group composition of CHS-K 
was determined using a 13C NMR spectrometer Avance 400 (Bruker, Ettlingen, Germany) operating 
at 13C nuclei frequency of 100 MHz. A weight of 40 mg of CHS-K was dissolved in 0.6 mL of 0.3 M 
NaOD/D2O. The conditions for quantitative measurement of the C distribution as well as the spectral 
assignments were made as described elsewhere [50,51]. The content of C in different chemical 
environments was as follows (% of total C): aliphatic non-substituted C (Calk)–11.9; aliphatic (O,N)-
substituted C (CAlk-O,N)–6.9; aromatic non-substituted C (CAr)–43.6; aromatic O,N -substituted C (CAr-

O,N)–9.7; carboxyl and ester groups (CCOO-H,R)–19.5; C of quinone and ketone groups (CC=O)–6.8. The 
measured values agreed well with the literature data for coal HS, which are enriched with aromatic 
carbon and carboxyl groups [52]. The molecular weight distribution of CHS-K was determined using 
size exclusion chromatography (SEC) as described by Perminova et al. (1998) [53]. The 
chromatography system Abimed (Gilson, Paris, France) included an HPLC pump, an autosampler, a 
glass column (diameter of 15 mm, length of 25 cm), a UV spectrophotometric detector, and a 
recording computer. The column was filled with a Toyopearl TSK HW-55S gel (Toso-Haas, Tokyo, 
Japan) with a fractionation range of 1–200 kDa (as for polydextrans). A phosphate buffer (0.03 M, pH 
6.8) was used as a mobile phase. The determined number-averaged (Mn) and weight-averaged (Mw) 
molecular weights and Mw/Mn ratio (polydispersity) were 3.2 kDa, 12.0 kDa, and 3.7, respectively. 
They are in good agreement with the MW data obtained with the use of SEC for the other coal HS 
[54]. 

2.2. The Iron Sources 

Ethylenediaminetetraacetic acid iron chelate (Fe-EDTA) (BASF AG, Germany) was used as a 
reference iron chelate. Ferrihydrite NPs (FH) were prepared as follows. A weight of 3.5 g of CHS-K 
was dissolved in 400 mL of deionized water in a round-bottom flask and 1-2 mL of 3 M KOH was 
added to improve humate dissolution; the final pH was 11.2. A weight of 2.53 g of Fe(NO3)3⋅9H2O 
was dissolved in 25 mL of deionized water. The obtained 0.25 M Fe(NO3)3 solution was added as 
droplets to the humate solution under continuous stirring until a pH of 10 was attained. Then, 3 M 
KOH was added simultaneously with Fe(NO3)3 to maintain pH 10. The pH fluctuations during the 
synthesis were in the range of 9.7 to 10.3. After the addition of the full volume of Fe(NO3)3 solution, 
the reaction mixture was diluted up to 500 mL by deionized water and the pH set to 10. The final 
solution contained 7 g/L of humate and 25 mM of Fe in the form of ferrihydrite (FH) (~10% Fe (wt) 
on the dry weight of FH). For the bioassay, the obtained FH solution was diluted to achieve 1 mM 
and 10 mM Fe concentrations. As described below, urea (0.2% wt.) was added to the FH solution 
before its application to the plants. 

2.3. Characterization of the Iron Source (FH) Used in this Study 

Mössbauer spectroscopy was used to study speciation of Fe in the obtained sample of FH (10 
mM Fe). Two FH aliquots (25–30 mL, with or without urea) were dried at 45 °C until a constant 
weight. The obtained dry product was ground and placed in an evacuated cryostat using a plastic 
cuvette. Mössbauer spectra were obtained using a MS1104EM Express Mössbauer spectrometer 
(Cordon GmbH, Rostov-on-Don, Russia). The radiation source was 57Co in a metal rhodium matrix 
with an activity of 2 mCi (RITVERC GmbH, St. Petersburg, Russia). The spectra were obtained both 
at room temperature (298 ± 3 K), and at a liquid N2 temperature (77.5 ± 0.5 K). The spectra were 
collected until the noise/signal ratio decreased down to ≤ 1%. The high-resolution (1024 points) 
experimental Mössbauer spectra were processed using SpectrRelax 2.4 software (Lomonosov MSU, 
Moscow, Russia). The isomer shifts were determined relative to α-Fe. 

Transmission electron microscopy (TEM) was performed using a Zeiss Libra 200 MC microscope 
(Zeiss, Oberkochen, Switzerland), equipped with a monochromator and an Omega-filter. The 
suspension of FH sample was prepared in distilled water by sonication for 3 min and dripped onto 
the lacey-carbon-coated TEM grid. After 1 min, the excess solution was removed to reduce the 
amount of soluble mineral salts. The electron diffraction (ED) patterns of raw potassium humate and 
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the synthesized IONPs were subjected to radial integration using Gwyddion software v. 2.52 [55] 
followed by polynomial background removal using in-house Python scripts. 

To measure the contact angles, the wheat leaves fragments (ca. 2 × 2 cm) were horizontally fixed 
on the microscope slide glass, a droplet of 20 µl of either distilled water, or Fe-EDTA, or CHS-K, or 
FH solutions, were placed onto the leaf surface (the FH suspension was rigorously shaken for several 
minutes before this procedure). All solutions contained urea adjuvant (0.2% wt.). The contact angles 
were measured by the static sessile drop method. Two µl colloid or distilled water droplets were 
placed on the horizontally fixed wheat leaf. The images of droplets were captured after 3 s by a 
horizontal microscope (controlled by iuVCR v. 0.14.0.63 software) and then analyzed using Promer, 
a custom software designed by the Chair of Colloid Chemistry, Department of Chemistry, 
Lomonosov MSU. The contact angles were measured at both sides of three droplets and the values 
were averaged. For each type of solution, measurements were made for five samples. 

Surface tension measurements were carried out at room temperature by a maximum bubble 
pressure method using MP-1 maximum pressure detector. Distilled water was used as a reference 
fluid. Three measurements were averaged for each sample. For each type of solution, measurements 
were made for six samples. 

2.4. Experiments with Plants 

Wheat plants were cultivated from seeds, Triticum aestivum L. cv. L15, which originated from 
the Russian State Agrarian University, Moscow Timiryazev Agricultural Academy. The seeds were 
surface-sterilized by immersion in 8% hydrogen peroxide for 15 min in the light. After rinsing 5 times 
with triple-distilled water according to [56], the wheat seeds were left for germination in the dark at 
24 °C for 72 h. Then, the germinated seedlings were transferred into 0.5 L polyethylene tanks 
containing Fe-free Knop nutrient solution (0.14 g·L−1 KH2PO4, 0.1 g·L−1 KCl, 0.14 g·L−1 KNO3, 1.42 g·L−1 
MgSO4·7H2O, 4.88 g·L−1 Ca(NO3)2·12H2O, pH 5.5) and cultivated in a growth chamber (12 h light/12 
h dark photoperiod, illumination 200 µmol m−2 s−1; 24 °C) for 21 d. 

In this study, Fe-EDTA and FH solutions were used as the iron sources for the foliar treatment 
at two Fe concentrations: 1 mM Fe and 10 mM Fe. Urea was added to all solutions at a concentration 
of 0.2% wt. as an adjuvant for increasing the penetration of Fe into the plant based on the literature 
reports [57,58]. The wheat seedlings (21 d old) were transferred into 0.5 L polyethylene tanks 
containing Fe-free Knop nutrient solution. Iron was supplied to plants by spraying 5 mL of each iron 
source solution onto the leaves of 15 wheat plants. Distilled water and the parent potassium humate 
(with urea) were applied as a control treatment. Clear glass sprayer with aluminum fine mist nozzle 
pump (Hydior, China) was used for spraying. Seven days after the treatment, the roots and shoots 
were gently separated; caryopsis and the lower 1.5 cm part were also removed from the shoots. To 
remove adsorbed iron form the leave surfaces, the shoots were washed for 30 s with the solution of 
(0.1% HCl/0.01% non-ionic detergent solution, Brij 35) as proposed in [57] and rinsed twice with 
triple-distilled water. The washed biomass was dried at 24 °C for 14 days (until the weight was 
constant), weighted, and then subjected to a mineral profile analysis. The washing solutions were 
analyzed for iron content. All experiments were run in a five-fold biological repetition. 

Inductively coupled plasma atomic emission spectroscopy (ICP-AES) was employed to analyze 
the element content in the iron fertilizers. An axial ICP-AES 5100 spectrometer with an SPS4 
autosampler (Agilent Technologies, USA) was used for the liquid sample analysis. For the iron 
content analysis, the working solution of the FH fertilizer was dried at 45 °C until a constant weight 
was achieved. Then, 50.00 ± 0.1 mg was placed into a polypropylene flask with a volume of 50.00 ± 
0.12 mL, deionized water was added, and mixed. The obtained FH suspensions were treated in a 
GRAD 28–35 ultrasonic bath (Grad-Technology, Russia) for 0.5 h. These solutions were analyzed 
directly. For the acid digestion of plants, dried leaf biomass was placed into a digestion tube of a Velp 
DK 20 digestor (Velp, Spain) with 5 mL of H2SO4 (98%, ACS-ISO grade, Panreac) and 4 mL of H2O2 
(33% USP, pharma grade, AppliChem). The tubes were heated for 30 min at 200 °C, then1 mL of H2O2 
was added and heated for 30 min at 300 °C. Then, the content of the tubes was transferred into 50 mL 
polypropylene Sarstedt tubes, diluted with deionized water to a 25 mL mark, and analyzed. 
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Statistical data treatment included testing the differences between the average values with a one-
way analysis of variance (ANOVA). A least significant difference test (LSD) was used for 
comparisons between means at p < 0.05. 

3. Results and Discussion 

3.1. Characterization of the Synthesized Iron-Containing Nanoparticles 

TEM images of the HS-stabilized IONPs synthesized in this study are shown in Figure 1. The 
numerous ultrafine nanoparticles can be seen within darker regions, which correspond to the 
amorphous background of HS (Figure 1a). It should be noted that no NPs were detected outside these 
HS-related areas. This might be indicative of encapsulation of the synthesized ultra-dispersed NPs 
by the HS matrix. This is feasible, given both the significant excess of potassium humate over the iron 
precursor (ca. 1:10 Fe/HS mass ratio) used for the reaction and the reported high HS affinity to the 
surface of iron (hydr)oxides [59]. The size of NPs ranged from 1 to 7 nm with a mean value of (2.5 ± 
0.3) nm (Figure 1b), which is typical for HS-stabilized ferrihydrites [19]. For identification of the iron 
phase in the detected NPs, the normalized plots of integrated ED and background-subtracted ED 
were calculated as shown in Figure 1c and 1d, respectively. The presence of peaks at 0.15 nm and 0.25 
nm in ED of the synthesized FH samples is indicative of nanocrystalline two-line ferrihydrite [60,61]. 
The two-line ferrihydrite is the least crystalline variety of ferrihydrite family, which falls between the 
well-defined phases of crystalline iron oxides and short-range ordered ferric polymers [62,63]. Given 
that a 2-nm ferrihydrite NP is composed of just ~30-unit cells, its lattice is prone to surface relaxation, 
strain, and disorder [64]. The poor crystallinity of two-line ferrihydrite and high distortion of the 
lattice make it more amenable to iron release, which is important for the iron source for plant 
nutrition. 
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Figure 1. (a) TEM image of the synthesized ferrihydrite (FH) nanoparticles and the corresponding 
electron diffraction image (inset); (b) size distribution of nanoparticles in FH nanoparticles as revealed 
by TEM (log-normal fitting was used); (c) normalized electron diffraction integrals for the FH 
nanofertilizer and raw potassium humate (HS) (d is an interplane lattice spacing); (d) normalized 
background-subtracted electron diffraction of FH nanoparticles and raw potassium humate, replotted 
in d-space. Positions of the 2-line ferrihydrite reflections and lattice indexes assignments are given 
according to [60]. 

The Mössbauer spectra of the dried FH sample were characterized by an asymmetric shape and 
broadened doublet lines at both room temperature and the boiling point of liquid N2 (Figure 2a,b). 
From a non-model description of these spectra, we obtained the probability distribution functions for 
isomeric shifts and quadrupole splitting (Figure 2c,d). These distributions were characterized by an 
asymmetric monomodal shape and high dispersion. Both spectra could be satisfactorily fitted with a 
set of three modes of different width and intensity (Figure 2c,d). This provided the justification for 
model fitting of the experimental spectra with a set of only three dublet subspectra (Figure 2a,b; Table 
1). 



Agronomy 2020, 10, 1891 7 of 16 

 

 
Figure 2. Mössbauer spectra at different temperatures of the ferrihydrite (FH) sample without urea 
treatment, models for their description (a,b), and the corresponding quadrupole splitting probability 
distribution functions (c,d). 

Table 1. The Mössbauer spectroscopy data for the ferrihydrite (FH) nanoparticles in the absence and 
presence of urea recorded at 298 K and 78 K. 
Temperature, K Fe Site 

* 
298 78 

Sample Subspectrum 
Δ **  Δ Γexp S  δ Δ  Гexp S  

mm/s % mm/s % 

FH NP 

1 
Fe1 0.35 ± 

0.02 
0.92 ± 
0.08 

0.52 ± 
0.02 

60 ± 
17 

0.45 ± 
0.01 

0.91 ± 
0.09 

0.54 ± 
0.02 

71 ± 
18 

2 
Fe2 0.39 ± 

0.01 
0.57 ± 
0.03 

0.34 ± 
0.05 

23 ± 
16 

0.47 ± 
0.01 

0.54 ± 
0.03 

0.34 ± 
0.06 

23 ± 
17 

3 
Fe3 0.26 ± 

0.04 
0.54 ± 
0.04 

0.38 ± 
0.03 

17 ± 7 
0.33 ± 
0.07 

0.42 ± 
0.08 

0.38 ± 
0.10 

6 ± 3 

FH NP + 
urea 

1 
Fe1 0.35 ± 

0.01 
0.92 ± 
0.09 

0.50 ± 
0.02 

60 ± 
18 

0.45 ± 
0.01 

0.89 ± 
0.07 

0.52 ± 
0.02 

68 ± 
14 

2 
Fe2 0.38 ± 

0.01 
0.57 ± 
0.02 

0.33 ± 
0.05 

24 ± 
18 

0.47 ± 
0.01 

0.55 ± 
0.03 

0.34 ± 
0.05 

23 ± 
15 

3 
Fe3 0.27 ± 

0.05 
0.51 ± 
0.06 

0.39 ± 
0.03 

17 ± 7 
0.38 ± 
0.06 

0.47 ± 
0.06 

0.38 ± 
0.05 

9 ± 8 
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* according to the designations reported in [65]; ** δ, isomer shift; Δ, quadrupole splitting; Гexp, line 
width; S, relative area of a subspectrum. 

Two doublets with the room-temperature isomeric shift within 0.35–0.39 mm/s range were 
ascribed to the Fe+3 ions in the octahedral oxygen environment [65]. The doublet with the highest 
relative area has an isomeric shift of 0.35 mm/s and the largest quadrupole splitting (0.92 mm/s) 
(Table 1, subspectrum 1). It was designated as Fe3+ ions within the {Fe(O,OH)6} octahedra connected 
into layers referring to Fe1 sites as described in [66]. Subspectrum 2 (Table 1) with the largest isomeric 
shift (0.39 mm/s) and a quadrupole splitting of 0.57 mm/s corresponds to Fe3+ ions in "isolated" oxygen 
octahedra was designated as Fe2 sites as assigned in [66]. Intercorrelation, which can be clearly seen 
between the values of the quadrupole splitting and the width of the resonance lines of subspectra 1 
and 2 (Table 1) has been reported elsewhere [67]. This indicates that the oxygen-containing 
molecular/ion species (H2O/OH–/O2–), which surround iron atoms in ferrihydrite lattice, make a 
partial contribution to the Mössbauer parameters related to their dynamic properties and 
electromagnetic interactions. 

The third doublet with the lowest relative area had the smallest quadrupole splitting (0.54 mm/s) 
and isomeric shift (0.26 mm/s), which corresponds to Fe3+ ions in a tetrahedral oxygen environment 
[65]. A small quadrupole splitting of this doublet indicates a higher symmetry of the environment 
(leading to a smaller electric field gradient for the corresponding iron atoms) and associates 
subspectrum 3 (Table 1) with Fe3+ ions in the Fe3 position [66]. The ratio of subspectrum areas in the 
room-temperature spectrum is close to the theoretically expected one from the structural data: 
Fe1:Fe2:Fe3 = 60:20:20 [68]. The observed change in this ratio at 78 K (Table 1) may be indicative of 
the deformation of the crystal lattice, which causes the consequent change in the Mössbauer factor of 
the corresponding iron atoms. Of interest is that the Fe ions in tetrahedral positions are rarely 
identified in ultra-dispersed ferrihydrite samples by room-temperature Mössbauer spectroscopy 
(e.g., compared with the reported data [18]). This is only possible for the ferrihydrite species with 
higher crystallinity, which might be the case in this study. It is feasible given that the synthesis of the 
FH sample was conducted at pH 10, thus causing the higher hydrolysis rate of Fe precursor as 
compared to that at pH 9 described by Cieschi et al. [18]. The quadrupole splitting and line widths of 
all the subspectra are temperature-independent (Table 1). This suggests the absence of magnetic 
ordering in the temperature range studied, which indicates rather small iron-containing particles [69]. 
The Mössbauer spectra of the FH sample treated with urea before the foliar application are shown in 
Figure 2. 

The probability distribution functions for the isomeric shifts and quadrupole splitting were also 
fitted with three peaks, however the peak positions and widths of all modes increased markedly 
(Figure 2c,d). This is indicative of an increased relative content of inhomogeneities in the local 
environment of Fe3+ ions, e.g., some surface etching of the NPs after the addition of urea. Meanwhile, 
the fitting parameters of the experimental spectra of FH nanoparticles in the presence and absence of 
urea (Figure S2a,b) remain the same within the measurement accuracy (Table 1). Summarizing the 
Mössbauer data, it can be concluded that the synthesized FH nanofertilizer contains small 
ferrihydrite NPs of enhanced crystallinity as compared to the previously reported analogues 
synthesized at pH 9 [18]. Addition of urea does not significantly change the state of ferrihydrite NPs 
leading to a slight increase in the heterogeneity of the local environment of Fe3+ atoms. 

3.2. Foliar Application of the FH Iron Source to Wheat Plants: Iron Uptake and its Physical-Chemical 
Justification 

The obtained FH iron source was applied as a foliar spray to the iron-deficient wheat plants and 
compared with the positive control, Fe-EDTA treatment, and with the blank treatments using 
distilled water and the parent potassium humate. All treatments contained urea (0.2% wt.) as an 
effective adjuvant that increases the translocation of iron from the leaf surface into the shoot interior 
by improving permeation of ionic solutes from the water-based solutions into the aqueous pores in 
leaf cuticles [57,58]. After 7 days of cultivation, the wheat shoots were separated from the roots, 
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thoroughly washed with Brij/HCl solution, as suggested by Rodríguez-Lucena et al. [57] to ensure 
the removal of IONPs, which did not penetrate the leave pores, from the leaf surface. The content of 
iron in the leaves after the treatments are shown in Figure 3. 

 
Figure 3. Iron content in the wheat leaves after foliar application of the iron-sources: ferrihydrite (FH) 
and ferric ammonium salt of ethylenediaminetetraacetic acid (Fe-EDTA), and control solutions: triple-
distilled water (blank) and potassium humate (HS). The iron concentrations in the fertilizer sprays 
were 1.0 mM (left panel) and 10.0 mM (right panel). All treatments, except for the blank, contained 
urea adjuvant (0.2% wt.). The bars represent the standard deviation (n = 4). The columns marked with 
different letters are significantly different at p < 0.05 according to the least significant difference (LSD) 
test. 

The use of 1 mM Fe solutions resulted in the higher iron content in the leaves in both the case of 
the FH sample and Fe-EDTA, moreover, the increase in the FH sample was larger than the Fe-EDTA 
sample (left panel of Figure 3). The treatment using the higher Fe dosage (10 mM) gave even more 
impressive results (right panel of Figure 3): in the case of the FH sample, the content of Fe in the 
leaves was 280% of the control (distilled-water treated leaves), whereas in the case of Fe-EDTA the 
corresponding increase was 115% of the control. Thus, the FH treatment was ca. 70–75% more 
efficient compared to Fe-EDTA at the higher concentration used in this study. The potassium humate 
treatment did not increase Fe content in the leaves as compared to the blank experiments. The data 
on the iron content in the shoot-washing solutions corroborate the obtained results: for both 
concentrations (1 and 10 mM), consistently higher iron content was observed for Fe-EDTA and a 
lower content was found for FH. So, the solution used to wash the leaves treated with 1 mM Fe-EDTA 
and FH spray contained 55 ± 13 and 12 ± 1 µg·L−1 of Fe, respectively (Table S1, Supplementary 
Materials). The same trend was observed for the treatment with 10 mM Fe: an iron content of 400 ± 
150 and 100 ± 30 µg·L−1, were found in the shoot-washing solution used in the Fe-EDTA and FH 
treatments, respectively. Of importance is that almost no iron (significantly below 10 µg·L−1) was 
found in the distilled water washing solution used after Brij 35/HCl washing of the leaves treated 
with FH spray at concentrations of 1- and 10-mM Fe (Table S1, Supplementary Materials). The higher 
Fe content in the washed leaves and the lower iron content in the “after-treatment” washing solutions 
for the FH sample, as well as the opposite trend for the Fe-EDTA treatment suggest that there was 
higher penetration of IONPs in the leaves in the case of the FH sample compared to Fe-EDTA. 

Along with the iron content, we measured the dry biomass of the shoots of the plants treated 
with the iron sources under study. The results are given in Figure 4. None of the treatments resulted 
in a statistically significant increase in shoot biomass. Our results are consistent with data obtained 
by Bastani et al. [70] who studied the effects of nano and bulk Fe complex (Fe(III)-EDTA) on 
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hydroponically-grown Fe-deficient tobacco (Nicotiana rustica L.). They demonstrated that the plant 
biomass was not affected by Fe foliar fertilization one week after treatment, although a statistically 
significant increase in iron content was observed. This is due to the lag period in the plants’ response 
to the iron supply. The increase in the soil plant analysis development (SPAD) values related to 
chlorophyll content only begins 4–5 days after treatment [70], and in general, ten days are believed 
to be enough to see the re-greening of Fe-deficient plants after Fe foliar fertilization [71]. This is why 
the obtained data do not provide definite confirmation of the participation of the up taken iron in the 
relevant physiological processes. We can only comment on the corresponding trend. More extended 
studies are needed and more sensitive parameters should be measured (e.g., the photosynthetic 
activity of the plants). 

 
Figure 4. Dry biomass of the wheat shoots after foliar application of the iron-sources: ferrihydrite (FH) 
and Fe-EDTA, and control solutions: triple-distilled water (blank) and potassium humate (HS). The 
iron concentration in the fertilizer sprays was 1.0 mM (highlighted in yellow) and 10.0 mM 
(highlighted in orange). The bars represent the standard deviation (n = 5). The columns marked with 
different letters are significantly different at p < 0.05 according to LSD test. 

To exploring the physical-chemical phenomena that underlie the observed increase in Fe uptake 
by wheat leaves after the FH spray as compared to the Fe-EDTA, we measured the surface tension of 
the HS solution and of both the iron-containing solutions applied for foliar fertilization. We also 
measured the contact angle of the corresponding spray droplets on the wheat leaves. We wanted to 
investigate whether the observed enhancement in Fe uptake was connected to the surface activity of 
HS, which could the lower surface tension of the urea-FH solution. This seemed feasible given that 
the HS sample used in this study had about 40% of C atoms in the hydrophilic functional groups, 
and the other 60% of C atoms in the hydrophobic carbon skeleton. The results obtained for the surface 
tension and contact angle are shown in Table 2 and Figure 5, respectively. 

Table 2. Contact angles of the foliar spray droplets deposited on the surface of the wheat leaf and the 
surface tension of the corresponding solution. 

Solution * Surface Tension, mN/m (at 20 °C) Contact Angle, ° (at 20 °C) 
distilled water 73.6 ± 0.4 b, c 110.2 ± 0.2 a ** 

solution of HS 73.7 ± 0.1 b 93.3 ± 0.4 c 

Fe-EDTA 74.2 ± 0.2 a 95.2 ± 0.4 b 

FH 73.2 ± 0.1 c 87.0 ± 0.5 d 

0.00

0.05

0.10

0.15

0.20

Blank HS Fe-EDTA FH Blank HS Fe-EDTA FH

m, g

1.0 mM 10.0 mM

a a
a a a a a a
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* all solutions contained urea adjuvant (0.2% wt.), HS—potassium humate, FH—ferrihydrite; ** ± 
stands for a standard deviation for the surface tension (n = 5) and contact angle (n = 6). Values with 
different letters within a column are significantly different at p < 0.05 

 

 

Figure 5. Images of the foliar spray droplets deposited on the surface of wheat leaf: (a) triple-distilled 
water; (b) HS (solution of potassium humate); (c) Fe-EDTA; (d) ferrihydrite nanoparticles (FH). All 
the solutions contained urea adjuvant (0.2% wt.). The image in the bottom row presents the total view 
of the droplets deposited on the surface of the wheat leaf. 

Table 2 shows that in the presence of 0.2% urea, all tested solutions had a surface tension similar 
to distilled water. At the same time, the FH solution exhibited a lower (87o) contact angle on the 
surface of wheat leaf (Figure 5) as compared to Fe-EDTA (95.2o) and compared to both controls (water 
and humate solution). The FH solution showed the smallest contact angle, which resulted in the 
highest wettability of wheat leaves among all of the tested solutions. Of particular interest is that the 
contact angle for the FH solution was lower than that of the HS solution of the same concentration 
(Figure 5, Table 2). This observation agrees well with the report by Harikrishnan et al. [46] on 
enhanced wettability of hydrophobic and hydrophilic surfaces by complex fluids containing both 
surfactants and nanoparticles as compared to particle-free surfactant solutions. A study on 
emulsification [47] has shown that the addition of particles to a surfactant-stabilized emulsion results 
in the appearance of a small population of large drops due to coalescence, possibly by bridging of 
adsorbed particles. The addition of surfactant to a particle-stabilized emulsion surprisingly led to 
increased coalescence as well [47]. In our study, the larger drops, which were observed for the FH 
solution, might result from the higher wettability of the leaf surface due to accumulation of 
nanoparticles on the droplet/leaf surface. Since only residual iron from the IONPs spray was found 
in the after-treatment washing solution, it was assumed that the major portion had entered the leaf 
through its different-sized pores (stomatal pores, pores in the cell walls, etc.). Given that HS can 
promote the physiological mechanisms involved in Fe acquisition acting at the transcriptional and 
post-transcriptional level [72], the observed increased uptake of iron NPs stabilized by HS might be 
an eco-friendly and affordable tool for biofortification of crops, in particular, of wheat and rice. 
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4. Conclusions 

In this study, ultrasmall ferrihydrite nanoparticles (with a mean size of 2.5 ± 0.3 nm) stabilized 
by potassium humate (HS) were synthesized and used in the form of a spray as an iron source for 
foliar application on wheat plants (Triticum aestivum L.) grown under iron-deficient conditions. This 
resulted in a 70–75% higher iron content in washed and dried wheat shoots compared to a 
coordination complex of ferric ions and ethylenediaminetetraacetic acid (Fe-EDTA). The higher 
uptake of iron from the ferrihydrite (FeH) stabilized with HS was related to the enhanced wettability 
of the wheat leaves. The obtained results are promising with regard to developing humic-stabilized 
nanofertilizers. Additional benefits are provided by the eco-friendly properties and plentiful 
resources of humic substances. 

Supplementary Materials: The following are available online at www.mdpi.com/2073-4395/10/12/1891/s1, Table 
S1: Iron content in the solutions used to wash the wheat shoots after foliar treatments with humics-based 
nanofertilizer and control/blank preparations (µg·L−1). 
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