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Abstract. Gibbs-ringing artifact is a common artifact in MRI image
processing. As MRI raw data is taken in a frequency domain, 2D in-
verse discrete Fourier transform is applied to visualize data. Inability to
take inverse Fourier transform of full spectrum (full k-space) leads to
the insufficient sampling of the high frequency data and results in a well-
known Gibbs phenomenon. It is worth to notice that truncation of high
frequency information generates a significant blur, thus some techniques
from other image restoration problems (for example, image deblur task)
can be successfully used. We propose attention-based convolutional neu-
ral network for Gibbs-ringing reduction which is the extension of recently
proposed GAS-CNN (Gibbs-ringing Artifact Suppression Convolutional
Neural Network). Proposed method includes simplified non-linear map-
ping, amended by LRNN (Layer Recurrent Neural Network) refinement
block with feature attention module, controlling the correlation between
input and output tensors of the refinement unit. The research shows
that the proposed post-processing refinement construction considerably
simplifies the non-linear mapping.

Keywords: Gibbs-ringing artifacts · Magnetic resonance imaging · At-
tention CNN · Image deringing.

1 Introduction

Gibbs-ringing artifact reduction is an image restoration problem, that can be
solved by mathematical methods of image processing.

Gibbs oscillations (Gibbs phenomenon) often occur near high-frequency im-
age features, for example, edges. Artifacts can be observed while mapping image
on a finer grid, during contrast enhancement, video compression and MRI data
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visualizing. Slight image distortions can be left invisible, while severe Gibbs ar-
tifacts may even create obstacles in patients diagnosing, if we refer to Gibbs
oscillations caused by k-space (Fourier space) truncation of MRI frequency do-
main (see Fig. 1).

Fig. 1. Examples of Gibbs-ringing artifacts on MRI images. Arrows point out areas of
distortion.

Simple finite real-valued periodic function can be observed to disclose math-
ematical reasons for Gibbs phenomenon:

ξ(t) =

{
a, if t ∈ [−τ/2, τ/2]

0, if t ∈ [−T/2, T/2] \ [−τ/2, τ/2]
, (1)

ξ(t) = ξ(t+ T ),

where ξ(t) is a basic model of a contrast edge, a is the amplitude of edge and T
is the period of the model function.

Assuming Fourier transform in a complex form and T = 2τ , (1) can be
rewritten in a form:

ξ(t) =

+∞∑
k=−∞

dke
iωkt, (2)

where dk = 1
T

∫ T
2

−T
2
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ξ(t) = 2 · a
2
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T
t =

a

π
(cosΩt− 1

3
cos 3Ωt+ ...),

(3)
where Ω = 2π/T .

In practice it is impossible to include all terms in Fourier series (3), so Gibbs
oscillations occur (see Fig. 2). The amplitude of Gibbs oscillations is constant
for a given signal and doesn’t depend on a chosen cut-off frequency.

In this paper we propose a new CNN architecture for MRI Gibbs-ringing
suppression. It differs from recently introduced GAS-CNN [1] model by simpli-
fied architecture of non-linear mapping, followed by trainable LRNN [2] post-
processing with attention block, which controls correlation between input and
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Fig. 2. Gibbs oscillations on a model edge function ξ(t). (a) is artifact free signal, (b)
is signal with Gibbs-ringing.

output tensors of the post-processing unit. The proposed architecture outper-
forms GAS-CNN on the generated synthetic testing dataset in terms of PSNR [3].

The remainder of this paper is organized as follows. In Section 2 we ob-
serve some known methods for MRI Gibbs-ringing suppression. In Section 3 we
describe MRI dataset generation, give a detailed overview of the proposed ar-
chitecture and show profit of involving our modifications to the architecture. In
Section 4 the results and comparisons are presented. The work is concluded in
Section 5.

2 Related Work

Gibbs-ringing reduction task has been solved by many methods so far. For exam-
ple, the problem can be tackled as variational, and the solution can be searched
as a function, which minimizes the stated functional in some functional space
(L2 or L1, for example):

J(u) =
1

2
‖u− u0‖2 + λ

∫
Ω

| ∇u(x) | dx→ min
u∈U

, (4)

where u0 is an input Gibbs-corrupted image, u is a searched Gibbs-free image
from the chosen functional space U , Ω is the image’s area and λ is the regular-
ization parameter. The parameter can depend on the distance from the nearest
image edge [4]. Joint ringing estimation and suppression can be performed using
sparse representations [5].

Another recently introduced method is based on a search of optimal subpixels
shifts [6]. The approach is intended to find a unique best shift for each pixel in
terms of minimizing total variation in some predefined pixel’s neighbourhood.
They found the neighbourhood K = [1, 3] to be sufficient for the most Gibbs-
ringing cases. Proposed approach was visually compared by authors with median
filter and Lanczos filtering, and it surpassed them.

Deep learning methods have acquired great popularity in computer vision and
image processing nowadays. Convolutional neural networks map input images in
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high dimensional feature spaces, implement filtering with a convolutional set and
produce output images using final image reconstruction net.

GAS-CNN [1] is the example of very deep architecture used by authors to
suppress Gibbs-ringing artifact on MRI images. Authors proposed it as the ex-
tension of the super-resolution model EDSR [7]. The following distinct model’s
features were presented by authors:

– external U-Net [8] like skip connections;

– decreasing the model’s size (diminishing of the feature space dimension);

– flat architecture, as Gibbs oscillations are almost local phenomenon (rejec-
tion of spatial reduction layers, such as max pool or convolution with stride
2).

GAS-CNN maps input tensor into high dimentional feature space of depth 64 and
then implements non-linear residual filtering with 32 ResBlocks [9]. Architecture
is concluded with the simple reconstruction net, composed of one projection
convolutional layer.

We chose this recently proposed model as a baseline and decided to conduct a
research on the ways of non-linear mapping simplification with the maintenance
of generalization ability. Despite of making quite extensive analysis of GAS-CNN,
for example, showing the advantages in utilizing external skip connections and
residual learning and making comparisons with other methods (sinc filtering,
bilateral filtering [10], NLM [11], GARCNN [12]), authors of GAS-CNN didn’t
pay much attention on possible model’s redundancy. It deserves to mention that
the trend of recent years is to propose some hybrid refinement modules which
make it possible to reduce amount of convolutions in the ensemble [2, 13, 14], as
the straightforward excessive stacking of convolutional layers leads to learning
degradation, vanishing gradients and so on.

So, in this article we demonstrate the way to shrink the number of convolu-
tions in the non-linear mapping by two times and save (even improve) model’s
generalization ability, utilizing the proposed attention LRNN refinement module.

3 Proposed Architecture

The proposed architecture is shown in Fig. 3. We call it GAS14-ACNN (Gibbs-
ringing Artifact Supression Attention-based Convolutional Neural Network). It
comprises of the following structural blocks: representing input corrupted sam-
ples into high dimensional feature space of depth 64 with the first convolution;
performing non-linear mapping with 14 RCAN blocks [15] (two times less than
in GAS-CNN); implementing trainable post-processing with the proposed atten-
tion LRNN refinement module and reconstructing output image with the final
projection convolutional layer.
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Fig. 3. Proposed GAS14-ACNN architecture for MRI Gibbs-ringing suppression.

3.1 Dataset generation

Training, validating and testing synthetic sets were generated from ground truth
MRI dataset IXI1 using the following pipeline:

– apply Fourier transform to ground truth image 256× 256 from IXI dataset;
– crop frequency spectrum: central 1

9 part of frequency domain is saved;
– implement zero-padding, so that Gibbs-corrupted image fits the shape of

ground truth image;
– apply inverse Fourier transform to get Gibbs-corrupted image.

Dataset generation process is visualized in Fig. 4.
Zero-padding is not a necessary step in Gibbs data generation, Gibbs-ringing

can be synthesized just by cropping frequencies. In this work we include zero-
padding to create image pairs {Igt, IGibbs}Ni=1 of the same spatial size. Zero-
padding is often used before iFFT to project image on a finer grid, and zero-
padding is often passed to project image on a coarse grid by inverse Fourier
transform.

IXI dataset contains 581 T1, 578 T2 and 578 PD volumes. Firstly, the inter-
section of these volumes was taking, producing 577 volumes, which have all three
modalities: T1, T2 and PD. Then, first 400 volumes were utilized to synthesize
training set, next 100 volumes to create testing set and the rest of data was
taken to generate validating set. 25 slices at both ends were discarded and every

1 http://brain-development.org/ixi-dataset/
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Fig. 4. Dataset generation pipeline. (a) is ground truth image from IXI dataset, (b) is
Fourier spectrum of image (a), (c) is cropped and zero-padded Fourier spectrum, (d)
is Gibbs-corrupted image.

tenth slice was obtained to produce pair (Igt, IGibbs)i [1]. So, training, validating
and testing sets consist of 10427, 2016 and 1617 image pairs respectively. T1,
T2 and PD have different data range, thus, maxmin normalization was used to
map input features to a single band:

Imin = min(IGT ), Imax = max(IGT ), (5)

IGibbs normed =
IGibbs − Imin
Imax − Imin

, (6)

IGT normed =
IGT − Imin
Imax − Imin

, (7)

where IGibbs is Gibbs-corrupted image, IGT is ground truth image,
IGibbs normed is normed Gibbs-corrupted image and IGT normed is normed ground
truth image.

3.2 Non-Linear Mapping

Images with Gibbs-ringing artifact obtain a significant blur also, as Gibbs-
corrupted images are generated by high frequencies truncation. Noticed that
RCAN structural module was successfully used in the recently published deep
CNN architecture for image deblur [15], one of the proposed modifications to
GAS-CNN is the replaced ResBlock [9] with RCAN (see Fig. 5) in non-linear
mapping. The key difference of RCAN module is the presence of trainable weights
for each slice of convolution output. These weights are generated applying global
pooling operation (calculating expectation values over feature slices) and sub-
sequently fusing acquired features by 1 × 1 ResBlock with sigmoid as a closing
activation.

To the best of our knowledge the authors of GAS-CNN didn’t provide code
and weights, so to make fair comparisons we trained all presented here models
ourselves, utilizing the same training procedure (refer to Section 4 for details)
and the same synthetic generated dataset.
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Fig. 5. RCAN module, used in non-linear mapping instead of GAS-CNN’s ResBlock.

GAS-CNN and RCAN-GAS-CNN were trained to evaluate RCAN perfor-
mance. RCAN-GAS-CNN precisely matches GAS-CNN architecture with the
only difference that RCAN module is used in non-linear mapping instead of an
ordinary ResBlock. The performance growth is shown in Table 1 and in Fig. 6

Table 1. Average PSNR values on the generated testing set. Benefits estimation of
RCAN block including to the non-linear mapping.

Model Average PSNR

Initial Gibbs-corrupted images 29.79
GAS-CNN 32.04
RCAN-GAS-CNN 32.19

Fig. 6. RCAN influence on GAS-CNN architecture. (a) is Gibbs-corrupted image, (b)
is ground truth image, (c) is GAS-CNN result, (d) is RCAN-GAS-CNN result.

3.3 Attention LRNN Refinement

LRNN refinement block was introduced in [2], and its ideas have been effectively
incorporated into deblur [2] and depth generation pipelines [13].

We utilized LRNN approach in solving Gibbs-ringing problem and, moreover,
extended it by attention mechanism, controlling correlation between LRNN in-
put and output features. Such attention module aims to force LRNN to be a
refinement block. Authors [14] used similar attention unit to improve biomed-
ical image segmentation, nevertheless, our approach differs from the existing
one [14] in the way we employ attention mechanism. For the current case, it has
the sense of additional constraint to the refinement operation, whereas in [14]
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it is applied to group features based on their correlation within a single feature
tensor.

LRNN has two input tensors: feature tensor (non-linear mapping result), to
be recursively processed, and weights tensor. We acquire weights by the auxiliary
RNN weights generation net (see Fig. 3), which is trained end-to-end with the
whole neural network. LRNN implements 4 recursive updates: left-to-right, right-
to-left, top-to-down and down-to-top, applying the rule:

Ht+1 := (1− ω) ·Ht+1 + ω ·Ht, (8)

where Ht is the current processing row, if we refer to top-to-down or down-to-up
operations. Subsequent concatenation and convolution fuse recursively processed
tensors and conclude LRNN operation.

LRNN can be viewed as an alternative (hybrid) way to enlarge receptive field
and to accumulate global spatial information within the layer. Despite of the
locality of Gibbs oscillations, mentioned above, accounting overall information
within the layer occurred to be very helpful and remarkably raised generaliza-
tion ability of the architecture. We trained two extra CNNs to reveal LRNN
advantages:

– RCAN8-GAS-CNN – model accurately matches with original GAS-CNN,
but the number of blocks in non-linear mapping is heavily decreased by 4
times;

– RCAN8-GAS-CNN+LRNN×2 – previously stated model, extended by pro-
posed LRNN refinement;

The obvious positive LRNN impact can be observed in Table 2 and in Fig. 7.
RCAN8-GAS-CNN+LRNN×2 has the comparable performance with the origi-
nal 4 times deeper GAS-CNN, whereas repealing of LRNN post-processing leads
to algorithm’s degradation.

Table 2. Average PSNR values on the generated testing set. Benefits estimation of
LRNN block including after the non-linear mapping.

Model Average PSNR

Initial Gibbs-corrupted images 29.79
GAS-CNN 32.04
RCAN8-GAS-CNN 31.67
RCAN8-GAS-CNN+LRNN×2 32.19

Attention module is shown in Fig. 8. It gets three tensors as inputs: x1 ∈
IRC×H·W – non-linear mapping output (LRNN input), x2 ∈ IRH·W×C – LRNN
output, x3 ∈ IRC×H·W – transposed copy of x2. Attention block performs
weighted regrouping of x3 features in a manner to uplift feature at position
i, mostly correlated with ith feature of LRNN’s input tensor x1.

Assume f1, ..., fC to be x3 features. Introduce following latent variables A =
{a1, ..., aC}. Value ai ∈ {1, ..., C} defines x3 feature, mostly correlated with
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Fig. 7. PSNR on the validation set over epoch while training.

Fig. 8. Attention unit.

ith feature of LRNN’s input tensor x1. Weighted regrouping is executed via
computed correlation tensor C ∈ IRC×C (probability distribution map over the
latent variables values).

It deserves mentioning that there is an analogy with word aligning task
in classical machine learning (for example, IBM Model 1). Proposed attention
LRNN unit performs like feature aligner of LRNN input and output tensors,
forcing LRNN to be a refinement block.

Finally, we get the overall proposed architecture: RCAN14-GAS-CNN+Attention
LRNN×2 (see Fig. 3). We call it GAS14-ACNN. Table 3 shows the increase of
performance, caused by the attention unit.
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Table 3. Average PSNR values on the generated testing set. Estimation of the perfor-
mance growth, caused by the attention block.

Model Average PSNR

Initial Gibbs-corrupted images 29.79
GAS-CNN 32.04
RCAN14-GAS-CNN+LRNN×2 32.57
GAS14-ACNN (proposed) 32.65

4 Experiments

Proposed attention-based convolutional neural network for Gibbs-ringing reduc-
tion was implemented in Python 3 with the use of deep learning framework
Tensorflow 1.14. We provide implementation of our code at2.

Models were trained with Adam optimizer [16] (β1=0.9, β2=0.999, ε=1e-08)
on GPU NVIDIA GeForce RTX 2080 Ti. Learning rate had polynomial decay:

lr(x) = (lr0 − lr1) · (1− x

M
)p + lr1, (9)

where x – training step, lr0 – initial learning rate value, lr1 – final learning rate
value, M = Ne ·Nd / bs – amount of training steps, Ne – epochs number, Nd –
amount of pairs in the training set, bs – number of pairs, fed to the algorithm
on the current training step (batch size), p – polynomial power.

We used the following values of these parameters: lr0 = 10−4, lr1 = 0,
Ne = 1000, bs = 20, p = 0.3.

We applied L1 loss function with l2 weights regularization (γ = 10−4) to
prevent models’ overfit.

We utilized augmentation by rotations and flips for patches of shape (48×48)
during training. 10 random patches were cropped from each training image before
an augmentation. Validation and testing were performed on full-size images.

All convolutions’ kernels have spatial size 3 × 3, except for one projection
convolution just before LRNN refinement unit: it has kernel of spatial size 1×1,
and it projects features on some trainable manifold of the less dimension.

GAS-CNN, chosen baseline model, and the proposed GAS14-ACNN can be
compared in Fig. 9 and Fig. 10. It takes approximately 1.03 sec. and 0.05 sec. to
process one image (256 × 256) for GAS-CNN on CPU and GPU respectively3.
And it takes approximately 1.13 sec. and 0.08 sec. to process one image (256×
256) for our GAS14-ACNN on the same CPU and GPU respectively3.

5 Conclusion

We proposed the new attention-based convolutional architecture GAS14-ACNN
for MRI Gibbs-ringing suppression. This architecture is the extension of recently

2 https://github.com/MaksimPenkin/GAS14-ACNN
3 Intel(R) Core(TM) i7-8700; NVIDIA GeForce RTX 2080 Ti
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Fig. 9. PSNR on the validation set over epoch while training.

Fig. 10. Estimation of visual quality growth. (a) Gibbs-corrupted images, (b) ground
truth images, (c) GAS-CNN results, (d) GAS14-ACNN results (proposed).

proposed GAS-CNN model with significantly simplified non-linear mapping, fol-
lowed by attention LRNN unit to save generalization ability. The presented at-
tention mechanism acts as auxiliary constraint for LRNN post-processing and as
feature filtering module. The proposed GAS14-ACNN model outperforms base-
line GAS-CNN on the generated synthetic testing set.
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11. Manjón, J. V., Coupé, P., Buades, A., Fonov, V., Collins, D. L., Robles, M.: Non-
local MRI upsampling. Medical image analysis 14(6), 784–792 (2010)

12. Wang, Y., Song, Y., Xie, H., Li, W., Hu, B., Yang, G.: Reduction of Gibbs ar-
tifacts in magnetic resonance imaging based on Convolutional Neural Network.
In: 2017 10th international congress on image and signal processing, biomedi-
cal engineering and informatics (CISP-BMEI), pp. 1–5. Shanghai, China (2017).
https://doi.org/10.1109/CISP-BMEI.2017.8302197

13. Cheng, X., Wang, P., Yang, R.: Learning depth with convolutional spatial propa-
gation network. arXiv preprint arXiv:1810.02695 (2018)

14. Sinha, A., Dolz, J.: Multi-scale self-guided attention for medical image seg-
mentation. IEEE Journal of Biomedical and Health Informatics, arXiv preprint
arXiv:1906.02849 (2020)

15. Park, D., Kim, J., Chun, S. Y.: Down-scaling with learned kernels in multi-
scale deep neural networks for non-uniform single image deblurring. arXiv preprint
arXiv:1903.10157 (2019)

16. Da, K.: A method for stochastic optimization. arXiv preprint arXiv:1412.6980
(2014)


