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The corresponding-states principle (CSP) has been considered for the development of the equations of state
(EOS) of minor isotopologues that are usually unknown. We demonstrate that, for isotopologues of a given
molecular fluid, a general extended multi-parameter corresponding-states EOS can be reduced to the three-
parameter EOS, utilizing the critical parameters (temperature and density) and Pitzer’s acentric factor as
correlation parameters. Appropriate general CSP mathematical formalism and equations for constructing the
EOS of minor isotopologues are described in detail. The formalism and equations were applied to isotopologues
of water and demonstrated that the isotopic effect on the critical parameters and the acentric factor of H2

18O
can be successfully calculated from the EOS of H2O and experimental data on the isotope effects (liquid-
vapor isotope fractionation factor and molar volume isotope effect). We have also shown that the experimental
data on the vapor pressure isotope effect (VPIE) for18O-substituted water are inconsistent within the framework
of thermodynamics with the liquid-vapor oxygen isotope fractionation factor. The novel approach of CSP to
isotopologues developed in this study creates a new opportunity for constructing the EOS of minor isotopologues
for many other molecular fluids.

1. Introduction

Isotope effects in molecular fluids are of great interest,
because the sign and magnitude of changes in the thermody-
namic properties of molecular fluids upon isotopic substitution
are closely related to the nature of intermolecular forces and
the motion of molecules in the vapor and condensed phases.
Since the pioneering work on the quantum statistical mechanical
foundation for isotope effects by Bigeleisen and Mayer1 and
Urey,2 the reduced isotope partition function ratio (RIPFR) of
molecular fluids, a primary physical quantity for isotopic species,
has been calculated using the ideal-gas approximation (i.e., no
intermolecular interactions). In the past several decades, numer-
ous physicochemical isotope effects (e.g., vapor pressure, molar
volume, viscosity, heat capacity) of molecular fluids have been
the subject of numerous experimental studies.3-5 Recently,
advancedab initio approaches, molecular dynamics simula-
tion,6,7 integral equation theory,8 and quantum-mechanical
density function theory9 have been increasingly utilized for
calculating the isotope effects in high-density molecular fluids,
including the condensed phases. Despite these in-depth experi-
mental, theoretical, and simulation studies on the isotope effects
of molecular fluids at various conditions, a full and accurate
description of thermodynamic properties (e.g., equation of state
for pressure-temperature-volume relations) of minor isotopic
molecules (isotopologues) is very limited.

We have recently suggested the use of multi-parameter
equation of states (EOS) of major and minor isotopologues of
a given molecular fluid for calculating the reduced isotope
partition function ratio (RIPFR) of “real-gas” fluids over a wide
range of temperatures and pressures.10,11If high-precision multi-

parameter EOS’s are available for both isotopologues in
describing their PVT properties, this approach can provide high
accuracy in the calculation of nonideal behavior for the isotopic
properties of molecular fluids. Using the EOS’s for H2

16O and
D2O available from the literature, Polyakov et al.11 calculated
the effect of pressure (density) on the RIPFR of liquid, vapor,
and supercritical waters to 800 K and 100 MPa. Their results
showed a good agreement with experimental data.12 However,
EOS’s with sufficiently high precision are usually not available
for minor isotopologues for the majority of molecular fluids,
limiting the application of the EOS-based method developed
by Polyakov et al.11

In the present study, we investigated the use of the corre-
sponding-states principle (CSP) for constructing the EOS’s of
minor isotopologues. The CSP approach, which is arguably the
best suited for a set of isotopologues of a given molecule, will
remove the restriction of our EOS-based method. We present
the formalism and equations for isotopologues within the
framework of CSP and apply them to18O-substituted water
(H2

18O) as an example.

2. Corresponding-States Principle

According to the original two-parameter formulation, the CSP
can be expressed as

whereP is pressure,R is the universal gas constant,T is absolute
temperature, andF is the molar density, defining the compress-
ibility factor Z as a function ofτ ≡ Tcr/T andδ ≡ F/Fcr where
Tcr andFcr are the critical temperature and critical molar density,
respectively. The CSP claims that the dimensionless function
Z in eq 1 is a universal function for all substances, as originally
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proposed by van der Waals, who pointed out that, because this
equation is written in the dimensionless form, it is the same for
all fluids.

2.1. Extended Corresponding-States Principle.The simple
two-parameter version of the corresponding states principle
satisfied experimental observations only in the case of spherical
and nearly spherical molecules such as heavy noble gases,
methane, nitrogen, and oxygen. To extend the corresponding-
states approach to a wider set of more complex fluids, additional
parameters must be considered. Various modifications of these
extended corresponding-states EOS were recently reviewed by
Ely and Marrucho.13 Here, we consider a corresponding-states
EOS involving an additional characterization parameter, namely,
Pitzer’s acentric factor14 (ω):

Equation 2 is a first-order Taylor expansion of the compress-
ibility factor with respect to the acentric factor. The acentric
factor characterizes the deviation of the molecule potential from
a spherical shape, as suggested by Pitzer.14 This parameter is
found to be extremely useful in the corresponding-state-like
correlation.13,15Pitzer14 defined a ratio of the saturated pressure
(Ps) at T ) 0.7Tcr to the critical pressure (Pcr) as a measure for
the acentric factor:

Equation 3 provides a possible rationale for experimental
determination of the acentric factor. The corresponding-states
approach, including the acentric factor and other correlation
parameters, is usually referred to as the extended CSP.13

The main problem behind the three-parameter extended CSP
is the determination of the∂Z/∂ω term in eq 2. A common
technique to perform this calculation was suggested by Lee and
Kessler16 involving the equation

whereZ andZ0 are the compressibility factors of a reference
fluid and a simple spherical molecule (e.g., noble gases),
respectively, andω is an acentric factor of a reference fluid.

2.2. Applications to Isotopologues.The CSP can be best
applied to a set of isotopologues of a given molecular fluid (e.g.,
H2O, D2O, and H2

18O of water), because of the very similar
thermodynamic properties of the isotope species, which is one
of the conditions for successful applications of the CSP.13 There
have been a few attempts to apply the corresponding-states
correlation to isotope substitution phenomena. De Boer17 was
the first to successfully predict the VPIE effect of noble gases.
However, subsequent attempts to predict the VPIE of more
complex substances failed.7 Xiang18 applied the extended CSP
to calculating the vapor pressure and critical point of tritium
oxide. Recently, Van Hook19,20 et al. applied the CSP (cubic-
order or “almost cubic-order” EOS) to a set of substances with
experimentally determined critical parameters (3He/4He, H2/D2,
CH4/CD4, H2O/D2O, etc.). These studies demonstrated that
satisfactory agreement with the experimental data on VPIE and
molar volume isotope effects (MVIE) can be obtained only
within the framework of the extended three-parameter CSP and
that the isotope effect on the acentric factor has to be taken
into account.

One could argue that more sophisticated CSP correlations
(e.g., four-parameter equation) might be required for isotopo-
logues of water, because water is the prototypical polar
substance. In fact, four-parameter CSP has been successfully
applied not only to substances consisting of weakly non-
spherical and nonpolar molecules but also to polar substances
consisting of highly non-spherical molecules.21-25 Here, we
demonstrate that the extended three-parameter CSP discussed
above can be applied to a set of isotopologues of molecular
fluids, including non-spherical and polar ones, provided that
some modifications are introduced.

According to Xiang’s formulations,25 the compressibility
factor for a strongly non-spherical polar fluid can be written as
a four-parameter equation:

whereZ(0)(τ,δ) is the compressibility factor of spherical fluids
whose acentric (ω) and aspherical (θ) factors are 0 (e.g., noble
gases).Z(1)(τ,δ) is a function describing the deviation from a
spherical-fluid EOS (cf. eq 2).Z(2)(τ,δ) is a function used to
describe the behavior of polar, highly non-spherical fluids. The
aspherical factor is defined in the Xiang CSP formulation as25

Considering that 0.29 is a critical compressibility factor for
spherically symmetric fluids (argon, krypton, etc.), and that the
acentric factor is a linear function of the term (Zcr - 0.29) for
weakly non-spherical and nonpolar fluids,14 the correspondence-
states EOS (5) can be expressed as an expansion of the
compressibility factor in a (Zcr - 0.29) power series.

Writing eq 5 for an isotopologue, we get

Hereafter, the asterisk denotes quantities referring to an isoto-
pologue containing rare isotopes (e.g., D2O, H2

18O, etc.).
Subtracting eq 5 from eq 7, and then substituting the aspherical
factor according to eq 6, one can get, after neglecting quadratic
terms of (Zcr

* - Zcr),

From eq 8, it follows that

Substituting eq 9 into eq 8, one can derive

Equations 5 and 10 can be generalized by expanding the
compressibility factor into even higher (Zcr - 0.29) terms:

P
FRT

) Z(τ,δ,ω)ω)0 + (∂Z(τ,δ,ω)
∂ω )

ω)0
ω (2)

ω ) -log(Ps

Pcr
)

T)0.7Tcr

- 1 (3)

∂Z
∂ω

)
Z - Z0

ω
(4)

Z(τ,δ) ) Z(0)(τ,δ) + Z(1)(τ,δ)ω + Z(2)(τ,δ)θ (5)

θ ≡ (Zcr - 0.29)2 (6)

Z*(τ,δ) ) Z(0)(τ,δ) + Z(1)(τ,δ)ω* + Z(2)(τ,δ)θ* (7)

Z*(τ,δ) - Z(τ,δ) ) Z(1)(τ,δ)(ω* - ω) +
2Z(2)(τ,δ)(Zcr - 0.29)(Zcr

* - Zcr) (8)

Zcr
* - Zcr )

Z(1)(1,1)

1 - 2Z(2)(1,1)(Zcr - 0.29)
(ω* - ω) (9)

Z*(τ,δ) - Z(τ,δ) )

[Z(1)(τ,δ) +
2Z(2)(τ,δ)(Zcr - 0.29)

1 - 2Z(2)(1,1)(Zcr - 0.29)
Z(1)(1,1)](ω* - ω)

(10)

Z(τ,δ) ) Z(0)(τ,δ) + Z(1)(τ,δ)ω + ∑
i)2

n

Z(i)(τ,δ)(Zcr - 0.29)i

(11)
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In eqs 11 and 12, second and higher terms of (Zcr
* - Zcr) were

neglected due to small differences in the properties of isoto-
pologues. Notice that the terms in the square brackets of eqs
10 and 12 depend only on the compressibility factors and
functions of the main isotopologue. Thus, the four-parameter
or higher-term EOS for a set of isotopologues can be reduced
to eq 10 or 12, respectively, which are in turn equivalent to the
three-parameter CSP (eqs 2 and 4). The significant difference
between the three-parameter CSP (eq 2) and eqs 10 and 12 lies
in the fact that the derivative of the compressibility factor with
respect to the acentric factor (∂Z/∂ω) is a universal function for
all substances within the framework of the three-parameter CSP,
whereas the functions in the square brackets in eqs 10 and 12
are the same only for isotopologues of a given substance.

Summarizing, one can write the extended three-parameter
CSP relevant to a set of isotopologues of a given substance as
follows:

where Z̃(1) is defined according to eq 12 by the following
expression:

We should emphasize that these equations are valid for a set of
isotopologues of a molecular fluid, even if a four- or higher-
term EOS is required to represent the PVT properties of a major
isotopologue of the fluid.

3. Corresponding-States Principle and Thermodynamic
Properties of Isotopologues

Thus far, we discussed the specificity of the general CSP
approach relevant to isotopologues and mathematical repre-
sentation of EOS’s for isotopologues in the three-parameter
extended CSP formalism. In this section, we present the
mathematical technique for constructing the EOS’s for isoto-
pologues and calculating the RIPFR based on the devel-
oped isotope version of the three-parameter extended CSP (eq
13).

Polyakov et al.10,11 presented the EOS-based technique for
calculating the nonideal-gas RIPFR. The RIPFR is a main
physical quantity that determines equilibrium stable isotope
fractionation:1,2

wheres*/s f is the RIPFR,A is the Helmholtz free energy,m is
the mass of the major isotope undergoing isotopic substitution,
m* is the mass of the rare isotope (e.g., masses of16O and18O,
respectively, in the case of16O f 18O substitution), andn is
the multiplicity of the isotopic substitution (number of isoto-
pically substituted atoms in the chemical formula unit, e.g., unity
in the case of H2O and two in the case of D2O). The second
term in the right-hand side of eq 15 represents the high-
temperature (classical physics) limit for the difference of isotopic
free energies divided byRT. The factor 1.5 in eq 15 results
from a power exponential in the mass dependence of the
partition function in the classical limit. An experimentally
measurable stable isotope equilibrium fractionation factor is
expressed in terms of the RIPFR as

where RA-B
e is the equilibrium stable isotope fractionation

factor between substances A and B.26

The RIPFR can be expressed as a sum of two parts, namely
(i) the ideal-gas RIPFR and (ii) the term describing the deviation
of the RIPFR from the ideal-gas value by the following
equation:11

In eq 17, ((s*/s)f(T))id is the ideal-gas RIPFR, and the second
term denotes the deviation from the ideal gas counterpart. The
latter term is responsible for the density (pressure) effect on
the RIPFR. At a given temperature, one can write a common
thermodynamic equation:

Application of eq 18 to both isotopologues in eq 17 allows
calculation of the nonideal-gas part of RIPFR in eq 17, provided
that the PVT properties of two isotopologues of interest are
known from respective EOS’s. Accurate multi-parameter EOS’s
for both H2

16O and D2O isotopologues are available and were
used previously to calculate the effect of density (pressure) on
the RIPFR for hydrogen.11 However, the EOS is usually known
only for the most abundant isotopologue.

At a given T and F, the dimensionless values ofτ and δ
change because of the changes in critical temperature and density
caused by isotope substitution:

where we neglected the term∼(∆Fcr/F)2 in eq 20.
Taking into account small differences in the critical param-

eters of isotope species and holding terms linear with respect
to these differences, one can write eq 13 according to the
extended CSP at a givenT andF:

ln RA-B
e ) ln(s*

s
f)

A
- ln(s*

s
f)

B
(16)

ln(s*

s
f) ) ln(s*

s
f(T))

id
+

{A(T,F) - A(T,0)
RT

-
A*(T,F) - A*(T,0)

RT } (17)

A(T,F) - A(T,0) ) ∫0

F
P/F2 dF (18)

τ* - τ ≡ ∆τ )
Zcr

*

T
-

Tcr

T
) τ(∆Tcr

Tcr
) (19)

δ* - δ ≡ ∆δ ) F
Fcr

*
- F

Fcr
≈ -δ(∆Fcr

Fcr
) (20)

Z*(τ,δ) - Z(τ,δ) )

[Z(1)(τ,δ) +

∑
i)2

n

iZ(i)(τ,δ)(Zcr - 0.29)i-1

1 - ∑
i)2

n

iZ(i)(1,1)(Zcr - 0.29)i-1

Z(1)(1,1)](ω* - ω)

(12)

Z(τ,δ,ω*) ) Z(τ,δ,ω) + Z̃(1)(τ,δ,ω)(ω* - ω) (13)

Z̃(1)(τ,δ,ω) )
∂Z(τ,δ,ω)

∂ω
)

Z(1)(τ,δ) +

∑
i)2

n

iZ(i)(τ,δ)(Zcr - 0.29)i-1

1 - ∑
i)2

n

iZ(i)(1,1)(Zcr - 0.29)i-1

Z(1)(1,1) (14)

ln(s*

s
f) ≡ A(T,F) - A*(T,F)

RT
- 1.5n ln(m*/m) (15)
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where∆ω ) ω* - ω. Equation 21 expresses the compress-
ibility factor of the isotopologue of interest (e.g., H2

18O) in terms
of the compressibility factor and its derivatives of the most
abundant isotopologue for which the EOS is known (e.g.,
H2

16O).
Modern, fundamental multi-parameter EOS’s of many fluids

are expressed explicitly in the dimensionless Helmholtz free
energy as a function of the dimensionless temperature and
density:

The functionsφ0(τ,δ) andφr(τ,δ) represent the ideal gas and
the residual contributions to the dimensionless Helmholtz free
energy, respectively. The fundamental EOS can then be
converted to the equation for the compressibility factor by the
following thermodynamic relation:

The fundamental EOS (22), referring to one isotopologue,
represents the Helmholtz free energy at a given value of the
acentric factor. From the point of view of the extended CSP,
isotopic substitution at a given temperature and density results
in changes not only of the critical parameters, but also of the
corresponding acentric factor. Thus, the residual part of the
Helmholtz free energy in eq 22 can now be written as

which is equivalent to eq 21, according to eqs 22 and 23.
Moreover, the ideal-gas part of the fundamental EOS can be
expressed in terms of the ideal-gas RIPFR; i.e., from eqs 15
and 22, one can write

whereAid is the ideal-gas part of the Helmholtz free energy.
Combining eqs 22, 24, and 25, one can obtain a general

expression for the extended corresponding-states EOS for
isotopic species:

Thus, the equation for the RIPFR can be written as

In summary, we have shown that the thermodynamic proper-
ties of minor isotopologues can be calculated over a wide range
of temperatures and pressures from the knowledge of (a) the
ideal-gas RIPFR, (b) the EOS of a major isotopologue, (c) the
derivatives of the residual function of the dimensionless
Helmholtz free energy with respect to the dimensionless
variables of temperature and density and the acentric factor,
and (d) the isotopic effects on the critical parameters and the
acentric factor. Several properties (ideal-gas RIPFR, EOS of a
major isotopologue, derivatives of the EOS with respect to the
dimensionless variables) are usually available from the literature.
However, the remaining properties in eq 27 (i.e., the isotopic
effects on the critical parameters and the acentric factor as well
as the derivative of EOS with respect to the acentric factor) are
usually unknown. For this reason, below, we have developed a
new strategy to obtain these unknown properties for minor
isotopologues using available experimental data, which includes
the isotopic fractionation factor, the molar volume isotope effect
(MVIE), and the vapor pressure isotope effect. We tested our
new method for18O-substituted water (H218O).

4. Application of Corresponding-States Principle to H2
18O

4.1. Available Data of Water Isotopologues.The most
advanced EOS for normal water (H2

16O) was developed by
Wagner and Pruâ.27 This equation refers to the fundamental
EOS and is written in a dimensionless form (eq 22). The critical
parameters of the H216O isotopologue are very well-known:Tcr

) 647.096( 0.01 K andFcr ) 322 ( 3 kg/m3. The ideal-gas
function φ0(τ,δ) is expressed by 8 fitted parameters, and the
residual (nonideal-gas) functionφr(τ,δ) contains 234 fitted
parameters. The derivative ofφr(τ,δ) with respect toτ andδ is
also known. This equation is the official International Associa-
tion for the Properties of Water and Steam formulation 1995
(IAPWS-95) for the thermodynamic properties of the H2

16O
water isotopologue. The EOS is valid at temperatures from the
melting temperature to 1273 K and at pressures up to 1000 MPa.
The authors claim that it can be extrapolated to pressures up to
100 GPa and temperatures up to 5000 K in the stable fluid
region.27

Kestin et al.28 developed an EOS for heavy water (D2O). This
equation also presents the dimensionless fundamental EOS but
in somewhat different form:

whereAh, Ah0, andAh1 are the complete, ideal-gas, and residual
(nonideal-gas) dimensionless Helmholtz free energy functions,
respectively. To convert the Helmholtz free energy to the
dimensionless form, Kestin et al.28 divided it by (Pcr/Fcr). Ah
relates to (A/RT) as

whereD ) Pcr/FcrRTcr ≈ 0.226454 is the critical compressibility
factor for D2O. (Here, we used the value of the critical
parameters of D2O from Kestin et al.28) The same relations hold
for Ah0 andAh1. The relation that is analogous to eq 23 is given
as

ln(s*

s
f) ) ln(s*

s
f)

id
- τ

∂φ
r(τ,δ,ω)
∂τ (∆Tcr

Tcr
) +

δ
∂φ

r(τ,δ,ω)
∂δ (∆Fcr

Fcr
) - ω

∂φ
r(τ,δ,ω)
∂ω (∆ω

ω ) (27)

Ah(1/τ,δ) ) Ah0(1/τ,δ) + Ah1(1/τ,δ) (28)

A
RT

) DτAh (29)

Z(τ*,δ*,ω*) ) Z(τ,δ,ω) + τ
∂Z(τ,δ,ω)

∂τ (∆Tcr

Tcr
) -

δ
∂Z(τ,δ,ω)

∂δ (∆Fcr

Fcr
) + ω

∂Z(τ,δ,ω)
∂ω (∆ω

ω ) (21)

A(T,F)
RT

) φ
0(τ,δ) + φ

r(τ,δ) (22)

P(τ,δ)
FRT

) Z(τ,δ) ) 1 + δ
∂φ

r(τ,δ)
∂δ

(23)

φ
r(τ*,δ*,ω*) ) φ

r(τ,δ,ω) + τ
∂φ

r(τ,δ,ω)
∂τ (∆Tcr

Tcr
) -

δ
∂φ

r(τ,δ,ω)
∂δ (∆Fcr

Fcr
) + ω

∂φ
r(τ,δ,ω)
∂ω (∆ω

ω ) (24)

Aid
*

RT
)

Aid

RT
+ (Aid

*

RT
-

Aid

RT) )
Aid

RT
- ln(s*

s
f)

id
+ 1.5nln(m*/m)

(25)

A*(T,F)
RT

) φ
0(τ,δ) + φ

r(τ,δ,ω) - ln(s*

s
f)

id
+

1.5nln(m*/m) + τ
∂φ

r(τ,δ,ω)
∂τ (∆Tcr

Tcr
) - δ

∂φ
r(τ,δ,ω)
∂δ (∆Fcr

Fcr
) +

ω
∂φ

r(τ,δ,ω)
∂ω (∆ω

ω ) (26)
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whereZD is the compressibility factor of D2O. The EOS for
D2O is valid at temperatures from the melting point to 800 K
and at pressures up to 100 MPa.28

The ideal-gas RIPFR for oxygen (H2
18O-H2

16O) was cal-
culated by Bron et al.29 and Richet et al.30 The oxygen isotope
fractionation factor between liquid water and water vapor is
accurately determined along the entire liquid-vapor bound-
ary.31,32Molar volume (density) isotope effects between H2

16O
and18O-substitued liquid water are also known at 100 kPa (1
bar) and at 273-343 K.33 These experimentally determined
isotope effects can be used to construct an EOS of H2

18O based
on the extended CSP, as demonstrated below.

4.2. Extended Three-Parameter Corresponding-States
EOS. A liquid-vapor isotope fractionation factor can be
expressed as differences in RIPFR’s between the liquid water
and saturated water vapor:

where RL-V is the liquid-vapor fractionation factor and the
subscripts L and V denote liquid and vapor phases, respectively.

Substituting eq 27 into 31, one obtains

An appropriate expression for the MVIE (or more precisely
the molar density isotope effect (MFIE)) can be derived from
the EOS of eq 23 taking into account that the MFIE is defined
at a given pressure and temperature. In this case, the change in
δ under the isotope substitution results from both changes in
density and the critical density:

It follows from eq 23 at a given pressure and temperature
for both isotopologues:

Retaining first-order terms with respect to isotopic substitu-
tion, one can write

Substituting eqs 33 and 19 for∆δ and∆τ, respectively, into
eq 35b, the following expression for the MFIE is obtained after
some algebraic manipulation:

The two equations, 32 and 36, obtained within the framework
of the extended three-parameter correspondence-states EOS,
have three unknowns, the isotopic effects on the critical
parameters (density and temperature) and the acentric factor,
(∆Fcr/Fcr, ∆Tcr/Tcr, and ∆ω/ω). In addition to these three
unknown values, the derivative terms with respect to the acentric
factor (∂φr/∂ω and∂Z/∂ω) in eqs 32 and 36 are also unknown.
However, the accurate EOS for other isotopologues of water
(D2O)28 allows us to calculate these two derivative terms within
the framework of the CSP for isotopologues. The acentric factor
derivative of the compressibility factor can be derived from

where the subscriptD denotes the compressibility factor and
the acentric factor for D2O, which can be calculated using the
EOS for D2O.28 Then, the substitution of eqs 28-30 in eq 37
gives

The acentric factors for normal and heavy water computed from
the EOS for H2

16O27 and D2O28 areω ) 0.344 290 andωD )
0.364 438, respectively.

The equation for the acentric factor derivative of the residual
part of the Helmholtz free energyφr can be written as

The substitution of eqs 38 and 39 into eqs 32 and 36 yields the
two equations with the three unknowns (∆Tcr/Tcr, ∆Fcr/Fcr, and
∆ω/ω), expressing isotopic effects on the critical parameters
and the acentric factor. The values of these three unknowns can
be obtained by solving the two equations by means of a linear
least-square fitting procedure, involving two sets of experimental
data from the literature:RL-V, the liquid-vapor isotope
fractionation factor,31,32and the molar density isotope effect,
MFIE:33

Figure 1 shows that fitting results from the extended three-
parameter approach agree very well with the experimental data
on the fractionation factor and MFIE. Finally, the Helmholtz
free energy of H218O can be calculated from eq 26 using the
values of (∆Tcr/Tcr), (∆Fcr/Fcr), and (∆ω/ω) from eq 40 and the
acentric factor derivative from eq 39. The ideal-gas RIPFR for

∆F
F

)
δ ∂Z

∂δ

Z + δ ∂Z
∂δ

(∆Fcr

Fcr
) -

τ ∂Z
∂τ

Z + δ ∂Z
∂δ

(∆Tcr

Tcr
) -

ω ∂Z
∂ω

Z + δ ∂Z
∂δ

(∆ω
ω ) (36)

∂Z(τ,δ,ω)
∂ω

≈ ZD(τ,δ) - Z(τ,δ)

ωD - ω
(37)

∂Z(τ,δ,ω)
∂ω

≈
Dτδ(∂Ah1(1/τ,δ)

∂δ ) - δ
∂φ

r(τ,δ)
∂δ

ωD - ω
(38)

∂φ
r(τ,δ,ω)
∂ω

≈ DτAh1(1/τ,δ) - φ
r(τ,δ)

ωD - ω
(39)

(∆Tcr/Tcr) ) (0.3207( 0.0041)× 10-3

(∆Fcr/Fcr) ) (1.471( 0.016)× 10-3

(∆ω/ω) ) (1.363( 0.015)× 10-3 (40)

ZD(1/τ,δ) ) 1 + Dτδ(∂Ah1(1/τ,δ)

∂δ ) (30)

ln RL-V ) ln
s*

s
f(T,FL) - ln

s*

s
f(T,FV) (31)

ln RL-V ) τ(∂φr(τ,δV,ω)

∂τ
-

∂φ
r(τ,δL,ω)

∂τ )(∆Tcr

Tcr
) +

(δL

∂φ
r(τ,δL,ω)

∂δ
- δV

∂φ
r(τ,δV,ω)

∂δ )(∆Fcr

Fcr
) +

ω(∂φr(τ,δV,ω)

∂ω
-

∂φ
r(τ,δL,ω)

∂ω )(∆ω
ω ) (32)

∆δ ≡ δ* - δ ) δ(∆F
F

-
∆Fcr

Fcr
) (33)

F*Z* - FZ ) 0 (34)

Z(∆F/F) + ∆Z ) 0 (35a)

Z
∆F
F

+ ∂Z
∂τ

∆τ + ∂Z
∂δ

∆δ + ∂Z
∂ω

∆ω ) 0 (35b)
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oxygen (H2
18O-H2

16O) can be taken from Bron et al.29 or Richet
et al.30 The RIPRF of the “real-gas” water can also be calculated
from eq 27. In the case of water isotopologues, in addition to
the EOS of a major isotopologue (H2O), another EOS for D2O
was available, which was used to calculate the derivatives with
respect the acentric factor (∂φr/∂ω and ∂Z/∂ω) as described
above. In general, for applications of the extended three-
parameter formalism of eqs 32 and 36 to isotopologues of other
molecular fluids (e.g., CO2, CH4), the derivative terms can be
derived from eqs 13 and 14, where only the compressibility
factors of a main isotopologue are needed for the calculation.

It is interesting to compare isotopic effects on the critical
parameters for H218O and D2O: the values for the latter are
experimentally well determined.28 D2O has a value of (∆Tcr/
Tcr) ≈ -0.0050 (∆Tcr ≈ -3.2 K), which is not only more than
10 times larger than that for H218O (∆Tcr ≈ 0.2 K), but also
opposite in sign. The isotopic effect on the critical density of
D2O is also much larger and opposite in sign compared to that
of H2

18O. The lower critical parameters (temperature and
density) of D2O relative to H2

16O are consistent with the fact
that there is a crossover point at 221°C, above which the vapor
pressure isotope effect,P(H2O)/P(D2O), is smaller than unity.11,31

This crossover point is not observed for the liquid-vapor
H2

16O-H2
18O isotope fractionation curve (Figure 1). The

calculated isotope effects on the critical parameters for H2
18O

(∆Tcr ) 0.2 K and∆Fcr ≈ 0.45 kg/m3) are probably too small
to be accurately measured by experiments. This is the case for
the majority of isotopologues of other molecular fluids. For this
reason, the novel CSP approach developed here would be the
only method currently available for determining the isotope
effects on the critical parameters.

4.3. Isotope Fractionation Factor and Vapor Pressure
Isotope Effects. In our application of the extended, three-
parameter CSP to the isotopologues of water, the experimental
data of the liquid-vapor isotope fractionation factor (RL-V) and
molar density isotope effects (∆F/F) were used to obtain the
isotope effects on the critical parameters and the acentric factor

(eqs 32 and 36). A third experimental data set available for
H2

18O, which can also be used for the construction of the EOS,
is the vapor pressure isotope effect, VPIE) P(H2

16O)/P(H2
18O).

However, the experimental data of VPIE for H2
18O are in

apparent disagreement with those of the liquid-vapor isotope
fractionation factor within the framework of thermodynamics
as discussed below.

The saturation pressures for H2
16O and18O-substituted water

can be calculated from the EOS (eq 23):

wherePs is the saturation pressure. In order to calculate the
saturation pressures of isotopologues, the saturation vapor
densities along the liquid-vapor boundary should be calculated
from the fundamental EOS (eq 22) using the conditions of equal
pressure and Gibbs free energy for the coexisting liquid and
vapor phases. For H2O, we reproduced the results of Wagner
and Pruâ.27 For 18O-substituted water, the CSP-derived funda-
mental EOS (eq 26) was used for the calculations; mathematical
details of these calculations are given in the Appendix I.

Results of the calculation are plotted in Figure 2 and
compared with those from the most complete experimental VPIE
data sets.34,35 There is an obvious disagreement between the
experimental data from the literature and our calculations for
the VPIE. Our EOS-based calculations show that the VPIE is
greater than the experimental liquid-vapor fractionation factor,
but the experimental VPIE data by Jakli and Staschewski34 and

Figure 1. Fitting result of the experimental MFIE (open triangles) and
the liquid-vapor isotope fractionation factor (open circle) by the three-
parameter corresponding-states EOS. The extended three-parameter
corresponding-states EOS can satisfactorily describe the temperature
behavior of both the liquid-vapor fractionation factor and MFIE.
Liquid-vapor isotope fractionation factors from Horita and Weso-
lowski31 and Majoube32 and MFIE values from the compilation of Kell.33

Figure 2. A comparison of H216O/H2
18O VPIE data between experi-

mental studies by Jakli and Staschewski34 (open diamond) and Szapiro
and Steckel35 (open triangle) and our calculations based on the
corresponding-states EOS (solid line), along with the liquid-vapor
isotope fractionation factor (dashed line). According to the thermody-
namic equation, eq 42, the value of the VPIE must be larger than the
value of the liquid-vapor fractionation factor. The experimental VPIE
data are inconsistent with this relationship. The difference between
calculated VPIE (solid line) and the liquid-vapor fractionation curve
(dashed line) increases with temperature. At the critical temperature
of about 647.09 K, the difference exceeds 1‰, reflecting the difference
in the critical pressure of the H216O and H2

18O isotopologues.

Ps

RT
) FVZ(τ,δV,ω) (41a)

Ps
/

RT
) FV

/ [Z(τ*,δV
* ,ω) + ω

∂Z(τ*,δV
* )

∂ω (∆ω
ω )] (41b)
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Szapiro and Steckel35 are smaller than the fractionation factor.
These experimental VPIE data are at odds with the thermody-
namic relation between the VPIE and the liquid-vapor frac-
tionation factor:

The derivation of this simple, yet general equation is purely
based on the thermodynamics, involving no assumptions (see
Appendix II for the derivation). Similar equations were obtained
by Bigeleisen36 and by Japas et al.37 The compressibility factor
(Z ) PV/RT) of real fluids is smaller than unity (unity for an
ideal gas). The compressibility factor for liquid is smaller than
that of the coexisting vapor. Therefore, the term in the
parentheses in eq 42 is always smaller than unity, approaching
zero at the critical point. This behavior indicates that the VPIE,
i.e., ln(P/P*), is always larger in magnitude than the liquid-
vapor fractionation factor, lnRL-V. Thus, the sets of experi-
mental data for the liquid-vapor fractionation factor and the
VPIE are inconsistent with each other. A critical evaluation of
many sets of experimental data of lnRL-V by Horita and
Wesolowski31 strongly suggest that these data are of high
quality. For this reason, we have chosen to use the fractionation
factor, rather than the VPIE data, as input data to our
corresponding-states principle approach as shown above. The
quality of experimental data of VPIE is called into question,
and further experimental studies are welcome to resolve this
inconsistency.

The difference between the calculated VPIE from the EOS
and the liquid-vapor fractionation factor increases with increas-
ing temperature. This behavior seems to be reasonable, because
the thermodynamic properties of saturated vapor deviate from
those of an ideal-gas with increasing temperature and density.
Our calculations of the VPIE near the critical temperature should
be viewed with caution because the EOS for D2O28 is not valid
in this region. The difference between the VPIE and the liquid-
vapor isotope fractionation factor at room temperature does not
exceed 0.03‰ according to eq 42. The previous estimate (0.5%)
by Jakli and Van Hook38 seriously overestimated this difference
because they did not take into account the contribution from
the potential part of the free energy in their calculation for the
term ∫V

V*P dV at room temperature.

5. Conclusion

We have developed a novel approach for calculating the EOS
and the reduced partition function ratio of minor isotopologues
of molecular fluids within the framework of the corresponding-
states principle (CSP). The CSP approach would be particularly
useful for representing the thermodynamic properties of isoto-
pologues of a given molecule due to their very similar values.
The relevant CSP mathematical formalism has been developed,
and the main equations for the CSP application to isotopologues
have been derived. The Xiang formulation for multi-parameter
CSP25 has been used to show that the extended three-parameter
CSP is sufficient in principle for calculating the EOS of an
isotopologue of a molecule, because of small differences in their
thermodynamic properties. The equations obtained here open
the possibility for calculating the EOS of minor isotopologues
from a set of experimental data on the isotopic effects (e.g.,
liquid-vapor fractionation factor and molar volume isotope
effects), if the correspondent-states EOS is known for a major
isotopologue in the Xiang formulation.25

The CSP approach developed in this study was applied to an
18O-substituted isotopologue (H2

18O) of water. The extended
three-parameter CSP, including the Pitzer acentric factor,
provided satisfactory agreement with the experimental data.
From the isotopic effects on the critical parameters and the Pitzer
acentric factor obtained from the least-square fitting procedure,
the fundamental EOS for oxygen substituted water (H2

18O) has
been described using the CSP. The EOS is valid in the range
from the triple point to 800 K and pressures up to 100 MPa.

The VPIE on 16O f 18O substitution of water that was
calculated from the newly developed H2

18O EOS disagrees with
the experimental data from the literature. A simple, yet well-
established thermodynamic relationship also revealed the in-
consistency in experimental data between the VPIE and liquid-
vapor fractionation factor. This contradiction appears to be due
to problems associated with the experimental VPIE data. The
difference between the VPIE and the liquid-vapor isotope
fractionation factor is small at low temperature but increases
with increasing temperature. The previous calculation overes-
timated this difference at room temperature.
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Appendix

I. Calculations of the VPIE for 16O f 18O Substitution in
Water. Equations 41a and b were used as the starting point for
calculating VPIE:

Subtracting eq 41a from eq 41b, dividing the result byPs,
keeping terms, which are the first-order in isotope substitution,
and remembering eq 23, one can get

All values needed for computing the VPIE in eq AI.1 are
known, except for the∆FV/FV that is the relative change in
saturation density resulting from the isotope substitution of16O
f 18O. ∆FV/FV can be found from the equilibrium conditions
on the liquid-vapor boundary for both isotopologues. The first
condition of equal pressures of the coexisting liquid and vapor
phases results in

ln RL-V ) (PVV

RT
-

PVL

RT) ln
P

P*
(42)

Ps

RT
) FVZ(τ,δV,ω) (41a)

Ps
/

RT
) FV

/ [Z(τ*,δV
* ,ω) + ω

∂Z(τ*,δV
* )

∂ω (∆ω
ω )] (41b)

Ps
/

Ps
- 1 )

∆FV

FV
+ τ

∂Z(τ,δV,ω)

∂τ (∆Tcr

Tcr
) +
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∂Z(τ,δV,ω)

∂δ (∆FV

FV
-

∆Fcr

Fcr
) + ω

∂Z(τ,δV,ω)

∂ω (∆ω
ω ) (AI.1)

FLZL ) FVZV (AI.2)
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Subtracting eq AI.2 from AI.3 and treating the obtained
equation similar to the derivation of eq 36, one can obtain

The second condition, the equality of the Gibbs free energy
between coexisting liquid and vapor phases (Maxwell criterion),
can be written in a dimensionless form as

Subtracting eq AI.5 from AI.6 and keeping the first-order
term in isotope substitution, one can get

Equations AI.4 and AI.7 represent the system of the algebraic
linear equations with respect to the unknowns∆FV/FV and∆FL/
FL.

The algorithm for the calculations at a given temperature
consists of (i) calculating the densities of saturated vapor and
liquid for H2

16O by the Wagner and Pruâ (2002) algorithm;
(ii) calculatingτ, δV, δL, and all terms, except for the unknowns
in ∆FV/FV and∆FL/FL; (iii) solving the system of eqs AI.4 and
AI.7; (iv) substituting∆FV/FV into eq AI.4 and finally calculating
the VPIE.

II. Relation between the VPIE and Liquid-Vapor Isotope
Fractionation Factor. Because the relation (eq 42) between
the VPIE and the liquid-vapor isotope fractionation factor is
very important for our consideration, we present a simple, yet
general derivation of this relation, allowing the reader to
understand properly all assumptions under which the relation
is valid.

For the liquid-vapor equilibrium of isotopologues at given
temperature, one can write

whereG is the Gibbs free energy.

Subtracting the second equation of eq AII.1 from the first
one and dividing both parts of the obtained equation byRT,
one gets

Extracting the RIPFR according to its definition ((s*/s)f) ≡
(G(T,P) - G*(T,P)/RT) - 1.5ln(m/m*) and taking into account
the relationship∆G ) ∫V dP in isothermal processes, one can
obtain

The integrals in eq AII.3 can be evaluated by the following
way using the Lagrange theorem

whereε is a factor of< 1, ∆V* is the change in the volume of
the isotopologue caused by pressure change fromP to P*, and
Z ) (PV/RT) is the compressibility factor. The first equation in
AII.4 is the subject of the Lagrange theorem. We have also
neglected the term proportional to∆V*∆P because it is quadratic
with respect to isotope substitution.

The application of eq AII.4 to AII.3 yields

where we used eq 31 forRL-V. Note thatZ* = Z because of
the second power with respect to isotope substitution gives
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