ОТЗЫВ официального оппонента

на диссертацию на соискание ученой степени кандидата технических наук Мраморовой Ирины Михайловны на тему: «Методика применения миграции ПРО (параметрической развертки отражений) в сложных геологических условиях».

по специальности 25.00.10 – «Геофизика, геофизические методы поисков полезных ископаемых»

Диссертационная работа посвящена вопросам изучения возможностей миграционных процедур обработки данных сейсморазведки, включая традиционные миграции сейсмограмм и миграции ПРО, оценке и выявлению классов геологических моделей, для которых применение метода миграции ПРО будет наиболее эффективно.

Актуальность темы исследования. Актуальность настоящей работы обусловлена необходимостью совершенствования и разработки новых способов решения обратной задачи сейсморазведки на основе миграции волн на сейсмограммах после временной обработки. Растущие потребности отрасли требуют применения альтернативных наряду с общепринятыми методами получения новой сейсмической и геологической информации для более широкого осмысления геологической среды, повышения точности структурных построений и сужения неопределенности при интерпретации сейсмических данных. Конечной целью решения этих задач является снижение геологических рисков дорогостоящего поискового и разведочного бурения новых скважин.

Защищаемые положения

В работе формулируются следующие защищаемые положения:

1. Метод миграции ПРО эффективен для следующих классов геологических сред: в условиях складчатых зон, круто падающих углов наклона границ, надвиговой тектоники, в условиях резких изменений пластовых скоростей.

Это положение рассмотрено и обосновано в главе «3. ПРИМЕНЕНИЕ МЕТОДА МИГРАЦИИ ПРО HA РЕАЛЬНЫХ ДАННЫХ». справедливо отмечает, что использование временных миграций, в частности временной миграции Кирхгофа (на основе среднескоростной модели среды), остается актуальным, поскольку они устойчивы к ошибкам при определении усредненных средних скоростей. В то же время способы миграции на основе построения глубинно-скоростной модели интервальных скоростей очень чувствительны к деформации гиперболических годографов по причине преломления волн от круто наклоненных пластов с различной литологией. Как показано автором, сравнение результатов применения миграции ПРО и временной миграции Кирхгофа до суммирования на реальных данных в ряде случаев более эффективно именно благодаря параболической развертке. Отметим так же, что помимо миграции ПРО, более точную аппроксимацию обеспечивают и другие способы, например, миграция ES360 компании Парадайм.

К этому положению есть замечание, связанное с опечаткой. Название раздела 3.1 «Крутые углы наклона границ, Восточная Сибирь» не соответствует содержанию раздела, поскольку представленный материал в этом разделе принадлежит юго-восточному склону Урала, но точно не Восточной Сибири.

2. Разработанные методические рекомендации к получению разрезов с помощью миграции ПРО позволяют успешно решать обратную кинематическую задачу в районах со сложной геологической обстановкой.

К этому положению замечаний нет.

3. Разрезы интервальных скоростей миграции ПРО позволяют осуществлять качественную интерпретацию сейсмических данных, например: уточнять структурно-тектоническое строение территории, выявлять участки разреза с аномалиями низких скоростей, указывающие на повышенные коллекторские свойства в целевом пласте, выделять фациально-седиментационные зоны и др.

Это положение обосновано не в полной мере. В диссертации приведен пример одного ИЗ региональных профилей, который отработан недостаточно длинным годографом в сравнении с глубинами перспективных девонских горизонтов, да еще с вибрационным источником. Можно согласиться с более результативным разрезом после миграции ПРО по сравнению с миграцией Кирхгофа на рисунке 3.5. Разрез после миграции ПРО выглядит более информативным. Автор акцентирует преимущество миграции ПРО на сопоставлении точности определения скоростей ВСП и 2Д профилирования. Однако ЭТОГО недостаточно, поскольку определения скоростей приводится только на качественном уровне. Точность прогноза глубин автор не приводит, хотя бы при сравнении глубин горизонтов со скважинами, с определениями глубин подсолевых горизонтов пермском интервале. В этом регионе западнее указанного профиля проведена качественная съемка 3Д на территории восточной периферии Оренбургского газоконденсатного месторождения с нефтяной оторочкой, с применением глубинной миграции и комплексной интерпретации по нескольким десяткам глубоких разведочных скважин. Есть несколько скважин, вскрывших девон и ордовик. Сравнение волновой картины на стыке сечения этой 3Д съемки и регионального профиля 2Д говорит далеко не в пользу профильных съемок и дело не только в низкой эффективности временной миграции. По этой причине на рисунках автора результаты структурно-тектонической интерпретации в пермском и девонском интервале могут быть подвержены большим сомнениям, а выводы о явном преимуществе миграции ПРО нуждаются в большей осторожности и аргументированности. Ho ЭТО вопрос достоверности геологической интерпретации результатов миграции ПРО и только косвенно относится к теме диссертации. Учитывая в целом крайне низкую изученность этого региона, можно рекомендовать автору рассмотреть доказанную примерами в Косью-Роговской впадине в Тимано-Печоре методологию комплексирования 3Д и 2Д на поисковом этапе с опорой на 3Д и скважины.

Второе замечание относится так же к третьему защищаемому положению «Разрезы интервальных скоростей миграции ПРО позволяют осуществлять качественную интерпретацию сейсмических данных». В последнем разделе главы 3 диссертации автором показана возможность и целесообразность применения результатов обработки методом ПРО при динамической интерпретации. Автор утверждает, добавление дополнительного атрибута скоростей ПРО в схему классификации. разработанной авторами в коллективе Пангеи, на схеме временных толщин четче разделяются области с улучшенными коллекторскими свойствами, более однозначно проводится линия глинизации коллекторов. Замечание состоит в том, что утверждение автора должно быть подкреплено данными скважинных исследований и петрофизического обоснования интерпретации коллекторов по данным ГИС и керна. Это замечание так же может быть отнесено в большей степени к рекомендациям работ на будущее.

Можно согласиться с автором в том, что теоретическая значимость работы состоит в расширении инструментальной базы для решения геологоразведочных задач. Кроме того, представленная работа является основанием для пересмотра привычных и общепринятых методик, включенных в стандартный граф обработки для достижения этих задач, с целью повышения эффективности сейсморазведки.

Все защищаемые положения аргументированы и доказаны.

Практическая значимость работы

Предложенный способ получения изображения среды (миграция ПРО) использован при изучении районов со сложными тектоническими условиями. Метод миграции ПРО реализован в программном комплексе PROspect, который используется геофизиками в ряде организаций (АО «ПАНГЕЯ», АУ «НАЦ РН им.В.И. Шпильмана», ООО «Газпром геологоразведка», научнопроизводственная компания ОАО«Гемма», LandOcean (КНР) и др.). Практическая ценность работы определена предложенными соискателем

конкретными рекомендациями к получению изображений среды в сложных геологических условиях, которые позволяют решать производственные задачи с меньшими затратами времени на поиск наилучшего решения. Результаты, полученные при использовании метода миграции ПРО, являются дополнительными атрибутами при качественной интерпретации данных.

Достоверность и новизна.

Метод миграции ПРО является логическим продолжением метода ПРО, описанным подробно в диссертации В.В. Кондрашкова. Теоретические основы метода ПРО и результаты его применения широко отражены в целом ряде публикаций, опубликованных начиная с 70-х годов. В некоторых работах рассматривались геологические среды, где успешно применялся этот метод. В настоящей диссертации автор уточняет область применения метода миграции ПРО, в том числе предлагает конкретные методические рекомендации ДЛЯ применения миграции ΠPO , которые ранее сформулированы не были.

Научная новизна

Среди наиболее известных методов получения сейсмического изображения среды автором впервые показано место метода миграции ПРО (параметрической развертки отражений) в отношении различных классов моделей геологической среды. В частности, показана эффективность применения метода миграции ПРО для получения сейсмического изображения среды в районах со сложным геологическим строением. Обоснован и впервые применен новый сейсмический

интерпретации – интервальные скорости, полученные при миграции ПРО. Впервые сформулированы методические рекомендации к получению разрезов с помощью миграции ПРО.

Вместе c тем, указанные замечания не умаляют значимости диссертационного исследования. Диссертация отвечает требованиям, установленным Московским государственным университетом имени М.В. Ломоносова к работам подобного рода. Содержание диссертации

соответствует паспорту специальности 25.00.10 — «Геофизика, геофизические методы поисков полезных ископаемых» (по техническим наукам), а также критериям, определенным пп. 2.1-2.5 Положения о присуждении ученых степеней в Московском государственном университете имени М.В. Ломоносова, а также оформлена, согласно приложениям № 5, 6 Положения о диссертационном совете Московского государственного университета имени М.В. Ломоносова.

Таким образом, соискатель Мраморова Ирина Михайловна заслуживает присуждения ученой степени кандидата технических наук по специальности 25.00.10 — «Геофизика, геофизические методы поисков полезных ископаемых».

Официальный оппонент:

доктор технических наук

главный геофизик отдела региональной геологии Общества с ограниченной

ответственностью «ГеоПрайм»

ПТЕЦОВ Сергей Николаевич

16.10.2020 г.

Контактные данные:

Специальность, по которой официальным оппонентом защищена диссертация: 25.00.10 — «Геофизика, геофизические методы поисков полезных ископаемых».

Подпись С.Н.Птецова заверяю.

Начальник отдела по работе с персоналом

ЕМ Рачкова