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Abstract: Reactive oxygen species generated in mitochondria are an important 
factor contributing to mitochondrial and cellular dysfunction underlying many 
degenerative diseases, chronic pathologies and aging. The idea of delivering an-
tioxidant molecules to mitochondria in vivo to treat these diseases and slow ag-
ing intensively developed in the last 20 years. Derivatives of quinones covalently 
conjugated to a lipophilic cation (e.g., MitoQ and SkQ) were the most exten-
sively studied mitochondria-targeted antioxidants. These compounds have now 
been used in a wide range of in vitro and in vivo studies, as well as in clinical tri-
als in humans. Here, we review recent progress in this field with a special atten-
tion on molecular mechanisms of rechargeable mitochondria-targeted antioxi-
dants. 
A simple hypothesis that aging results from gradual accumulation of occasional damage inflicted 
by ROS to DNA, proteins and lipids is apparently insufficient. More and more pieces of evidence 
indicate that the damage in question is programmed. Moreover, the imbalance in ROS-dependent 
regulatory mechanisms and compromised ROS signaling are underlying many pathologies and ag-
ing. Chain reactions of cardiolipin peroxidation initiated by mitochondrial ROS seem to play a key 
role in these degenerative processes. Such reactions are specifically abolished by mitochondria-
targeted antioxidants. 

Keywords: Antioxidant, cardiolipin, mitochondria, mitochondria-targeted, oxidative stress, reactive oxygen species, ROS, 
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1. INTRODUCTION 

 Reactive oxygen species (ROS) is a broad term used to 
describe a variety of chemically active molecules and free 
radicals derived from molecular oxygen. ROS drew no 
significant attention of biologists until Danham Harman in 
1956 proposed his hypothesis of aging based on the free 
radical chemistry [1]. At that time the mainstream of aging 
research was the «damage accumulation theory» (also known 
as the «rate of living» theory) [2]. It postulated that metabolic 
reactions occurring in a living organism have some inevitable 
harmful side-effects, and that aging is progressive accumula-
tion of diverse, deleterious changes caused by them.  
 There was a bitter need for an explanation, what exactly 
this irreversible damage is. Harman suggested that this dam-
age is inflicted by free radicals reacting with cellular con-
stituents (including proteins and nucleic acids). Such reac-
tions are expected to impair the functional efficiency and 
reproductive ability of the cell, and to stimulate mutagenesis,  
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aging and cancer. Harman also proposed that free radicals 
arise as by-products of reactions involving molecular oxygen 
catalyzed in the cell by the oxidative enzymes [1], and that 
mitochondria, being responsible for cellular respiration, 
might serve as a biologic clock that determines the rate of 
aging [3, 4].  
 Indeed, a significant – if not the major – fraction of 
reactive oxygen species generated in an animal cell is a by-
product of mitochondrial electron transport. Mitochondria 
also produce reactive nitrogen species (RNS), primarily ni-
tric oxide and peroxynitrite, that are involved in cellular sig-
naling and degenerative processes including aging (see [5-8] 
for details), but in this review we focus mainly on ROS. 
 In 1966 Jensen demonstrated that hydrogen peroxide is 
formed during respiration on succinate and NADH [9]; in 
1974 Loschen et al. reported that superoxide is also 
produced by mitochondria [10]. The puzzle seemed to be 
solved: mitochondria produced ROS as an inevitable 
respiration by-product; these ROS were gradually damaging 
lipids, proteins, and DNA; a fraction of this damage was 
irreparable, and accumulation of such damage resulted in 
gradual decline of vital functions, i.e. in aging. There is also 
a «mitochondrial vicious cycle» extension of this hypothesis 
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assuming that ROS produced as respiration by-products are 
responsible for damage first of all in mitochondria, causing 
further increase in ROS production and mitochondrial 
dysfunction – a positive feedback that eventually can lead to 
ROS burst and cell death [11]. 
 The link between mitochondrial ROS production and 
degenerative processes leading to disease and aging is sup-
ported by an overwhelming number of experimental evi-
dence (see [12-17] and references therein). However, the 
mechanism behind this link proved to be more complex than 
just unspecific chemical reactions damaging biomolecules. 
Although numerous experimental works indicate that 
mutations in mitochondrial DNA are involved in the aging 
process [18-20], there is no sound experimental evidence 
demonstrating that oxidative damage to DNA is the primary 
source of mutation accumulation during aging. Numerous 
attempts to use antioxidants to prevent the accumulation of 
oxidative damage failed [21]. The «mitochondrial vicious 
cycle» theory also gained no conclusive experimental sup-
port [22, 23]. Nevertheless, experiments on mice with 
defective, error-prone mitochondrial DNA (mtDNA) 
polymerase demonstrated that accelerated development of 
aging phenotypes triggered by mtDNA mutations is linked to 
mitochondrial dysfunction and oxidative stress and can be 
prevented by mitochodrially-targeted catalase [24] or 
synthetic antioxidants (SkQ1). A recent study on Drosophila 
melanogaster revealed that many features associated with 
mtDNA mutations in vertebrates are conserved in this insect, 
including an increase in frequency of mutations with age. 
However, it remained unclear whether the oxidative stress 
increasing with age is a major factor in the mutagenesis [25]. 
Ultra-sensitive sequencing experiments revealed that 
predominantly transition mutations, rather than mutations 
commonly associated with oxidative damage to 
mitochondrial DNA, become more frequent with age [26].  
 The well-established correlation of mitochondrial ROS 
production and longevity [27, 28], initially used as a strong 
argument for the free radical theory of aging, is also not 
universal: the longest-living rodent naked mole rat exhibit 
strong ROS production [28] and high levels of oxidative 
stress markers (isoprostanes, malondialdehyde, protein 
carbonyls, oxydized cysteines and deoxyribonucleic acid 8-
OHdG) in multiple tissues at quite early age [29-31]. The 
naked mole-rat, and probably some other animal species, can 
tolerate a high level of oxidative damage while having an 
astonishingly long lifespan [32]. 
 The modern version of free radical theory of aging 
suggests that the main factor underlying the deleterious 
process of gradual aging is not the direct damage inflicted by 
ROS on a living cell, but the imbalance in cellular ROS 
signalling (see [12-14, 33] for recent reviews). Mitochondria 
and the ROS generated by them play a central role in the 
regulation of programmed cell death and other vital 
processes in organisms ranging from single-cell eukaryotes 
like yeast to humans. Mitochondria-targeted antioxidants are 
a powerful tool to investigate the links between mitochon-
drial ROS and degenerative processes leading to disease and 
aging. Moreover, these compounds are potential candidates 
for drug development and anti-aging medicines. This review 

focuses on recent progress in application of mitochondria-
targeted antioxidants to research and therapy. 
1.1. Mitochondrial ROS: Generation and Chemistry 

 It is common in biologic research to refer to ROS as to a 
family of compounds with similar physico-chemical 
properties. However, this simplification is misleading. 
Among the biologically active ROS that can be generated in 
an animal organism are: superoxide anion (O.

2
-), its 

protonated form – hydroperoxyl radical (HO.
2), hydrogen 

peroxide (H2O2), hydroxyl radical (OH.) and nitric oxide 
(NO), hypochlorous acid, singlet oxygen, lipid peroxides. 
These compounds have different stability, chemical 
reactivity, mobility and cause different biological responses 
in a living cell [34]. 
 Since the first evidence that hydrogen peroxide is 
produced by respiratory enzyme [9], a vast amount of 
experimental data was obtained, and the process of ROS 
generation in mitochondria is now documented in great 
detail (see [16, 35-38] for excellent reviews). The two 
primary ROS produced in mitochondria are superoxide and 
hydrogen peroxide. Superoxide is more reactive than H2O2, 
its pK is 4.7, so at normal intracellular pH it is negatively 
charged and therefore membrane impermeable. Hydrogen 
peroxide is much more stable, and does not react with most 
biomolecules directly (exceptions are thiols (including 
cysteine residues), transition metal centers, and 
selenoproteins) – a set of properties that makes it an ideal 
transmitter of redox signals (see [39] for a detailed recent 
review on H2O2 biochemistry). 
 Neither H2O2 nor O.

2
- is chemically capable of damaging 

DNA directly [40], but they can do so indirectly by partici-
pating in the production of much more reactive HO.

2 and ОН. 
radicals [41] via Fenton reaction: 

O.
2

- + H+ → HO.
2 

H2O2 + Fe2+ → ОН. + ОН- + Fe3+ 

 It was shown that inactivation of Escherichia coli dihy-
droxy-acid dehydratase, fumarase A, fumarase B, and mam-
malian aconitase by superoxide correlates with release of 
iron from [4Fe-4S] clusters of these enzymes [42]. It is 
highly probable that the same process takes place in the mi-
tochondrial matrix, and that iron ions released serve as a 
catalyst for ОН. generation via Fenton reaction.  
 ОН. radical is a short-lived (half-life about few nano-
seconds), but highly reactive ROS able to react with almost 
any type of cellular macromolecules. Of particular impor-
tance among the damaging reactions mediated by OH. radi-
cal is lipid peroxidation – a free radical chain reaction of 
oxidative degradation. It mostly affects polyunsaturated 
fatty acids that possess especially reactive hydrogens. The 
reaction is initiated by ОН. radical attack at a double bond 
that results in fatty acid radical formation. The latter is not 
a stable molecule, and readily reacts with molecular oxy-
gen, producing a peroxyl-fatty acid radical. This radical 
reacts with another unsaturated fatty acid, propagating the 
reaction, and cycle continues, as the new fatty acid radical 
reacts with a neighboring lipid. In such a way a single ОН. 
radical can “burn" a significant fraction of unsaturated lip-
ids in the mitochondrial membrane, resulting in the distur-
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bance of membrane organization and function loss. At the 
same time, the products of lipid peroxidation have been 
shown to act as redox signaling mediators [43].  
 The rate of mitochondrial ROS generation depends on 
many factors: oxygen concentration, respiration rate, calcium 
concentration, to name just a few. Transmembrane electric 
potential difference (Δψ) on the inner mitochondrial mem-
brane is also an important factor that can regulate the rate of 
mitochondrial ROS formation. It was proposed in our group 
in1996 that high Δψ could lead to an increase in superoxide 
generation [44]. Later it was demonstrated that indeed at Δψ 
values above a certain threshold (slightly exceeding the Δψ 
level in mitochondria that actively synthesize ATP, so-called 
state 3 mitochondria) a strong increase in ROS production 
occurs [45-47]. Such high Δψ values are quite normal for a 
living cell at rest, when the energy demand is low, and most 
adenine nucleotides are in the form of ATP, no further ATP 
synthesis occurs, and the respiratory chain is self-inhibited 
by Δψ (state 4 mitochondria). 
 Another physiologically important situation when a 
strong burst of ROS is generated occurs upon ischemia-
reperfusion, i.e. when a tissue is deprived of oxygen for a 
certain time (long enough to achieve the reduction of elec-
tron-transporting co-factors in the respiratory chain) and then 
re-oxigenated. The oxidative stress induced by ischemia-
reperfusion is involved in many fatal pathologies, including 
cardiac and neurodegenerative diseases [48, 49]. 

1.2. Cellular Defenses Against ROS 

 Generation of ROS in mitochodria, as well as in other 
cellular compartments, is an inevitable process involved in 
many physiological functions [44, 50]. Several lines of de-
fense against ROS are found in a living cell. Peroxiredox-
ins, enzymes that reduce H2O2, are abundant in the mam-
malian cell cytoplasm and can amount up to 1% of intracel-
lular soluble protein [51]. The antioxidant mechanism in-
volves oxidation of the protein and its subsequent regenera-
tion by thioredoxin. One protein of this family, peroxire-
doxin III, is present in the mitochondrial matrix; its deple-
tion triggers increase in intracellular H2O2 concentration, 
oxidative stress and apoptosis [52]. Glutathione peroxi-
dases are another family of antioxidant enzymes that cata-
lyze the reduction of H2O2 to H2O, typically using glu-
tathione as reductant [53]; glutathione peroxidases 1 is pre-
sent both in the cytosol and mitochondria. Catalases scav-
enge H2O2 in cytoplasm (but not in mitochondria), decom-
posing it to water and oxygen [54]. Superoxide dismutases 
(Cu-Zn-SOD, or SOD1 in cytoplasm and Mn-SOD, or 
SOD2 in mitochondria) are rapidly detoxifying O.

2
- to 

H2O2. inside the cell, while SOD3 operates in the intercel-
lular space [55]. 
 With such an impressive arsenal of antioxidant de-
fenses, the cell possesses all the means to keep the ROS 
damage at the safe level. The source of oxidative stress is 
most likely not the inevitable generation of ROS as steady-
state respiration by-products, but the imbalance of the anti-
oxidant regulation and/or failure of the antioxidant defenses 
to cope with acute stress (e.g., ischemia-reperfusion in-
duced ROS burst).  

 Mitochondrial ROS play an important role in the initia-
tion of programmed death phenomena from organelle to or-
ganism [56-58]. Under certain conditions, ROS induce the 
opening of permeability transition pore (a non-specific pro-
tein channel with a molecular cut-off of about 1.5 kDa) in 
the inner mitochondrial membrane. Consequent dissipation 
of Δψ serves as a mark that dooms de-energized mitochon-
dria to digestion by autophagosomes (mitophagy) [59]. This 
mechanism serves as a quality-control tool that enables se-
lective elimination of malfunctioning mitochondria (e.g., 
organelles with mutated DNA or with severely oxidized lip-
ids). When malfunction involves the majority of mitochon-
dria in a cell, a more radical (mitoptotic) mechanism is em-
ployed: the mitochondria are gathered close to the nucleus, 
get surrounded by a single membrane, and are expelled from 
the cell as a “mitoptotic body” [60, 61]. Failure of these 
mechanisms to dispose of malfunctioning mitochondria may 
be fatal for the cell: the opening of mitochondrial transition 
pores leads to the swelling of the mitochondrial matrix, that 
in turn results in the rupture of the outer mitochondrial 
membrane, entailing release of the mitochondrial intermem-
brane proteins to the cytosol and subsequent apoptosis. Be-
sides apoptosis, mitochondrial ROS are able to activate star-
vation-induced and antibacterial autophagy, as well as 
autophagic cell death [62]. 

1.3. Mitochondria-targeted Compounds 

 Targeting small molecules to mitochondria is now a 
popular strategy for drug delivery, for design of probes 
useful to follow biological processes and biochemical 
reactions in real time, and for other lines of mitochondrial 
research (e.g., the role of mitochondria in aging). Several 
comprehensive reviews [63-69] were devoted to this topic in 
the recent 10 years; here we summarize general information 
and report most novel findings in each sub-area of 
mitochondria-targeted antioxidant research.  
 The main two approaches for targeting small molecules 
to mitochondria consist in their incorporation into 
mitochondria-targeted peptides and conjugation to lipophilic 
cations. A less widely used approach to target substances of 
interest to mitochondria - particulate carriers that can deliver 
drug molecules selectively to mitochondria and protect the 
cargo substance from degradation during delivery (e.g. 
liposomes, biodegradable polymer or metal particles) [70].  

1.4. Nitroxides Conjugated to Mitochondria-targeted 
Moieties 

 One of the approaches to scavenge mitochondrial ROS 
is based on conjugating nitroxides (e.g., 4-amino-TEMPO) 
to hemigramicidin (a modified gramicidin S segment) or 
segments of other natural products with relatively high af-
finity for mitochondrial membranes [64]. An important 
advantage of the nitroxide conjugates is the possibility to 
measure the distribution of spin label by electron spin reso-
nance and thereby monitor oxidative stress in a living cell 
and in mitochondria [71, 72]. In 2005 the first mitochon-
dria-targeted nitroxide was proven to be effective in pre-
venting ROS generation and cardiolipon (CL) oxidation in 
mitochondria and in protecting cells against a range of pro-
apoptotic triggers [73] (see also [74] for an excellent re-
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view on TEMPO and other redox-cycling nitroxides in 
models of oxidative stress).  

1.5. Mitochondria-targeted Cytoprotective Peptides 
(Szeto-Schiller Peptides) 

 Szeto-Schiller (SS) peptides are water soluble 
tetrapeptides that can readily cross cell membranes and, 
having a special alternating aromatic-cationic amino acids 
motif, are targeted to mitochondria [75]. Before these 
peptides were used at mitochondria-targeted antioxidants, it 
was found that they selectively bind to the µ-opioid receptor 
and can be used as long-acting and effective analgetics [76, 
77].  
 Contrary to the compounds with a lipophilic cation 
moiety (see below), the uptake of SS peptides into 
mitochondria does not depend on Δψ. The peptides are 
readily concentrated even in the depolarized mitochondria, 
and addition of uncoupler carbonyl cyanide-4-
(trifluoromethoxy)phenylhydrazone (FCCP) reduces the 
uptake by mere ~20% [75]. The specificity of targeting was 
assessed in experiments with radioactive [3H] SS-03 peptide, 
and the compound was concentrated in mitochondria in 100-
fold excess in the time scale of several minutes [75, 78].  
 In vitro studies demonstrated that SS-peptides act as 
H2O2 and peroxynitrite scavengers and prevent linoleic acid 
oxidation; their antioxidant properties were attributed to their 
dimethyltyrosine residues [79]. This hypothesis was 
confirmed by experiments with SS-20, a peptide lacking 
dimethyltyrosine that failed to act as a ROS scavenger [75].  
 Antioxidant activity of SS peptides is an obvious factor 
explaining their beneficial effects in vivo. The ability of SS-
31 (D-Arg-Lys-Phe-NH2) to selectively bind to cardiolipin 
on the inner mitochondrial membrane via both electrostatic 
and hydrophobic interactions is another feature that might 
explain its protective effect on mitochondria during ischemia 
[80]. SS-31 has also demonstrated positive effects in 
preclinical models of heart failure, ameliorating diastolic 
dysfunction, cardiac hypertrophy induced by overexpression-
induced heart failure [81].  
Lipophilic Cations Conjugates 

 Release of protons from the mitochondrial matrix to the 
intermembrane space performed by respiratory chain 
proteins results in a large negative Δψ (~180 mV) at the 
inner mitochondrial membrane. According to the Nernst 
equation, the concentration of a membrane-permeable 
monovalent cation inside mitochondria should be about 
1000-fold higher than in the cytoplasm (approximately one 
order of magnitude for each 60 mV at room temperature). 
Same logic applied to the plasma membrane (assuming Δψ 
of 60 mV, cell interior negative) gives further increase in 
concentration by a factor of 10. Hence, the magnification of 
membrane-permeable cations concentration inside 
mitochondria compared with the extracellular space will be 
about 10,000-fold. Moreover, in the inner leaflet of inner 
mitochondrial membrane bilayer the concentration should be 
even higher, because the water-membrane distribution of 
lipophilic cations is significantly shifted towards the 
membrane.  

 The idea to use membrane-permeable cations as 
locomotives to deliver “payload" specifically to 
mitochondria was suggested in our group as early as 1970 
[82]. But the first successful implementation came 25-30 
years later, when M. P. Murphy introduced first 
mitochondria-targeted antioxidants with lipophilic cations 
bound to thiobutyl [83], vitamin E [84], and ubiquinone [85]. 
The latter compound, known as MitoQ, a conjugate of ubi-
quinone with decyl-triphenylphosphonium cation, had an 
important advantage: its oxidized form can be regenerated by 
accepting electrons from the respiratory chain, rendering 
MitoQ a rechargeable mitochondrial antioxidant [63]. Later 
studies performed in our group on model systems, mito-
chondria, and cell cultures indicated that conjugates of pene-
trating cations with plastoquinone (SkQ) are more promising 
antioxidants than those with ubiquinone (MitoQ). The latter 
demonstrated anti-oxidant activity at rather high concentra-
tions, close to the level above which the pro-oxidant activity 
becomes significant, while for SkQ the “antioxidant concen-
tration window" was much larger [67, 86, 87].  
 Conjugates of lipophilic cations with rechargeable anti-
oxidants and other types of cargo have an important advan-
tage: they could be applied in extremely low concentrations 
because of their ability to selectively accumulate in the inner 
mitochondrial membrane. For potential drug candidates this 
property allows to greatly diminish the risks of unwanted 
side effects.  
 It is therefore not surprising that studies of such com-
pounds and their biological effects in vitro and in vivo be-
came a very active area of research. Physico-chemical prop-
erties of a broad spectrum of these compounds were studied; 
the compounds were tested in model systems and in animals, 
and clinical trials were carried out (covered in detail in [66, 
69, 88, 89]). Below we provide information on the most re-
cent advances in this area.  
 It was found that 2-demethylplastoquinone (a compound 
abundant in black cumin seeds used in the past as a medicine 
to treat many human pathologies) conjugated to lipophilic 
cations has a significantly larger window between anti- and 
prooxidant concentrations compared to MitoQ and even 
SkQ1. The novel compound was readily reduced by the res-
piratory chain, and was able to strongly inhibit the H2O2-
induced apoptosis at pico- and nanomolar concentrations in 
cell cultures [90].  
 It was also found that SkQ1, as well as mitoTEMPO 
(mitochondria-targeted nitroxide), reduced the expression of 
inducible nitric oxide synthase in liver, NO levels in blood 
and plasma, and markers of organ damage, suggesting that 
the intracellular signaling pathways mediated by NO and 
ROS are probably linked to each other via mitochondria and 
that mitochondrial ROS and NO cooperate to regulate the 
inflammatory intracellular processes [91]. 
 Mitochondria-targeted compounds introduced imme-
diately after reperfusion were found to reduce brain damage 
and helped to keep a higher neurological status; cationic 
decylrhodamine derivatives of plastoquinone were the most 
promising candidates for anti-ischemic mitochondria-
targeted drugs [92]. 
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 In mice, lifelong treatment with the mitochondria-
targeted antioxidant SkQ1 retarded progression of age-
related cardiac dysfunction (cardiomyopathy, cardiac 
hypertrophy, and diffuse myocardial fibrosis), presumably 
via a reduction in age-related inflammation [93].  
 In rats, daily intraperitoneal injections of SkQT1, a 
mitochondria-targeted thymoquinone, applied for 5 days 
after brain trauma was found to attenuate the trauma-induced 
neurological deficit [94]. 
 SkQ1 accelerated resolution of the inflammatory phase, 
formation of granulation tissue, vascularization and 
epithelization of cutaneous wounds in aged mice, suggesting 
that mitochondrial ROS play an important role in the 
pathogenesis of age-related chronic wounds [95]. 
 Recent electron microscopy study of rat mitochondrial 
ultrastructure revealed that application of SkQ1 prevented 
the development of age-dependent destructive changes of 
mitochondrial reticulum during skeletal muscle sarcopenia in 
both the control Wistar animals and OXYS rats suffering 
from excessive oxidative stress and accelerated aging [96]. 
This finding is in line with earlier experiments, where SkQ1 
at nanomolar concentrations was shown to prevent or slow 
down cerebral dysfunctions, and to decrease the pathological 
accumulation of AbetaPP, Abeta, and hyperphosphorylation 
of tau-protein in OXYS rats, as well as age-dependent 
changes in healthy Wistar rats [97]. 

1.7. The Role of Cardiolipin 

 Several mitochondrially-targeted antioxidants tested in 
different groups exerted their protective effect via prevention 
of cardiolipin peroxidation. It is therefore probable that the 
latter process plays an important role in the regulation of 
oxidative stress and in progression of pathologies.  
 Cardiolipin (CL) is a tetra-acylated anionic phospholipid 
localized normally in the inner mitochondrial membrane. It 
is essential for proper functioning of the respiratory chain 
[98-100]. Mitochondrial ADP/ATP carrier, an integral 
protein of the inner mitochondrial membrane that is closely 
associated with the respiratory chain complexes, also 
requires CL for normal functioning [101] and looses activity 
upon its oxidation [102, 103].  
 Unlike other phospholipids, CL has four fatty acid 
residues instead of two; and the hydrophobic tails of these 
fatty acids are all polyunsaturated. This makes CL a 
particularly vulnerable target for ROS attack. Moreover, in 
some proteins integrated into the inner mitochondrial 
membrane (e.g., complex III of the respiratory chain) CL 
forms dimers, so that 8 unsaturated fatty acid rich with 
double bonds are present in close vicinity to each other. Such 
dimers, especially when localized near respiratory chain 
proteins that generate ROS, are ideal starting points for chain 
reaction of lipid peroxidation. 
 CL-cytochrome c complexes were identified as important 
components of the mitochondrial apoptotic machinery that 
are induced by proapoptotic stimuli and trigger the release of 
proapoptotic factors from intermembrane space and other 
apoptotic cascade steps [104]. Formation of such complex 
changes both functions and redox properties of cytochrome 

c, stimulating its peroxidase activity and diminishing its 
ability to perform electron transport from complex III to 
complex IV [105]. 
 It was shown recently in neurons that CL is externalized 
in response to mitochondrial injury to the outer 
mitochondrial membrane, where it interacts with the 
autophagy protein LC3 to mediate the elemination of 
potentially dangerous damaged mitochondria by mitophagy 
[106]. Moreover, under certain conditions (e.g. neutrophil 
activation, necrosis, stress, and acute trauma) cells release 
CL-presenting mitochondria and mitochondrial membranes. 
In such situation, externalized extracellular CL promotes 
phagocytosis and attenuates inflammatory immune responses 
[107].  
 More and more experimental evidence indicates that CL 
oxidation is one of the key events in the initiation and/or 
progression of various pathologies, including brain injury 
[108]. 
 It is experimentally established that under oxidative 
stress cytochrome c acts as a peroxidase that can oxidize 
cardiolipin [109]. It was recently demonstrated that addition 
of H2O2+cytochrome c to cardiolipin-containing liposomes 
induces membrane permeabilization for molecules up to 3 
kDa. Requirement of unsaturated cardiolipin for the 
permeabilization suggests that cardiolipin oxidation plays a 
critical role in the formation of membrane defects induced by 
H2O2+cytochrome c [110]. Besides membrane 
permeabilization, cardiolipin oxidation leads to respiratory 
chain enzymes inactivation, cellular dysfunction and 
eventually cell death [111]. 
 Mitochondrially-targeted synthetic antioxidants, even 
being introduced in micro- and submicromolar 
concentrations, fully protected the liposomal cardiolipin 
from peroxidation [112]. Previously, similar effect was 
shown in isolated mitochondria [67]. 

CONCLUSION 

 Mitochondrially-targeted antioxidants provide a potent 
tool for mitochondrial research and for therapy of ROS-
related pathologies. Eye drops containing 250 nM SkQ1 
developed against dry eye syndrome, cataract and glaucoma 
have already passed clinical trials (phase I-III in Russia [113-
116], phase I-II in the USA [117]), and over 700,000 
samples were sold over-the-counter since 2012, with no side 
effects reported so far. It is probable that active use of such 
drugs will have unexpected positive effects on a broad 
spectrum of age-related diseases, including chronic 
inflammation, atherosclerosis and on aging in general.  
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