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Plasmonic and guided modes of a waveguide constituted by metal walls and a magnetic dielectric core are in-
vestigated to reveal how their dispersion and optical field distribution are influenced by a toroidal (azimuthal)
magnetization of the core. A phenomenon of the magneto-optical nonreciprocity both in wavenumber and in
attenuation coefficient is identified and investigated. It is shown that in the coaxial golden waveguide with the
iron-garnet core the nonreciprocity effect reaches maximal values for the plasmonic modes at frequencies above
3 × 1015 rad∕s. The effect is of opposite sign for the two types of the plasmonic modes and its value can be tuned
by adjusting the geometrical parameters. © 2016 Optical Society of America

OCIS codes: (230.3810) Magneto-optic systems; (230.7370) Waveguides; (240.6680) Surface plasmons.
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1. INTRODUCTION

Recently, structures with magneto-optical nonreciprocity have
become of interest for fundamental and applied research, since
they can be used in integrated optics components such as
circulators, optical isolators, etc. [1,2]. In magnetoplasmonic
structures the nonreciprocity is accompanied by a magnetization-
induced shift of the dispersion curves and eigenfrequencies. In
particular, in a magnetoplasmonic crystal such a phenomenon
leads to a pronounced increase of the transverse magneto-optical
Kerr effect [3–6]. Investigation of magnetic and magneto-optical
properties of the cylindrical microstructures and nanostructures
is partly motivated by their possible application for the novel
magnetic field sensors [7]. In that case, magneto-optical effects
in such structures can be used for the optical signal reading from
a sensitive element.

The dispersion in cylindrical metallic [8] or dielectric [9] wave-
guides is a well-known problem of radiophysics and optics. The
case of a coaxial waveguide of a perfectly conducting metal is de-
scribed in various literature on radiophysics (see, e.g., [10]). While
the authors of [11] studied the coaxial waveguide with protrusions
and tranches, the case of a fully dielectric multilayer coaxial wave-
guide was considered in [12]. Cylindrical and coaxial configura-
tions were compared and the role of plasmons was discussed in
[13]. In [14] different configurations of a cylindrical waveguide
magnetized along the axis were considered. Reference [15] was
devoted to the coaxial waveguide, magnetized along its axis.

Azimuthally magnetized cylindrical and coaxial waveguides
are well known and frequently discussed in radiophysics as well

[16–19]. One should note the series of papers by Ivanov and
Georgiev [18,20,21] and Georgieva-Grosse [22–25] proposing
a wave equation for the electric field of TE0n mode and its
representation in the form of the confluent hypergeometric
function.

In all the aforementioned papers devoted to the problem of
wave propagation in azimuthally magnetized cylindrical wave-
guides, the approximation of an ideal metal was used, and the
megahertz frequency range was considered. Such radiophysical
formulation excludes finite conductivity of metals and excita-
tion of the surface plasmon polariton (SPP). Recently, in our
previous work we have studied circular plasmonic nanorods
with toroidal, or azimuthal, magnetization and have found that
the emerging magneto-optical nonreciprocity effect is stronger
than for the planar case [26].

In the present paper we investigate coaxial and cylindrical
waveguides formed by gold walls and toroidally magnetized
iron-garnet core. The influence of the magnetization on the
waveguide modes and the SPPs at the visible and near-infrared
frequency ranges and the properties of the magneto-optical
nonreciprocity effect are studied. The core diameter changes
from 200 nm to 1 μm. It should be noted that absorption
in the metal and dielectric is taken into account. Both analytical
and numerical studies are presented.

2. THEORY

Let us consider two golden cylinders; one of them is solid and is
placed coaxially inside the other one, which is hollow. The space
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between them is filled with a magnetic dielectric of bismuth iron-
garnet (BiIG), which is azimuthally magnetized (Fig. 1).
Although the total magnetization of the structure equals zero,
a nonzero toroidal moment T is present [27]. Consequently,
the proposed system is a coaxial waveguide with the toroidal
magnetic structure. Such a type of magnetic structure can be
formed by passing the electric current along the inner metallic
cylinder [28]. The current should be strong enough to
provide magnetization saturation, so that the magnetization
magnitude is constant inside the dielectric. With the z axis of
the cylindrical coordinate system directed along the axis of the
cylinders, the dielectric permittivity takes the following form:

ϵ̂ �
 ϵd 0 ig

0 ϵd 0
−ig 0 ϵd

!
;

where ϵd is a permittivity of the nonmagnetized structure, and g
is medium gyration, which is proportional to the local magneti-
zation [29]. Each of the field components of the guided modes
and the SPPs in the structures of cylindrical symmetry is written
as Z �ρ� exp�i�kz � lφ − ωt�� [8,9,12], where l is the integer val-
ued azimuthal wavenumber; k is the wavenumber along the z
axis; ω is the angular frequency; Z �ρ� is a cylindrical amplitude;
and ρ, φ, and z are the cylindrical coordinates. In the general
case, in the absence of magnetization (g � 0) only Ez and
Hz field components are independent [9]. In the presence of
the toroidal magnetic moment, parallel to the z axis it
is not possible to allocate any type of polarization, except the
transverse electromagnetic (TEM) one. Consequently, obtain-
ing the wave equation for the individual field components is
not possible and an analytical solution cannot be found.
However, for the important special case of an axially symmetric
field l � 0 one can consider two independent types of pola-
rization: TE0n and TM0n. In the first case E � f0; Eφ; 0g,
H � fH ρ; 0; Hzg; and in the second one E � fEρ; 0; Ezg,
H � f0; Hφ; 0g.

The effect of the toroidal magnetic moment on the TE0n
guided modes refers to the radiophysical treatment of the prob-
lem, where μ̂ � μ̂�g� (for the TM0n modes there is no effect
on dispersion because ϵ̂ does not depend on magnetization
for such a problem), which was considered for the case of an
ideal metallic waveguide in [16–25]. In contrast, in this work
we investigate ϵ-gyrotropic media and pay attention to the

TM0n modes since only for this type of modes the magneto-
optical nonreciprocity takes place.

From Maxwell’s equations the wave equation for the Hφ

component of the TM0n mode can be obtained:

ρ2
∂2Hφ

∂ρ2
� ρ

∂Hφ

∂ρ
�
�
κ2dρ

2 � kgρ
ϵd

− 1

�
Hφ � 0; (1)

for the magnetic dielectric with azimuthal magnetization, and

ρ2
∂2Hφ

∂ρ2
� ρ

∂Hφ

∂ρ
− �κ2mρ2 � 1�Hφ � 0; (2)

for the metallic parts of the structure. Here, κ2m � k2 − k20ϵm,
κ2d � k20ϵd − k

2, k0 � ω∕c, d indicates BiIG, and m indicates
Au; ϵm and ϵd are the corresponding dielectric constants, and c
is the speed of light. In addition, since g∕ϵd ≪ 1 we neglect the
quadratic contribution of the magnetization to the propagation
constant, i.e., �ϵ2d − g2�∕ϵd ≈ ϵd . Equation (2) is a modified
Bessel equation with general solution:

Hφ � C1I1�κmρ� � C2K 1�κmρ�; (3)

where I 1 and K 1 are modified Bessel functions of the first and
second kind, respectively. From the fact that the field must at-
tenuate in the metallic media it is clear that for the internal
metal C2 � 0, and for the outer one C1 � 0.

Substituting Hφ � Cρ exp�−κdρ�ζ�ξ�, where ξ � 2ρκd
and C is a constant, one can reduce Eq. (1) to the form

ξ
∂2ζ�ξ�
∂ξ2

� �3 − ξ� ∂ζ�ξ�
∂ξ

−

�
3

2
−

gβ
2ϵd κd

�
ζ�ξ� � 0: (4)

Equation (4) is the Kummer equation. Its general solutions
are confluent hypergeometric functions of the first and second
kind [30]:

ζ � B1M�G; 3; ξ� � B2U �G; 3; ξ�: (5)
Here, G � 3∕2 − gk∕2ϵd κd .
Finally, magnetic field Hφ of the TM0n mode in a coaxial

waveguide in the presence of the toroidal magnetic moment is
defined by the following relationship:

Hφ � B1Cρ exp�−κdρ�M �G; 3; 2κdρ�
� B2Cρ exp�−κdρ�U �G; 3; 2κdρ�. (6)

Here, C is a function of ω and k with the dimension of cm−1,
which can be found after substituting Eq. (6) into Eq. (1).

Thus, the toroidal magnetic moment affects not only the
velocity of propagation of the waveguide mode, but also the
optical field distribution, which is generally (at jgk∕2ϵd κd j ≫
3∕2 or jgk∕2ϵd κd j ≅ 3∕2) not a Bessel type unlike the case of a
nonmagnetic waveguide.

For the calculation of the dispersion curves we use the boun-
dary conditions for the field components at the interface. In the
case of a conductive metal, the tangential components of the
E- and H-fields at the interface between the gold and magnetic
dielectric must satisfy the conditions of continuity, which leads
to the following relations for the interfaces:(

Hφm � Hφd
1

ϵmρ
∂�ρHφm�

∂ρ � 1
ϵd ρ

∂�ρHφd �
∂ρ � gk

ϵ2d
Hφd

: (7)

Substituting Eq. (6) into Eq. (7) one can obtain the
dispersion equation. Since the optical magnetic field in theFig. 1. Structure under consideration. M is magnetization.
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waveguide core is expressed as the product of three functions,
one of which is a special function, exact analytical solution of
the dispersion problem is not straightforward. For simplicity,
one can use the fact that usually jgk∕2ϵdκd j ≪ 1 and,
therefore, according to the relationships between confluent
hypergeometric functions and Bessel functions [31] at C �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k20ϵd − k
2

p
� κd Eq. (6) becomes

Hφ � B1J1�κdρ� � B2Y 1�κdρ�; (8)

where J1 and Y 1 are Bessel and Neumann functions, respec-
tively, and Eq. (1) simultaneously switches to a Bessel equation.
This simplification means that we neglect the magnetization
effect on the distribution of the optical field and in our case
the field distribution can be considered as a Bessel one. The
correctness of such approximation is confirmed by Fig. 2,
where field distribution of Bessel type (Hϕ at g � 0) is com-
pared with the non-Bessel one (Hφ at g � 0.03) by the quan-
tity jΔHφj � jHφ�g � 0� −Hφ�g � 0.03�j. jΔHφj is about
200 times less than Bessel-like Hϕ. Additionally, as it is seen
from the inset in Fig. 2, at g � 0.03 (which is a typical value for
gyration of BiIG at 600 nm) the distribution of magnetic field
Hφ�ρ� behaves similarly to Bessel-like Hφ�ρ� at g � 0. Thus,
one can assume that the magnetization only affects the boun-
dary conditions Eq. (7).

Next, substituting Eqs. (8) and (3) into Eq. (7) and taking
into account the fact that the field decays as I1�κmρ� inside the
inner metallic cylinder and as K 1�κmρ� outside the waveguide,
we come to the following problem:

F �g;k;ω��det�M�g;k;ω���0;

M �

0
BB@

I1�κma� −J1�κd a� −N 1�κd a� 0
κm
ϵm
I 0�κma� D1 D2 0

0 J1�κdA� N 1�κdA� −K 1�κmA�
0 D3 D4

κm
ϵm
K 0�κmA�

1
CCA:

(9)

Here, a is the radius of the internal cylinder and A is the
exterior radius of the waveguide:

2
664
D1 � −κd J0�κd a�∕ϵd − gkJ1�κd a�∕ϵ2d
D2 � −κdY 0�κd a�∕ϵd − gkY 1�κd a�∕ϵ2d
D3 � κd J0�κdA�∕ϵd � gkJ1�κdA�∕ϵ2d
D4 � κdY 0�κdA�∕ϵd � gkY 1�κdA�∕ϵ2d .

Expanding Eq. (9) the implicit dispersion law can be obtained:
F �ω; k; g� � 0, which we do not present here because of its
awkwardness. We only note that it is clear already from Eq. (9)
that F �ω;k;−g�� F �ω;−k;g�≠F �ω;k; g�, so that the magneto-
optical nonreciprocity effect (MONRE) takes place [26].

Additionally, we can obtain the dispersion equation for the
eigenmodes in the limit of a → 0, i.e., for a simple cylindrical
waveguide with a metal wall. Since in this case one boundary is
omitted, for the field on the axis of the waveguide there should
be B2 � 0 in Eq. (8), and C1 � 0 in Eq. (3). Using Eq. (7) for
the case of a single boundary, we obtain

κd
ϵd

J0�κdA�
J1�κdA�

� κm
ϵm

K 0�κmA�
K 1�κmA�

� gk
ϵ2d

� 0: (10)

3. RESULTS AND DISCUSSION

A. Dispersion

For numerical calculations the experimental data were used for
the real and imaginary parts of gold and BiIG permittivities and
for the gyration from [32,33], and both real and imaginary
parts of the mode wavenumbers k � β� iγ were taken into
account. Figure 3 shows the dispersion curves ω�k� for the
axisymmetrical modes in the coaxial waveguide for different
values of radii a and A in the investigated frequency range
of �1.25 − 3.75� × 1015 s−1 at T oriented along the positive
direction of the z axis, which are obtained by numerical solu-
tion of Eq. (9). The red dashed line ω � cβ∕ ffiffiffiffiffi

ϵd
p

indicates a
set of (ω; k) values which corresponds to κ2d � 0 and divides
ω-k space into SPP region (Re�κd � � 0: below the light line,
I) and waveguide-mode region (Re�κd � ≠ 0: above the light
line, II).

Several types of modes are observed: (i) the “internal SPP”
localized at the interface between the inner cylinder and the
magnetic filling, (ii) waveguide modes propagating between
cylinders, and (iii) the external hybrid waveguide-SPP mode
related to the interface between the external metal cylinder
and the magnetic filling. The nature of the latter is not pure
plasmonic. A similar mode is well known in the theory of pla-
nar metal–dielectric–metal structures as the “antisymmetrical
mode” (or “low-index mode”) [34–36], and the “symmetrical
mode” (“high-index mode”) corresponds to the “internal SPP.”
As we can see from the plot, the dispersion curve of the hybrid
waveguide-SPP mode is localized partially in the waveguide-
mode dispersion region and partially in the SPP region, which
is similar for planar metal-dielectric-metal structures [36,37].
With the increase of the outer radius A the number of guided
modes grows and the hybrid mode gradually shifts toward the
SPP dispersion region. In this case, change in the outer radius
A has hardly any effect on the internal SPP, as is seen from
Figs. 3(a)–3(c). On the other hand, the change in the inner
radius a results in the stronger bending of the dispersion curve
of the inner SPP in a coaxial waveguide (Figs. 3(b) and 3(d)),
which agrees with our previous studies of nanowires [26].

Fig. 2. Influence of the magneto-optical parameter g on the
field distribution of Hϕ�ρ� given by Eq. (6). Normalization (coeffi-
cients B1 and B2) was chosen for reasons of matching Eqs. (6)
and (8) at g � 0. The result is obtained for k � 105 cm−1,
ω � 2.5 × 1015 s−1, and ϵd � 5.34.
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However, a small shift of the dispersion curve of the hybrid
waveguide-SPP mode toward the SPP dispersion region, caused
by the broadening of the gap between the metal surfaces, is
observed. Dispersion of the modes in the planar metal–
garnet–metal waveguide with the BiIG thickness of 200 nm
between the metal surfaces, obtained by solving the corre-
sponding dispersion equation from [38], is shown in Fig. 3(f ).
Comparison of Figs. 3(d) and 3(f ) shows that in the planar case,
unlike the coaxial one, the phase velocities of the two SPPs at
high frequencies become equal. The difference between the co-
axial case from the case of a cylindrical waveguide [Fig. 3(e)],
calculated from Eq. (10), lies in the presence of the inter-
nal SPP.

The dispersion of higher-order modes (l ≠ 0) is shown
in Fig. 4 with A � 300 nm and (a) a � 50 nm, or
(b) a � 100 nm. The analytical solution for the higher-order
modes cannot be obtained, so we used a numerical approach
based on the finite element method. It can be seen that for each
mode with l � 0 there are families of corresponding modes
with higher l : the SPPs, the waveguide modes, and the hybrid
modes. Since each mode in a family behaves similarly to the
corresponding axisymmetric mode (basic mode with l � 0),
within our investigation we mostly focus our attention on
the axisymmetric case.

B. Magneto-Optical Nonreciprocity Effect in
Cylindrical Waveguides

We now turn to the magneto-optical nonreciprocity effect. It is
determined by magnetization-induced variation of the mode

wavenumber: Δk � k��g� − k�−g�, and, consequently, it
has real (Δβ) and imaginary (Δγ) parts. Figure 5 shows the
magnitude of Δβ�ω� � β��g;ω� − β�−g;ω� for two configu-
rations: A � 300 nm and (a) a � 50 nm or (b) a � 100 nm.
First of all, it should be noted that the MONRE gets largest
values for the SPP at the surface of the inner cylinder. The
MONRE for the hybrid guided-SPP mode is less but is still
larger than for the purely guided modes. The MONREs for
the SPP and the guided-SPP are of opposite sign, which is
consistent with the fact that the mutual orientation of the mode
propagation direction, the magnetization direction, and the
arrangement of materials at the interfaces are different. For
both cases, the largest value of the magnetization-induced
change of Δβ occurs on the bend of the dispersion curves.
The effect increases with the frequency.

Blue points correspond to the MONRE of the higher-order
modes. As mentioned above, the dispersion of the higher-order
modes (SPP, hybrid, and guided modes with l > 0) behaves
like the dispersion of the corresponding axisymmetric modes
with l � 0. Wavenumbers of the higher-order modes do not
exceed those for the corresponding axisymmetric mode at
the same frequency and same T (see Fig. 4). Thus, one can

Fig. 3. Mode dispersion for a coaxial waveguide (a)–(d) with differ-
ent values of size parameters a, A and for cylindrical (e) and planar
(f ) waveguides. The red dashed line corresponds to κ2d � 0. The cylin-
drical waveguide radius is 400 nm and the width of the planar wave-
guide slab is 200 nm.

Fig. 4. Dispersion of the modes of different orders (l � 0; 1; 2…)
for the coaxial waveguide with internal radius (a) a � 50 nm and
(b) a � 100 nm with external radius A � 300 nm obtained by
FEM modeling (dots). Green solid lines are the corresponding solu-
tions of Eq. (9). Mode 1 is the SPP localized at the interface between
the internal cylinder and magnetic filling, modes 2 are the guided
modes propagating between metal interfaces, and mode 3 is the
guided-SPP mode which behaves like a guided one at lower frequen-
cies, and like an SPP localized at the interface between the external
cylinder and the magnetic filling, at higher frequencies.

Fig. 5. MONRE in a coaxial waveguide with the radius of the in-
ternal cylinder (a) a � 50 and (b) a � 100 nm for the radius of the
external cylinder A � 300 nm. Red solid lines indicate the MONRE
for axisymmetrical modes obtained by solving Eq. (9) at opposite val-
ues of magnetization and blue dots show the values of the effect for the
higher-order modes obtained by FEM modeling.
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conclude that the MONRE of the higher-order modes behaves
like the MONRE of the corresponding axisymmetric mode and
does not exceed it (Fig. 5).

Now let us consider the MONRE for different sizes of the
waveguide. Figure 6 shows the values of Δβ�ω� and Δγ�ω� �
γ�g;ω� − γ�−g;ω� for a � 50 nm, A � 150, 200, 300, and
500 nm, and for the case of a cylindrical waveguide of radius
150, 200, 300, and 500 nm.

Change of the internal radius a strongly influences the
MONRE for the SPP: with decreasing radius the effect
increases (see Fig. 5), which is in good agreement with our
previous studies of a nanowire [26]. Such phenomenon is ex-
plained by a change in the dispersion curves with decreasing
radius. The change in the inner radius has no effect on the
behavior of the hybrid guided-SPP mode. Similar behavior
is observed for the imaginary part of the MONRE Δγ.

The MONRE for the hybrid mode is mainly affected by
the change of the external radius A of the coaxial waveguide
[Fig. 6(a)]. In this case, the situation is opposite to the case
of the pure SPP: with the increase of the outer radius A the
effect gets larger. For a cylindrical waveguide the behavior of
the MONRE is completely analogous to the case of the hybrid
mode in the coaxial waveguide [Figs. 6(b) and 6(d)]. However,
for a cylindrical waveguide the effect is larger and varies
stronger with the increase of the waveguide radius. At lower
frequencies, the MONRE dependence on the radius alters
and becomes a decreasing function of the radius.

For pure guided modes the MONRE remains almost
unchanged at different radii, compared with the SPP and the
hybrid modes, for all cases.

Thus, decreasing the radius of the inner cylinder a, one can
increase the MONRE for the SPP, and increasing the exterior
radius A, one can increase the MONRE for the hybrid guided-
SPP mode. In all cases, the increase of the MONRE is related to
changes in phase and group velocities of corresponding modes
(see Fig. 3) when the inner radius a and the outer radius A are
changed. The MONRE enhancement is due to an increase of
the electromagnetic field density in the magnetic environment.
The electromagnetic field density of the SPP at the interface
between the metal core and the magnetic dielectric grows
with decreasing inner radius a, which leads to enhancement of
the MONRE for the SPP. At the same time, the MONRE en-
hancement for the hybrid mode takes place with the growth of
the outer radius A that leads to stronger shift of the dispersion
curve toward the plasmonic dispersion region [Figs. 3(a) and
3(b)]. It is accompanied by growth of the electromagnetic en-
ergy density at the interface between the outer metallic cylinder
and magnetic dielectric filling.

The imaginary part of the MONRE [Figs. 6(c) and 6(d)]
behaves completely similarly to the real part. The growth is
observed only at high frequencies, where there is a strong
absorption in gold. At low frequencies, where the absorption
is weaker, γ is smaller, and, therefore, Δγ is smaller as well.
The properties of the imaginary part of the MONRE, such

Fig. 6. Real (a), (b) and imaginary (c), (d) parts of the MONRE for axisymmetrical modes in coaxial (a), (c) and cylindrical waveguides (b), (d)
with different radii A. The insets show the frequency band segment from 2.8 to 3.25 × 1015 rad∕s.
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as its dependence on the external radius A, can be explained in
the same way as for the real part.

4. CONCLUSION

To conclude, we studied the problem of the azimuthal mag-
netization impact on the eigenwaves of the coaxial waveguide
consisting of metal walls with a magnetic dielectric filling. The
investigation was performed for the optical and near-infrared
frequency ranges, taking into account the absorption and
dichroism. The dispersion equation and expressions for the
magnetic field distribution were derived for the eigenmodes
with an axisymmetric field of the coaxial and cylindrical wave-
guides with a toroidal magnetic structure. It was found that this
type of magnetization affects the field distribution and the
dispersion of eigenmodes. The phenomenon of the magneto-
optical nonreciprocity, which is measured by a difference be-
tween the phase velocities of the modes propagating in forward
and backward directions, was demonstrated. It was found that
the MONRE for the SPPs and the waveguide-SPP hybrid
modes increases monotonically with frequency. With the in-
crease of the radius of cylinder curvatures (inner radius a or
outer radius A of the waveguide) the effect decreases in the
former case and increases in the latter one. In all cases, the am-
plification is associated with the increase of the electromagnetic
field concentration in the magnetic dielectric.

Funding. Russian Foundation for Basic Research (RFBR)
(14-02-01012, 16-02-01065); Russian Presidential (MD-
5763.2015.2).
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