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Abstract—Numerical simulations are used to investigate the possibility of determining the physical prop-
erties of young star-forming complexes by finding the global minimum of a so-called deviation functional,
which assigns each evolutionary model for a stellar population a number characterizing the deviation of
the observed photometric properties from their model values. The deviation functional is calculated using a
grid of evolutionary models computed at the Institute of Astronomy of the Russian Academy of Sciences.
The parameters of the initial mass function (IMF) and the age corresponding to the global minimum of the
deviation functional are strongly correlated with the IMF and age of the test model. The accuracy of the
parameters of the IMF and the age are related to the random errors of the colors of the test models and the
number of input parameters. A special series of numerical simulations is used to demonstrate the possibility
of using the deviation functional to determine the interstellar extinction and the fraction of Lyman photons
that do not contribute to the ionization of gas in a star-forming complex. The simulation results can be
used to assess the accuracy of the IMF parameters and ages of young star-forming complexes based on
the observational data available.
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1. INTRODUCTION
Determining the internal theoretical parameters of

evolutionary models for star clusters based on their
observed characteristics represents an inverse prob-
lem in astrophysics—in particular, the inverse star-
formation problem. The desired quantities are the
parameters of the initial mass function (IMF) of the
cluster stars and the star-formation mode (history).
The observed quantity is the stellar spectral energy
distribution (SED) of the cluster, e.g., the integrated
color indices derived from multicolor UBV RHα pho-
tometry of star-forming complexes (SFC) in which
the clusters themselves are embedded. If the IMF of
forming stars and the history of the star-formation
rate (SFR, i.e., the rate and mode of star formation)
are known, then the direct problem, i.e., determining
the SED of the star cluster at any time, has an un-
ambiguous solution. By varying the parameters of the
IMF, SFR, and age, we can select an evolutionary
model for the star cluster or synthesize the stellar
content of the galaxy so that its integrated photo-
metric quantities best fit the observed values for the
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real SFC or galaxy. This approach was implemented
to interpret the observed characteristics of SFCs and
galaxies using the methods of evolutionary population
synthesis and empirical population synthesis, which
date back to the middle of the 20th century and
the works of Tinsley [1], Morgan [2], Wood [3], and
Faber [4].

Both approaches associate variations of the ob-
served photometric parameters of star clusters pri-
marily with variations of their ages, extinctions, and
chemical compositions for a specified IMF. See the
recent papers [5, 6] for the history of the development
of both approaches. The inverse problem of determin-
ing the IMF, age, and star-formation mode from the
known SED of a star cluster reduces to searching
for the minimum values of a deviation functional for
the observed photometric parameters and their model
values. The deviation functional is numerical function
that assigns each evolutionary model a certain num-
ber characterizing the deviation of the observed pho-
tometric quantities from their model values. Since the
model (synthetic) photometric parameters are func-
tions of the desired physical parameters (IMF param-
eters and age), the deviation functional characterizes
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the closeness of the real IMF and age of the SFC
to the evolutionary model. This is an ill-posed prob-
lem, and the solutions obtained are, in general, not
unique [7].

This non-uniqueness is due to the multiparametric
nature of the problem. Different combinations of in-
ternal physical parameters (IMF, age, SFR, and star-
formation mode), and thus different star-cluster mod-
els at different stages of evolution, can have similar
combinations of observed colors. As a result, two star
clusters with very similar colors can correspond to
widely separated minima of the deviation functional,
i.e., to utterly different evolutionary models. There-
fore, we not only searched for all local minima of the
deviation functional, but also calculated their depths.
The solution is then taken to be that for the deepest
minumum.

Furthermore, to compute the deviation functional,
we must correct the observed photometric quantities
(integrated colors) for interstellar extinction of the
stellar radiation. This procedure eliminates the age–
extinction degeneration problem. We calculate the
deviation functional each time using the chemical
composition Z derived independently from spectro-
scopic observations of the ionized gas surrounding
the star cluster in the SFC, thereby eliminating the
age–metallicity degeneration [8].

Solving the inverse problem also requires com-
puting evolutionary models for the star clusters. The
main difference between the known methods of pop-
ulation synthesis and empirical population synthe-
sis is that the latter involves directly searching for
a solution of the star-formation problem: the model
(synthetic) colors are calculated given the slope of
the IMF, age, chemical composition, and interstellar
extinction. The desired physical parameters are then
varied to produce model colors that are close to their
observed values. The parameters are varied until they
yield model colors that are close to those for the ob-
served SED of the star-forming region. The closeness
is determined using the usual adopted criteria. The
solutions are taken to be all combinations of age,
extinction, and chemical composition that meet the
adopted criteria. Recently, Cid Fernandes et al. [6]
used the maximum likelihood method for the first time
to choose the most probable solution.

The question of how variations of the observed
colors are related to variations of the IMF parame-
ters remains unexplored. Finding the solution to our
problem involves searching for the deepest local min-
imum of the deviation functional, which is calculated
for the entire domain of IMF parameters, ages, and
star-formation modes for specified values of the inter-
stellar extinction and chemical composition derived

from observations. This enables us to avoid missing
any possible solution (i.e., to find all local minima
of the functional), take into account the relation be-
tween the variations of the star-cluster SEDs and
IMF parameters, and avoid the age–extinction and
age–metallicity degenerations. This approach also
enables the use of any evolutionary models and any
combination of observed quantities. The method is
easy to implement when the target objects are young
star-forming regions with uniform chemical compo-
sitions and simple stellar populations. Applying this
approach to galaxies with complex stellar populations
requires the use of a larger number of observed spec-
trophotometric quantities to reflect the multicompo-
nent nature of the stellar population. Problems still
remain, associated with allowance for inhomogeneity
of the chemical composition and internal extinction in
the galaxies. This reduces somewhat the reliability of
the estimated physical parameters characterizing star
formation in galaxies.

Nonetheless, Cid Fernandes et al. [5] recently in-
vestigated the star-formation problem used a devia-
tion functional and the method of spectral synthesis
to compare synthetic spectra with the observed spec-
tra of about 50 000 galaxies (from the Sloan Digital
Sky Survey) in the wavelength interval from 3650 to
8000 Å. However, this made use of a narrow spec-
trum of models. These authors use three evolutionary
sequences with different chemical compositions but
the same IMF, corresponding to the IMF for all the
stars of the entire galaxy [9]. We have performed the
computations reported here in order to investigate
how accurately we can derive parameters of interest
to us using a deviation functional in the case of young
star-forming regions.

Section 2 briefly describes the evolutionary mod-
els calculated at the Institute of Astronomy of the
Russian Academy of Sciences. Section 3 describes
the method used to perform numerical simulations
of test models in the absence of random errors in
their colors. Section 4 shows the effect of random
errors in the integrated colors on the accuracy of the
estimated star-formation parameters. Section 5 de-
scribes numerical simulations investigating the frac-
tion of Lyman photons that do not participate in
ionization processes. Section 6 describes numerical
simulation investigating extinction via minimization
of the deviation functional. Section 7 compares the
AV values obtained using the deviation functional
with those derived from spectroscopic observations
of gas in the star-forming regions. Finally, Section 8
lists the main conclusions. We describe the method
used to solve for star-formation parameters using a
deviation functional in our earlier papers [10, 11].
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Fig. 1. Comparison of evolutionary tracks for a star clus-
ter used by researchers at the Institute of Astronomy [12,
13], Lejeune and Schaerer [14], and Girardi et al. [15].

2. EVOLUTIONARY MODEL
OF THE STELLAR POPULATOON

OF A STAR-FORMING REGION
In this work, we used the cluster evolutionary

model developed at the Institute of Astronomy of the
Russian Academy of Sciences, described in detail
in [12, 13]. Figure 1 compares the evolutionary tracks
computed in these papers with the later evolutionary
models of [14, 15].

We now briefly list the main characteristics of the
model. We describe star formation using the function
b(m, t), which gives the number of stars N formed in
unit mass interval dm over a unit time interval dt:

b(m, t) =
d2N

dmdt
.

We assume a simple star-formation history in an in-
dividual young star-forming region, which we expect
to contain stars of only one generation; this enables
us to write b(m, t) as the product of a function f(m)
describing the mass distribution of newly formed stars
(the IMF) and a function r(t) describing the intensity
of star formation as a function of time (the SFR
function):

b(m, t) = f(m) · r(t).
We now adopt a power-law form for the IMF, f ∝

mα, where the mass of newly formed stars is con-
tained in the interval m ∈ (Mmin,Mmax); i.e., Mmin

and Mmax are the lower and upper mass limits for
the IMF. For α = −2.35 we obtain the well-known
Salpeter IMF [17].

We consider the following two cases for the SFR
function r(t).

(1) An Instantaneous Burst (IB) mode, where all
stars of the cluster formed simultaneously t years ago.
At time t0 = 0 we have r(t) = δ(t0).

(2) An Extended Burst (EB) mode, where star
formation in the star-forming region began t years
ago and has continued since then: r(t) = const.

The theoretical stellar composition of a star-
forming region can be visualized graphically, e.g.,
on a color–color diagram (Fig. 2), or in the form of
tabulated functions of integrated colors U−B, B−V ,
V −R, log(NLc/LB) as functions of the physical
parameters of the model: the IMF slope α, upper mass
limit Mmax, age t, chemical composition z, and star-
formation mode r(t):

U−B = f1(α,Mmax, t, Z), (1)

B−V = f2(α,Mmax, t, Z),
V −R = f3(α,Mmax, t, Z),

log(NLc/LB) = f4(α,Mmax, t, Z).

We adopted the following variation intervals for the
internal physical parameters:

α ∈ (−0.35,−4.35), Mmax ∈ (30, 120)M�, (2)

t ∈ (1, 100) million years, z ∈ (0.004, 0.040),

r(t) =

{
δ(t),
const.

The tabulated functions of integrated colors U−B,
B−V , V −R, and log(NLc/LB) computed with a
specified step over the entire range of variation of α,
Mmax, t, z, and r(t) represent a multidimensional grid
of evolutionary star-cluster models. The parameter
steps were hα = 0.05 for the IMF slope, hMmax =
30 M� for the upper mass limit of the IMF, and 0.1 on
a logarithmic scale for the age. We computed for each
chemical composition Z (known from observations)
its own grid of evolutionary models. Every node of the
grid represents a star-cluster model with a particular
IMF, age, chemical composition, and star-formation
mode.

We computed grids consisting of 648 evolution-
ary sequences. Every sequence contains models with
ages ranging from 1–100 Myr. We limited the IB
mode to an age of 20 Myr. The grid consists of a total
of 13 284 nodes (models) for the specified chemical
composition, including 5508 IB models nd 7776 ЕВ
models. Figure 2 shows a two-dimensional cross sec-
tion of the grid (with a coarse step).
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Fig. 2. Two-dimensional cross section of the Institute of Astronomy grid of evolutionary models. The steps in the IMF slope
and age of the star-forming region are 1.0 and 0.2 dex, respectively. See text for notation.

3. NUMERICAL SIMULATIONS
OF ESTIMATING THE IMF PARAMETERS

AND AGE

If the chemical composition of the star-forming
region is known, then, to unambiguously determine
the four unknown physical characteristcs α, Mmax,
t, and r(t), we must know from observations four
integrated color indices, e.g., U−B, B−V , V −R,
and log(NLc/LB) [see relations (1)]. However, the
observed colors are prone to measurement errors and
interstellar extinction. The number of photons in the
Lyman continuum can be calculated from the known
fluxes in the Нα emission line. Since not all Lyman
photons participate in ionization processes (some are
absorbed by interstellar dust or simply leave the star-
forming region), the fluxes in the Lyman continuum
are underestimated. In view of this, we performed
numerical simulations to model the solution process
when the observed fluxes are subject to measurement
errors and interstellar extinction.

The essence of the experiment is the following. We
compute a test star-cluster model using a specified
IMF slope α, IMF upper limit Mmax, age t, star-
formation mode (IB or EB), and chemical composi-
tion Z. We then calculated the synthetic (i.e., input)
color indices (U−B)input, (B−V )input, (V −R)input,
and log(NLc/LB)input for this model, which we then
“spoiled” with randomly distributed errors ∆U−B ,
∆B−V , ∆V −R, and ∆NLc/LB

:

(U−B)exper = (U−B)input + ∆U−B , (3)

(B−V )exper = (B−V )input + ∆B−V ,

(V −R)exper = (V −R)input + ∆V −R,

log(NLc/LB)exper = log(NLc/LB)input + ∆NLc/LB
.

We then compared these “distorted” color indices
with the grid of evolutionary models by computing the
deviation functional Fi,j,k at each of the 13 284 grid
nodes:

Fi,j,k =

√√√√ 3∑
l=1

[
(O–C)i,j,kl

]2
, (4)

where

(O−C)i,j,k1 = (U−B)exper − (U−B)i,j,ktable, (5)

(O−C)i,j,k2 = (B−V )exper − (B−V )i,j,ktable,

(O−C)i,j,k3 = (V −R)exper − (V −R)i,j,ktable,

(O−C)i,j,k4 = log(NLc/LB)exper

− log(NLc/LB)i,j,ktable.

The superscripts i, j, and k denote the node corre-
sponding to α(i), log(t(j)), Mmax(k) of the model grid
of synthetic colors. We took every node of the model
grid where the deviation functional did not exceed
the accuracy of the color indices (≤0.25m) to be a
possible solution. Among all these possible solutions,
we identified the node (model) corresponding to the
deepest local minimum of the deviation functional.
We considered the IMF parameters, age, and star-
formation mode for this model to represent the desired
solution.

Table 1 gives the results of the first series of sim-
ulations with no random errors added to the input
colors of the test models, i.e., where we set in (1)
∆U−B = ∆B−V = ∆V −R = ∆NLc/LB

= 0.

We performed these simulations for a total of
160 previously constructed test models uniformly
covering the entire range of variations of the physical
parameters [see (2)]. These include 64 IB models
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Table 1. Results of simulations of estimating the IMF parameters and age using various combinations of integrated
colors

No. of simulation Color combination rα, % σα rt, % σt rMmax , % σMmax IB, % EB, %

1 2 3 4 5 6 7 8 9 10

1 U–B, B–V , V –R, log(NLc/LB) 95 0.34 99 0.07 70 24 83 94

2 U–B, B–V , log(NLc/LB) 92 0.44 98 0.10 63 26 80 93

3 U–B, B–V , V –R 94 0.35 97 0.14 61 27 61 88

Table 2. Effect of random errors in the colors on the accuracy of derived IMF parameters and age

No. of simulation Combination of colors rα, % σα rt, % σt rMmax , % σMmax IB, % EB, % σerror

1 2 3 4 5 6 7 8 9 10 11

1 U–B, B–V , V –R, log(NLc/LB) 68 0.82 93 0.22 54 30 64 85 0.05m

2 U–B, B–V , V –R, log(NLc/LB) 68 0.85 92 0.24 50 31 61 79 0.10

3 U–B, B–V , V –R, log(NLc/LB) 61 0.86 88 0.29 46 32 55 79 0.15

4 U–B, B–V , log(NLc/LB) 40 1.02 88 0.32 10 38 62 79 0.05

5 U–B, B–V , V –R 66 0.84 90 0.25 14 37 42 66 0.05

and 96 EB models. In the first simulation of this
series, we used all four integrated colors (Table 1,
column 2). One or several colors are often lacking
in the observational database, and, in some cases,
only the Lyman continuum to B-band flux ratio is
available. This is why we performed simulations 2 and
3 in order to determine the accuracy of the solution
based on three integrated colors.

Columns 3 and 4 of Table 1 show that the corre-
lation coefficient between the inferred and input IMF
slopes is 92−95% for various star-formation modes
and combinations of input colors, with the standard
error of the IMF slope lying in the interval σα =
0.34−0.44. In our previous paper [10], we use the
method of pairwise comparisons to estimate the error
of the slope to be σα ≈ 0.50.

Columns 5 and 7 give the correlation coefficients
between the computed and input ages t and between
the computed and input IMF upper limits Mmax, while
Columns 6 and 7 give the standard errors of t and
Mmax. It is immediately obvious that the correlation
coefficient between the input and computed ages is
high. The standard error of the inferred age lines in
the interval σlog t = 0.07−0.14. The standard error of
the age inferred from the integrated colors with obser-
vational errors is σlog t = 0.29. The derived IMF upper
mass limit has a much lower accuracy; the correlation
coefficient between the computed and input values is
rMmax = 60−70%, while the corresponding standard

error is σMmax ≈ 25 M�. Figure 3 shows the relations
between the computed and input IMF slopes and
ages.

Columns 9 and 10 of Table 1 give the per-
centage of cases with incorrectly determined star-
formation modes. It is obvious that the results for
the instantaneous-burst (IB) mode (column 9) are
sensitive to the presence of Lyman-continuum flux,
log(NLc/LB), in the input data. Without this quan-
tity, the fraction of correctly identified IB modes
decreases from 83% down to 61%.

4. EFFECT OF RANDOM ERRORS
OF THE INTEGRATED COLORS

ON THE ACCURACY OF THE DERIVED IMF
PARAMETERS AND AGE

In this series of simulations, we added randomly
distributed errors to the integrated colors of the test
models. We performed three simulations, with differ-
ent dispersions for the distribution of random errors
(Table 2, column 11). Random errors with σerror =
0.05 correspond to the formal accuracy of the CCD
photometry of 127 star-forming regions in the galaxy
NGC 628 reported in our paper [17]. Table 2 summa-
rizes the results of these computations.

In the first three simulations of this series, we
compare the accuracy of the inferred quantities and
the correlations between the input and inferred values
for various random errors. It is obvious from Table 2
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Fig. 3. (a) Computed IMF slope vs. input IMF slope and (b) computed vs. input age of the star-forming region.

that, as the random errors of the color indices in-
crease, the correlation coefficients between the in-
ferred and input quantities (for the IMF slope and
age) decrease, and the standard errors increase. The
estimated upper mass limits Mmax remain unreliable
even when the random errors correspond to those
for the formal errors of the actual CCD photometry
of [17]. We used simulations 4 and 5 (Table 2) to
estimate the resulting accuracy of the solution based
on three integrated colors in the presence of random
errors. Here, the correlation coefficient between the
inferred and input IMF slopes varies from 60% to
75%. The standard error of the IMF slope remains
high: σα ≈ 0.90. The ages are determined fairly confi-
dently, with the correlation coefficient between the in-
ferred and input values ranging from 80% to 90% and
a standard error of σlog t = 0.2−0.3. The estimates
of the upper mass limit based on only three colors
including random errors remain unreliable.

5. NUMERICAL SIMULATIONS
OF THE FRACTION OF LYMAN PHOTONS

THAT DO NOT PARTICIPATE
IN IONIZATION PROCESSES

The number of Lyman-continuum photons emit-
ted by the cluster stars is usually estimated from
the observed Balmer-line flux of the cluster HII
regions. However, a considerable fraction of Lyman-
continuum photons does not take part in gas ion-
ization, and the number of Lyman-continuum pho-
tons emitted by stars is therefore underestimated,
on average, by 30−50% [19, 20]. The lack of re-
liable estimates of the fraction 1 − f of Lyman-
continuum photons not participating in ionization of
the gas surrounding the cluster hinders us from using
log(NLc/LB) when finding out solutions. Knowledge
of the fraction 1 − f of “missing” Lyman-continuum

photons is in itself of interest for studies of the physics
of star-forming regions, and we accordingly simu-
lated estimation of this quantity using the deviation
functional.

In the first step of the simulations, we decreased
the Lyman-continuum fluxes LNLc by 1 − f = 50%
when computing the deviation functional Fi,j,k (4) for
the colors of the test model (3). We then searched
for the minimum of the deviation functional with this
artificially reduced Lyman flux. In the second step of
the simulations, we reduced the Lyman-continuum
fluxes LNLc by 1 − f = 45% and again determined
the minimum of the deviation functional. We further
decreased the fraction of missing photons at each step
by an additional 5% and determined the correspond-
ing minima of the deviation functional. We took the
initial value of 1 − f to be that corresponding to the
deepest minimum of the functional Fi,j,k(1 − f). In
the exact solution, the deepest minimum of Fi,j,k(1 −
f) should correspond to 1 − f = 0. The deviation
from zero constitutes the error in 1 − f . If the process
yielded 1 − f �= 0, we performed the second and sub-
sequent iterations in the neighborhood of the 1 − f
value found at each iteration. We performed each
subsequent iteration with step that has half as large,
h1−f (i + 1) = h1−f (i)/2, until (1− f)i+1 ≈ (1− f)i.
The process nearly always converged by the third
iteration. Table 3 gives the results of this series of
simulations.

It is clear from Table 3 that the standard error in the
fraction of missed photons is σ1−f = 11% (column
4). When the color indices are subject to random
errors, the error increases to σ1−f = 25%. In this
case, the restored log(NLc/LB) ratios have standard
errors σlog(NLc/LB) = 0.22 (Fig. 4). The correlation
coefficient between the inferred and model values is
rlog(NLc/LB) = 95%.

ASTRONOMY REPORTS Vol. 51 No. 3 2007
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Table 3. Results of simulations of estimating the fraction 1 − f of Lyman photons not participating in ionization
processes

No. of simulation Combination of colors σerror σ1−f , % rNLc , % σNLc rα, % σα rt, % σt IB, % EB, %

1 2 3 4 5 6 7 8 9 10 11 12

1 U–B, B–V , V –R, log(NLc/LB) 0.00m 11 95 0.21 93 0.40 99 0.09 80 88

2 U–B, B–V , V –R, log(NLc/LB) 0.05 25 95 0.22 66 0.84 92 0.24 48 77

3 U–B, B–V , log(NLc/LB) 0.05 25 94 0.23 67 0.83 91 0.24 42 78

Table 4. Results of simulations of estimating the interstellar extinction

No. of simulation Combination of colors σerror rAV , % σAV rα, % σα rt, % σt IB, % EB, %

1 2 3 4 5 6 7 8 9 10 11

1 U–B, B–V , V –R, log(NLc/LB) 0.00m 99 0.12m 76 0.69 88 0.27 47 82

2 U–B, B–V , V –R, log(NLc/LB) 0.05 98 0.20 72 0.70 80 0.33 61 79

3 U–B, B–V , V –R 0.05 98 0.22 68 0.80 78 0.30 36 74

6. NUMERICAL SIMULATIONS
OF ESTIMATING THE EXTINCTION USING

A GRID OF EVOLUTIONARY MODELS
“Contaminating” the colors of our test models de-

scribed by relations (3) by adding random extinctions
AV (input) yields

(U−B)exper = (U−B)input + ∆U−B (6)

+ EU−B(input),
(B−V )exper = (B−V )input + ∆B−V

+ EB−V (input),
(V −R)exper = (V −R)input + ∆V −R

+ EV −R(input),
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log(NLc/LB)exper = log(NLc/LB)input

+ ∆NLc/LB
+ 0.4EHα−B(input),

where the color excesses EU−B(input),
EB−V (input), EV −R(input), and EHα−B(input) are
set by the random value AV (input) of the interstellar
extinction in the V band in accordance with the
formulas

EU−B(input) = AU (input) − AB(input)
= (EU − EB)AV (input),

EB−V (input) = AB(input) − AV (input)
= (EB − EV )AV (input),

EV −R(input) = AV (input) − AR(input)
= (EV − ER)AV (input),

EHα−B(input) = AHα
(input) − AB(input)

= (EHα − EB)AV (input).

Here, EU , EB , EV , ER, and EHα
are the selective

extinction coefficients for U , B, V , R and the wave-
length of Hα, respectively.

In formulas (6), we contaminated the intrinsic col-
ors of the test models with both random interstellar
extinction and random errors ∆U−B, ∆B−V , ∆V −R,
and ∆NLc/LB

.

We used a random-number generator to create
normally distributed random values AV (input) with
a mean and dispersion of 2.5 and 1.05, respectively
(Fig. 5a). We chose the parameters of this normal
distribution to cover the range of observed values of
AV . Here, we used the empirical relation between the
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Fig. 5. (a) Distribution of input interstellar extinction AV (input) and (b) relation between the AV (input) and the computed
interstellar extinction AV (output).

extinction in emission lines and in the stellar contin-
uum derived in our earlier paper [20].

The aim of these simulations was to compute the
output value AV (output) using the deviation func-
tional, which, in the ideal case, would be equal to
AV (input); i.e., we aimed to reconstruct the true
colors of our test model.

Since AV (output) is not known a priori, we
started the solution procedure with AV (output) =
0 and continued to search for the minima of the
deviation functional Fi,j,k with an increment of hAV

=
+0.1 for all intermediate AV (output) values up to
AV (output) = 5.5. The initial value of the extinc-
tion was taken to be the value corresponding to
the minimum of Fi,j,k(AV (output)). This procedure
was followed by second and third iterations in the
neighborhood of the AV (output) value found at
each iteration, which corresponded to the deep-
est minimum of the deviation functional (4). Each
subsequent operation was performed with an in-
crement half as large, hAV

(i + 1) = hAV
(i)/2, until

AV (output)i+1 ≈ AV (output)i. The process nearly
always converged by the third iteration.

Table 4 lists the results of this series of simula-
tions.

The first simulation (with zero color errors) shows
a high correlation between the input and computed
extinctions (rAV

= 99%; Table 4, column 4). The
standard deviation of the computed extinctions (Ta-
ble 4, column 5) is σAV

= 0.12m, which corresponds
to standard errors of 0.01m–0.03m in the recon-
structed colors. Thus, determining the extinctions for
the star-forming regions based on the grid of models
developed at the Institute of Astronomy yields quite
satisfactory results. Figure 5b compares the com-
puted values AV (output) with the input extinctions
AV (input).

However, real colors are subject not only to in-
terstellar extinction, but also to observational errors.
We repeated these numerical simulations including as
well random errors in the input colors, corresponding
to the formal accuracy of the measured integrated
colors for the multicolor CCD photometry of [17]. In
this case, the correlation between the computed and
input extinctions remains high (98%), although the
standard error increases to σAV

= 0.20m. In the third
experiment of this series, we used three color indices
subject to random errors. The results remained virtu-
ally unchanged.

It is evident from Fig. 6 that the computed inter-
stellar extinctions AV (output) are not correlated with
the computed ages toutput. Thus the age–extinction
degeneration does not arise when these quantities are
determined using the deviation functional.

In this case, the method employed yields satis-
factory age estimates, with a standard deviation of
σlog t = 0.22−0.23. If random errors are added to the
input colors, the standard error of the age increases to
σlog t ≈ 0.30. Applying the method of pairwise com-
parison to the ages estimated from the observed col-
ors of real star-forming regions yielded approximately
the same standard error, σlog t = 0.29 [10].

In the absence of independent measurements of
interstellar extinction, the IMF slope is determined
with an error of σα = 0.6−0.8 and a correlation co-
efficient between the input and computed values of
rα = 60−70%.

Figure 7 shows how much do the IMF upper
mass limit, IMF slope, and age deviate from their true
values if we do not correct the true input colors for
interstellar extinction ∆AV

. In this case, no effect of
random errors is present. Note that ∆AV

= ±0.30m

in the continuum corresponds to an extinction of
∆Balmer

AV
= ±0.48m in the hydrogen emission lines.
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It is clear from Fig. 7 that underestimated ex-
tinction (colors that are too red) results not only in
overestimated ages, but also affects the parameters of
the IMF: the slope is systematically underestimated
and the upper mass limit is overestimated. Here, we
introduce the following notation:

∆M = Moutput − Minput, ∆α = αoutput − αinput,

∆(log t) = log toutput − log tinput.

Figure 7 shows that the color variations should not
be associated exclusively with variations of age and
extinction. This approach results in incorrect deter-
mination of both the age and extinction.

As is obvious from Fig. 8, the accuracy of the
derived extinction is independent of the extinction
itself.

7. COMPARISON WITH OBSERVATIONS

We now apply this method for determining the ex-
tinction to real objects using available measurements
of three colors and absorption in the Balmer lines.
We will use the spectrophotometric observations of
99 HII regions in 20 galaxies obtained by McCall et
al. [21]. McCall et al. [21] report estimates of the in-
terstellar extinction in the Balmer lines, AV (Balmer)
for these objects. In our earlier paper [22], we found
data for at least three color indices for more than
40 objects in 12 galaxies in this sample. We compared
the observed colors with a grid of evolutionary models
to estimate the interstellar extinctions in star clusters
located in these HII regions. Figure 9 compares the
resulting “stellar” extinctions with the observed gas
(Balmer) extinction.

The weakness of the correlation in Fig. 9 can be
explained by the fact that the colors of the objects re-
ported by McCall et al. [21] were not determined in the
Johnson photometric system [23] in which the model
colors are computed. We transformed the continuum
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intermediate-band spectrophotometric observations
of HII regions of [21] to standard Johnson colors us-
ing formulas for the linear interpolation of monochro-
matic logarithmic brightnesses [22]. The color trans-
formation from the photometric system of [21] to the
Johnson photometric system [23] yield standard er-
rors of σU−B = 0.11m and σB−V = 0.22m for these
color indices. The standard error of V −R adopted
from other sources is σV −R ≤ 0.15m. With these ac-
curacies for the initial data, the standard error of the
computed interstellar extinctions is σAV

= 0.4m.
The second factor that reduces the correlation is

that the relation between the extinction in the Balmer
lines and in the stellar continuum depends on in-
dividual properties of the HII region. However, the
overall form of the relation between the stellar and gas
extinctions in Fig. 9 agrees, within the errors, with
the corresponding relation for three galaxies obtained
using a different method [20]:

AV (stars) = (0.17 ± 0.02)
+ (0.62 ± 0.12)AV (Balmer).

Cid Fernandes et al. [5] also obtained a similar rela-
tion between the stellar and gas extinctions.

8. CONCLUSIONS BASED
ON THE RESULTS OF OUR NUMERICAL

SIMULATIONS

Our numerical simulations of estimating the phys-
ical parameters characterizing star formation using a
deviation functional based on the observed color in-
dices showed that the deepest minimum of the func-
tional corresponds, with satisfactory accuracy, to the

true values of the desired IMF parameters, age, and
star-formation mode. We have shown how the ac-
curacy in the derived IMF, age, and star-formation
mode depends on the random errors and the number
and combination of input (observed) color indices.
We used special numerical simulations (Section 5) to
demonstrate the possibility of determining the frac-
tion of Lyman photons that do not participate in the
ionization of hydrogen, and thereby show that it is
possible to determine the true Lyman-continuum flux
based on the observed fluxes in Balmer lines. Of great
practical importance are the results of our last series
of simulations (Section 6), where we contaminated
the test colors with random interstellar extinction and
calculated the deviation functional for the entire range
of variation of the physical parameters (the entire pa-
rameter space) and a wide range of interstellar extinc-
tions. In this case, the deepest minimum of the func-
tional corresponded to the random extinction value
used to contaminate the true colors of the test model.
We analyzed the well-known age–extinction degen-
eration, which did not arise in our adopted approach.
Testing the method on real objects (Section 7) with
known extinctions from independent spectroscopic
observations demonstrated a satisfactory accuracy in
AV , which corresponds to the accuracy of the mea-
sured colors of the star-forming regions.

We generalize the results of the numerical sim-
ulations to demonstrate that the method employed
reproduces the ages of star-forming regions well,
much better than it reproduces the IMF parameters.
Reliable estimates of the upper mass limit of the
IMF can be obtained only from a nearly ideal set of
observational data: four integrated colors corrected
for interstellar extinction. The poor sensitivity of the
method to the IMF upper mass limit is most likely due
to the grid step, which was equal to 30 M�. Impos-
ing additional observational constraints, such as the
empirical relation between the ages and sizes of star-
forming regions [19, 22, 24], increases the accuracy
of the derived IMF parameters. We will simulate the
minimization of the deviation functional subject to
observational constraints in a separate paper.

Mikhail Alexandrovich Smirnov died suddenly
during the concluding stage of the preparation of the
text of this paper. Mikhail Alexandrovich Smirnov
was the first to suggest the use of methods from
the calculus of variations to solve inverse problems
in astrophysics in the middle 1980s. The emergence,
development, and application of the method described
in this paper is impossible to imagine without his
encyclopedic knowledge and profound physical in-
tuition. We feel deep sorrow at the irreparable loss of
our colleague and friend.
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