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ABSTRACT
We study various direct and inverse spectral problems for the one-dimensional Schrödinger equation with distributional potential and
boundary conditions containing the eigenvalue parameter.
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I. INTRODUCTION
At the end of the last millennium, Savchuk and Shkalikov27 initiated the study of boundary value problems associated with differential

equations of the form

− (y[1]
s )

′

(x) − s(x)y[1]
s (x) − s2

(x)y(x) = λy(x), (1.1)

where s ∈ L2(0,π) and y[1]
s (x) ∶= y′(x) − s(x)y(x) denotes the quasiderivative of y with respect to s (the subscript is usually omitted from

the notation, but we keep it because in this paper we will consider several potentials simultaneously). This equation formally corresponds
to the one-dimensional Schrödinger equation with the distributional potential s′ ∈ W−1

2 (0,π). Such potentials, especially those describing
the so-called point interactions, play an important role in quantum mechanics, solid state physics, atomic and nuclear physics, and elec-
tromagnetism.2,3,22 Direct and inverse spectral problems for boundary value problems generated by Eq. (1.1) were studied by Savchuk and
Shkalikov26,28,29 and Hryniv and Mykytyuk.18,19 More general second-order differential expressions were later considered in Refs. 7, 8, 12,
and 25.

In this paper, we study various direct and inverse spectral problems for boundary value problems generated by Eq. (1.1) and the boundary
conditions

y[1]
s (0)
y(0)

= −f (λ),
y[1]

s (π)
y(π)

= F(λ), (1.2)

where

f (λ) = h0λ + h +
d
∑
k=1

δk

hk − λ
, F(λ) = H0λ + H +

D
∑
k=1

∆k

Hk − λ
(1.3)

are rational Herglotz–Nevanlinna functions with real coefficients, i.e., h0, H0 ≥ 0, h, H ∈ R, δk, ∆k > 0, h1 < ⋯ < hd, and H1 < ⋯ < HD.
We also include the case when the first (respectively, the second) boundary condition is Dirichlet by writing f = ∞ (respectively, F = ∞).
Similar problems for summable potentials were considered in the author’s recent papers,14,15 which we closely follow here. However, it is
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worth emphasizing that, of the results proved in Secs. IV and V, only the oscillation theorem (see Subsection IV B) genuinely general-
izes the corresponding result of Ref. 14. The remaining results from Refs. 14 and 15 depend crucially on the second-order terms (i.e., the
terms of order 1/n) in the asymptotic formulas for the square roots of eigenvalues and thus do not follow from the results of the current
paper.

Eigenvalue problems with boundary conditions dependent on the eigenvalue parameter arise naturally in a variety of physical problems,
including heat conduction, diffusion, vibration, and electric circuit problems (see Refs. 10 and 11 and references therein). Direct and inverse
spectral problems of this kind have been studied by many authors (see, e.g., Refs. 4–6, 9, 13, 21, 23, and 24 for a small selection). In particular,
we mention Ref. 1 in which a spectral problem describing oscillating systems consisting of a continuous part coupled with a discrete part
with a finite number of degrees of freedom is studied, and it is shown that this problem is equivalent to a boundary value problem generated
by Eq. (1.1) together with a constant boundary condition at one endpoint and a boundary condition of the form (1.2) and (1.3) at the other
endpoint.

Unlike the case of summable potentials, a little extra care is needed when dealing with inverse problems for distributional potentials. It
is easy to see that by adding a constant to s and f and by subtracting the same constant from F, we obtain two problems of the form (1.1)
and (1.2) with the same eigenvalues and eigenfunctions. Therefore, some restriction on the coefficients s, f, and F is necessary. One possible
way to tackle this problem is, for example, in the case of constant boundary conditions, to assume that one of the (non-Dirichlet) boundary
conditions is Neumann, as is done in Ref. 18. However, for the purposes of this paper, it is more convenient to impose a restriction on the
coefficient s by assuming ∫π0 s(x)dx = 0.

The paper is organized as follows: In Sec. II, we introduce the necessary notation and prove some preliminary lemmas. Section III
is devoted to transformations between rational Herglotz–Nevanlinna functions and between boundary value problems with distribu-
tional potentials having such functions in their boundary conditions. In Subsection III A, we define a transformation between ratio-
nal Herglotz–Nevanlinna functions and study its properties. In Subsections III B–III D, we define direct and inverse transformations
between boundary value problems of the form (1.1) and (1.2), study properties of the spectral data under these transformations, and
show that these two transformations are, in a sense, inverses of each other. Sections IV and V are devoted to the solution of various
direct and inverse spectral problems. In Subsection IV A, we obtain asymptotic formulas for the eigenvalues and the norming constants
(see Subsection II C for the definition) of the problem (1.1) and (1.2). In Subsection IV B, we extend the Sturm oscillation theorem to
boundary conditions of the form (1.2). In Subsection IV C, we study further properties of the eigenvalues of a pair of boundary value
problems with a common boundary condition and use them in Subsection V B to solve the two-spectra inverse problem. In Subsec-
tion V A, we provide the necessary and sufficient conditions for two sequences of real numbers to be the eigenvalues and the norm-
ing constants of a problem of the form (1.1) and (1.2). Subsection V C is devoted to inverse problems by one spectrum, namely, we
consider symmetric boundary value problems and the Hochstadt–Lieberman theorem for boundary value problems of the form (1.1)
and (1.2).

II. PRELIMINARIES
A. Notation

We start by recalling some notation introduced in Ref. 14. To each function f of the form (1.3), we assign two polynomials f ↑ and f ↓ by
writing this function as

f (λ) =
f↑(λ)
f↓(λ)

,

where

f↓(λ) ∶= h′0
d
∏
k=1

(hk − λ), h′0 ∶= {
1/h0, h0 > 0,

1, h0 = 0.

We define the index of f as

ind f := {
2d + 1, h0 > 0,
2d, h0 = 0.

If f = ∞, then we just set

f↑(λ) ∶= −1, f↓(λ) ∶= 0, ind f ∶= −1.

It is straightforward to check that each nonconstant function f of the form (1.3) is strictly increasing on any interval not containing any of its
poles, and f (λ) → ±∞ (respectively, f (λ) → h) as λ → ±∞ if its index is odd (respectively, even). We denote the smallest pole of f (if it has
any) by

π̊(f ) ∶= {
h1, ind f ≥ 2,
+∞, ind f ≤ 1,
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and the total number of poles of this function not exceeding λ by

Πf (λ) ∶= ∑
1≤k≤d
hk≤λ

1.

For every non-negative integer n, we denote by Rn the set of rational functions of the form (1.3) with ind f = n; we also introduce
R−1 ∶= {∞}, which corresponds to the Dirichlet boundary condition. Then, R0 consists of all constant functions, R1 consists of all increasing
affine functions, and so on. We also denote

R ∶=
∞

⋃
n=−1

Rn.

We denote by AC[0,π] the set of absolutely continuous functions on [0, π]. We also denote

L̊2(0,π) ∶= {g ∈ L2(0,π) ∣ ∫

π

0
g(x)dx = 0}.

The notation xn = yn + `2(1) means that∑∞
n=0∣xn − yn∣

2
< ∞. Finally, we denote by P(s, f , F) the boundary value problem (1.1) and (1.2) and

by λ̊(s, f , F) the smallest eigenvalue of this problem.

B. Characteristic function
Let '(x, λ) and ψ(x, λ) be the solutions of (1.1) satisfying the initial conditions

φ(0,λ) = f↓(λ), φ[1]
s (0,λ) = −f↑(λ), ψ(π,λ) = F↓(λ), ψ[1]

s (π,λ) = F↑(λ), (2.1)

and C(x, λ) and S(x, λ) be the solutions of the same equation satisfying the initial conditions

C(0,λ) = S[1]
s (0,λ) = 1, S(0,λ) = C[1]

s (0,λ) = 0.

Standard arguments show that the eigenvalues of the boundary value problem (1.1) and (1.2), which coincide with the zeros of the
characteristic function

χ(λ) ∶= F↑(λ)φ(π,λ) − F↓(λ)φ[1]
s (π,λ) = f↓(λ)ψ[1]

s (0,λ) + f↑(λ)ψ(0,λ),

are real and simple, and for each eigenvalue λn, there exists a unique number βn ≠ 0 such that

ψ(x,λn) = βnφ(x,λn). (2.2)

Writing '(x, λ) as

φ(x,λ) = f↓(λ)C(x,λ) − f↑(λ)S(x,λ)

and using the estimates (see, e.g., Ref. 28, Lemma 2.5)

C(π,λ) = cos
√
λπ + o(e∣Im

√
λπ∣

), S(π,λ) =
sin

√
λπ

√
λ

+ o
⎛

⎝

e∣Im
√
λπ∣

√
λ

⎞

⎠
,

C[1]
s (π,λ) = −

√
λ sin

√
λπ + o(

√
λe∣Im

√
λπ∣

), S[1]
s (π,λ) = cos

√
λπ + o(e∣Im

√
λπ∣

),

we calculate

φ(π,λ) = (
√
λ)

ind f
(cos(

√
λ +

ind f
2

)π + o(e∣Im
√
λπ∣

)), (2.3)

φ[1]
s (π,λ) = −(

√
λ)

ind f +1
(sin(

√
λ +

ind f
2

)π + o(e∣Im
√
λπ∣

)). (2.4)
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Thus,

χ(λ) = (
√
λ)

ind f +ind F+1
(sin(

√
λ +

ind f + indF
2

)π + o(e∣Im
√
λπ∣

)). (2.5)

Using this estimate, from Hadamard’s theorem, we obtain (see Ref. 15, Lemma A.1 for details)

χ(λ) = −∏
n<L

(λn − λ)∏
n=L

π(λn − λ)∏
n>L

λn − λ
(n − L)2 (2.6)

with

L ∶=
ind f + indF

2
.

C. Hilbert space formulation and spectral data
In this subsection, we will introduce a Hilbert space and construct a self-adjoint operator in it in such a way that the boundary

value problem (1.1) and (1.2) will be equivalent to the eigenvalue problem for this operator. This construction is related to the theory
of self-adjoint exit space extensions of symmetric operators.16 The exact form of the space and the operator will depend on the indices
of the functions f and F. We will give the details only for odd ind f and ind F (i.e., h0, H0 > 0) and then discuss the changes needed
in the other cases. When h0 > 0 and H0 > 0, we consider the Hilbert space H = L2(0,π) ⊕ Cd+D+2 with the inner product given
by

⟨Y , Z⟩ ∶= ∫

π

0
y(x)z(x)dx +

d
∑
k=1

ykzk

δk
+

yd+1zd+1

h0
+

D
∑
k=1

ηkζk

∆k
+
ηD+1ζD+1

H0

for

Y =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

y(x)
y1

⋮

yd+1

η1

⋮

ηD+1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, Z =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

z(x)
z1

⋮

zd+1

ζ1

⋮

ζD+1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ H.

In this space, we define the operator

A(Y) ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−(y[1]
s )

′

(x) − s(x)y[1]
s (x) − s2

(x)y(x)

δ1y(0) + h1y1

⋮

δdy(0) + hdyd

y[1]
s (0) + hy(0) −∑d

k=1 yk

H1η1 − ∆1y(π)

⋮

HDηD − ∆Dy(π)

y[1]
s (π) −Hy(π) −∑D

k=1 ηk

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

with

D(A) ∶= {Y ∈ H ∣ y, y[1]
s ∈ AC[0,π], −(y[1]

s )
′

− sy[1]
s − s2y ∈ L2(0,π),

yd+1 = −h0y(0), ηD+1 = H0y(π)}.
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The necessary modifications for the other cases are as follows. We set H = L2(0,π)⊕Cd+D+1 in the case when only one of these numbers
equals zero, and H = L2(0,π) ⊕ Cd+D otherwise. If h0 = 0 (respectively, H0 = 0), we omit the (d + 2)-th components (respectively, the last
components) in the above paragraph and replace the condition yd+1 = −h0y(0) [respectively, ηD+1 = H0y(π)] by the condition y[1]

s (0) + hy(0)
−∑

d
k=1 yk = 0 (respectively, y[1]

s (π)−Hy(π)−∑D
k=1 ηk = 0) in the definition of the domain of A. If ind f ≤ 0 (respectively, ind F ≤ 0), i.e., the first

(respectively, the second) boundary condition is independent of the eigenvalue parameter, then there are no yk (respectively, ηk) components
at all, and the condition y[1]

s (0) = −hy(0) or y(0) = 0 [respectively, the condition y[1]
s (π) = Hy(π) or y(π) = 0] is added in the definition of

the domain of A.
As in the case of summable potentials, one can prove that the operator A thus defined is self-adjoint, its spectrum is discrete and coincides

with the set of eigenvalues of the boundary value problem (1.1) and (1.2), and its eigenvectors

Φn ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

φ(x,λn)

δ1
λn−h1

φ(0,λn)

⋮

δd
λn−hd

φ(0,λn)

−h0φ(0,λn)

∆1
H1−λn

φ(π,λn)

⋮

∆D
HD−λn

φ(π,λn)

H0φ(π,λn)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

are orthogonal (see, e.g., Refs. 6 and 10). Here, since λn = hm if and only if '(0, λn) = f ↓(λn) = 0, the corresponding component of this vector
is well-defined in this case too,

δm

λn − hm
φ(0,λn) = −h′0δm ∏

1≤k≤d
k≠m

(hk − λ)

(and similarly for Hm).

We define the norming constants as

γn ∶= ∥Φn∥
2
= ∫

π

0
φ2

(x,λn)dx + f ′(λn)φ2
(0,λn) + F′(λn)φ2

(π,λn)

= ∫

π

0
φ2

(x,λn)dx + f ′↑(λn)f↓(λn) − f↑(λn)f ′↓(λn)

+
1
β2

n
(F′↑(λn)F↓(λn) − F↑(λn)F′↓(λn)).

The numbers {λn, γn}n≥0 are called the spectral data of the problem P(s, f , F). We denote by γ̊(s, f , F) the first norming constant of the
problem P(s, f , F) (i.e., the norming constant corresponding to the smallest eigenvalue λ̊(s, f , F) of this problem). As in the regular case, we
have the identity (Ref. 14, Lemma 2.1)

χ′(λn) = βnγn. (2.7)

D. Smallest eigenvalues and nonexistence of zeros
Define a partial order on the set R as follows: f ≼ g if and only if either f = ∞ or f and g are two functions satisfying f (λ) ≤ g(λ) for all

λ < min{π̊(f ), π̊(g)}.

Lemma 2.1. If f ≼ f̃ and F ≼ F̃, then λ̊(s, f , F) ≥ λ̊(s, f̃ , F̃). Moreover, for f , F, and f̃ , F̃ ∈ R−1 ∪R0 equality is possible only if f = f̃ and
F = F̃.
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Proof. We will only prove λ̊(s, f , F) ≥ λ̊(s, f , F̃); the proof of λ̊(s, f , F̃) ≥ λ̊(s, f̃ , F̃) is similar. Let ν0 be the smallest zero of '(π, λ).
Dividing both sides of the identity

φ(π,λ)φ[1]
s (π,µ) − φ[1]

s (π,λ)φ(π,µ)

= f↑(λ)f↓(µ) − f↓(λ)f↑(µ) + (λ − µ)∫
π

0
φ(t,λ)φ(t,µ)dt

by µ − λ and taking the limit as µ→ λ, we obtain

d
dλ

⎛

⎝

φ[1]
s (π,λ)
φ(π,λ)

⎞

⎠
= −

1
φ2(π,λ)

(f 2
↓ (λ)

df (λ)
dλ

+ ∫
π

0
φ2

(t,λ)dt) < 0

for λ ∈ (−∞, ν0). The asymptotics (2.3) and (2.4) and the definition of ν0 imply

lim
λ→−∞

φ[1]
s (π,λ)
φ(π,λ)

= +∞, lim
λ→ν0−0

φ[1]
s (π,λ)
φ(π,λ)

= −∞.

Thus, φ[1]
s (π,λ)/φ(π,λ) is strictly monotone decreasing from +∞ to −∞ as λ increases from −∞ to ν0, and the claim of the lemma follows

from the fact that λ̊(s, f , F) and λ̊(s, f , F̃) are the smallest values of λ for which φ[1]
s (π,λ)/φ(π,λ) = F(λ) and φ[1]

s (π,λ)/φ(π,λ) = F̃(λ),
respectively.

Remark 2.2. The above proof also shows that λ̊(s, f , F) < min{π̊(f ), π̊(F)}.

Lemma 2.3. If λ ≤ λ̊(s, f ,∞) (respectively, λ ≤ λ̊(s,∞, F)), then the function '(x, λ) (respectively, ψ(x, λ)) has no zeros in (0, π).

Proof. Let ν0 be defined as in the proof of the preceding lemma and denote by Sπ(x, λ) the solution of (1.1) satisfying the initial conditions
Sπ(π, λ) = 0 and (Sπ)[1]

s (π,λ) = 1. Since'(x, ν0) and Sπ(x, ν0) are both eigenfunctions of the problemP(s, f ,∞), they coincide up to a constant
factor. The solution Sπ(x, λ) has no zeros in (0, π) for values of λ not greater than the smallest eigenvalue λ̊(s,∞,∞) of the Dirichlet problem
for (1.1). By Lemma 2.1, ν0 ≤ λ̊(s,∞,∞). Thus, Sπ(x, ν0) and hence '(x, ν0) has no zeros in (0, π).

Now suppose to the contrary that '(x, λ) has zeros in (0, π) for some λ ≤ ν0, and let x0 be its smallest positive zero. Remark 2.2 shows
that '(0, λ) = f ↓(λ) > 0 and '(0, ν0) = f ↓(ν0) > 0. Thus, '(x, λ) > 0 and '(x, ν0) > 0 for x ∈ (0, x0). Then, φ[1]

s (x0,λ) < 0 (see, e.g., Ref. 30,
Lemma 2), and hence,

0 > φ(x0,ν0)φ[1]
s (x0,λ) − φ[1]

s (x0,ν0)φ(x0,λ)

= f↓(λ)f↓(ν0)(f (ν0) − f (λ)) + (ν0 − λ)∫
x0

0
φ(t,ν0)φ(t,λ)dt > 0.

This contradiction proves the lemma for '. The proof for ψ is similar.

E. A characterization of f ↓ in terms of spectral data
The aim of this subsection is to prove an auxiliary lemma that will be needed in Subsection V B. This lemma characterizes the polynomial

f ↓ (up to a multiplicative constant) among all nonzero polynomials.

Lemma 2.4. If ind f ≥ 2 (i.e., if f has at least one pole), then p(λ) = f ↓(λ) is the only nonzero polynomial, up to a multiplicative constant,
that satisfies the identities

∞

∑
n=0

λk
np(λn)

γn
= 0, k = 0, . . . , d − 1.

Proof. From (2.1) and (2.2), we have

f↓(λn) = φ(0,λn) =
ψ(0,λn)

βn
.
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Together with (2.7), this implies (for sufficiently large N)

N
∑
n=0

λk
nf↓(λn)

γn
=

N
∑
n=0

Resλ=λn

λkψ(0,λ)
χ(λ)

=
1

2πi ∫CN

λkψ(0,λ)
χ(λ)

dλ,

where CN denotes the circle of radius

(N −
ind f + indF − 1

2
)

2

centered at the origin. Arguing as in Subsection II B, one obtains

ψ(0,λ) = O(∣
√
λ∣

indF
e∣Im

√
λπ∣

).

On the other hand, from (2.5), we get

1
χ(λ)

= O(∣
√
λ∣
−(ind f +indF+1)

e−∣Im
√
λπ∣

), λ ∈ ⋃
N

CN ,

and thus,

λkψ(0,λ)
χ(λ)

= O(
1

N ind f−2k+1 ), λ ∈ ⋃
N

CN

with ind f − 2k + 1 ≥ 3. Hence,

lim
N→∞∫CN

λkψ(0,λ)
χ(λ)

dλ = 0,

and thus, f ↓(λ) does indeed satisfy the identities in the statement of the lemma.
To prove the uniqueness (up to a multiplicative constant) part, let

p(λ) = λd + pd−1λ
d−1 +⋯ + p1λ + p0

be a monic polynomial satisfying the identities in the statement of the lemma. It is easy to see from the asymptotics of the eigenvalues and the
norming constants (see Theorem 4.1, the proof of which does not use the present lemma) that for each k = 0, . . ., d − 1, the series

sk ∶=
∞

∑
n=0

λk
n

γn

converges absolutely. The identities in the statement of the lemma imply the following identities between the numbers pi and sj:

d−1
∑
i=0

pisi+k = −sd+k, k = 0, 1, . . . , d − 1. (2.8)

We consider them as a system of linear equations (with respect to the numbers pi), the matrix of which is the following Hankel matrix:

⎛
⎜
⎜
⎜
⎜
⎜
⎝

s0 s1 . . . sd−1

s1 s2 . . . sd

⋮ ⋮ ⋱ ⋮

sd−1 sd . . . s2d−2

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

The quadratic form corresponding to this matrix is positive definite

d−1
∑
i,j=0

si+jξiξj =
d−1
∑
i,j=0

∞

∑
n=0

λi+j
n ξiξj

γn
=

∞

∑
n=0

d−1
∑
i,j=0

λi+j
n ξiξj

γn
=

∞

∑
n=0

1
γn

(
d−1
∑
i=0
λi

nξi)

2

≥ 0
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with equality if and only if ∑d−1
i=0 λ

i
nξi = 0 for all n, i.e., ξ0 = ⋯ = ξd−1 = 0. Thus, the determinant of the above matrix is strictly positive, and

hence, the system (2.8) has a unique solution. ◽

III. TRANSFORMATIONS
In this section, we introduce Darboux-type transformations between problems of the form (1.1) and (1.2). We will apply these

transformations in Secs. IV and V to the solution of several direct and inverse spectral problems for (1.1) and (1.2).

A. Transformation of Nevanlinna functions
First, we start with transformations between rational Herglotz–Nevanlinna functions. These transformations allow one to shift the index

of such a function by one in either direction. Note that in the case of distributional potentials, we need slightly more general transformations
than those defined in Ref. 14.

We denote

S ∶= {(µ, τ, ρ, f ) ∈ R ×R ×R ×R ∣ µ < π̊(f ), τ ≥ f (µ) if ind f ≥ 0},

and define the transformation

Θ∶S→ R, (µ, τ, ρ, f ) ↦ f̂

by

f̂ (λ) ∶=
µ − λ

f (λ) − τ
+ ρ.

In the particular case when f (λ) ≡ τ (respectively, f = ∞), this is understood as f̂ ∶= ∞ (respectively, f̂ (λ) ∶= ρ). One sees immediately from
this definition that

Θ(µ, ρ, τ,Θ(µ, τ, ρ, f )) = f (3.1)

and [for f (λ) ≢ τ]

f̂ (µ) ≤ ρ (3.2)

with equality if and only if τ > f (µ). The other main properties of this transformation are summarized in the following lemma.

Lemma 3.1. The transformation Θ is well-defined, i.e., f̂ ∶= Θ(µ, τ, ρ, f ) ∈ R. The poles of f and f̂ interlace if ind f ≥ 2 and ind̂f ≥ 2 (i.e.,
if both f and f̂ have poles); moreover, π̊(f ) < π̊(̂f ) if τ = f(µ), and π̊(f ) > π̊(̂f ) if τ > f(µ). Also, if τ = f(µ), then ind̂f = ind f − 1,

f̂↑(λ) =
ρf↑(λ) − (λ − µ + τρ)f↓(λ)

λ − µ
, f̂↓(λ) =

f↑(λ) − τf↓(λ)
λ − µ

, (3.3)

while if τ > f(µ), then ind̂f = ind f + 1,

f̂↑(λ) = −ρf↑(λ) + (λ − µ + τρ)f↓(λ), f̂↓(λ) = −f↑(λ) + τf↓(λ).

Proof. The cases ind f = −1, 0, 1 are trivial, so we assume that ind f ≥ 2. We can write f̂ as

f̂ (λ) =
f↓(λ)(λ − µ)
τf↓(λ) − f↑(λ)

+ ρ,

where the polynomials f ↑ and f ↓ and thus f ↓ and τf ↓ − f ↑ have no common roots. When τ = f (µ), the polynomial τf ↓(λ) − f ↑(λ) is divisible
by λ − µ, and hence, f̂ is a rational function whose poles ĥ1, ĥ2, . . ., ĥd̂ coincide with the set {λ ≠ µ∣f (λ) = τ}. Recall that f is strictly increasing
on each of the intervals (−∞, h1), (h1, h2), . . . , (hd−1, hd), (hd, +∞). Hence, ĥk ∈ (hk, hk+1) for k = 1, . . ., d − 1. Therefore, d̂ = d − 1 or d̂ = d,
depending on whether the function f takes the value τ on the interval (hd, +∞) or not. If ind f = 2d, then f (λ)↗ h < f (µ) = τ as λ→ +∞, and
thus, d̂ = d − 1. Since the degree of the polynomial (τf↓(λ) − f↑(λ))/(λ − µ) also equals d − 1, the function f̂ can be written as
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f̂ (λ) = ĥ0λ + ĥ +
d̂
∑
k=1

δ̂k

ĥk − λ
.

Here, ĥ0 > 0 since f̂ (λ) → +∞ as λ → +∞, and δ̂k > 0 since f (λ) ↗ τ as λ ↗ ĥk. Therefore, f̂ ∈ R with ind̂f = 2d̂ + 1 = ind f − 1. Finally,
the consideration of the leading coefficients of the polynomials (λ − µ + τρ)f↓(λ) − ρf↑(λ) and τf ↓ − f ↑ yields the identities (3.3). If ind f = 2d
+ 1, then f̂ has one more pole in (hd, + ∞), so d̂ = d. Also, since f (λ)/λ→ h0 as λ→ + ∞, we obtain that limλ→+∞ f̂ (λ) is finite, i.e., ĥ0 = 0,
and ind̂f = 2d̂ = ind f − 1.

The case τ > f (µ) can be analyzed in a similar way by taking into account the fact that the set of poles of f̂ is now {λ ∈ R ∣ f (λ) = τ}. ◽

B. Direct transformation between problems
We now introduce our first transformation between boundary value problems of the form (1.1) and (1.2) and study its properties. This

transformation reduces the index of each non-Dirichlet boundary coefficient by one. Hence, by applying it a sufficient number of times to
a boundary value problem of the form (1.1) and (1.2), we will eventually arrive at a problem with boundary conditions independent of the
eigenvalue parameter.

The domain Ŝ of our transformation consists of all possible boundary value problems of the form (1.1) and (1.2), excluding the case
when both boundary conditions are Dirichlet,

Ŝ ∶= {(s, f , F) ∣ s ∈ L̊2(0,π), f , F ∈ R, ind f + indF ≥ −1}.

We define the transformation

T̂∶ Ŝ→ L̊2(0,π) ×R ×R, (s, f , F) ↦ (̂s, f̂ , F̂)

by

ŝ ∶= s −
2v′

v
+

2
π

ln
v(π)
v(0)

, f̂ ∶= Θ
⎛

⎝
Λ,−

v
[1]
s (0)
v(0)

,−
v
[1]
s (0)
v(0)

+
2
π

ln
v(π)
v(0)

, f
⎞

⎠
,

F̂ ∶= Θ
⎛

⎝
Λ,

v
[1]
s (π)
v(π)

,
v
[1]
s (π)
v(π)

−
2
π

ln
v(π)
v(0)

, F
⎞

⎠
,

(3.4)

where

Λ ∶= {
λ0, f , F ≠ ∞,

λ0 − 2, otherwise
and v(x) ∶= {

φ(x, Λ), f ≠ ∞,
ψ(x, Λ), f = ∞

(3.5)

(the motivation for choosing this particular value for Λ can be found in Ref. 14, Remark 3.4). That this transformation is well-defined follows
from Remark 2.2, Lemmas 2.1, 2.3, and 3.1, and the identity s − 2v′/v = −s − 2v[1]

s /v.
By Lemma 3.1, ind̂f = ind f − 1 if ind f ≥ 0 and ind̂f = 0 if ind f = −1. The same is true for F and F̂. Thus, we denote

I ∶= ind f − ind̂f = {
1, ind f ≥ 0,
−1, ind f = −1

(3.6)

and

J ∶=
ind f + indF

2
−

ind̂f + indF̂
2

= {
1, ind f , indF ≥ 0,
0, otherwise.

(3.7)

Theorem 3.2. If {λn, γn}n≥0 are the spectral data of the problem P(s, f , F) and (̂s, f̂ , F̂) = T̂(s, f , F), then the spectral data of the
transformed problem P(̂s, f̂ , F̂) are

{λn,
γn

(λn −Λ)I }
n≥J

.
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Proof. It is straightforward to verify that for every n ≥ J (i.e., λn ≠ Λ), the function

φ′(x,λn) −
v′(x)
v(x)

φ(x,λn) = φ[1]
s (x,λn) −

v
[1]
s (x)
v(x)

φ(x,λn)

is an eigenfunction of P(̂s, f̂ , F̂) corresponding to the eigenvalue λn. Hence, the numbers λn for n ≥ J are eigenvalues of this boundary value
problem. In order to prove that there are no other eigenvalues, we first observe that if ŷ is an eigenfunction of P(̂s, f̂ , F̂) corresponding to an
eigenvalue λ ≠ Λ, then ŷ′ + ŷv′/v is an eigenfunction of P(s, f , F) corresponding to the same eigenvalue λ. Thus no λ ∉ {Λ} ∪ ⋃n≥J{λn} is an
eigenvalue of P(̂s, f̂ , F̂). It remains to show that Λ is not an eigenvalue of P(̂s, f̂ , F̂) either. Suppose the contrary. Since the general solution of
the equation −(̂y[1]

ŝ )
′

− ŝ ŷ[1]
ŝ − ŝ2y = Λŷ is of the form

ŷ(x) ∶=
1

v(x)
(A + B∫

x

0
v2

(t)dt)

for some constants A and B, we have

ŷ[1]
ŝ (0)
ŷ(0)

=
v
[1]
s (0)
v(0)

−
2
π

ln
v(π)
v(0)

+
Bv2

(0)
A

,

ŷ[1]
ŝ (π)
ŷ(π)

=
v
[1]
s (π)
v(π)

−
2
π

ln
v(π)
v(0)

+
Bv2

(π)
A + B ∫

π
0 v2(t)dt

.

Then, from (3.2), we obtain

Bv2
(0)

A
≥ 0,

Bv2
(π)

A + B ∫
π

0 v2(t)dt
≤ 0

with equality in the first inequality (respectively, in the second inequality) if and only if f = ∞ (respectively, F = ∞); in the case when one of
these denominators is zero, the corresponding inequality should be omitted. Since at least one of f and F is not ∞, this is a contradiction.

For the part concerning the norming constants, we observe that the eigenfunction

φ̂n(x) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
Λ − λn

⎛

⎝
φ[1]

s (x,λn) −
v
[1]
s (x)
v(x)

φ(x,λn)
⎞

⎠
, ind f ≥ 0,

φ[1]
s (x,λn) −

v
[1]
s (x)
v(x)

φ(x,λn), ind f = −1
(3.8)

satisfies the initial condition φ̂n(0) = f̂↓(λn) and thus

γ̂n ∶= ∫
π

0
φ̂2

n(x)dx + f̂ ′(λn)̂f 2
↓ (λn) + F̂′(λn)φ̂2

n(π) =
⎧⎪⎪
⎨
⎪⎪⎩

γn

λn −Λ
, ind f ≥ 0,

γn(λn −Λ), ind f = −1

(see the proof of Ref. 14, Theorem 3.3 for details). ◽

C. An expression for γ̊(s, f ,F)

When at least one of f and F is ∞, the last theorem expresses the spectral data of the problems P(s, f , F) and P(̂s, f̂ , F̂) in terms of each
other. But if f ≠ ∞ and F ≠ ∞, then the information about the smallest eigenvalue λ0 of P(s, f , F) and the corresponding norming constant
γ0 is lost. We will see in Subsection III D that they can be given almost arbitrarily; “almost” here means that λ0 should, of course, be strictly
smaller than the smallest eigenvalue of the problem P(̂s, f̂ , F̂) and γ0 should be positive. In this subsection, we will obtain an expression for γ0

in terms of the transformed problem P(̂s, f̂ , F̂).
Let Ĉ(x,λ) and Ŝ(x,λ) be the solutions of the equation

− (y[1]
ŝ )

′

(x) − ŝ(x)y[1]
ŝ (x) − ŝ2

(x)y(x) = λy(x) (3.9)

satisfying the initial conditions

Ĉ(0,λ) = Ŝ[1]
ŝ (0,λ) = 1, Ŝ(0,λ) = Ĉ[1]

ŝ (0,λ) = 0.
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It is easy to see that the function 1/'(x, λ0) satisfies Eq. (3.9) and the initial conditions

1
φ(0,λ0)

=
1

f↓(λ0)
, (

1
φ
)

[1]

ŝ
(0,λ0) = −

ρ
f↓(λ0)

,

where

ρ ∶= f (λ0) +
2
π

ln
φ(π,λ0)

f↓(λ0)
.

Thus,

1
φ(x,λ0)

=
1

f↓(λ0)
(Ĉ(x,λ0) − ρ̂S(x,λ0)). (3.10)

Since Ŝ(x,λ0) and 1/'(x, λ0) are both solutions of Eq. (3.9), their Wronskian is constant

Ŝ[1]
ŝ (x,λ0)

1
φ(x,λ0)

− Ŝ(x,λ0)(
1
φ
)

[1]

ŝ
(x,λ0)

= Ŝ[1]
ŝ (0,λ0)

1
φ(0,λ0)

− Ŝ(0,λ0)(
1
φ
)

[1]

ŝ
(0,λ0) =

1
f↓(λ0)

. (3.11)

From here, one readily obtains (for almost every x ∈ [0, π])

φ2
(x,λ0) = f↓(λ0)(̂S(x,λ0)φ(x,λ0))

′,

and hence (note that the function in parentheses is absolutely continuous),

∫

π

0
φ2

(x,λ0)dx = f↓(λ0)̂S(π,λ0)φ(π,λ0).

If ind f ≥ 1 and ind F ≥ 1, then we have

f ′(λ0) =
1

ρ − f̂ (λ0)

and

F′(λ0) =
⎛

⎝

φ[1]
s (π,λ0)

φ(π,λ0)
−

2
π

ln
φ(π,λ0)

f↓(λ0)
− F̂(λ0)

⎞

⎠

−1

=
⎛

⎝

(1/φ)[1]
ŝ (π,λ0)

1/φ(π,λ0)
− F̂(λ0)

⎞

⎠

−1

.

Therefore,

∫

π

0
φ2

(x,λ0)dx + F′(λ0)φ2
(π,λ0)

= φ(π,λ0)
⎛
⎜
⎝

f↓(λ0)̂S(π,λ0) + φ(π,λ0)
⎛

⎝

(1/φ)[1]
ŝ (π,λ0)

1/φ(π,λ0)
− F̂(λ0)

⎞

⎠

−1
⎞
⎟
⎠

.
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Using (3.10) and (3.11), we can write the expression in parentheses as

f↓(λ0)̂S(π,λ0) + φ(π,λ0)
⎛

⎝

(1/φ)[1]
ŝ (π,λ0)

1/φ(π,λ0)
− F̂(λ0)

⎞

⎠

−1

=
⎛

⎝

(1/φ)[1]
ŝ (π,λ0)

1/φ(π,λ0)
− F̂(λ0)

⎞

⎠

−1

×
⎛

⎝
f↓(λ0)̂S(π,λ0)

(1/φ)[1]
ŝ (π,λ0)

1/φ(π,λ0)
− f↓(λ0)F̂(λ0)̂S(π,λ0) + φ(π,λ0)

⎞

⎠

= f↓(λ0)
⎛

⎝

(1/φ)[1]
ŝ (π,λ0)

1/φ(π,λ0)
− F̂(λ0)

⎞

⎠

−1

(̂S[1]
ŝ (π,λ0) − F̂(λ0)̂S(π,λ0))

=
f 2
↓ (λ0)

(z − ρ)φ(π,λ0)
,

where

z ∶=
Ĉ[1]

ŝ (π,λ0) − Ĉ(π,λ0)F̂(λ0)

Ŝ[1]
ŝ (π,λ0) − Ŝ(π,λ0)F̂(λ0)

.

Taking into account (3.3), we finally obtain

γ0 = f ′(λ0)f 2
↓ (λ0) + ∫

π

0
φ2

(x,λ0)dx + F′(λ0)φ2
(π,λ0)

=
f 2
↓ (λ0)

ρ − f̂ (λ0)
−

f 2
↓ (λ0)

ρ − z
= f̂ 2
↓ (λ0)(̂f (λ0) − z) ρ − f̂ (λ0)

ρ − z

.

The above identity can be written as

γ0 = (̂f↑(λ0) − ẑf↓(λ0))
ρ̂f↓(λ0) − f̂↑(λ0)

ρ − z
, (3.12)

and in this form, it will also hold for the case ind f = 0. If F is constant, then F̂ = ∞, and the above expression for z is understood as

z ∶=
Ĉ(π,λ0)

Ŝ(π,λ0)
.

D. Inverse transformation between problems
Our aim in this subsection is to invert the action of the transformation T̂. As we will see shortly, this cannot be done in a unique way,

and in order to determine the original problem, one needs some more information, e.g., its smallest eigenvalue λ0 and the corresponding
norming constant γ0. Theorem 3.2 shows that the smallest eigenvalue is not removed if and only if one of the boundary conditions of the
original problem is Dirichlet. In this case, the corresponding norming constant is multiplied (respectively, divided) by two if and only if the
first (respectively, the second) boundary condition is Dirichlet.

With these considerations in mind, we consider the union

S̃ ∶= S̃1 ∪ S̃2 ∪ S̃3

of the three disjoint sets

S̃1 ∶= {(µ,ν, s, f , F)∶ s ∈ L̊2(0,π), f , F ∈ R, µ < λ̊(s, f , F), ν > 0},

S̃2 ∶= {(µ,ν, s, f , F)∶ s ∈ L̊2(0,π), f ∈ R0, F ∈ R,

µ = λ̊(s, f , F), ν = γ̊(s, f , F)/2},
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and

S̃3 ∶= {(µ,ν, s, f , F)∶ s ∈ L̊2(0,π), f ∈ R, F ∈ R0,

µ = λ̊(s, f , F), ν = 2γ̊(s, f , F)}.

We define the transformation

T̃∶ S̃→ L̊2(0,π) ×R ×R, (µ,ν, s, f , F) ↦ (̃s, f̃ , F̃)

by

s̃ ∶= s −
2u′

u
+

2
π

ln
u(π)
u(0)

, f̃ ∶= Θ
⎛

⎝
Λ,−

u[1]
s (0)
u(0)

,−
u[1]

s (0)
u(0)

+
2
π

ln
u(π)
u(0)

, f
⎞

⎠
,

F̃ ∶= Θ
⎛

⎝
Λ,

u[1]
s (π)
u(π)

,
u[1]

s (π)
u(π)

−
2
π

ln
u(π)
u(0)

, F
⎞

⎠
,

(3.13)

where

Λ ∶=

⎧⎪⎪
⎨
⎪⎪⎩

µ, (µ,ν, s, f , F) ∈ S̃1,

µ − 2, (µ,ν, s, f , F) ∈ S̃2 ∪ S̃3

and

u(x) ∶=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

C(x,µ) − ρS(x,µ), (µ,ν, s, f , F) ∈ S̃1,

φ(x,µ − 2), (µ,ν, s, f , F) ∈ S̃2,

ψ(x,µ − 2), (µ,ν, s, f , F) ∈ S̃3

with

ρ ∶=
νz + f↑(µ)(zf↓(µ) − f↑(µ))
ν + f↓(µ)(zf↓(µ) − f↑(µ))

, z ∶=
C[1]

s (π,µ) − C(π,µ)F(µ)
S[1]

s (π,µ) − S(π,µ)F(µ)
.

The well-definedness of this transformation on S̃1 can be justified as follows: the two other cases are similar and even simpler. Lemma
2.1 implies µ < λ̊(s, f , F) ≤ λ̊(s,∞, F), i.e., µ is not an eigenvalue of the problem P(s,∞, F). Since the denominator of the above expres-
sion for z is zero only at the eigenvalues of the problem P(s,∞, F), z is well-defined. Arguing as in the Proof of Lemma 2.1, we see
that P(s,z, F) has only one eigenvalue not exceeding λ̊(s,∞, F), and hence, µ = λ̊(s,z, F). The same proof also shows that if f ≠ ∞,
then

f (µ) < f (λ̊(s, f , F)) = −
ψ[1]

s (0, λ̊(s, f , F))

ψ(0, λ̊(s, f , F))
< −

ψ[1]
s (0,µ)
ψ(0,µ)

= z.

Thus, the denominator of ρ is strictly positive and f (µ) < ρ < z. Lemma 2.1 implies that µ = λ̊(s,z, F) < λ̊(s, ρ,∞), and hence, Lemma 2.3
shows that u has no zeros on [0, π]. Moreover, if F ≠∞, then using the asymptotics of the solutions S and S[1]

s , we obtain that the denominator
of the expression for z is strictly positive, and thus, ρ < z implies F(µ) < u[1]

s (π)/u(π). This shows that the arguments of Θ in the expressions
for both f̃ and F̃ in (3.13) belong to its domain.

Now we prove that, in a sense, the two transformations that we defined in this subsection and Subsection III B are inverses of each
other.

Theorem 3.3. The transformations T̂ and T̃ are inverses of each other in the sense that if (s, f , F) ∈ Ŝ and (̂s, f̂ , F̂) = T̂(s, f , F), then

T̃(λ̊(s, f , F), γ̊(s, f , F), ŝ, f̂ , F̂) = (s, f , F),

and conversely, if (µ,ν, s, f , F) ∈ S̃, then T̂T̃(µ,ν, s, f , F) = (s, f , F).

Proof. The main idea of the proof is to show that the solutions v and u, used in (3.4) and (3.13), respectively, are inverses of each other
up to a constant factor. We will give the details for the first statement when f, F ≠ ∞; the remaining cases and the second statement can be
analyzed in an analogous manner.
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Denote λ0 ∶= λ̊(s, f , F) and (̃s, f̃ , F̃) ∶= T̃(λ0, γ̊(s, f , F), ŝ, f̂ , F̂). In our case, (λ0, γ̊(s, f , F), ŝ, f̂ , F̂) ∈ S̃1 and v(x) = '(x, λ0). Comparing
the definition of T̃ with expression (3.12) for γ̊(s, f , F), we conclude that both f ↓(λ0)/v(x) and u(x) satisfy Eq. (3.9) with λ = λ0 and the same
initial conditions, and hence, u(x) = f ↓(λ0)/v(x). Thus,

s̃ = ŝ −
2u′

u
+

2
π

ln
u(π)
u(0)

= s −
2v′

v
+

2
π

ln
v(π)
v(0)

−
2u′

u
+

2
π

ln
u(π)
u(0)

= s.

Finally, identity (3.1) implies f̃ = f and F̃ = F. ◽

We can also prove an analog of Theorem 3.2 for the transformation T̃.

Theorem 3.4. If {λn, γn}n≥0 are the spectral data of the problem P(s, f , F) and (̃s, f̃ , F̃) = T̃(µ,ν, s, f , F), then the spectral data of the
problem P(̃s, f̃ , F̃) are

{λn, γn(λn −Λ)
I
}n≥−J ,

where

I ∶= ind f̃ − ind f , J ∶=
ind f̃ + ind F̃

2
−

ind f + indF
2

,

and we denote λ−1 ∶= µ and γ−1 ∶= ν in the case when J = 1.

Proof. By Theorem 3.3, T̂(̃s, f̃ , F̃) = (s, f , F). Thus, the part of the claim concerning the eigenvalues and the norming constants with
non-negative indices immediately follows from Theorem 3.2. It only remains to consider the case µ < λ̊(s, f , F), i.e., J = 1. It is straightforward
to verify in this case that µ is an eigenvalue of the problem P(̃s, f̃ , F̃) corresponding to the eigenfunction 1/u. Again, comparing the definition
of T̃ with (3.12), we obtain that ν is the corresponding norming constant. ◽

IV. DIRECT SPECTRAL PROBLEMS
A. Asymptotics of eigenvalues and norming constants

In the case of constant boundary conditions, the eigenvalues of the problem P(s, f , F) have the asymptotics (Ref. 26, Theorem 1, and Ref.
18, Lemma 7.1)

√
λn = n +

ND

2
+ `2(1),

where ND is the number of Dirichlet boundary conditions. The norming constants have the asymptotics

γn =
π
2
(n +

ND

2
)

−2
(1 + `2(1))

if the first boundary condition is Dirichlet, and

γn =
π
2
(1 + `2(1))

otherwise (see Ref. 18, Lemmas 2.4 and 7.2, but note that the norming constants are defined differently there). Our next theorem shows that
the transformation T̂ allows us to extend these results to the case of boundary conditions dependent on the eigenvalue parameter and write
them in a unified manner.

Theorem 4.1. The spectral data of the problem P(s, f , F) have the asymptotics

√
λn = n −

ind f + indF
2

+ `2(1),

γn =
π
2
(n −

ind f + indF
2

)

2ind f
(1 + `2(1)).
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Proof. According to the discussion at the beginning of this subsection, these formulas hold in the case of constant boundary conditions.
Consider now the chain of problems P(s(k), f (k), F(k)

) defined by

(s(0), f (0), F(0)
) ∶= (s, f , F),

(s(k), f (k), F(k)
) ∶= T̂(s(k−1), f (k−1), F(k−1)

), k = 1, 2, . . . , K,
(4.1)

where K ∶= max{ind f, ind F}. Then, the last problem P(s(K), f (K), F(K)
) has constant boundary conditions, and hence, its eigenvalues have

the asymptotics
√

λ(K)
n = n −

ind f (K) + indF(K)

2
+ `2(1).

Let I and J be defined by (3.6) and (3.7) with f and F replaced by f (K−1) and F(K−1), respectively. Using Theorem 3.2, we calculate

√

λ(K−1)
n =

√

λ(K)

n−J = n − J −
ind f (K) + indF(K)

2
+ `2(1)

= n −
ind f (K−1) + indF(K−1)

2
+ `2(1).

Repeating this argument K − 1 more times, we get the above asymptotics for
√
λn.

In a similar manner, from

γ(K)
n =

π
2
(n −

ind f (K) + indF(K)

2
)

2ind f (K)

(1 + `2(1)),

Theorem 3.2, and the asymptotics of the eigenvalues, we obtain

γ(K−1)
n = γ(K)

n−J (λ
(K−1)
n − µ)

I

=
π
2
(n − J −

ind f (K) + indF(K)

2
)

2ind f (K)

× (n −
ind f (K−1) + indF(K−1)

2
)

2I

(1 + `2(1))

=
π
2
(n −

ind f (K−1) + indF(K−1)

2
)

2ind f (K−1)

(1 + `2(1)).

Again, repeating this argument K − 1 more times yields the above asymptotics for the sequence γn. ◽

B. Oscillation of eigenfunctions
As shown in Ref. 30, Theorem 1 (see also Ref. 17, Theorem 4.4), the Sturm oscillation theorem holds also in the case of distributional

potentials with constant boundary conditions, i.e., an eigenfunction corresponding to the nth eigenvalue of the problem P(s, f , F) with ind f,
ind F ≤ 0 has exactly n zeros in the open interval (0, π). By using the transformation T̂, we will now extend this result to the case of arbitrary
ind f and ind F. However, first we need the following auxiliary result.

Lemma 4.2. Let J and φ̂n be defined by formulas (3.7) and (3.8), respectively. If the function φ̂n(x) has N zeros in (0, π), then the function
'(x, λn) has exactly N + J + Πf̂ (λn) + ΠF̂(λn) −Πf (λn) −ΠF(λn) zeros in (0, π).

Proof. We give the proof for the case f ≠ ∞; in the case when f = ∞, we only need to consider ψ instead of '. Let Λ be defined by (3.5).
Denote by x1, . . ., xN the zeros of the function φ̂n(x) in (0, π). Then, for each k = 1, . . ., N – 1, we have

∫

xk+1

xk

φ(x,λn)φ(x, Λ)dx = φ̂n(xk+1)φ(xk+1, Λ) − φ̂n(xk)φ(xk, Λ) = 0,
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and hence, the function '(x, λn) has a zero in (xk, xk+1). Similarly, we obtain that between any two zeros of '(x, λn), there is a zero of φ̂n(x).
This implies that the zeros of these two functions strictly interlace; in particular, they have no common zeros. Thus, '(x, λn) has N − 1 zeros
in (x1, xN ).

Consider now the interval (0, x1). It is obvious that if f ↓(λn) = '(0, λn) = 0, then '(x, λn) does not have a zero in (0, x1), and if f̂↓(λn)

= φ̂n(0) = 0, then '(x, λn) has a zero in (0, x1). In the case when f̂↓(λn)f↓(λn) ≠ 0, we see that if '(x, λn) does not have a zero in (0, x1),
then

∫

x1

0
φ(x,λn)φ(x, Λ)dx = −̂f↓(λn)f↓(Λ)

and '(0, λn)'(0, Λ) = f ↓(λn)f ↓(Λ) must have the same sign, and if '(x, λn) has a zero x0 ∈ (0, x1), then

∫

x0

0

φ̂n(x)
φ(x, Λ)

dx = −
f↓(λn)

(Λ − λn)f↓(Λ)

and φ̂n(0)/φ(0,Λ) = f̂↓(λn)/f↓(Λ) must have the same sign (recall that Λ < λn). Therefore, the function '(x, λn) has a zero in (0, x1) if and
only if f̂↓(λn)f↓(λn) > 0 or f̂↓(λn) = 0, i.e., if and only if the functions f and f̂ have the same number of poles not exceeding λn. Thus, the
number of zeros of '(x, λn) in (0, x1) equals 1 − (Πf (λn) −Πf̂ (λn)).

A similar assertion holds for the interval (xN , π) and the functions F and F̂ if the boundary condition at π is not Dirichlet (i.e., J = 1). Oth-
erwise, if the boundary condition at π is Dirichlet (i.e., J = 0), the function '(x, λn) does not have a zero in (xN , π), but ΠF(λn) = ΠF̂(λn) = 0.
Thus, the number of zeros of '(x, λn) in (xN , π) equals J − (ΠF(λn) −ΠF̂(λn)). This concludes the proof. ◽

We can now proceed to our main oscillation result.

Theorem 4.3. An eigenfunction of the problem P(s, f , F) corresponding to the eigenvalue λn has exactly n − Πf (λn) − ΠF(λn) zeros in
(0, π).

Proof. Consider again the problems P(s(k), f (k), F(k)
) defined by (4.1). Since the last problem P(s(K), f (K), F(K)

) has constant boundary
conditions, its eigenfunction corresponding to the eigenvalue λ(K)

m has m zeros in the open interval (0, π) for each m ≥ 0. On the other hand,
the constancy of f (K ) and F(K ) implies Πf (K)(λ) ≡ 0 and ΠF(K)(λ) ≡ 0, and hence, the statement of the theorem holds in this case. Let J(k)

be defined by (3.7) with f and F replaced by f (k) and F(k), respectively. By successive applications of Theorem 3.2, it follows that λn = λ(K)

n−J′ ,
where J′ ∶= ∑K−1

k=0 J(k). Applying Lemma 4.2 successively to the problems P(s(K−1), f (K−1), F(K−1)
), . . ., P(s(0), f (0), F(0)

), we finally obtain
that an eigenfunction of P(s, f , F) corresponding to the eigenvalue λn has

n − J′ +
K−1
∑
k=0

(J(k) + Πf (k+1)(λn) + ΠF(k+1)(λn) −Πf (k)(λn) −ΠF(k)(λn))

= n −Πf (λn) −ΠF(λn)

zeros in (0, π). ◽

C. On problems with a common boundary condition
Let α ≠ 0 be some real number and together with the problem P(s, f , F) consider the problem P(s, f + α, F). Denote the eigenvalues of

the latter problem by µn. Theorem 4.1 shows that they have the same asymptotics as λn. In this subsection, we study further properties of these
two sequences. We will use these results in Subsection V B.

Throughout this subsection, we assume that ind f ≥ 0 so that the problems P(s, f , F) and P(s, f + α, F) are different. We also assume
that no eigenvalue of P(s, f , F) is a pole of f or, which is the same, the spectra of the problems P(s, f , F) and P(s, f + α, F) do not intersect.
Obviously, µn are the zeros of the (characteristic) function

ξ(λ) ∶= F↑(λ)θ(π,λ) − F↓(λ)θ[1]
s (π,λ) = f↓(λ)ψ[1]

s (0,λ) + (f↑(λ) + αf↓(λ))ψ(0,λ),

where θ(x, λ) is the solution of (1.1) satisfying the initial conditions

θ(0,λ) = f↓(λ), θ[1]
s (0,λ) = −f↑(λ) − αf↓(λ). (4.2)

J. Math. Phys. 60, 063501 (2019); doi: 10.1063/1.5048692 60, 063501-16

Published under license by AIP Publishing

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

Together with the expression for χ from Subsection II B, this gives

ξ(λ) − χ(λ) = αf↓(λ)ψ(0,λ). (4.3)

The function

m(λ) ∶= −
ξ(λ)
χ(λ)

satisfies the identity m(λ) = m(λ) and is a meromorphic function with poles at λn and zeros at µn. For nonreal values of λ, the solution

y(x,λ) ∶= θ(x,λ) + m(λ)φ(x,λ)

satisfies the boundary condition

F↑(λ)y(π,λ) − F↓(λ)y[1]
s (π,λ) = 0.

Taking into account (2.1) and (4.2), we obtain

(λ − µ)∫
π

0
y(x,λ)y(x,µ)dx = (y(x,λ)y[1]

s (x,µ) − y[1]
s (x,λ)y(x,µ))∣

π

0

= (F(µ) − F(λ))y(π,λ)y(π,µ) + αf↓(λ)f↓(µ)(m(λ) −m(µ))
+(f↓(λ)f↑(µ) − f↓(µ)f↑(λ))(1 + m(λ))(1 + m(µ)).

For µ = λ, this implies

α
Imm(λ)

Imλ
=

1
∣f↓(λ)∣2

∫

π

0
∣y(x,λ)∣2 dx

+ ∣
y(π,λ)
f↓(λ)

∣

2 ImF(λ)
Imλ

+ ∣1 + m(λ)∣2
Imf (λ)

Imλ
> 0.

Thus, αm(λ) is a Herglotz–Nevanlinna function, and hence, its zeros µn and poles λn interlace.
Using (2.1), (2.2), and the constancy of the Wronskian, we obtain

ξ(λn) = F↑(λn)θ(π,λn) − F↓(λn)θ[1]
s (π,λn)

= βn(φ[1]
s (π,λn)θ(π,λn) − φ(π,λn)θ[1]

s (π,λn))

= βn(φ[1]
s (0,λn)θ(0,λn) − φ(0,λn)θ[1]

s (0,λn)) = αβnf 2
↓ (λn).

Together with (2.7), this yields

γn =
αf 2
↓ (λn)χ′(λn)

ξ(λn)
.

We will need this formula in order to solve the two-spectra inverse problem in Subsection V B, but for now we will use it to obtain more
refined asymptotics for the difference

√
λn −

√
µn. The mean value theorem implies

ξ(λn) = ξ(λn) − ξ(µn) = (
√
λn −

√
µn)(

√
λn +

√
µn)ξ′(ζn) (4.4)

for ζn ∈ [λn,µn]. Thus,
√
λn −

√
µn =

αf 2
↓ (λn)χ′(λn)

(
√
λn +

√
µn)γnξ′(ζn)

.

Using the infinite product representations

χ(λ) = −∏
n<L

(λn − λ)∏
n=L

π(λn − λ)∏
n>L

λn − λ
(n − L)2

and
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ξ(λ) = −∏
n<L

(µn − λ)∏
n=L

π(µn − λ)∏
n>L

µn − λ
(n − L)2 ,

we obtain (see Ref. 15, Appendix A and Ref. 19, Lemma 3.2 for details)

χ′(λn) = (−1)n
(n − L)2L

(
π
2

+ `2(1)), ξ′(ζn) = (−1)n
(n − L)2L

(
π
2

+ `2(1)), (4.5)

where

L ∶=
ind f + indF

2
.

Now using the asymptotics of γn from Theorem 4.1, we finally obtain

√
λn −

√
µn = (n − L)−2r−1⎛

⎝

α(h′0)
2

π
+ `2(1)

⎞

⎠
,

where

r ∶= ind f − 2 d =

⎧⎪⎪
⎨
⎪⎪⎩

1, ind f is odd,

0, ind f is even.

V. INVERSE SPECTRAL PROBLEMS
A. Inverse problem by eigenvalues and norming constants

Theorem 4.1 shows that the spectral data of a problem of the form (1.1) and (1.2) necessarily satisfy the conditions

λ0 < λ1 < λ2 < ⋯, γn > 0, n ≥ 0, (5.1)

and
√
λn = n −

M + N
2

+ `2(1), γn =
π
2
(n −

M + N
2

)
2M

(1 + `2(1)) (5.2)

for some integers M, N ≥ −1. The aim of this subsection is to prove that these necessary conditions are also sufficient for sequences of real
numbers {λn}n≥0 and {γn}n≥0 to be the eigenvalues and the norming constants of a problem of the form (1.1) and (1.2).

If {λn}n≥0 and {γn}n≥0 are two sequences of real numbers satisfying the above conditions with −1 ≤ M, N ≤ 0, then there exists a unique
boundary value problem P(s, f , F) with constant boundary conditions having these sequences as its spectral data (see, e.g., Ref. 18, Corollary
5.4 and Theorem 7.4). The transformations defined in Sec. III allow us to extend this result to the case of boundary conditions (1.2).

Theorem 5.1. Let {λn}n≥0 and {γn}n≥0 be sequences of real numbers satisfying the conditions (5.1) and (5.2). Then, there exists a unique
boundary value problem P(s, f , F) having the spectral data {λn, γn}n≥0.

Proof. With Theorem 3.2 in mind, we denote K ∶= max{M, N}, and consider the numbers M(k), N(k) and the sequences {λ(k)
n }n≥0,

{γ(k)
n }n≥0 for k = 0, 1, . . ., K defined by

M(0)
∶= M, N(0)

∶= N, λ(0)
n ∶= λn, γ(0)

n ∶= γn

and

M(k)
∶= M(k−1)

− I, N(k)
∶= N(k−1) + I − 2J,

λ(k)
n ∶= λ(k−1)

n−J , γ(k)
n ∶=

γ(k−1)
n−J

(λ(k−1)
n−J − λ(k−1)

0 + 2 − 2J)I
,

where

I ∶=
⎧⎪⎪
⎨
⎪⎪⎩

1, M(k−1)
≥ 0,

−1, M(k−1)
= −1,

J ∶=
⎧⎪⎪
⎨
⎪⎪⎩

1, M(k−1), N(k−1)
≥ 0,

0, otherwise
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(we omit the indices of I and J here to avoid double indices). One easily verifies that they satisfy the conditions (5.1) and (5.2) with M, N, λn,
and γn replaced by M(k), N(k), λ(k)

n , and γ(k)
n , respectively. Moreover, one of the numbers M(K ) and N(K ) is always 0, while the other one is

either 0 or −1. Hence, there exists a boundary value problem P(s(K), f (K), F(K)
) (with constant boundary conditions) having {λ(K)

n , γ(K)
n }n≥0

as its spectral data. Now we successively define P(s(K−1), f (K−1), F(K−1)
), . . ., P(s(0), f (0), F(0)

) by

(s(k−1), f (k−1), F(k−1)
) ∶= T̃(λ(k−1)

0 , γ(k−1)
0 , s(k), f (k), F(k)

).

Theorem 3.4 ensures at each step that the spectral data of P(s(k), f (k), F(k)
) is {λ(k)

n , γ(k)
n }n≥0, and hence, the existence part of the theorem

follows.
In order to prove the uniqueness part, we assume that P(s, f , F) and P(̃s, f̃ , F̃) have the same spectral data. Then Theorem 4.1 implies

ind f = ind̃f and indF = ind F̃, and we denote K ∶= max{ind f, ind F}. Together with P(s(k), f (k), F(k)
) defined by (4.1), we consider the

problems P(̃s(k), f̃ (k), F̃(k)
) defined by

(̃s(0), f̃ (0), F̃(0)
) ∶= (̃s, f̃ , F̃),

(̃s(k), f̃ (k), F̃(k)
) ∶= T̂(̃s(k−1), f̃ (k−1), F̃(k−1)

), k = 1, 2, . . . , K.
(5.3)

Theorem 3.2 yields that P(s(k), f (k), F(k)
) and P(̃s(k), f̃ (k), F̃(k)

) have the same spectral data. In particular, P(s(K), f (K), F(K)
) and

P(̃s(K), f̃ (K), F̃(K)
) are two problems with constant boundary conditions and the same spectral data. Therefore, according to the discus-

sion preceding the theorem, we have (s(K), f (K), F(K)
) = (̃s(K), f̃ (K), F̃(K)

), and successive applications of Theorem 3.3 concludes the
proof. ◽

B. Inverse problem by two spectra
The results of Subsection IV C show that if two disjoint sequences {λn}n≥0 and {µn}n≥0 are the eigenvalues of two problems of the form

P(s, f , F) and P(s, f + α, F), then they interlace and satisfy asymptotics of the form

√
λn = n − L + `2(1),

√
λn −

√
µn = (n − L)−2r−1

(ν + `2(1)) (5.4)

for some integer or half-integer L ≥ −1/2, ν ∈ R/{0} and r ∈ {0, 1}, with the exception of the case when L = −1/2 and r = 1 (because of our
assumption ind f ≥ 0, if L = −1/2, then necessarily ind f = 0, and consequently, r = 0). We are now going to prove that these conditions are also
sufficient for two sequences to be the eigenvalues of two such problems. Note that one cannot directly apply the transformations of Sec. III
as in Subsection V A because a pair of boundary value problems with a common boundary condition is transformed to a pair of boundary
value problems with no common boundary conditions. Therefore, we will first reduce our two-spectra inverse problem to the one solved in
Subsection V A.

As Theorem 5.1 shows, the inverse problem by spectral data with boundary conditions of the form (1.2) and (1.3) is completely analogous
to the one with constant boundary conditions in the sense that a boundary value problem is uniquely determined by its eigenvalues and
norming constants. It turns out, however, that unlike the case of constant boundary conditions, a pair of problems of the form P(s, f , F) and
P(s, f + α, F) is not uniquely determined by their eigenvalues. One also needs to specify the poles of the function f. These poles (i.e., the zeros
of f ↓) are among the zeros of the difference of the corresponding characteristic functions [see (4.3)], and our next theorem shows that they
can be chosen arbitrarily among these zeros. The difference between these two kinds of inverse problems can be explained intuitively by the
fact that the information about f ↓ is already incorporated into the definition of norming constants.

Theorem 5.2. Let {λn}n≥0 and {µn}n≥0 be two interlacing sequences satisfying the asymptotics (5.4). Then, there exists a pair of problems
of the form P(s, f , F) and P(s, f +α, F) having the eigenvalues {λn}n≥0 and {µn}n≥0, respectively. Moreover, there is a one-to-one correspondence
between such pairs of problems and sets of non-negative integers of cardinality not exceeding L + (1 − r)/2.

Proof. Define the functions

χ(λ) ∶= −∏
n<L

(λn − λ)∏
n=L

π(λn − λ)∏
n>L

λn − λ
(n − L)2

and

ξ(λ) ∶= −∏
n<L

(µn − λ)∏
n=L

π(µn − λ)∏
n>L

µn − λ
(n − L)2 .
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Let d be an integer with

0 ≤ d ≤ L +
1 − r

2
,

and let i1, i2, . . ., id be integers (indices) with 0 ≤ i1 < i2 < ⋯ < id. Define the polynomial

p(λ) ∶=
d
∏
k=1

(τik − λ),

where τ0 < τ1 < ⋯ are the zeros of the function χ(λ) − ξ(λ). The use of the fact that λn and µn interlace together with (4.4) and (4.5) (which is
legitimate since the derivation of these estimates used only the infinite product representations of χ and ξ and the asymptotics of λn and ζn)
implies that the numbers γn defined by

γn ∶=
πνp2

(λn)χ′(λn)

ξ(λn)

are all positive and have the asymptotics

γn = (n − L)4d+2r
(
π
2

+ `2(1)).

By Theorem 5.1, there exists a boundary value problem P(s, f , F) having the eigenvalues {λn}n≥0 and the norming constants {γn}n≥0. More-
over, ind f = 2d + r ≥ 0 and ind F = 2L − 2d − r ≥ −1. Denote α ∶= πν/(h′0)

2 with h′0 defined as at the beginning of Sec. II. It only remains
to show that the problem P(s, f + α, F) has the eigenvalues µn. However, first we show that the polynomials f ↓(λ) and p(λ) coincide up to a
constant factor. Arguing as in the Proof of Lemma 2.4, we have

∞

∑
n=0

λk
np(λn)

γn
=

∞

∑
n=0

λk
nξ(λn)

πνp(λn)χ′(λn)
=

1
2π2νi

lim
N→∞∫CN

λk
(ξ(λ) − χ(λ))

p(λ)χ(λ)
dλ = 0,

where CN is the same as in that proof. Thus, by the same lemma, f ↓(λ) = h′0p(λ).
Denote the eigenvalues of the boundary value problem P(s, f + α, F) by µ̂n. They coincide with the zeros of the function

ξ̂(λ) ∶= F↑(λ)θ(π,λ) − F↓(λ)θ[1]
s (π,λ),

where θ(x, λ) is defined as in (4.2). Using the results of Subsection IV C, we obtain

ξ̂(λn) =
αf 2
↓ (λn)χ′(λn)

γn
=
πνp2

(λn)χ′(λn)

γn
= ξ(λn), n ≥ 0.

This and the asymptotics of χ, ξ,and ξ̂ show that (̂ξ(λ) − ξ(λ))/χ(λ) is an entire function satisfying the estimate

ξ̂(λ) − ξ(λ)
χ(λ)

= o(1)

on ⋃N CN and hence by the maximum principle on the whole plane. Then, the Liouville theorem yields that this function is identically zero.
Thus, ξ̂(λ) ≡ ξ(λ), and hence, µ̂n = µn, n ≥ 0.

So far, we have constructed two problems P(s, f , F) and P(s, f + α, F) with the eigenvalues {λn}n≥0 and {µn}n≥0, respectively, such that
the poles of f are i1’s, i2’s, . . ., id’s zeros of χ(λ) − ξ(λ). To prove that such a pair of problems is unique, we assume that the problems P(s, f , F)
and P(̃s, f̃ , F̃) have the eigenvalues {λn}n≥0 and the problems P(s, f + α, F) and P(̃s, f̃ + α̃, F̃) have the eigenvalues {µn}n≥0. We also assume
that the poles of f (respectively, f̃ ) are i1’s, i2’s, . . ., id’s zeros of χ − ξ (respectively, χ̃ − ξ̃). Then, χ ≡ χ̃ and ξ ≡ ξ̃ by the definition of these

functions, and hence, (h′0)
−1f↓ ≡ (h̃′0)

−1
f̃↓. On the other hand, the asymptotics of the eigenvalues yields α(h′0)

2
= α̃(h̃′0)

2
(see the formula for

√
λn −

√
µn at the end of Subsection IV C). Thus,

γn =
αf 2
↓ (λn)χ′(λn)

ξ(λn)
=
α̃̃f 2
↓ (λn)χ̃′(λn)

ξ̃(λn)
= γ̃n.
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Therefore, the uniqueness part of Theorem 5.1 implies that s = s̃ almost every on [0, π], f = f̃ and F = F̃. Finally, f = f̃ yields α = πν/(h′0)
2
=

πν/(h̃′0)
2
= α̃. ◽

Remark 5.3. In particular, this proof shows that the problems P(s, f , F) and P(s, f + α, F) are uniquely determined by their spectra and
the poles of f. Theorem 5.2 also yields that the two spectra determine these problems uniquely if and only if ind F ≤ 0 ≤ ind f ≤ 1 (i.e., the
second boundary condition does not contain the eigenvalue parameter at all and the first boundary condition may depend on it only linearly).

C. Inverse problems by one spectrum
Theorems 5.1 and 5.2 show that the spectrum of a boundary value problem of the form (1.1) and (1.2) does not uniquely determine this

problem. In order for the unique determination by one spectrum to work, one has to impose some additional restrictions. In this subsection,
we will consider two types of such restrictions. We will call a boundary value problem of the form P(s, f , f ) symmetric if s(x) + s(π − x) = 0
(which, for differentiable s ∈ L̊2(0,π), is equivalent to s′(x) = s′(π − x)). In the first part of this subsection, we will prove that the spectrum
alone determines the symmetric problem P(s, f , f ).

We start by studying the properties of symmetric problems. Theorem 4.1 shows that the eigenvalues of P(s, f , f ) satisfy the
asymptotics

√
λn = n − L + `2(1), (5.5)

where L ∶= ind f. Since our problem is symmetric, it follows from (2.1) that ψ(x, λ) = '(π − x, λ). Then, (2.2) implies ψ(x,λn) = β2
nψ(x,λn),

and hence, β2
n = 1. Using Theorem 4.3 we obtain βn = (−1)n. Thus, (2.7) implies

γn = (−1)nχ′(λn). (5.6)

Since L is now an integer, formula (2.6) takes the form

χ(λ) = −π
L
∏
n=0

(λn − λ)
∞

∏
n=L+1

λn − λ
(n − L)2 . (5.7)

Now we are ready to state the first result of this subsection.

Theorem 5.4. Let {λn}n≥0 be a strictly increasing sequence of real numbers satisfying the asymptotics (5.5) for some integer L ≥ −1. Then,
there exists a unique symmetric boundary value problem P(s, f , f ) having the spectrum {λn}n≥0.

Proof. Define χ by (5.7) and then γn by (5.6). Expression (5.7) and the use of (4.5) in (5.6) imply that γn are strictly positive numbers
satisfying the asymptotics

γn =
π
2
(n − L)2L

(1 + `2(1)).

The rest of the proof now follows from Theorem 5.1. ◽

Another type of inverse problems where one spectrum is sufficient for the unique determination is a class of problems known under
the names of problems with mixed given data, problems with partial information on the potential, or half-inverse problems. For problems with
summable potentials and constant boundary conditions, the Hochstadt–Lieberman theorem states that the knowledge of the potential on
[0, π/2] together with the boundary coefficient at 0 and the spectrum uniquely determines the other boundary coefficient and the potential
almost every on [π/2, π]. Hryniv and Mykytyuk (Ref. 20, Theorem 2.1) showed that this result holds also in the case of distributional potentials
with constant boundary conditions. In our notation (the uniqueness part of), Ref. 20, Theorem 2.1, states that if the spectra of the problems
P(s, h, H) and P(̃s, h̃, H̃) with constant h, H, h̃, and H̃ coincide and s(x) − h = s̃(x) − h̃ almost every on [0, π/2], then s(x) − h = s̃(x) − h̃
almost every on [π/2, π] and H + h = H̃ + h̃. In this subsection, we will generalize this result to the case of boundary value problems of the
form (1.1) and (1.2).

We start with an auxiliary lemma.

Lemma 5.5. Suppose that P(s1, f1, F1) and P(s2, f2, F2) with f 1 ≠ ∞ ≠ f 2 have the same spectra, (̂s1, f̂1, F̂1) = T̂(s1, f1, F1), (̂s2, f̂2, F̂2) =

T̂(s2, f2, F2), and a ∈ (0, π] is an arbitrary real number. Then, f 1(λ) − f 2(λ) = const = s1(x) − s2(x) for almost every x ∈ [0, a] if and only if
f̂1(λ) − f̂2(λ) = const = ŝ1(x) − ŝ2(x) foralmost every x ∈ [0, a].

J. Math. Phys. 60, 063501 (2019); doi: 10.1063/1.5048692 60, 063501-21

Published under license by AIP Publishing

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

Proof. To prove the necessity, we notice that f 1(λ) − f 2(λ) = const yields ind f 1 = ind f 2, and hence, the asymptotics of the eigenvalues
(see Theorem 4.1) implies ind F1 = ind F2. Denote

Λ ∶=

⎧⎪⎪
⎨
⎪⎪⎩

λ̊(q1, f1, F1), F1 ≠ ∞,

λ̊(q1, f1, F1) − 2, F1 = ∞
=

⎧⎪⎪
⎨
⎪⎪⎩

λ̊(q2, f2, F2), F2 ≠ ∞,

λ̊(q2, f2, F2) − 2, F2 = ∞.

Then, the solutions v1(x) and v2(x) of the initial value problems

−(y[1]
s1 )

′

− s1y[1]
s1 − s2

1y = Λy, v1(0) = (f1)↓(Λ), (v1)
[1]
s1

(0) = −(f1)↑(Λ)

and

−(y[1]
s2 )

′

− s2y[1]
s2 − s2

2y = Λy, v2(0) = (f2)↓(Λ), (v2)
[1]
s2

(0) = −(f2)↑(Λ)

coincide on [0, a]. Therefore, (3.4) implies

f̂1(λ) − f̂2(λ) =
2
π

ln
v1(π)
v2(π)

= ŝ1(x) − ŝ2(x) for a.e. x ∈ [0, a].

The sufficiency can be proved similarly. ◽

Applying this lemma successively to the problems defined by (4.1) and (5.3) with a = π/2, using the above-mentioned result of Hryniv
and Mykytyuk, and applying the lemma again to (4.1) and (5.3) in reverse order with a = π, we obtain the following generalization of the
Hochstadt–Lieberman theorem.

Theorem 5.6. If the spectra of the problems P(s, f , F) and P(̃s, f , F̃) with ind f ≥ ind F coincide and s(x) = s̃(x) almost every on [0, π/2],
then s(x) = s̃(x) almost every on [π/2, π] and F(λ) = F̃(λ).
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