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Abstract
We establish a criterion for a set of eigenfunctions of the one-dimensional Schrödinger
operator with distributional potentials and boundary conditions containing the eigen-
value parameter to be a Riesz basis for L2(0, π).
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1 Introduction andmain result

In this paper we continue the study of one-dimensional Schrödinger operators
with distributional potentials and boundary conditions containing rational Herglotz–
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Nevanlinna functions of the eigenvalue parameter initiated in [7]. These operators are
generated by the differential equation

−
(
y[1])′

(x) − s(x)y[1](x) − s2(x)y(x) = λy(x) (1.1)

and the boundary conditions

y[1](0)
y(0)

= − f (λ),
y[1](π)

y(π)
= F(λ), (1.2)

where s ∈ L2(0, π) is real-valued, y[1](x) := y′(x) − s(x)y(x) denotes the quasi-
derivative of y with respect to s, and

f (λ) = h0λ + h +
d∑

k=1

δk

hk − λ
, F(λ) = H0λ + H +

D∑
k=1

�k

Hk − λ
(1.3)

are rational Herglotz–Nevanlinna functions, i.e., h0, H0 ≥ 0, h, H ∈ R, δk,�k > 0,
h1 < · · · < hd , H1 < · · · < HD . Our aim in this paper is to prove a criterion for (a
subset of) the eigenfunctions of this boundary value problem to be a Riesz basis for
L2(0, π).

In [5], to each function f of the form (1.3) we assigned its index (an integer) which,
roughly speaking, counts the number of poles of this function. More precisely, each
finite pole is counted twice and a pole at infinity (if any) once:

ind f :=
{
2d + 1, h0 > 0,

2d, h0 = 0.

This notion allowed us in that paper (see also [6] and [7]) to formulate various direct
and inverse spectral results for boundary value problems with boundary conditions of
the form (1.2), (1.3) in a unified manner, i.e. without considering separate cases as it
is usually done in the literature. Define a nonnegative integer N by

N :=
⌈
ind f

2

⌉
+

⌈
ind F

2

⌉
,

where the ceiling function �·� denotes the smallest integer not smaller than the argu-
ment. Let � := {n1, . . . , nN } ⊂ N ∪ {0} be a set of N distinct indices. Then
from the asymptotics of the eigenvalues and the eigenfunctions one sees that the
sequence {ψn}n /∈� of appropriately normalized (see below) eigenfunctions asymptot-
ically behaves as (and is, in fact, quadratically close to) the orthonormal basis

√
2

π
cos

((
n + N − ind f + ind F

2

)
x + ind f

2
π

)
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(which coincides with one of {cos nx}∞n=0, {cos(n + 1/2)x}∞n=0, {sin(n + 1/2)x}∞n=0,
or {sin(n + 1)x}∞n=0 up to a constant factor). Hence it seems reasonable to hope
that the sequence {ψn}n /∈� will be a Riesz basis for L2(0, π), i.e. the image of an
orthonormal basis under a bounded invertible operator [1]. This is indeed the case
when the boundary conditions do not contain the eigenvalue parameter at all or only
one of them depends on the eigenvalue parameter, and can easily be established by
using the transformation operators [9, Theorem 6.2], [4, Corollary 5.1]. However, in
the general case it is quite possible for {ψn}n /∈� not to be a Riesz basis forL2(0, π). It
turns out that whether this sequence is a (Riesz) basis or not depends on the invertibility
of a certain N×N matrix defined in terms of the spectral characteristics of the boundary
value problem (1.1)–(1.2).

We need some additional definitions to state our result. Denote by W the diagonal
matrix with diagonal entries δ−1

1 , . . . , δ−1
d , h−1

0 ,�−1
1 , . . . ,�−1

D , H−1
0 , where the (d+

1)th entry (respectively, the last entry) is omitted whenever h0 = 0 (respectively,
H0 = 0), and consider the Hilbert space H = L2(0, π) ⊕ C

N with inner product
given by

〈(
y
ŷ

)
,

(
z
ẑ

)〉

H
:=

∫ π

0
y(x)z(x) dx + ẑ†W ŷ,

where the superscript † denotes the conjugate transpose. Most of our matrices will
have real entries and for them the conjugate transpose coincides with the ordinary
transpose. The boundary value problem (1.1)–(1.2) is equivalent to an eigenvalue
problem for a self-adjoint operator inH with discrete spectrum (see [7, Section II C]
for details), in the sense that they both have the same eigenvalues λn and this operator
has an orthonormal basis of eigenvectors of the form

(
ψn

ψ̂n

)
, (1.4)

where ψn are eigenfunctions of (1.1)–(1.2) and

ψ̂n :=
(

δ1ψn(0)
λn−h1

. . .
δdψn(0)
λn−hd

−h0ψn(0)
�1ψn(π)
H1−λn

. . .
�Dψn(π)
HD−λn

H0ψn(π)
)†

(with the obvious modifications when one or both of h0 and H0 equal zero). We can
(and will) choose ψn to be real-valued. This kind of linearization procedure goes back
at least to a 1956 book by Friedman [2, pp. 205–207] and can even be generalized to
arbitrary (not necessarily rational) Herglotz–Nevanlinna functions [8]. We define M�

as the matrix whose rows consist of (the entries of) the vectors ψ̂nk :

M� :=
N∑

k=1

ekψ̂
†
nk ,

where {ek}Nk=1 is the standard basis of CN . Our main result can now be stated as
follows.
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Theorem The sequence {ψn}n /∈� is a Riesz basis forL2(0, π) if and only if the matrix
M� is invertible.

Wewill prove this theorem in the next section. As remarked byGelfand [3], to prove
that a sequence is a Riesz basis it suffices to construct a new inner product equivalent
to the original one, with respect to which this sequence becomes an orthonormal
basis [12, Theorem 1.9]. The main idea of our proof is to demonstrate that this new
inner product inL2(0, π) can be constructed in terms of the inner product of the space
H in a straightforward way.

Now that we have this general result, the following question naturally arises: for
a given problem, roughly speaking, what part of N -tuples � satisfies the condition
of the theorem? Since, intuitively speaking, a generic matrix is invertible, one might
expect that the share of N -tuples with det M� = 0 will be negligible in some sense.
Indeed, as we have already pointed out, if only one of the boundary conditions depends
on the eigenvalue parameter then each M� is invertible. On the other hand, however,
for symmetric boundary value problems with linear dependence on the eigenvalue
parameter (s(x) + s(π − x) = 0, f = F , and 1 ≤ ind f ≤ 2), roughly speaking,
only half of all N -tuples satisfies the condition of the theorem. We will discuss these
issues in Sect. 3.

2 Proof

We start with the “only if” part. If the matrix M� is not invertible then the vectors ψ̂nk
are linearly dependent, i.e.,

N∑
k=1

αkψ̂nk = 0

for some αk , not all of them being zero. The function

y(x) :=
N∑

k=1

αkψnk (x)

cannot be identically equal to zero, since otherwise the orthonormal system

(
ψnk
ψ̂nk

)
, k = 1, . . . , N

would also be linearly dependent. Moreover,

∫ π

0
y(x)ψn(x) dx =

〈(
y
0

)
,

(
ψn

ψ̂n

)〉

H
=

N∑
k=1

αk

〈(
ψnk
ψ̂nk

)
,

(
ψn

ψ̂n

)〉

H
= 0
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for every n /∈ �. Hence y �= 0 is orthogonal to all the functions of the sequence
{ψn}n /∈�, and thus this sequence cannot be complete in L2(0, π).

We now turn to the “if” part. Our immediate aim is to define a new inner product
equivalent to the usual one in L2(0, π) and such that the sequence {ψn}n /∈� is an
orthonormal basis with respect to this new inner product. Since we already have the
Hilbert space H and the orthonormal sequence (1.4) in this space, the most straight-
forward way to achieve this is to map L2(0, π) intoH in such a way that {ψn}n /∈� are
mapped to their corresponding vectors (1.4) and then “transfer” the inner product onH
toL2(0, π). With this goal in mind, we define the mapping y → y�,L2(0, π) → C

N

by the formula

y� := −W−1M−1
�

N∑
k=1

ek

∫ π

0
y(x)ψnk (x) dx . (2.1)

One can easily verify that (ψn)� = ψ̂n for n /∈ �. Now we introduce a new inner
product in L2(0, π) by the obvious expression

〈y, z〉� :=
〈(

y
y�

)
,

(
z
z�

)〉

H
.

It is trivial to check that this is indeed an inner product and {ψn}n /∈� are orthonormal
with respect to it. That this inner product is equivalent to the original one follows from
the inequalities

∫ π

0
|y(x)|2 dx ≤ 〈y, y〉�

≤
(
1 + ‖W−1‖‖M−1

� ‖2
N∑

k=1

∫ π

0
|ψnk (x)|2 dx

) ∫ π

0
|y(x)|2 dx,

where ‖ · ‖ denotes the operator norm. It remains to verify the completeness. To this
end, suppose that 〈y, ψn〉� = 0 for all n /∈ �. Then

(
y
y�

)
=

N∑
k=1

αk

(
ψnk
ψ̂nk

)

for someαk , this being a consequence of the orthogonality of the vector on the left-hand
side to the vectors from (1.4) with n /∈ �. Therefore (2.1) yields

N∑
k=1

αkψ̂nk = y� =
N∑

k=1

αk
(
ψnk

)
�

=
N∑

k=1

αk

(
ψ̂nk − W−1M−1

� ek
)

=
N∑

k=1

αkψ̂nk − W−1M−1
�

N∑
k=1

αkek .
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SinceM−1
� andW−1 are both obviously invertible,we obtainαk = 0 for k = 1, . . . , N ,

and hence y = 0.

3 Some special cases

In general, it appears to be rather difficult to characterize the N -tuples � for which
M� is invertible in terms of � itself. Two particular cases when this is possible have
already been studied (for continuously differentiable s) in the literature (see below for
references). We now discuss these two cases.

3.1 Dependence on the eigenvalue parameter only in one boundary condition

In this section we assume that one of the boundary coefficients, say F , is constant. As
wehave noted in the introduction, in this case by using the transformation operators [9],
one can deduce that M� is invertible for every �. We now want to derive this result
as a corollary of our theorem.

In our case, the matrix M� (after obvious cancellations) has either the form

⎛
⎜⎜⎜⎝

p1
(
λn1

)
. . . pd

(
λn1

)
p

(
λn1

)
...

. . .
...

...

p1
(
λnd

)
. . . pd

(
λnd

)
p

(
λnd

)
p1

(
λnd+1

)
. . . pd

(
λnd+1

)
p

(
λnd+1

)

⎞
⎟⎟⎟⎠ or

⎛
⎜⎝
p1

(
λn1

)
. . . pd

(
λn1

)
...

. . .
...

p1
(
λnd

)
. . . pd

(
λnd

)

⎞
⎟⎠ ,

(3.1)

depending on whether h0 > 0 or h0 = 0, where we denoted

p(λ) :=
d∏

k=1

(hk − λ), pm(λ) :=
d∏

k=1
k �=m

(hk − λ).

One possible way to prove the invertibility of these matrices, as was done in [11], is
to reduce this problem to the invertibility of a Cauchy matrix whose determinant has
a closed-form expression (the Cauchy double alternant identity).

However, since we do not need the value of this determinant, but only need to verify
the invertibility of the matrices in (3.1), one can also proceed as follows. If

d∑
m=1

αm pm
(
λnk

) + α p
(
λnk

) = 0, k = 1, . . . , d + 1,

then the polynomial α1 p1(λ) + · · · + αd pd(λ) + α p(λ) of degree at most d has d + 1
roots and hence it must be identically zero. From the obvious identities pm(hk) = 0
for m �= k we obtain α1 = · · · = αd = α = 0 and thus the columns of the first matrix
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in (3.1) are linearly independent. This proves the invertibility of this matrix. The case
h0 = 0 is similar.

3.2 Linear dependence on the eigenvalue parameter

The case when one or both of the boundary conditions depend in a linear fashion on
the eigenvalue parameter (i.e., max{ind f , ind F} ≤ 2 in our notation) is the most
extensively studied case in the literature. We mention only the very recent paper
[10] and refer the reader to the bibliography therein. Since we have already dis-
cussed the case when only one of the boundary conditions depends on the eigenvalue
parameter, we now assume that both of them contain the eigenvalue parameter (i.e.,
min{ind f , ind F} ≥ 1).

In order to completely characterize those pairs � = {n1, n2} for which M� is
invertible, we need some more definitions from [5,7]. We assign to each rational
Herglotz–Nevanlinna function f of the form (1.3) two polynomials f↑ and f↓ by
writing this function as

f (λ) = f↑(λ)

f↓(λ)
,

where

f↓(λ) := h′
0

d∏
k=1

(hk − λ), h′
0 :=

{
1/h0, h0 > 0,

1, h0 = 0.

For each n ∈ N ∪ {0} we define βn �= 0 as the unique number for which

χn(x) = βnϕn(x),

where ϕn and χn are the (necessarily linearly dependent) eigenfunctions of (1.1)–(1.2)
satisfying the conditions ϕn(0) = f↓(λn), ϕ

[1]
n (0) = − f↑(λn), χn(π) = F↓(λn), and

χ
[1]
n (π) = F↑(λn). Using the results of [6] and [7] one can deduce that these numbers

have alternating signs and asymptotically behave as

βn = (−1)n
(
n − ind f + ind F

2

)ind F−ind f

(1 + ξn) , ξn ∈ 2. (3.2)

We now return to the main topic of this subsection. Under our assumptions, the
matrix M� (again after obvious cancellations) has the form

(
1 β−1

n1
1 β−1

n2

)
.

Thus the invertibility of M� is equivalent to the condition βn1 �= βn2 . On the basis
of the discussion in the preceding paragraph, we immediately conclude that M� is
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always invertible for indices n1 and n2 of different parity. For indices of same parity,
both cases are possible. As one extreme example, we have βn = (−1)n for all n when
the boundary value problem is symmetric [i.e., s(x) + s(π − x) = 0 and f = F] and
hence M� is never invertible for n1 and n2 of same parity. On the other hand, using the
inverse spectral theory developed in [7], one can produce a boundary value problem
of the form (1.1)–(1.2) for arbitrary sequence of distinct numbers βn , as long as they
satisfy the requirements of the preceding paragraph. In the case of the latter boundary
value problem, M� is invertible for all pairs of indices n1 and n2.

As a final observation, we note that it is also possible to obtain some results of
asymptotic character when ind F �= ind f . For example, given n1, M� is invertible
for all sufficiently large n2. In the case of summable potentials (i.e., for absolutely
continuous s), one can say even more: M� is invertible for all sufficiently large n1 and
n2. In other words, there can be only finitely many pairs � = {n1, n2} for which M�

is not invertible, since in this case nξn → 0 in (3.2).
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