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Abstract
We define and study the properties of Darboux-type transformations between Sturm–
Liouville problems with boundary conditions containing rational Herglotz–Nevanlinna
functions of the eigenvalue parameter (including the Dirichlet boundary conditions). Using
these transformations, we obtain various direct and inverse spectral results for these problems
in a unified manner, such as asymptotics of eigenvalues and norming constants, oscillation of
eigenfunctions, regularized trace formulas, and inverse uniqueness and existence theorems.
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1 Introduction

We consider the one-dimensional Schrödinger equation (the Sturm–Liouville equation in
Liouville normal form)

− y′′(x) + q(x)y(x) = λy(x) (1.1)

and the boundary conditions

y′(0)
y(0)

= − f (λ),
y′(π)

y(π)
= F(λ), (1.2)

where q ∈ L1(0, π) is real-valued and

f (λ) = h0λ + h +
d∑

k=1

δk

hk − λ
, F(λ) = H0λ + H +

D∑

k=1

�k

Hk − λ
(1.3)

are rational Herglotz–Nevanlinna functions with real coefficients, i.e., h0, H0 ≥ 0, δk,�k >

0, h1 < · · · < hd , H1 < · · · < HD . We also include the case when the first (respectively,
the second) boundary condition is Dirichlet by writing f = ∞ (respectively, F = ∞).

It is straightforward to verify that if a function v without zeros is a fixed solution of
Eq. (1.1) with λ replaced by μ, then for any solution y of this equation with λ �= μ, the
function ŷ := y′ − yv′/v is a solution of the same equation with the potential q replaced
by the potential q̂ := q − 2(v′/v)′. Also, the function v̂ := 1/v is a solution of the above
equation with λ and q replaced by μ and q̂, respectively (cf. [39, Lemma 5.1]). Moreover,
by applying the same procedure with v̂ instead of v to the latter potential one arrives at the
original potential. This technique allows one to write the above differential expressions as

− d2

dx2
+ q(x) − μ =

(
d

dx
+ v′

v

)(
− d

dx
+ v′

v

)

and

− d2

dx2
+ q̂(x) − μ =

(
− d

dx
+ v′

v

)(
d

dx
+ v′

v

)
,

respectively. These transformations, called the direct and inverse Darboux transformations,
and the corresponding factorizations play an important role in mathematical physics. For
instance, such factorizations are used in supersymmetric quantum mechanics as a way of
obtaining supersymmetric partner potentials (q and q̂ in the above notation) [12]. The Dar-
boux transformations and their generalizations also provide a powerful method of generating
new exactly solvable potentials from known ones in the theory of nonlinear evolution equa-
tions [37]. For Sturm–Liouville problems with constant (i.e., independent of the eigenvalue
parameter) boundary conditions, these transformations were used in [13,27–29,39] to give a
complete characterization of the isospectral sets of potentials. An operator-theoretic descrip-
tion of the method can be found in [14,43]. See also [8] for a detailed historical overview
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Essentially isospectral transformations… 1623

and an operator-theoretic treatment of the Darboux transformations in the case of boundary
conditions containing the eigenvalue parameter.

Sturm–Liouville problems with boundary conditions dependent on the eigenvalue param-
eter arise naturally in a variety of physical problems, including heat conduction, diffusion,
vibration and electric circuit problems (see [18] and the references therein). Churchill [11]
seems to be the first who applied the Darboux transformations to Sturm–Liouville prob-
lems with boundary conditions dependent on the eigenvalue parameter. Binding, Browne
and Watson [6,7] studied problems with a constant boundary condition at one end point and
a boundary condition of the form (1.2), (1.3) at the other end point. They observed that if y
satisfies a boundary condition of the latter form at an end point, then ŷ satisfies a condition
of the same form (1.2) with some other function of the form (1.3). An immediate conse-
quence of this is that if y is an eigenfunction of (1.1)–(1.2) corresponding to an eigenvalue
not equal to the above μ, then ŷ is an eigenfunction of another problem of the same form
corresponding to the same eigenvalue. Also, in some cases the above v̂ becomes an eigen-
function of the latter problem. In order to prove that all of its eigenfunctions can be obtained
in this way—in other words, that these boundary value problems are essentially isospectral
in the sense that their spectra coincide (with the possible exception of the smallest eigenvalue
of one of these problems)—these authors studied the oscillation properties of eigenfunc-
tions. On the contrary, here we use the first-order asymptotics of the eigenvalues and later
deduce the oscillation properties (among other things) from the essential isospectrality of our
transformations.

Another distinctive feature of the present work is that to each boundary condition of the
form (1.2), i.e., to each function of the form (1.3), we associate its index (an integer) and a
monic polynomial and express various spectral characteristics of boundary value problems
of the form (1.1)–(1.2) in terms of these indices and the coefficients of these polynomials, so
that we are able to formulate our results without considering separate cases as it is usually
done in the literature.

The paper is organized as follows. In Sect. 2, we introduce the necessary notation and
prove some preliminary lemmas. Section 3 is devoted to transformations between rational
Herglotz–Nevanlinna functions and between boundary value problems having such func-
tions in their boundary conditions. In Sect. 3.1, we define a transformation between rational
Herglotz–Nevanlinna functions and study its properties. In Sects. 3.2 and 3.3, we define
direct and inverse transformations between boundary value problems of the form (1.1)–(1.2),
study properties of the spectral data under these transformations, and show that these two
transformations are, in a sense, inverses of each other. We apply these transformations in
Sect. 4 to the solution of various direct and inverse spectral problems. In Sect. 4.1, we obtain
asymptotic formulas for the eigenvalues and the norming constants (see Sect. 2.3 for the
definition) of the problem (1.1)–(1.2). In Sect. 4.2, we extend the Sturm oscillation theorem
to boundary conditions of the form (1.2). In Sect. 4.3, we apply our direct transformation
to the calculation of the so-called regularized traces. In Sect. 4.4, we provide necessary and
sufficient conditions for two sequences of real numbers to be the eigenvalues and the norming
constants of a problem of the form (1.1)–(1.2). Section 4.5 is devoted to symmetric boundary
value problems. In Sects. 4.6 and 4.7, we provide partial generalizations of the Hochstadt–
Lieberman theorem and a theorem of Mochizuki and Trooshin to the case of boundary value
problems of the form (1.1)–(1.2).
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1624 N. J. Guliyev

2 Preliminaries

2.1 Notation

First, we introduce some necessary notation. We assign to each function f of the form (1.3)
two polynomials f↑ and f↓ by writing this function as

f (λ) = f↑(λ)

f↓(λ)
,

where

f↓(λ) := h′
0

d∏

k=1

(hk − λ), h′
0 :=

{
1/h0, h0 > 0,

1, h0 = 0.

We define the index of f as

ind f :=
{
2d + 1, h0 > 0,

2d, h0 = 0.

This number equals deg f↑ + deg f↓ when at least one of h0 and h is nonzero. If f = ∞,
then we just set

f↑(λ) := −1, f↓(λ) := 0, ind f := −1.

It can easily be verified that each nonconstant function f of the form (1.3) is strictly increasing
on any interval not containing any of its poles, and f (λ) → ±∞ (respectively, f (λ) → h)
as λ → ±∞ if its index is odd (respectively, even). We denote the smallest pole of f (if it
has any) by

π̊( f ) :=
{
h1, ind f ≥ 2,

+∞, ind f ≤ 1,

and the total number of poles of this function not exceeding λ by

� f (λ) :=
∑

1≤k≤d
hk≤λ

1.

For every nonnegative integer n, we denote byRn the set of rational functions of the form
(1.3) with ind f = n; we also introduce R−1 := {∞}, which corresponds to the Dirichlet
boundary condition. Then,R0 consists of all constant functions,R1 consists of all increasing
affine functions, and so on. We also denote

R :=
∞⋃

n=−1

Rn .

To every f ∈ R, we assign a monic polynomial

ω f (λ) := (−1)

⌊
ind f
2

⌋

λ f↓
(
λ2
)− (−1)

⌈
ind f
2

⌉

f↑
(
λ2
)
,

where �·� and 
·� are the usual floor and ceiling functions. We denote by ω1 and ω2, respec-
tively, the second and third coefficients of this polynomial:

ω f (λ) = λind f +1 + ω1λ
ind f + ω2λ

ind f −1 + · · · .
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Essentially isospectral transformations… 1625

It is easy to see that ω2 coincides with the second coefficient of (−1)

⌈
ind f
2

⌉
+1

f↑(λ) if ind f

is odd and coincides with the second coefficient of (−1)

⌊
ind f
2

⌋

f↓(λ) otherwise. The numbers
�1 and �2 are defined similarly for F .

Let ϕ(x, λ) and ψ(x, λ) be the solutions of (1.1) satisfying the initial conditions

ϕ(0, λ) = f↓(λ), ϕ′(0, λ) = − f↑(λ), ψ(π, λ) = F↓(λ), ψ ′(π, λ) = F↑(λ). (2.1)

Then, standard arguments (e.g., [16, Theorem 1.1.1]) show that the eigenvalues of the bound-
ary value problem (1.1)–(1.2) coincide with the zeros of the characteristic function

χ(λ) := F↑(λ)ϕ(π, λ) − F↓(λ)ϕ′(π, λ) = f↓(λ)ψ ′(0, λ) + f↑(λ)ψ(0, λ),

which are real and simple, and for each eigenvalue λn , there exists a unique number βn �= 0
such that

ψ(x, λn) = βnϕ(x, λn). (2.2)

We denote by AC[0, π ] the set of absolutely continuous functions on [0, π], and by
W1

2[0, π] the Sobolev space { f ∈ AC[0, π ] : f ′ ∈ L2(0, π)}. In analogy with the notation
o(1/nα), we use the notation

xn = yn + 
2

(
1

nα

)

to mean
∑∞

n=0 |nα(xn − yn)|2 < ∞. Finally, we denote by P(q, f , F) the boundary value
problem (1.1)–(1.2), and by λ̊(q, f , F) the smallest eigenvalue of this problem.

2.2 Hilbert space

We now introduce a Hilbert space and construct a self-adjoint operator in it in such a way
that the boundary value problem (1.1)–(1.2) will be equivalent to the eigenvalue problem for
this operator. The exact form of the operator, however, depends on the functions f and F .
When h0 > 0 and H0 > 0, we consider the Hilbert space H = L2(0, π) ⊕ C

d+D+2 with
inner product given by

〈Y , Z〉 :=
∫ π

0
y(x)z(x) dx +

d∑

k=1

ykzk
δk

+ yd+1zd+1

h0
+

D∑

k=1

ηkζk

�k
+ ηD+1ζD+1

H0

for

Y =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y(x)
y1
...

yd+1

η1
...

ηD+1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Z =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z(x)
z1
...

zd+1

ζ1
...

ζD+1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ H.
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1626 N. J. Guliyev

In this space, we define the operator

A(Y ) :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−y′′(x) + q(x)y(x)
δ1y(0) + h1y1

...

δd y(0) + hd yd
y′(0) + hy(0) −∑d

k=1 yk
H1η1 − �1y(π)

...

HDηD − �Dy(π)

y′(π) − Hy(π) −∑D
k=1 ηk

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with

D(A) := {
Y ∈ H

∣∣ y, y′ ∈ AC[0, π ], −y′′ + qy ∈ L2(0, π),

yd+1 = −h0y(0), ηD+1 = H0y(π)} .

When at least one of the numbers h0, H0 is zero, the following modifications are needed.
We set H = L2(0, π) ⊕ C

d+D+1 in the case when only one of these numbers equals
zero, and H = L2(0, π) ⊕ C

d+D otherwise. If h0 = 0 (respectively, H0 = 0), we omit
the (d + 2)-th components (respectively, the last components) in the above paragraph and
replace the condition yd+1 = −h0y(0) (respectively, ηD+1 = H0y(π)) by the condition
y′(0)+hy(0)−∑d

k=1 yk = 0 (respectively, y′(π)−Hy(π)−∑D
k=1 ηk = 0) in the definition

of the domain of A. If ind f ≤ 0 (respectively, ind F ≤ 0), i.e., the first (respectively, the
second) boundary condition is independent of the eigenvalue parameter, then there are no
yk (respectively, ηk) components at all, and the condition y′(0) = −hy(0) or y(0) = 0
(respectively, the condition y′(π) = Hy(π) or y(π) = 0) is added in the definition of the
domain of A.

As in the case when only one of the boundary conditions depends on the eigenvalue
parameter (see, e.g., [7,18]), one can prove that the operator A is self-adjoint, its spectrum is
discrete and coincides with the set of eigenvalues of (1.1)–(1.2), and its eigenvectors

�n :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ϕ(x, λn)
δ1

λn−h1
ϕ(0, λn)
...

δd
λn−hd

ϕ(0, λn)
−h0ϕ(0, λn)
�1

H1−λn
ϕ(π, λn)

...
�D

HD−λn
ϕ(π, λn)

H0ϕ(π, λn)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

are orthogonal.
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Essentially isospectral transformations… 1627

2.3 Spectral data

We define the norming constants as

γn := ‖�n‖2 =
∫ π

0
ϕ2(x, λn) dx + f ′(λn) f 2↓ (λn) + 1

β2
n
F ′(λn)F2↓(λn).

Since the number λn coincides with one of the poles of the function f (respectively, F) if
and only if f↓(λn) = 0 (respectively, F↓(λn) = 0), the expression on the right-hand side
is well defined in this case too. The numbers {λn, γn}n≥0 are called the spectral data of the
problem P(q, f , F). We denote by γ̊(q, f , F) the first norming constant of the problem
P(q, f , F) (i.e., the norming constant corresponding to the smallest eigenvalue λ̊(q, f , F)

of this problem).

Lemma 2.1 The following equality holds:

χ ′(λn) = βnγn . (2.3)

Proof Using (2.1) and (2.2) in the equality

(λ − λn)

∫ π

0
ψ(x, λ)ϕ(x, λn) dx = (

ψ(x, λ)ϕ′(x, λn) − ψ ′(x, λ)ϕ(x, λn)
)∣∣∣∣

π

0

we obtain

χ(λ)

λ − λn
=
∫ π

0
ψ(x, λ)ϕ(x, λn) dx + F↑(λ)F↓(λn) − F↓(λ)F↑(λn)

βn(λ − λn)

+ f↓(λ) − f↓(λn)

λ − λn
ψ ′(0, λ) + f↑(λ) − f↑(λn)

λ − λn
ψ(0, λ).

As λ → λn , this equality leads to (2.3). ��
Lemma 2.2 The following first-order asymptotics holds:

√
λn = n − ind f + ind F

2
+ O

(
1

n

)
.

Proof We write ϕ(x, λ) as

ϕ(x, λ) = f↓(λ)C(x, λ) − f↑(λ)S(x, λ),

whereC(x, λ) and S(x, λ) are the solutions of (1.1) satisfying the initial conditionsC(0, λ) =
S′(0, λ) = 1 and S(0, λ) = C ′(0, λ) = 0. Using the well-known estimates for C(x, λ) and
S(x, λ), we calculate

ϕ(π, λ) =
(√

λ
)ind f

(
cos

(√
λ + ind f

2

)
π + O

(
e| Im√

λπ |
√

λ

))
,

ϕ′(π, λ) = −
(√

λ
)ind f +1

(
sin

(√
λ + ind f

2

)
π + O

(
e| Im√

λπ |
√

λ

))
.

Thus,

χ(λ) =
(√

λ
)ind f +ind F+1

(
sin

(√
λ + ind f + ind F

2

)
π + O

(
e| Im√

λπ |
√

λ

))
.

Finally, a standard argument involving Rouché’s theorem concludes the proof. ��
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1628 N. J. Guliyev

With this method, one can in principle get sharper asymptotic formulas for the spectral
data. But we will later obtain them in a much shorter way (see Theorem 4.2).

2.4 Smallest eigenvalues and nonexistence of zeros

Define a partial order on the set R as follows: f � g if and only if either f = ∞, or f and
g are two functions satisfying f (λ) ≤ g(λ) for all λ < min{π̊( f ), π̊(g)}.
Lemma 2.3 If f � f̃ and F � F̃ , then λ̊(q, f , F) ≥ λ̊(q, f̃ , F̃).

Proof We only prove λ̊(q, f , F) ≥ λ̊(q, f , F̃); the proof of λ̊(q, f , F̃) ≥ λ̊(q, f̃ , F̃) is
similar. Denote ν0 := λ̊(q, f ,∞). Dividing both sides of the identity

ϕ(π, λ)ϕ′(π, μ) − ϕ′(π, λ)ϕ(π,μ)

= f↑(λ) f↓(μ) − f↓(λ) f↑(μ) + (λ − μ)

∫ π

0
ϕ(t, λ)ϕ(t, μ) dt

by μ − λ and taking the limit as μ → λ, we obtain

d

dλ

(
ϕ′(π, λ)

ϕ(π, λ)

)
= − 1

ϕ2(π, λ)

(
f 2↓ (λ)

d f (λ)

dλ
+
∫ π

0
ϕ2(t, λ) dt

)
< 0

for λ ∈ (−∞, ν0). The proof of Lemma 2.2 implies

lim
λ→−∞

ϕ′(π, λ)

ϕ(π, λ)
= +∞, lim

λ→ν0−0

ϕ′(π, λ)

ϕ(π, λ)
= −∞.

Thus, ϕ′(π, λ)/ϕ(π, λ) is strictly monotone decreasing from +∞ to −∞ as λ increases
from −∞ to ν0. This together with the fact that λ̊(q, f , F) and λ̊(q, f , F̃) are the smallest
values of λ for which ϕ′(π, λ)/ϕ(π, λ) = F(λ) and ϕ′(π, λ)/ϕ(π, λ) = F̃(λ), respectively,
concludes the proof. ��
Remark 2.4 The above proof also shows that λ̊(q, f , F) < min{π̊( f ), π̊(F)}.
Lemma 2.5 If λ ≤ λ̊(q, f ,∞) (respectively, λ ≤ λ̊(q,∞, F)), then the function ϕ(x, λ)

(respectively, ψ(x, λ)) has no zeros in (0, π).

Proof Let ν0 be defined as in the proof of Lemma 2.3. Since the function ϕ(x, ν0) is an
eigenfunction of the problem P(q, f ,∞), it is a constant multiple of the function Sπ (x, ν0),
where Sπ (x, λ) is defined as the solution of (1.1) satisfying the initial conditions Sπ (π, λ) = 0
and S′

π (π, λ) = 1. It is well known that Sπ (x, λ) has no zeros in (0, π) for λ ≤ λ̊(q,∞,∞)

(i.e., for values of λ not greater than the smallest eigenvalue of the Dirichlet problem for
(1.1)). But ν0 ≤ λ̊(q,∞,∞) by Lemma 2.3. Thus, ϕ(x, ν0) has no zeros in (0, π).

Now suppose to the contrary that ϕ(x, λ) has zeros in (0, π) for some λ ≤ ν0. Let x0
be its smallest positive zero. Remark 2.4 shows that ϕ(0, λ) = f↓(λ) > 0 and ϕ(0, ν0) =
f↓(ν0) > 0. Thus, ϕ(x, λ) > 0 and ϕ(x, ν0) > 0 for x ∈ (0, x0). Then, ϕ′(x0, λ) < 0, and
hence,

0 > ϕ(x0, ν0)ϕ
′(x0, λ) − ϕ′(x0, ν0)ϕ(x0, λ)

= f↓(λ) f↓(ν0) ( f (ν0) − f (λ)) + (ν0 − λ)

∫ x0

0
ϕ(t, ν0)ϕ(t, λ) dt > 0.

This contradiction proves the lemma for ϕ. The proof for ψ is similar. ��
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3 Transformations

3.1 Transformation of Herglotz–Nevanlinna functions

If we apply the Darboux transformation to eigenfunctions of the problem (1.1)–(1.2), we
obtain eigenfunctions of another problem of the same form having some other functions
from R in its boundary conditions. We thus have a transformation between elements ofR. In
this subsection, we study such transformations.

We denote

S := {
(μ, τ, f ) ∈ R × R × R : μ < π̊( f ), τ ≥ f (μ) if ind f ≥ 0

}

and define the transformation

� : S → R, (μ, τ, f ) �→ f̂

by

f̂ (λ) := μ − λ

f (λ) − τ
− τ.

In the particular case when f (λ) ≡ τ (respectively, f = ∞), this is understood as f̂ := ∞
(respectively, f̂ (λ) := −τ ). One sees immediately from this definition that

�(μ,−τ,�(μ, τ, f )) = f . (3.1)

The other main properties of this transformation are summarized in the following lemma.

Lemma 3.1 The transformation � is well defined, i.e., f̂ := �(μ, τ, f ) ∈ R. The poles of
f and f̂ interlace if ind f ≥ 2 and ind f̂ ≥ 2 (i.e., if both f and f̂ have poles); moreover,
π̊( f ) < π̊( f̂ ) if τ = f (μ), and π̊( f ) > π̊( f̂ ) if τ > f (μ). Also, if τ = f (μ), then
ind f̂ = ind f − 1,

f̂↑(λ) = −τ f↑(λ) − (
λ − μ − τ 2

)
f↓(λ)

λ − μ
, f̂↓(λ) = f↑(λ) − τ f↓(λ)

λ − μ
, (3.2)

while if τ > f (μ), then ind f̂ = ind f + 1,

f̂↑(λ) = τ f↑(λ) + (
λ − μ − τ 2

)
f↓(λ), f̂↓(λ) = − f↑(λ) + τ f↓(λ). (3.3)

Proof We assume that ind f ≥ 2, since the cases ind f = −1, 0, 1 can be verified very
easily. We have

f̂ (λ) = f↓(λ)(λ − μ)

τ f↓(λ) − f↑(λ)
− τ,

where the polynomials f↑ and f↓, and thus f↓ and τ f↓ − f↑ have no common roots. When
τ = f (μ), the polynomial τ f↓(λ) − f↑(λ) is divisible by λ − μ, and hence, f̂ is a rational
function with the set of poles {λ �= μ | f (λ) = τ }. Denote by d̂ the cardinality of the latter
set, and by ĥ1, ĥ2, . . ., ĥd̂ these poles. Recall that f is strictly increasing on each of the
intervals (−∞, h1), (h1, h2), . . . , (hd−1, hd), (hd ,+∞). Hence, ĥk ∈ (hk, hk+1) for k = 1,
. . ., d − 1. If ind f = 2d , then f (λ) ↗ h < f (μ) = τ as λ → +∞, and thus, d̂ = d − 1.
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Since the degree of the polynomial
(
τ f↓(λ) − f↑(λ)

)
/(λ−μ) also equals d−1, the function

f̂ can be written as

f̂ (λ) = ĥ0λ + ĥ +
d̂∑

k=1

δ̂k

ĥk − λ
. (3.4)

Also, since f̂ (λ) → +∞ as λ → +∞, we obtain ĥ0 > 0, and since f (λ) ↗ τ as
λ ↗ ĥk , we obtain δ̂k > 0. Therefore, f̂ ∈ R with ind f̂ = 2d̂ + 1 = ind f − 1. Finally,
the identities (3.2) are obtained by considering the leading coefficients of the polynomials
τ f↑ + (

λ − μ − τ 2
)
f↓ and τ f↓ − f↑. If ind f = 2d + 1, then f̂ has one more pole in

(hd ,+∞), i.e., d̂ = d . Also, since f (λ)/λ → h0 asλ → +∞, we obtain that limλ→+∞ f̂ (λ)

is finite, i.e., ĥ0 = 0, and ind f̂ = 2d̂ = ind f − 1.
The case τ > f (μ) can be analyzed in a similar way by taking into account the fact that

the set of poles of f̂ is now {λ ∈ R | f (λ) = τ }. ��
Remark 3.2 When ind f ≥ 1, there exists a number ν ∈ (

μ, π̊( f )
)
with f (ν) = τ . Thus,

one would be tempted to define the above transformation by

f̂ (λ) := μ − λ

f (λ) − f (ν)
− f (ν)

forμ ≤ ν in the general case, as is done in [7], but obviously one cannot obtain an increasing
affine f̂ from a constant f in that way.

3.2 Direct transformation between problems

We now introduce the first of our two essentially isospectral transformations between bound-
ary value problems of the form (1.1)–(1.2) and study properties of the spectral data under this
transformation. Our transformation reduces the index of each boundary coefficient by one (if
it is not already Dirichlet). Hence, by applying this transformation max{ind f , ind F} num-
ber of times to a boundary value problem of the form (1.1)–(1.2), we will eventually arrive
at a problem with boundary conditions independent of the eigenvalue parameter. It is worth
mentioning here that in the case when ind f = ind F = 0, our transformation coincides with
the transformation + in [27], and in the case when ind f = −1 (respectively, ind f = 0), it
coincides with the transformation SD (respectively, SN ) in [7].

The domain Ŝ of our transformation consists of all possible boundary value problems of
the form (1.1)–(1.2), excluding the case when both boundary conditions are Dirichlet:

Ŝ := {(q, f , F) : q ∈ L1(0, π), f , F ∈ R, ind f + ind F ≥ −1} .

We define the transformation

T̂ : Ŝ → L1(0, π) × R × R, (q, f , F) �→ (̂q, f̂ , F̂)

by

q̂ := q − 2

(
v′

v

)′
, f̂ := �

(
�,−v′(0)

v(0)
, f

)
, F̂ := �

(
�,

v′(π)

v(π)
, F

)
, (3.5)

where

� :=
{

λ0, f , F �= ∞,

λ0 − 2, otherwise
and v(x) :=

{
ϕ(x,�), f �= ∞,

ψ(x,�), f = ∞.
(3.6)
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Then, Remark 2.4, Lemmas 2.3, 2.5, 3.1 and the identity

(
v′(x)
v(x)

)′
= q(x) − � −

(
v′(x)
v(x)

)2

(3.7)

imply that the transformation T̂ is well defined. Lemma 3.1 also shows that if ind f ≥ 0 then
ind f̂ = ind f − 1, and if ind f = −1 then ind f̂ = 0. The same is true for F and F̂ .

To state the next theorem, we introduce the following notation: Let

I := ind f − ind f̂ =
{
1, ind f ≥ 0,

−1, ind f = −1
(3.8)

and

J := ind f + ind F

2
− ind f̂ + ind F̂

2
=
{
1, ind f , ind F ≥ 0,

0, otherwise.
(3.9)

Theorem 3.3 If {λn, γn}n≥0 is the spectral data of the problem P(q, f , F) and (̂q, f̂ , F̂) =
T̂(q, f , F), then the spectral data of the transformed problem P(̂q, f̂ , F̂) are

{
λn,

γn

(λn − �)I

}

n≥J
.

Proof A routine calculation shows that for every n ≥ J (i.e., λn �= �) the function

ϕ′(x, λn) − v′(x)
v(x)

ϕ(x, λn)

is an eigenfunction of P(̂q, f̂ , F̂) corresponding to the eigenvalue λn . Hence, the numbers
λn for n ≥ J are eigenvalues of this boundary value problem, and Lemma 2.2 shows that
there are no other eigenvalues.

For the part concerning the norming constants, we consider the cases ind f ≥ 0 and
ind f = −1 separately. In the former case, we set

ϕ̂n(x) := 1

� − λn

(
ϕ′(x, λn) − v′(x)

v(x)
ϕ(x, λn)

)
. (3.10)

Then, ϕ̂n satisfies the initial condition ϕ̂n(0) = f̂↓(λn) and the identity

ϕ̂2
n(x) = (ϕ(x, λn)ϕ̂n(x))′

� − λn
+ ϕ2(x, λn)

λn − �
.

Now if ind f ≥ 1, then from Lemma 3.1 we obtain

f̂ ′(λn) f̂ 2↓ (λn) = f↓(λn) f̂↓(λn)

� − λn
+ f ′(λn) f 2↓ (λn)

λn − �
.

Similarly in the case ind F ≥ 1, we have

F̂ ′(λn)ϕ̂2
n(π) = ϕ(π, λn)ϕ̂n(π)

λn − �
+ F ′(λn)ϕ2(π, λn)

λn − �
.
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Using the last three identities, we calculate

γ̂n :=
∫ π

0
ϕ̂2
n(x) dx + f̂ ′(λn) f̂ 2↓ (λn) + F̂ ′(λn)ϕ̂2

n(π)

= 1

λn − �

(∫ π

0
ϕ2(x, λn) dx + f ′(λn) f 2↓ (λn) + F ′(λn)ϕ2(π, λn)

)

= γn

λn − �
.

Since in the case when ind f = 0 (respectively, ind F ≤ 0), the second summands (respec-
tively, the last summands) are absent, by definition, from the expressions for the norming
constants and ϕ̂n(0) = 0 (respectively, ϕ(π, λn)ϕ̂n(π) = 0), the above relation between γ̂n
and γn holds also if ind f = 0 or ind F ≤ 0.

In the case ind f = −1, we define ϕ̂n by

ϕ̂n(x) := ϕ′(x, λn) − v′(x)
v(x)

ϕ(x, λn).

Then, ϕ̂n satisfies the initial condition ϕ̂n(0) = 1 ≡ f̂↓(λn), and arguing as above, we
establish the equality γ̂n = γn(λn − �). ��
Remark 3.4 Themotivation for choosing the values given in (3.6) for� is due to the following
observation. By choosing v as an eigenfunction corresponding to the smallest eigenvalue,
we reduce the indices of both boundary coefficients. This is possible because of Lemmas 2.3
and 2.5. But if one of the boundary conditions is Dirichlet, then this eigenfunction equals
zero at an end point of the interval [0, π ]. The above lemmas show that one can choose � as
any number strictly less than λ0. The reason we do not choose λ0 − 1 is that, as Theorem 3.3
shows, the norming constant γ0 is either multiplied or divided by λ0 − �, depending on
which one of the boundary conditions is Dirichlet. By choosing λ0 − 2 (for definiteness), we
will be able to determine this boundary condition in the next subsection.

3.2.1 An expression for γ̊(q, f , F)

We are now going to obtain an expression for the first norming constant γ0 of the prob-
lem P(q, f , F) with f , F �= ∞ in terms of the transformed problem P(̂q, f̂ , F̂), where
(̂q, f̂ , F̂) := T̂(q, f , F). This expression will be used in the next subsection to invert the
action of T̂.

Let Ĉ(x, λ) and Ŝ(x, λ) be the solutions of the equation

− y′′(x) + q̂(x)y(x) = λy(x) (3.11)

satisfying the initial conditions

Ĉ(0, λ) = Ŝ′(0, λ) = 1, Ŝ(0, λ) = Ĉ ′(0, λ) = 0. (3.12)

It is easy to see that the function 1/ϕ(x, λ0) satisfies Eq. (3.11) and the initial conditions

1

ϕ(0, λ0)
= 1

f↓(λ0)
,

(
1

ϕ(x, λ0)

)′

x=0
= f↑(λ0)

f 2↓ (λ0)
= f (λ0)

f↓(λ0)
.

Thus,

1

ϕ(x, λ0)
= 1

f↓(λ0)

(
Ĉ(x, λ0) + f (λ0)Ŝ(x, λ0)

)
.
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Since Ŝ(x, λ0) and 1/ϕ(x, λ0) are both solutions of Eq. (3.11), their Wronskian is constant:

Ŝ′(x, λ0)
ϕ(x, λ0)

+ Ŝ(x, λ0)
ϕ′(x, λ0)
ϕ2(x, λ0)

= Ŝ′(0, λ0)
ϕ(0, λ0)

+ Ŝ(0, λ0)
ϕ′(0, λ0)
ϕ2(0, λ0)

= 1

f↓(λ0)
,

and hence,

ϕ2(x, λ0) = f↓(λ0)
(
Ŝ(x, λ0)ϕ(x, λ0)

)′
.

If ind f ≥ 1 and ind F ≥ 1, then we have

f ′(λ0) = − 1

f̂ (λ0) + f (λ0)

and

F ′(λ0) = − 1

F̂(λ0) + F(λ0)
= −

(
F̂(λ0) + ϕ′(π, λ0)

ϕ(π, λ0)

)−1

.

Using the above identities and (3.2), we calculate

γ0 =
∫ π

0
ϕ2(x, λ0) dx + f ′(λ0) f 2↓ (λ0) + F ′(λ0)ϕ2(π, λ0)

= f↓(λ0)Ŝ(π, λ0)ϕ(π, λ0) − f 2↓ (λ0)

f̂ (λ0) + f (λ0)
− ϕ2(π, λ0)

(
F̂(λ0) + ϕ′(π, λ0)

ϕ(π, λ0)

)−1

= ϕ(π, λ0)

(
f↓(λ0)Ŝ(π, λ0) − ϕ2(π, λ0)

F̂(λ0)ϕ(π, λ0) + ϕ′(π, λ0)

)
− f 2↓ (λ0)

f̂ (λ0) + f (λ0)

= f↓(λ0)ϕ
2(π, λ0)

Ŝ(π, λ0)F̂(λ0) − Ŝ′(π, λ0)

F̂(λ0)ϕ(π, λ0) + ϕ′(π, λ0)
− f 2↓ (λ0)

f̂ (λ0) + f (λ0)

= f 2↓ (λ0)

κ + f (λ0)
− f 2↓ (λ0)

f̂ (λ0) + f (λ0)
= (

f̂↑(λ0) − κ f̂↓(λ0)
) f̂↑(λ0) + f (λ0) f̂↓(λ0)

κ + f (λ0)
,

where

κ := Ĉ ′(π, λ0) − Ĉ(π, λ0)F̂(λ0)

Ŝ′(π, λ0) − Ŝ(π, λ0)F̂(λ0)
.

One can easily verify that this equality holds for the case ind f = 0 too. If ind F = 0, then
F̂ = ∞, and we only need to replace the above expression forκ byκ := Ĉ(π, λ0)/Ŝ(π, λ0).

3.3 Inverse transformation between problems

By applying the transformation T̂ to a problem P(q, f , F) of the form (1.1)–(1.2), we obtain
a new problem P(̂q, f̂ , F̂) of the same form. Now, we want to restore the original problem
P(q, f , F) from the transformed problem P(̂q, f̂ , F̂). As we will see below, in order to be
able to determine the original problem we need some more information, e.g., the smallest
eigenvalue λ0 and the corresponding norming constant γ0 of the problem P(q, f , F). But
first we need to determine whether one of f and F is ∞ or not. Theorem 3.3 shows that
λ̊(q, f , F) = λ̊(̂q, f̂ , F̂) if and only if one of the boundary conditions of the problem
P(q, f , F) is Dirichlet. In this case, the same theorem together with (3.6) also tells us which
of the two boundary conditions is Dirichlet, and the value of v′/v at one of the end points
of the interval [0, π] can be immediately found from (3.5). In the case when none of the
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boundary conditions is Dirichlet, this value can be found from the expression for γ̊(q, f , F)

in terms of P(̂q, f̂ , F̂). Knowing this value, v can be uniquely (up to a constant multiple)
determined by the fact that 1/v satisfies Eq. (3.11) with λ = �.

With these considerations in mind, we define the transformation

T̃ : S̃ → L1(0, π) × R × R, (μ, ν, q, f , F) �→ (̃q, f̃ , F̃)

on the union

S̃ := S̃1 ∪ S̃2 ∪ S̃3
of the sets

S̃1 :=
{
(μ, ν, q, f , F) : q ∈ L1(0, π), f , F ∈ R, μ < λ̊(q, f , F), ν > 0

}
,

S̃2 :=
{
(μ, ν, q, f , F) : q ∈ L1(0, π), f ∈ R0, F ∈ R,

μ = λ̊(q, f , F), ν = γ̊(q, f , F)/2
}

and

S̃3 :=
{
(μ, ν, q, f , F) : q ∈ L1(0, π), f ∈ R, F ∈ R0,

μ = λ̊(q, f , F), ν = 2γ̊(q, f , F)
}

as follows. Let (μ, ν, q, f , F) ∈ S̃.
If μ < λ̊(q, f , F) we denote � := μ and

κ := C ′(π, μ) − C(π, μ)F(μ)

S′(π, μ) − S(π, μ)F(μ)
.

(In the case when F = ∞, this is understood asκ := C(π, μ)/S(π, μ).) Lemma 2.3 implies
μ < λ̊(q,∞, F), and hence, κ is well defined. Arguing as in the proof of Lemma 2.3, we
see that P(q, κ, F) has only one eigenvalue not exceeding λ̊(q,∞, F), and hence, μ =
λ̊(q, κ, F). The same proof also shows that if f �= ∞, then

f (μ) < f
(
λ̊(q, f , F)

)
= −

ψ ′
(
0, λ̊(q, f , F)

)

ψ
(
0, λ̊(q, f , F)

) < −ψ ′(0, μ)

ψ(0, μ)
= κ.

The function

γ (t) := (
f↑(μ) − κ f↓(μ)

) f↑(μ) + t f↓(μ)

κ + t

is strictly monotone decreasing from +∞ to 0 as t increases from −κ to − f (μ). Thus,
there is a unique τ ∈ (−κ,− f (μ)) such that γ (τ) = ν. We denote by u the solution of
(1.1) with λ = μ, u(0) = 1 and u′(0) = τ . Lemma 2.3 implies that μ = λ̊(q, κ, F) ≤
λ̊(q, κ,∞) < λ̊(q,−τ,∞), and hence, Lemma 2.5 shows that u has no zeros on [0, π].
Moreover, if F �= ∞, then using the asymptotics of the solutions S and S′ we obtain that
the denominator of the above expression for κ is strictly positive, and thus, τ > −κ implies
F(μ) < u′(π)/u(π).

If μ = λ̊(q, f , F), then either ν = γ̊(q, f , F)/2 or ν = 2γ̊(q, f , F). In the former case,
f is constant and we denote u := ϕ(x, μ − 2). In the latter case, F is constant and this time
we denote u := ψ(x, μ − 2). In both cases, u has no zeros on [0, π] by Lemma 2.5, and we
set � := μ − 2.

123



Essentially isospectral transformations… 1635

Finally, we define

q̃ := q − 2

(
u′

u

)′
, f̃ := �

(
�,−u′(0)

u(0)
, f

)
, F̃ := �

(
�,

u′(π)

u(π)
, F

)
.

Now, we prove that, in a sense, the two transformations that we defined in this and the
previous subsections are inverses of each other.

Theorem 3.5 The transformations T̂ and T̃ are inverses of each other in the sense that if
(q, f , F) ∈ Ŝ and (̂q, f̂ , F̂) = T̂(q, f , F), then

T̃
(
λ̊(q, f , F), γ̊(q, f , F), q̂, f̂ , F̂

)
= (q, f , F),

and conversely, if (μ, ν, q, f , F) ∈ S̃, then T̂T̃(μ, ν, q, f , F) = (q, f , F).

Proof Denote λ0 := λ̊(q, f , F) and (̃q, f̃ , F̃) := T̃
(
λ0, γ̊(q, f , F), q̂, f̂ , F̂

)
. If f �= ∞

and F �= ∞, then
(
λ0, γ̊(q, f , F), q̂, f̂ , F̂

) ∈ S̃1. Comparing the definition of T̃ with
the expression for γ̊(q, f , F) derived in Sect. 3.2.1, we conclude that τ = f (λ0). Thus,
the functions f↓(λ0)/v(x) and u(x) satisfy Eq. (3.11) with λ = λ0 and the same initial
conditions, and hence, u(x) = f↓(λ0)/v(x). Then,

u′(x)
u(x)

= −v′(x)
v(x)

,

and thus,

q̃(x) = q̂(x) − 2

(
u′(x)
u(x)

)′
= q(x) − 2

(
v′(x)
v(x)

)′
− 2

(
u′(x)
u(x)

)′
= q(x).

Finally, the identity (3.1) implies

f̃ = �

(
λ0,−u′(0)

u(0)
,�

(
λ0,−v′(0)

v(0)
, f

))
= f

and similarly F̃ = F . The remaining cases and the converse statement can be analyzed in an
analogous manner. ��

We can also prove an analogue of Theorem 3.3 for the transformation T̃.

Theorem 3.6 If {λn, γn}n≥0 is the spectral data of the problem P(q, f , F) and (̃q, f̃ , F̃) =
T̃(μ, ν, q, f , F), then the spectral data of the problem P(̃q, f̃ , F̃) are

{
λn, γn(λn − �)I

}

n≥−J
,

where λ−1 := μ, γ−1 := ν, and I and J are defined as

I := ind f̃ − ind f , J := ind f̃ + ind F̃

2
− ind f + ind F

2
.

Proof If μ < λ̊(q, f , F) (i.e., J = 1), then one can easily verify that the function 1/u
is an eigenfunction of P(̃q, f̃ , F̃) corresponding to the eigenvalue μ. It follows from the
definition of � that f̃ (μ) = τ . Comparison of the definition of T̃ with the expression for
γ̊(q, f , F) derived in Sect. 3.2.1 gives γ̊(̃q, f̃ , F̃) = ν. The rest of the proof follows readily
from Theorems 3.3 and 3.5. ��
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4 Applications

4.1 Asymptotics of eigenvalues and norming constants

Asmentioned earlier, it is possible to obtain sharper asymptotic formulas for the spectral data
of the problem P(q, f , F) by following the method of the proof of Lemma 2.2. However,
this method requires a large amount of calculation and has already been done in the case of
constant boundary conditions (see, e.g., [16, Theorem 1.1.3 and Remark 1.1.2]). Our next
theorem shows that the transformation T̂ allows us to extend them to the case of boundary
conditions (1.2) with much less calculation and write them in a unified manner. But first we
start with a preliminary lemma.

Lemma 4.1 If (̂q, f̂ , F̂) = T̂(q, f , F), then

1

2

∫ π

0
q(x) dx + ω1 + �1 = 1

2

∫ π

0
q̂(x) dx + ω̂1 + �̂1,

where ω̂1 and �̂1 are the second coefficients of the polynomials ω f̂ and ωF̂ , respectively.

Proof We consider only the case ind f , ind F ≥ 0. The other cases when f = ∞ or F = ∞
can be analyzed in a similar way. If h0 > 0, then f̂ is of the form (3.4) with ĥ0 = 0 and

ĥ = − 1

h0
− f (λ0).

If ind f > 0 and h0 = 0, then

ĥ0 = 1

f (λ0) − h
.

Finally, if ind f = 0, then f̂ = ∞. In all these cases, ω̂1 = ω1 + f (λ0). Similarly, �̂1 =
�1 + F(λ0). Hence, (3.5) implies

1

2

∫ π

0
q̂(x) dx + ω̂1 + �̂1

= 1

2

∫ π

0
q(x) dx − ϕ′(π, λ0)

ϕ(π, λ0)
+ ϕ′(0, λ0)

ϕ(0, λ0)
+ ω1 + f (λ0) + �1 + F(λ0)

= 1

2

∫ π

0
q(x) dx + ω1 + �1.

��
We are now in a position to prove the main result of this subsection.

Theorem 4.2 The spectral data of the problem P(q, f , F) have the asymptotics

√
λn = n − ind f + ind F

2
+ 1

πn

(
1

2

∫ π

0
q(x) dx + ω1 + �1

)
+ ξn

n
,

γn = π

2

(
n − ind f + ind F

2

)2 ind f (
1 + ξ ′

n

n

)
,

where {ξn}, {ξ ′
n} = o(1) if q ∈ L1(0, π) and {ξn}, {ξ ′

n} ∈ 
2 if q ∈ L2(0, π).
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Proof We give the proof for the case q ∈ L1(0, π); the case when q ∈ L2(0, π) differs from
it only in the form of the remainder terms. Consider the chain of problemsP(q(k), f (k), F (k))

defined by

(q(0), f (0), F (0)) := (q, f , F),

(q(k), f (k), F (k)) := T̂(q(k−1), f (k−1), F (k−1)), k = 1, 2, . . . , K ,
(4.1)

where K := max{ind f , ind F}, and let ω
(k)
1 and �

(k)
1 denote the second coefficients of the

polynomials ω f (k) and ωF (k) , respectively. Then, the last problem P(q(K ), f (K ), F (K )) has
constant boundary conditions, and hence, its eigenvalues have the asymptotics

√
λ

(K )
n = n − ind f (K ) + ind F (K )

2

+ 1

πn

(
1

2

∫ π

0
q(K )(x) dx + ω

(K )
1 + �

(K )
1

)
+ o

(
1

n

)
.

Let I and J be defined by (3.8)–(3.9) with f and F replaced by f (K−1) and F (K−1), respec-
tively. Using Theorem 3.3 and Lemma 4.1, we calculate

√
λ

(K−1)
n =

√
λ

(K )
n−J

= n − J − ind f (K ) + ind F (K )

2

+ 1

π(n − J )

(
1

2

∫ π

0
q(K )(x) dx + ω

(K )
1 + �

(K )
1

)
+ o

(
1

n

)

= n − ind f (K−1) + ind F (K−1)

2

+ 1

πn

(
1

2

∫ π

0
q(K−1)(x) dx + ω

(K−1)
1 + �

(K−1)
1

)
+ o

(
1

n

)
,

where we used the obvious relation

1

π(n − J )
= 1

πn
+ O

(
1

n2

)
.

Repeating this argument K − 1 more times yields the above asymptotics for
√

λn .
In a similar manner, from

γ (K )
n = π

2

(
n − ind f (K ) + ind F (K )

2

)2 ind f (K ) (
1 + o

(
1

n

))
,
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Theorem 3.3 and Lemma 2.2 we obtain

γ (K−1)
n = γ

(K )
n−J

(
λ(K−1)
n − �

)I

= π

2

(
n − J − ind f (K ) + ind F (K )

2

)2 ind f (K )

×
(
n − ind f (K−1) + ind F (K−1)

2

)2I (
1 + o

(
1

n

))

= π

2

(
n − ind f (K−1) + ind F (K−1)

2

)2 ind f (K−1) (
1 + o

(
1

n

))
.

Again, repeating this argument K − 1 more times, we get the above asymptotics for the
sequence γn . ��

4.2 Oscillation of eigenfunctions

The Sturm oscillation theorem says that an eigenfunction corresponding to the n-th eigen-
value of the Sturm–Liouville problem with constant boundary conditions has exactly n zeros
in the open interval (0, π) (see, e.g., [16, Theorem 1.2.2]). Oscillation properties of the eigen-
functions of problems with boundary conditions dependent on the eigenvalue parameter have
been studied, e.g., in [5, Appendix I], [6, Section 3]. By using the transformation T̂, we will
now extend these results to boundary value problems of the form (1.1)–(1.2). But first we
need the following auxiliary result.

Lemma 4.3 Let J and ϕ̂n be defined by the formulas (3.9) and (3.10), respectively. If the
function ϕ̂n(x) has N zeros in (0, π), then the function ϕ(x, λn) has exactly N + J +
� f̂ (λn) + �F̂ (λn) − � f (λn) − �F (λn) zeros in (0, π).

Proof We give the proof for the case f �= ∞; in the case when f = ∞, we only need to
consider ψ instead of ϕ. Let � be defined by (3.6). The identities

(ϕ̂n(x)ϕ(x,�))′ = ϕ(x, λn)ϕ(x,�),

(
ϕ(x, λn)

ϕ(x,�)

)′
= (� − λn)

ϕ̂n(x)

ϕ(x,�)

imply that between any two zeros of the function ϕ̂n(x) there is a zero of the function ϕ(x, λn)
and vice versa. If we denote by x1, . . ., xN the zeros of the function ϕ̂n(x) in (0, π), then the
function ϕ(x, λn) has N − 1 zeros in (x1, xN ). Using the equalities

ϕ̂n(0)ϕ(0,�) = f̂↓(λn) f↓(�), ϕ(0, λn)ϕ(0,�) = f↓(λn) f↓(�)

and the above identities, one can easily check that ϕ(x, λn) has a zero in (0, x1) if and only
if f̂↓(λn) f↓(λn) > 0 or f̂↓(λn) = 0, i.e., if and only if the functions f and f̂ have the same
number of poles not exceeding λn . A similar assertion holds for the interval (xN , π) and the
functions F and F̂ if the boundary condition at π is not Dirichlet (i.e., J = 1). Otherwise, if
the boundary condition at π is Dirichlet (i.e., J = 0), the function ϕ(x, λn) does not have a
zero in (xN , π), but �F (λn) = �F̂ (λn) = 0. This concludes the proof. ��

Now, we are ready to prove our main oscillation result.
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Theorem 4.4 An eigenfunction of the problem P(q, f , F) corresponding to the eigenvalue
λn has exactly n − � f (λn) − �F (λn) zeros in (0, π).

Proof Consider the problems P(q(k), f (k), F (k)) defined by (4.1). Let J (k) be defined
by (3.9) with f and F replaced by f (k) and F (k), respectively. Since the last problem
P(q(K ), f (K ), F (K )) has constant boundary conditions, its eigenfunction corresponding to
the eigenvalue λ

(K )
m has m zeros in the open interval (0, π) for each m ≥ 0. On the other

hand, the constancy of f (K ) and F (K ) implies � f (K ) (λ) ≡ 0 and �F (K ) (λ) ≡ 0, and hence,
the statement of the theorem holds in this case. By successive applications of Theorem 3.3,
it follows that λn = λ

(K )

n−J ′ , where J ′ := ∑K−1
k=0 J (k). Applying Lemma 4.3 successively to

the problems P(q(K−1), f (K−1), F (K−1)), . . ., P(q(0), f (0), F (0)), we obtain that an eigen-
function of P(q, f , F) corresponding to the eigenvalue λn has

n − J ′ +
K−1∑

k=0

(
J (k) + � f (k+1) (λn) + �F (k+1) (λn) − � f (k) (λn) − �F (k) (λn)

)

= n − � f (λn) − �F (λn)

zeros in (0, π). ��

4.3 Regularized trace formulas

In this subsection, we apply our direct transformation to the calculation of regularized traces.
We refer to [41] for a relatively recent survey on this topic. Regularized traces of Sturm–
Liouville problems with boundary conditions dependent on the eigenvalue parameter have
been calculated in [15,21,31].

Throughout this subsection, we assume that q ∈ W1
2[0, π]. As in the case of constant

boundary conditions (see, e.g., [16, Remark 1.1.1], [33, Appendix II] or [36, Theorem 1.5.1]),
one can obtain more precise asymptotics for the spectral data of P(q, f , F), depending on
the smoothness of the potential q . In particular, if q ∈ W1

2[0, π], then the eigenvalues of the
problem P(q, f , F) have the asymptotics

√
λn = n − a + b

n − a
+ 
2

(
1

n2

)
,

where

a := ind f + ind F

2
, b := 1

π

(
1

2

∫ π

0
q(x) dx + ω1 + �1

)
.

Hence, the following series (called the first regularized trace) converges:

Trace(q, f , F) :=
∑

n<a

λn +
∑

n=a

(λn − b) +
∑

n>a

(
λn − (n − a)2 − 2b

)
.

The sum of this series has already been calculated in [15]. Here, we express sλ in terms of
q , ω1, ω2, �1 and �2 and give another proof of these formulas, based on the use of the
transformation T̂.

Again, we begin with a preliminary lemma.
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Lemma 4.5 Let (̂q, f̂ , F̂) := T̂(q, f , F), and let ω̂1 and ω̂2 be the second and third coeffi-
cients of the polynomial ω f̂ . We have

(−1)ind f̂ q̂(0)

4
− ω̂2

1

2
− ω̂2 = (−1)ind f q(0)

4
− ω2

1

2
− ω2 ∓ �

2
,

where � is defined by (3.6), and the plus sign is used if and only if f = ∞. A similar identity
holds for the right end point.

Proof The proof of Lemma 4.1 shows that ω̂1 = ω1 + f (�). If f �= ∞, then (3.5), (3.6)
and (3.7) imply

q̂(0) = −q(0) + 2� + 2 f 2(�).

We start with the case when h0 > 0 (i.e., ind f is odd and positive). From the first identity
of (3.2), we get ω̂2 = ω2 − ω1 f (�) + �. Thus,

(−1)ind f̂ q̂(0)

4
− ω̂2

1

2
− ω̂2

= −q(0)

4
+ � + f 2(�)

2
− ω2

1

2
− ω1 f (�) − f 2(�)

2
− ω2 + ω1 f (�) − �

= −q(0)

4
− ω2

1

2
− ω2 − �

2
.

In the case when h0 = 0 (i.e., ind f is even) from the second identity of (3.2), we get
ω̂2 = ω2 − ω1 f (�) − f 2(�). Hence,

(−1)ind f̂ q̂(0)

4
− ω̂2

1

2
− ω̂2

= q(0)

4
− � + f 2(�)

2
− ω2

1

2
− ω1 f (�) − f 2(�)

2
− ω2 + ω1 f (�) + f 2(�)

= q(0)

4
− ω2

1

2
− ω2 − �

2
.

Finally, if f = ∞, then f̂ is constant, and thus, ω̂1 = − f̂ and ω̂2 = ω1 = ω2 = 0. From
(3.5), (3.6) and (3.7), we have

q̂(0) = −q(0) + 2� + 2 f̂ 2.

Therefore,

(−1)ind f̂ q̂(0)

4
− ω̂2

1

2
− ω̂2 = −q(0)

4
+ � + f̂ 2

2
− f̂ 2

2
= −q(0)

4
+ �

2
.

��
Theorem 4.6 The following identity holds:

Trace(q, f , F) = (−1)ind f q(0)

4
+ (−1)ind Fq(π)

4
− ω2

1

2
− �2

1

2
− ω2 − �2.

Proof Consider again the problems P(q(k), f (k), F (k)) defined by (4.1). Since the last prob-
lemP(q(K ), f (K ), F (K ))has constant boundary conditions, the identity in the statement of the
theorem holds for this problem.We now consider the problemP(q(K−1), f (K−1), F (K−1)). If
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ind f (K−1), ind F (K−1) ≥ 0, then�(K−1) = λ
(K−1)
0 . In this case,P(q(K−1), f (K−1), F (K−1))

has the extra eigenvalue λ
(K−1)
0 and hence

Trace(q(K−1), f (K−1), F (K−1)) = λ
(K−1)
0 + Trace(q(K ), f (K ), F (K )).

Using Lemma 4.5, we calculate

Trace(q(K−1), f (K−1), F (K−1)) = Trace(q(K ), f (K ), F (K )) + λ
(K−1)
0

= (−1)ind f (K )
q(K )(0)

4
−
(
ω

(K )
1

)2

2
− ω

(K )
2 + λ

(K−1)
0

2

+ (−1)ind F (K )
q(K )(π)

4
−
(
�

(K )
1

)2

2
− �

(K )
2 + λ

(K−1)
0

2

= (−1)ind f (K−1)
q(K−1)(0)

4
−
(
ω

(K−1)
1

)2

2
− ω

(K−1)
2

+ (−1)ind F (K−1)
q(K−1)(π)

4
−
(
�

(K−1)
1

)2

2
− �

(K−1)
2 .

If one of f (K−1) and F (K−1) is ∞, then the other one is not, and thus, the terms
∓�

2 in Lemma 4.5 cancel each other out. Since in this case P(q(K−1), f (K−1), F (K−1))

and P(q(K ), f (K ), F (K )) are isospectral, we have Trace(q(K−1), f (K−1), F (K−1)) =
Trace(q(K ), f (K ), F (K )). Applying now Lemma 4.5, we arrive at the same value for
Trace(q(K−1), f (K−1), F (K−1)). Repeating this argument K − 1 more times concludes the
proof. ��

4.4 Inverse problem by spectral data

Inverse eigenvalue problems for the Sturm–Liouville equation with boundary conditions
dependent on the eigenvalue parameter have been studied in many works. Most of them
consider the case of linear dependence on the eigenvalue parameter (see, e.g., [2,4,20,30,35]).
More general boundary conditions have also been studied (see, e.g., [1,7,9,10,17]). Problems
with coupled boundary conditions dependent on the eigenvalue parameter are considered in
[26,42].

Throughout this and the next subsection, we consider problems P(q, f , F) with q ∈
L2(0, π), since in this case the necessary and sufficient conditions for the solvability of the
inverse problem are especially elegant (see also Remark 4.8 at the end of the subsection).
Theorem 4.2 shows that the spectral data of a problem of the form (1.1)–(1.2) necessarily
satisfy the conditions

λ0 < λ1 < λ2 < · · · , γn > 0, n ≥ 0 (4.2)

and

√
λn = n − M + N

2
+ σ

πn
+ 
2

(
1

n

)
,

γn = π

2

(
n − M + N

2

)2M (
1 + 
2

(
1

n

)) (4.3)
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for some real σ and integers M , N ≥ −1. The aim of this subsection is to prove that these
necessary conditions are also sufficient for sequences of real numbers {λn}n≥0 and {γn}n≥0

to be the eigenvalues and the norming constants of a problem of the form (1.1)–(1.2).
It is well known that for sequences of real numbers {λn}n≥0 and {γn}n≥0 satisfying these

conditions with −1 ≤ M , N ≤ 0, there exists a unique boundary value problem P(q, f , F)

with constant boundary conditions having these sequences as its spectral data (see, e.g., [16,
Theorem 1.5.2 and Remark 1.5.1]). In this case, M = −1 (respectively, N = −1) if and only
if f = ∞ (respectively, F = ∞), i.e., if and only if the boundary condition at 0 (respectively,
at π) is Dirichlet. The transformations defined in Sect. 3 allow us to extend this result to the
case of boundary conditions (1.2).

Theorem 4.7 Let {λn}n≥0 and {γn}n≥0 be sequences of real numbers satisfying the conditions
(4.2) and (4.3). Then, there exists a unique boundary value problem P(q, f , F) having the
spectral data {λn, γn}n≥0.

Proof Denote K := max{M, N }, and consider the numbers M (k), N (k) and the sequences
{λ(k)

n }n≥0, {γ (k)
n }n≥0 for k = 0, 1, . . ., K defined by

M (0) := M, N (0) := N , λ(0)
n := λn, γ (0)

n := γn

and

M (k) := M (k−1) − I , N (k) := N (k−1) + I − 2J ,

λ(k)
n := λ

(k−1)
n+J , γ (k)

n := γ
(k−1)
n+J

(λ
(k−1)
n+J − λ

(k−1)
0 + 2 − 2J )I

,

where

I :=
{
1, M (k−1) ≥ 0,

−1, M (k−1) = −1,
J :=

{
1, M (k−1), N (k−1) ≥ 0,

0, otherwise.

(We omit the indices of I and J to avoid double indices.) It is easy to see that they satisfy
the conditions (4.2) and (4.3) with M , N , λn and γn replaced by M (k), N (k), λ(k)

n and γ
(k)
n ,

respectively. Moreover, one of the numbers M (K ) and N (K ) is 0, while the other one is either
0 or −1. Hence, there exists a boundary value problem P(q(K ), f (K ), F (K )) (with constant
boundary conditions) having {λ(K )

n , γ
(K )
n }n≥0 as its spectral data.Now,we successively define

P(q(K−1), f (K−1), F (K−1)), . . . , P(q(0), f (0), F (0)) by

(q(k−1), f (k−1), F (k−1)) := T̃(λ
(k−1)
0 , γ

(k−1)
0 , q(k), f (k), F (k)).

Theorem 3.6 ensures at each step that the spectral data of P(q(k), f (k), F (k)) are
{λ(k)

n , γ
(k)
n }n≥0, and hence, the existence part of the theorem follows.

To prove the uniqueness part, assume that P(q, f , F) and P(̃q, f̃ , F̃) have the same
spectral data. Theorem 4.2 implies ind f = ind f̃ and ind F = ind F̃ . Denote K :=
max{ind f , ind F}. Together with the problems P(q(k), f (k), F (k)) defined by (4.1), we con-
sider the problems P(̃q(k), f̃ (k), F̃ (k)) defined by

(̃q(0), f̃ (0), F̃ (0)) := (̃q, f̃ , F̃),

(̃q(k), f̃ (k), F̃ (k)) := T̂(̃q(k−1), f̃ (k−1), F̃ (k−1)), k = 1, 2, . . . , K .
(4.4)

It follows from Theorem 3.3 that P(q(k), f (k), F (k)) and P(̃q(k), f̃ (k), F̃ (k)) have the
same spectral data. In particular, P(q(K ), f (K ), F (K )) and P(̃q(K ), f̃ (K ), F̃ (K )) are two
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problems with constant boundary conditions and the same spectral data. Therefore,
(q(K ), f (K ), F (K )) = (̃q(K ), f̃ (K ), F̃ (K )). Finally, successive applications of Theorem 3.5
conclude the proof. ��
Remark 4.8 A similar characterization can be obtained for potentials q ∈ L1(0, π). In this
case, however, in addition to the asymptotics of the spectral data, one more condition is
needed, namely that a certain function of two variables (the kernel of the Gelfand–Levitan–
Marchenko equation) has summable first derivatives (see [33, Theorem 1.6.1]). For problems
P(q, f , F) with ind f ≤ 0, this result can be found in [7, Section 6].

4.5 Symmetric case

Theorem4.7 shows that the spectrumof a boundaryvalue problemof the form (1.1)–(1.2) does
not uniquely determine this problem. But the situation is different in the case of symmetric
boundary value problems, i.e., for P(q, f , f ) with q(x) = q(π − x). In this subsection, we
will prove that the spectrum alone determines the symmetric potential q and the boundary
coefficient f .

We start by studying the properties of symmetric problems. Theorem 4.2 shows that the
eigenvalues of P(q, f , f ) satisfy the asymptotics

√
λn = n − M + σ

πn
+ 
2

(
1

n

)
, (4.5)

where M = ind f and

σ = 1

2

∫ π

0
q(x) dx + 2ω1.

Since our problem is symmetric, it follows from (2.1) thatψ(x, λ) = ϕ(π −x, λ). Then, (2.2)
implies ψ(x, λn) = β2

nψ(x, λn), and hence, β2
n = 1. Using Theorem 4.4, we obtain βn =

(−1)n . Thus, Lemma 2.1 implies

γn = (−1)nχ ′(λn). (4.6)

It follows from the asymptotics of χ(λ) (see the proof of Lemma 2.2) that this function is
an entire function of order 1/2, and hence, from Hadamard’s theorem (see, e.g., [32, Section
4.2]) we obtain

χ(λ) = −π

M∏

n=0

(λn − λ)

∞∏

n=M+1

λn − λ

(n − M)2
. (4.7)

Now, we are ready to state the main result of this subsection.

Theorem 4.9 Let {λn}n≥0 be a strictly increasing sequence of real numbers satisfying the
asymptotics (4.5) for some real σ and integer M ≥ −1. Then, there exists a unique symmetric
boundary value problem P(q, f , f ) having the spectrum {λn}n≥0.

Proof Define χ by (4.7) and then γn by (4.6). It follows from [36, Lemma 3.4.2] that χ has
a representation of the form

χ(λ) = −
(
sin π

√
λ√

λ
− 4σ cosπ

√
λ

4λ − 1
+ g(λ)

λ

)
M∏

n=0

(λn − λ),
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where g(λ) = ∫ π

0 g̃(t) cos
√

λt dt for some g̃ ∈ L2(0, π). This representation and (4.7)
imply that γn are strictly positive numbers satisfying the asymptotics

γn = π

2
(n − M)2M

(
1 + 
2

(
1

n

))
.

The rest of the proof now follows from Theorem 4.7. ��

4.6 Inverse problemwith partial information on the potential

Another type of inverse problems where the spectrum alone is sufficient are the so-called
problemswith partial information on the potential. In the case of constant (i.e., independent of
the eigenvalue parameter) boundary conditions, Hochstadt and Lieberman [23] showed that
the knowledge of the norming constants can be replaced by the knowledge of the potential
on half the interval and of the boundary constants. Hald [22] proved that one of the boundary
constants need not be assumed known, i.e., for a problemP(q, h, H)with constant boundary
conditions (h, H ∈ R∪{∞}) the knowledge of q on [0, π/2] together with h and the spectrum
uniquely determines H and q a.e. on all of [0, π ] (see [22, Lemma 1], [19, Theorem A.1]).
Later, Gesztesy and Simon [19] and Ramm [40] showed that if the potential is known on
more than half the interval, then only a finite density subset of eigenvalues is needed. See also
[3,24,25,34,45] for further developments in this direction, and [4,44,46] for boundary condi-
tions dependent on the eigenvalue parameter. Here, we generalize the Hochstadt–Lieberman
theorem to the case of boundary value problems of the form (1.1)–(1.2).

Theorem 4.10 Let {λn}n≥0 and {̃λn}n≥0 denote the eigenvalues of the problems P(q, f , F)

and P(̃q, f , F̃), respectively, where q, q̃ ∈ L1(0, π), f , F, F̃ ∈ R and ind f ≥ ind F. If
q(x) = q̃(x) a.e. on [0, π/2] and λn = λ̃n for n ≥ 0, then (q, f , F) = (̃q, f , F̃).

Proof From the asymptotics of the eigenvalues (see Theorem 4.2), we obtain that
ind F = ind F̃ . Denote K := ind f , and consider the problems P(q(k), f (k), F (k)) and
P(̃q(k), f̃ (k), F̃ (k)) defined by the formulas (4.1) and (4.4), respectively. Then, f (k) = f̃ (k)

and ind f (k) ≥ ind F (k) = ind F̃ (k) for each k = 1, 2, . . ., K ; in particular, f (K ) ∈ R0

and F (K ) ∈ R−1 ∪ R0. Denote by v(k)(x) and ṽ(k)(x) the solutions of the equations
−y′′(x) + q(k)(x)y(x) = �(k)y(x) and −y′′(x) + q̃(k)(x)y(x) = �(k)y(x), respectively,
satisfying the initial conditions

v(k)(0) = ṽ(k)(0) = f (k)
↓ (�(k)),

(
v(k)

)′
(0) =

(
ṽ(k)

)′
(0) = − f (k)

↑ (�(k)),

where

�(k) :=
{

λ̊(q(k), f (k), F (k)), F (k) �= ∞,

λ̊(q(k), f (k), F (k)) − 2, F (k) = ∞.

Using the definition of the transformation T̂, for each k = 0, 1, . . ., K − 1 we successively
obtain v(k)(x) = ṽ(k)(x) on [0, π/2] and q(k+1)(x) = q̃(k+1)(x) a.e. on [0, π/2]. Then, the
problems P(q(K ), f (K ), F (K )) and P(̃q(K ), f (K ), F̃ (K )) with constant boundary conditions
satisfy the conditions of the Hochstadt–Lieberman theorem, and thus, (q(K ), f (K ), F (K )) =
(̃q(K ), f (K ), F̃ (K )). We now observe that both 1/v(K−1) and 1/̃v(K−1) satisfy the equa-
tion −y′′(x) + q(K )(x)y(x) = �(K−1)y(x) and the same initial conditions at 0. Hence,
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v(K−1)(x) = ṽ(K−1)(x) on all of [0, π ]. Thus,

q(K−1) = q(K ) + 2

((
v(K−1)

)′

v(K−1)

)′
= q(K ) + 2

((
ṽ(K−1)

)′

ṽ(K−1)

)′
= q̃(K−1)

a.e. on [0, π], and

F (K−1) = �

(
�(K−1),−

(
v(K−1)

)′
(π)

v(K−1)(π)
, F (K )

)

= �

(
�(K−1),−

(
ṽ(K−1)

)′
(π)

ṽ(K−1)(π)
, F (K )

)
= F̃ (K−1).

Repeating this argument K − 1 more times concludes the proof. ��

Remark 4.11 The condition ind f ≥ ind F also appears in the above-cited works [4,44,46].
The question of whether this condition can be removed seems to be open.

One can also try to apply the transformations T̂ and T̃ to other results mentioned above.
But in order for this to work, a very restrictive additional condition (the equality of the first
several eigenvalues) must be imposed, and hence, we do not present these results here.

4.7 Inverse problem by interior spectral data

In this final subsection, we consider a new type of uniqueness problem that has appeared
relatively recently. Using themain ideas of [23],Mochizuki and Trooshin [38] proved that for
a problemP(q, h, H)with constant boundary conditions (h, H ∈ R∪{∞}), the knowledge of
h and H , the spectrum and the values of the function ϕ′(π/2, λ)/ϕ(π/2, λ) at the eigenvalues
uniquely determines q a.e. on [0, π ]. Our transformations allow us to extend this result to
the case of boundary conditions of the form (1.2) with equal indices.

Theorem 4.12 Let {λn}n≥0 and {̃λn}n≥0 denote the eigenvalues of the problems P(q, f , F)

and P(̃q, f , F), respectively, and let yn and ỹn be corresponding eigenfunctions, where
q, q̃ ∈ L1(0, π), f , F ∈ R and ind f = ind F. If λn = λ̃n and y′

n(π/2)/yn(π/2) =
ỹ′
n(π/2)/ỹn(π/2) for all n ≥ 0, then q(x) = q̃(x) a.e. on [0, π].

Proof Let K := ind f = ind F , and consider again the problems P(q(k), f (k), F (k)) and
P(̃q(k), f̃ (k), F̃ (k)) defined by (4.1) and (4.4), respectively. Since the indices of f and F are
equal, the numbers J defined by (3.9) always equal 1, and thus, both these problems have
eigenvalues {λn+k}n≥0. We also have f (k) = f̃ (k) and F (k) = F̃ (k). It follows from the
identities in the proof of Lemma 4.3 that

(
y(k+1)
n

)′ (π

2

)

y(k+1)
n

(π

2

) = (λk − λn+k+1)

⎛

⎜⎝

(
y(k)
n+1

)′ (π

2

)

y(k)
n+1

(π

2

) −
(
y(k)
0

)′ (π

2

)

y(k)
0

(π

2

)

⎞

⎟⎠

−1

−
(
y(k)
0

)′ (π

2

)

y(k)
0

(π

2

)

for k = 0, . . ., K − 1 and n = 0, 1, 2, . . .. The same is true for eigenfunctions ỹ(k)
n of the

problems P(̃q(k), f̃ (k), F̃ (k)). Hence,
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(
y(k)
n

)′ (π

2

)

y(k)
n

(π

2

) =
(
ỹ(k)
n

)′ (π

2

)

ỹ(k)
n

(π

2

) , n = 0, 1, 2, . . .

for each k. In particular, P(q(K ), f (K ), F (K )) and P(̃q(K ), f (K ), F (K )) are two problems
with constant boundary conditions, and thus, q(K )(x) = q̃(K )(x) a.e. on [0, π] by the above-
mentioned theorem of Mochizuki and Trooshin. Then, the functions 1/y(K−1)

0 and 1/ỹ(K−1)
0

satisfy the equation −y′′(x) + q(K )(x)y(x) = λn+K−1y(x) and the same initial conditions
at 0. Therefore, y(K−1)

0 = ỹ(K−1)
0 on all of [0, π ],

q(K−1) = q(K ) + 2

⎛

⎜⎝

(
y(K−1)
0

)′

y(K−1)
0

⎞

⎟⎠

′

= q(K ) + 2

⎛

⎜⎝

(
ỹ(K−1)
0

)′

ỹ(K−1)
0

⎞

⎟⎠

′

= q̃(K−1),

and repeating this argument K − 1 more times concludes the proof. ��

Remark 4.13 As in the previous theorem, the question remains open whether the condition
ind f = ind F , which also appears in [44], can be removed.
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