These problems are about determinants and linear algebra.

11 1 1 1

1 2 3 4 5
l.Compute |1 3 6 10 15

1 4 10 20 35

1 5 15 35 70

(First row/column consist of 1’s, any number which is neither in the first row nor in the
first column, is sum of its neighbors from above and from the left).

2. Consider two quadratic polynomials, ax” +bx+c,dx” +ex+ f , where a,d #0.
Prove that they have the common root if and only if the matrix

a b ¢ 0
0 a b c
d e f O
0 d e f

is degenerate.

3. A quadric in plane is a locus of zeroes of an equation of order 2:
ax” +bxy +cy* +dx+ey+ f =0. (At least one coefficient should be nonzero)

a. Show that for each 5 points there exists a quadric containing all of them.
b. Show that if two quadrics have only finite number of common points,
than it isn’t bigger than 4.

4. Find the roots of the polynomials:

x 1 0 01 x 1 0 0 O
I x 1 0 0 I x 1 0O
a0 1 x 1 O] b0 1 x 1 O
0 01 x 1 0 01 x 1
1 0 01 x 0 0 01 x

5. Write an equation which holds if and only if the four points
(X1,¥1), (X2,¥2), (X3,y3) (X4,y4) lie on one circle or one straight line.



These problems are about determinants and linear algebra.

11 1 1 1

1 2 3 4 5
1.Compute |1 3 6 10 15

1 4 10 20 35

1 5 15 35 70

(First row/column consist of 1’s, any number which is neither in the first row nor in the
first column, is sum of its neighbors from above and from the left).

Solution. This determinant is one, it is shown by some cunning version of Gauss method.
Det is not changed when You subtract one line from another. So, subtract line 4 from line
5, then line 5 becomes line shifted left by 1, precisely: 0 1 5 15 35.

Now subtract line 3 from line 4, line 4 will become 0 1 4 10 20

Now subtract line 2 from line 3, line 3 it also shifts by 1.

Then subtract line 1 from line 2. What You get is:

I 11 1 1
01 2 3 4
01 3 6 10
01 4 10 20
01 5 15 35

Subtracting one column from another also keeps determinant.

So, subtract column 4 from column 5. Column 5 moves down.

Subtract column 3 from column 4. Column 4 moves down.

Subtract column 2 from column 3. Column 3 moves down.

Subtract column 1 from column 2. Column 2 moves down. Now we get:

1 0 0 0 O

01 1 1 1
01 2 3 4
01 3 6 10

01 4 10 20

Now again, perform similar actions on rows and then on columns, three times.
In the end, you will get the unit matrix. And det is still the same.



2. Consider two quadratic polynomials, ax” +bx +c,dx” +ex+ f , where a,d #0.
Prove that they have the common root if and only if the matrix

a b ¢ 0
0 a b c
d e f O
0 d e f
is degenerate.

o
&
Proof. Suppose they do have a common root ¢ . Then multiplying this matrix by
o
1
will give You O vector. So, if we have a common root, than a matrix is degenerate.
We need to prove the other direction also.
Denote the 2 (complex) roots of the first polynomial are X, X, and of the second

polynomial y,, Yy, . Then by Vieta theorem we get:

a b ¢ 0 a a(x+x,) ax,x, 0
0 a b c| |0 a a(x,+x,) axx, B
d e f O |d dy+y) dy, 0 |
0 d e f 0 d d(y,+y,) dyy,
I x+x, xx, 0
_ 20 0 | X tx, XX,
Ly+y, w0
O 1wty

If You sum up all ways to place 4 rooks on this matrix, and You can express this
determinant as a polynomial in X, X,, y,, Y, -

The degree of the polynomial is 4 (why?) and it is divisible by

( V— X ) : ( y, — X, ) : ( VX, ) : ( Y, — X, ) because if some polynomial of several
variables is a constant zero on the zeroes of some linear polynomial, such as y, — X,
then it is divisible by that linear polynomial (and why am I so sure of this?).

So, the polynomial I get is C(y1 —)cl)-(y2 —)cl)-(y1 —xz)-(y2 —xz) where Cis a
polynomial of degree 0, i. €. a number.



Notice that both the determinant and ( VX ) : ( YV, — X ) : ( Vi — X, ) : ( y, — xz) contain

a monomial yl2 ))22 soC=1.
That’s it.

Remarks. (1) In precisely the same way You can see that the determinant of

a, .oa a,
a, a, a,
bm bl bO
b b b,
b .. b b

(first parallelogram consists of m lines, second of # lines), is O iff the polynomials
ax"+...+ a2x2 +ax+a,b x"+...+ b2x2 + b x + b, have a common root.

I didn’t write it in the generic form from all the time for two obvious reasons.
Firstly, I was lazy to draw complicated determinants; secondly, You might prefer to do
the general case by Yourself.

(2) This determinant is called resultant of two polynomials.

(3) The resultant of a polynomial with itself (sometimes divided by the first coefficient) is
called a discriminant of the polynomial. You probably learned it in kita het for quadratic
polynomials.

3. A quadric in plane is a locus of zeroes of an equation of order 2:
ax” +bxy +cy* +dx+ey+ f =0. (At least one coefficient should be nonzero)

a. Show that for each 5 points there exists a quadric containing all of them.
b. Show that if two quadrics have only finite number of common points, then it isn’t
bigger than 4.

a. A condition that given quadric has a certain point imposes a linear condition on its six
coefficients (given the point) 5 points give us 5 linear conditions. 6 variables, 5 linear
condition, homogenous system = it must have a nontrivial solution.

b. First solution. Assume we have two quadrics which have more than 4, but a finite
number of intersections. So, there are finite number of lines passing through 2
intersections, and we can rotate this picture so that none of those lines will be horizontal.



After rotation quadrics will remain quadrics (since the formulas for the rotation are
linear). Let us say that their equations will be:

ax’ +(b1y+d1)x+(c1y2 +ely+f1)=0
a,x’ +(b2y+d2)x+(c2y2 +e2y+f2)=0

To have an intersection on the level of certain y means to have a common root x for
these two polynomials. Which means there will be a zero resultant for this y :

a, by+d, C1y2 +ey+f 0

0= 0 aq by+d, c1y2+€1y+f
a, byy+d, C2y2 +e,y+f 0
0 a, b,y+d, C2y2+€2y+f

Number of root of this resultant, which is polynomial in y, is a number of intersections.
But we see it is polynomial of degree no more than 4.

Remark. This proof is easily generalizable, and we get a theorem about any two
algebraic curves: if their degrees are M and N and they have only finite number of
common points, then it is not bigger than M'N. This fact is called Bezout theorem.
Here comes a second solution, which is more elementary, but it is not generalizable (as
far as I know).

Second solution. In analytic geometry there is a classification of quadrics: nondegenerate
quadric is either non-degenerate (an ellipse, a parabola, a hyperbola) or degenerate (union
of two lines, a line, an isolated point, an empty set).

Degenerate cases are easily verified. For example, a line can have no more than 2
intersections with quadric, since it is a solution of quadratic equation.

So, two lines can have no more than 4 intersections with a quadric.

Hence, it is sufficient to consider the case in which both quadrics are non-degenerate.
Choose a tangent to the first quadric at some point which is not their intersection.
Perform a projection of this plane which will send this tangent to infinity.

(By the way, why does a projection send quadrics into quadrics???)

The first quadric will become a parabola.

After some stretching and rotating, the first quadric will become y = x%, so it will have
only one Yy for each x. The second quadric will be

ax” +bxy+cy* +dx+ey+ f =0. Substitute y = x", You get a polynomial of
degree 4. so only 4 values of x allow intersection, and for each x there is justone y .



4. Find the roots of the polynomials:

X

o
—_— 0 O =

a. Solution. Consider a matrix R =

1 0 01
x 1 00
I x 1 O
01 x 1
0 0 1 «x

X

S O = xr O

S o O =

S O o O

1

S =~ = = O

S O o =

0

—_ = = OO

S O = O

0

" - o O o

S = O O

0

— o O O

0

It is rotating the standard basis. We can guess its eigenvectors.

Let £ =

7

2
e

> (“aroot of degree 5 of 17). Then the vector é: 2k

|
&

§3k
§4k

, when You multiply R

by it, is multiplied by é: ¥ Fork=0, 1,2,3,4 we get in this way 5 different eigenvectors
and 5 different eigenvalues. Eigenvectors corresponding to different eigenvalues are
linearly independent. Let switch to this eigenbasis.

.. .. -1 . . . .. .
Our original matrix is actually R+R +xE , where E is a unit matrix. So, in eigenbasis,

1
0

0
0
0

2

+
0
0
0
0

0O 0 O
E 0 0
0 & 0
00 &
0O 0 O
0
x+&+E
0
0
0

0
0
0
0
§4
0
0
x+&+ &
0
0

x+&+ &

0

so the original matrix is

oS O O

x+&E+ &




and its determinant is

(x42)(x+ & +&)(x+ 8+ &) (x+ 8+ &) (x+ £+ €)=

(x+ 2)(x + ZCOS(%DZ (x + ZCOS(%DZ

27 4r
And roots are —2,—2C0S ? ,—2CO0S ? (the last two are double roots).

Remark. This matrix R is a well know mathematical object, and its eigenbasis is even
more famous. Passing to this basis is called discreet Fourier Transform, and it has a lot of
magical properties (did You ever hear, for example, about multiplying numbers of length
N in O(N'logN) operations?).

b. Here again, we shall guess the eigenvector. The key to guessing is a nice trigonometric
formula: sin X + siny.

A shall allow myself to show You its proof (not only because in some schools they don’t
prove formulas, but also because I have a special prove which hints the solution).

Take two unit vector (cos x, sin x) and (cos y, sin y) and sum them. We get a rombus. The
angle of the sum vector is (x+y)/2 since it is a bisector. The length of the diagonal of the
rhombus (1¥7) is 2cos((x-y)/2). So,

cos X + cos y = 2cos((x-y)/2) cos((x+y)/2)

sin x + sin'y = 2cos((x-y)/2)sin((x+y)/2)

So, we have

x 0 0 O0) sin(kz/6) sin (kz/6)
1 x 1 0 0| sin(2kz/6) sin (2k7/6)
0 1 x 1 0]} sin(3k7/6) |=(x+2cos(kx/6))| sin(3k7z/6)
0 0 1 x 1] sin(4kz/6) sin(4k7z/6)
0 0 0 1 x)\sin(5kx/6) sin(5k7/6)

Fork =1, 2,3,4,5. And since 5x5 matrix can have only 5 distinct eigenvalues, the only
answers are —2008(k7l’/6) for 1,2, 3,4,5.

Remark. Of course, all this can be said for each N and not just for 5.

The polynomial related to trigonometry were have a lot of nice properties, some of them
were studied by Chebyshev and bear his name (the particular polynomials we showed are
not Chebyshev’s, but are closely related to them).



5. Write an equation which holds if and only if the four points
(X1,¥1), (X2,¥2), (X3,y3) (X4,y4) lie on one circle or one straight line.

First solution
An equation of a line or a circle is of a form a(x’ + yz) +bx+cy+d=0
And it should hold for all 4 points, so the condition is that the matrix
2 2
x+yo ox oy 1
2 2
X+y, x oy 1
2 2
X +yy Xy 1
2 2
Xty oxooy, 1
is degenerate. So a condition is a determinant of this matrix = 0. That’s it.

Remarks. Denote those points A, B, C, D and O the zero. Then this formula has some
geometric meaning. Develop it with respect to the first column, you get

x12 +y12 x oy 1 x v, 1 x oy 1
2 2 2 2 ! |
X, + X 1
1
Xy +Y; X3 ) 1 1
2 2 Xy Vs Xy W4
xp+y, o ox oy, 1
x oy 1 x oy 1
5 +yi )| v - (x+y)|x w1
Xy, 1 X,y 1

But those 3x3 determinants have an obvious meaning as twice the area of the triangle,
(the area of the triangle which is oriented, i. e. has minus sign iff its coordinates are
mentioned clockwise) so our condition takes form

OA*-S,., —OB*-S,., +0C*.S,. —OD*S,.=0

So, we get a geometric theorem — ABCD is inscribed, iff for any point O the above
condition holds. If O is the center of the circle, OA=0OB=0C=0D=R, we get a trivial
condition: Sy-p +S,.p =Sacp T Sanc-

On the contrary, if O=A we get AB*-S,., + AD*-S,,.=AC*-S .,

If ABCD is really inscribed, all triangles are inscribed in the same circle, so each area is
are product of their sides divided by 4R. So, if we multiply by 4R we get:
AB?-AC-CD-DA+AD*-AB-BC-CA=AC?-AB-BD-DA

Divide itby AB- AC - AD and You get the famous Ptolemy’s theorem, which holds for
every inscribed quadrilateral: AB-CD+ AD-BC =AC-BD.

Second solution.
Consider points A, B, C, D as complex numbers.



Then the argument of a complex number (A-B)/(C-B) is precisely the angle which is
needed to rotate a vector a vector BA to the direction of vector BC.

The argument of complex number (A-D)/(C-D) is precisely the angle which is needed to
rotate a vector a vector DA to the direction of vector DC.

Those two angles should be either equal (if B, D are on the same side of line AC) or
should be opposite (if they are on different sides), so anyway, the condition is that the

A-B A-D (A-B)(C-D)
C-B C-D (C-B)(A-D)
Remark. This ratio is famous in projective geometry and it is called cross ratio.

It is famous for being an invariant of projective transformations of projective line, and if

You consider complex projective line, CP' (if You know such words) our conclusions
become quite obvious.

is real.

ratio of the two above ratios

So, let us multiply nominator and denominator by the conjugate of denominator,
(A-B)(C-D)(C-B)(A-D)
real
And the condition is: IIn((A — B)(C — D)(C - B)(A - D)) =0.

Now we can tight it in coordinates, if need be.

0=Irn(((x1—x2)+i(y1 —yz))((x3—x4)+i(y3—y4))+

(=) =i(y = 32)) (5 = x,)=i(3, = 7,))) =

= real

=—((x =) (e =) = (0 = 32) (33— 4
(=) (= 2a) + (35 = 3) (% —x,)) +
(5 =2) (v = 2) + (= 3) (%= x,))
(5 =) (5 =x) = (3= ) (3 =)

Well, if I didn’t make a mistake in the computation.
Anyway, like in first solution, it is a polynomial of order 4 and it is O when 2 points
coincide.



This time the problems are about differentiating/integrating in geometrical context.

1. Consider a sphere (the surface of a ball) of radius R, and cut it by a horizontal plane at
distance i from its north pole. Compute the area of the part of the sphere which is above
the plane (spherical kipa).

2. A circle was cut by 4 lines, passing through the same interior
point of the circle and having forming 8 equal angles at that
point (of 45 degrees each).

So, the inner part of the circle is divided into 8 parts, which are
painted in 2 colors, so that neighboring parts have different
colors (like the chessboard).

Show, that each color takes the same part of the area.

3. Develop a formula for an area of a polygon, whose vertices
are (x1,y1) (X2,¥2), ---, (Xn,yn) (in this order).

4. Two convex polygons P, Q are given, such that Q is strictly inside P.

A point X on the boundary of Q is called good, if there are two points A, B on the
boundary of polygon P such that line AB doesn’t cut the polygon Q in two parts,
and X is a middle point of the interval AB.

Show that there are at least 2 good points.

5. Consider a billiard ball on a table bounded by a convex smooth wall without pockets.
The ball is so small that we consider it to be a point. The trajectory of the ball is a straight
line, until it hits the wall, at the wall it is reflected so that the angle between the wall and
the trajectory is preserved. So the trajectory is a broken line, consisting on intervals.

A convex line inside the table is called caustics, if the following property holds:

If the trajectory of the billiard ball touches this line once, then it touches it on with
interval.

We are given a smooth convex line inside the billiard table which is caustics.

For each point A of the edge of the table, let p(A) be the perimeter of the convex hull of
A and the given caustics.

Show that p(A) doesn’t depend on A.



This time the problems are about differentiating/integrating in geometrical context.

1. Consider a sphere (the surface of a ball) of radius R, and cut it by a horizontal plane at
distance i from its north pole. Compute the area of the part of the sphere which is above
the plane (spherical kipa).

Solution: the answer is surprising. It is proportional to .
For unit sphere, it is 2h, for sphere of radius R it is 2whR.

Consider a huge number of densely distributed horizontal planes. They cut the spherical
surface into a lot of circular tilted bands.

Consider plane at distance 4 from the north pole. If the center of the sphere is (0,0,0), this
plane can be described analytically as z = R — h.

The thin spherical band, between z and z+dz, is circular and its length is 2r where r I a

radius of the circle, P +72 =R

The height of this spherical band is dz. But its width is bigger, because it is tilted. The
quotient between the width and the height is R/r, since triangles are similar.

So the area of a thin spherical band of height dz is length times width = 2nr xdzxR/r =
2mRdz. It is a constant function!

Integrate it over an interval of length &, you get 2wRA.

2. A circle was cut by 4 lines, passing through the same interior
point of the circle and having forming 8 equal angles at that
point (of 45 degrees each).

So, the inner part of the circle is divided into 8 parts, which are
painted in 2 colors, so that neighboring parts have different
colors (like the chessboard).

Show, that each color takes the same part of the area.

First solution. Rotate this set of lines around their common intersection with a constant
angular speed v. When one of the lines will be passing through the center of the circle,
both colors will occupy the same area (due to symmetry w. r. t. diameter).

So, all we have to prove is that the difference between dark area and light area will be
preserved during the rotation.

The area swept by an interval of length / rotated around its end by an infinitesimal angle
dacis Pda/2.

In our picture, when all 8 the intervals are rotated, 4 of them turn dark area into light, and
another for turn light area into dark. Denote the lengths of 8 intervals, a, e, b, f, ¢, g, d, h
clockwise. We compute the derivative of “dark area — light area”. During time dt it will

sweep angle da = v dt and area ((a’+b’+c*+d?) — (e*+f>+g’+h?))dav/2, so derivative (when
you divide it by dt) will be ((a*+b*+c*+d?) — (e*+f*+g*+h%))/2.

We want to prove it is 0, so it is enough to prove a lemma:



Lemma. Inside a circle, two orthogonal chords cut each other. The length of 4
subintervals which are formed are a, b, ¢, d. Then a’+b’+c*+d” doesn’t depend on the tilt
of this cross, but only on the radius of the circle and the position of the intersection point.
Actually, it doesn’t even depend on the position of the intersection, and it is always equal
to the square of circle’s diameter.

Proof of lemma. Let O be the intersection of the chords, and their ends A, B, C, D
(named clockwise). By Pythagoras theorem,

a’+b’+c’+d* = OA” + OB” + OC” + OD* = AB” + CD’

Draw a parallel line to AC through D. It will cut the circle in 2 points: D and E.

BDE is a right angle, so BE is a diameter of the circle, so BAE is also right angle.

AE = CD since because of the symmetry, hence we can continue our computation so:
AB’ + CD’ = AB? + AE’ = BE” = diameter’

That’s it.

Second solution. Start reducing the circle concentrically,
until the circle gets to the intersection. Both dark and light
area are being reduced at the same rate. Here we are using:

Lemma. The angle between the chords of a circle is average
of two arcs: in the picture on the right o= (u +v) /2.

This is known from elementary geometry, but if you don’t
know it, take it as an exercise.

So, in our problem, sum of dark and light arcs is the same. When we reduce the radius, at
each moment dark are is reduced by dr times sum of dark arcs, while light are is reduced
by dr times sum of light arcs, which is the same.

When the circle contains the intersection of 4 lines, we stop
and look. Of the 8 rays, only 4 intersect the boundary, and 4
others look outside the circle. The 4 intersection points with
the boundary cut the circle in the vertices of the square.
(Since inscribed angles are 45° so intercepted arcs are 90°).
So, the circle is split into 5 parts: 3 of one color, and 2 of
another. The 2 parts can be divided by chords into 2 segments
and 2 triangles. This triangles have bases equal to the side of
the square and sum of their heights is the same, so if we will
move their common vertex to the center of the circle, their area will be the same. But
then, it will definitely become half a circle.

Third solution. (No derivatives, by V. Proizvolov, works for any form with 4 axes of
symmetry, taken from the famous Russian “Quant”, 1992/10 solutions to quant problems,
http://kvant.mirrorl.mccme.ru/1992/10/resheniya_zadachnika kvanta ma.htm). Would it
be a square instead of circle, it would be an easy exercise. So it is enough to prove it for
the difference between the bounding square and its circle. Now, just relax and watch:




aj
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3. Develop a formula for an area of a polygon, whose vertices
are (x1,y1) (X2,¥2), ..., (Xn,yn) (in this order).

First solution.
Let’s first develop a formula for triangle.
If the vertices of triangle are (0,0) , (x1,y1) , (X2,y2) then the area is half the area of the
parallelogram, which is determinant, so the answer is (X1y2 — X2y1)/2.
Actually, this is oriented area — it is usual area when the vertices go clockwise and minus
usual area when vertices go counterclockwise. We can get usual are by taking the
absolute value, but I prefer area to be oriented for now.
For triangle (x1,y1) , (X2,¥2) , (X3,y3): if we shift the triangle by a vector —(x;,y;) area
won’t change, so substitute (xo— X1, Y2— Y1) , (X3— X1, y3— y1) and get:
((X2=x1) (y3— y1) — X3 =x1)(y2— y1)) /2 = ((X2y3 — X3¥2) + (X3y1— X1¥3) + (X1y2— X2y1)) /2
In other words, if You denote Sspc to be the oriented area of triangle ABC then

Sasc = Soas + Sosc + Soca
Here O = (0,0) (For oriented area, unlike the usual area, this formula is always true!).
The formula for quadrilateral is
Sascp = Sapc + Scpa = Soap+Sopc+Soca + Soac+Socp+Sopa = Soas + Sosc + Socp +Sopa
(Since in oriented areas, Spac = — Soca). This can is generalized for each n by induction,
internal terms cancel out, and we get a specific formula:

S XN, TN XY XY, Fa XY XY,
OAA )

anon =Soaa TSous too S



Remark. One could also find an area of triangle (x1,y1) , (X2,y2) , (X3,y3) directly, by a
determinant. Consider pyramid whose vertices are (x1,y1,1) , (X2,y2,1) , (X3,y3,1) , (0,0,0).
It is 1/6 of parallelepiped formed by vectors (X1,y1,1) , (X2,¥2,1) , (X3,y3,1).

On the other hand, it is 1/3 of the triangle’s area times the height, which is 1.

. X X, X
Sotheareais —| ¥, ¥y, ¥
1 1 1

Second solution. Simply take integral of — ydx
You will get sum of oriented areas of trapezoids:

(2 =x) (0 +3,) + (5 =) (3, + y5) + o (x, =) (3, + )

Ady A T >

Which is equivalent to the first solution.

Remark. There is also the third way to write the formula:
_ () (s =y )+ (s =)+t (V)

AAy A, T 5

Does anybody have a geometric explanation for this one?

4. Two convex polygons P, Q are given, such that Q is strictly inside P.

A point X on the boundary of Q is called good, if there are two points A, B on the
boundary of polygon P such that line AB doesn’t cut the polygon Q in two parts,
and X is a middle point of the interval AB.

Show that there are at least 2 good points.

Solution. P is divided by the chord into 2 parts: one contains Q, another doesn’t.

The area of the part that doesn’t will be called S. It can be thought of as a function of the
point on the direction of the chord.

When the chord of P is being rotated, while it is still tangent to Q, it sweeps certain area:
one part of it sweeps area into S, another sweeps area out of S.

If a point on Q divides the chord into 2 parts, x and y, then the growth of S is

2 2
x —
das = —yd @ . But then, there should be at least one direction which gives local

maximum for S and at least one which gives local minimum. For those two direction,
derivative is 0, so x=y. QED.

5. Consider a billiard ball on a table bounded by a convex smooth wall without pockets.
The ball is so small that we consider it to be a point. The trajectory of the ball is a straight
line, until it hits the wall, at the wall it is reflected so that the angle between the wall and
the trajectory is preserved. So the trajectory is a broken line, consisting on intervals.

A convex line inside the table is called caustics, if the following property holds:



If the trajectory of the billiard ball touches this line once, then it touches it on with
interval.

We are given a smooth convex line inside the billiard table which is caustics.

For each point A of the edge of the table, let p(A) be the perimeter of the convex hull of
A and the given caustics.

Show that p(A) doesn’t depend on A.

Here are pictures demonstrating both equivalent properties.
On the first picture there is a trajectory of the billiard ball, bouncing from the walls and
touching the caustics each time.

On the second picture, a rope of constant length is thrown around the inner curve, and we
draw the outer curve by pulling this rope around with the pen.

The equivalence of those two pictures was noticed in 1972 by Minasian, a student of
Yerevan university (and I learned this fact a few mothes ago from a book “Introduction to
Ergodic Theory” by a famous mathematician, Jacob Sinai).

I shall be very sketchy, and I am sorry about it, but I am delaying those solutions for a
day already.

First proof. Let us pull the rope aside by the pen, and its length will be preserved.

Let us derive this length to see what condition do we get.

The largest part of the rope which winds around the inner curve wont move. The part of it
will be release into the straight part of the rope, and taken from another part of the rope,
but it will move only slightly (small of order 2) since a tangent is very close to the curve.
The two straight parts will shift, one will become shorter and another longer.

Projection of the straight part of the rope after time df on the same straight part before
time dt will be of almost the same length as the rope itself (up to order 2) since derivative
of cos at 0 is 0. So, the derivative of length will be the same as the distance from the
projection of new position of point on the boundary to the straight parts of the rope, from
the new position. To make those two distances cancel, the trajectory should be outer
bisector for the two straight parts of the rope.

But the trajectory is the outer bisector, if and only if a billiard ball could be going along
this rope.

Second solution. First proof it for a simple special case: when the inner part is an
interval. This thing is called “the optical property of the ellipse”.



The ellipse is a curve, which is a locus of points such that the sum of two distances from
the point to two given points, called foci (plural of focus), is constant.

The optical property of the ellipse is that the billiard ball, arriving from the first focus,
returns to the second focus after it hits the wall of elliptical billiard table.

This is precisely the special case of our problem.

After we have proven it, we can consider a more general special case, precisely when the
inner curve is a convex polygon. It follows directly from the optical property of the
ellipse (when you stretch the rope with a pen around the polygon, you get that an outer
curve consists of elliptical arcs, and everything follows).

After we prove it for polygons, we simply approximate any convex by a polygon, and
obtain the general theorem from the specific case.

The only nontrivial part of this proof is the optical property of the ellipse, other parts are
easy. So, for those of you who never learned

it, here is the proof of the optical property: H
Denote the foci F, G, a point on the ellipse T,

draw a tangent to the ellipse at T.

The reflection of F with respect to that T
tangent line is H. All we need to prove is that

points G, T, H are on one line.

Assume the opposite: segment GH doesn’t

contain T, it cuts the tangent line in a

different point, S. Then TH+TG > SH+SG.

But, due to symmetry, TF=TH, SH=SF, so

TF+TG > SF+SG. But it cant be, since ellipse

is convex (why?), so S is outside the ellipse,

so TF+TG < SF+SG.



This time problems are about factorials.

1. (a) Prove that I e*x"dx=N! for any natural V.
0

; M|
(b) Prove that j XK (1-x)" dx= KM for natural K, M.
f (K+M +1)!

2. Define (using 1a) and compute V2!

3. Compute the volume of the N-dimensional ball of radius 1 and
the area of its surface.

27
4%, (a) Let I, = _[sinN (x)dx. Compute I, for each integer N.

0

(b) Show that YNz < 4N/ GVN j < (N %jf:

N
5. Compute lim[mj.
N—o0 N



During the discussion of 3" targil (factorials) many unexpected ideas were
mentioned, mostly by Alexey (Gladkikh), Gal and Oded, several nice new
solutions and remarks, so I have decided to write an appendix to the
solutions.

1(b). Third solution (Alexey). Choose at random (with uniform probability
distribution) a point A, and independently, M+K more points. What is the
probability that the point A will hold place M+1, meaning, there will be M
points before and K points after?
We shall compute it in two ways. First way: well, there are
[M+Kj (M +K)! . o
=-———=— ways to choose divide M+K other points into M

K M!K!
specific points and K specific points, and now multiply this number if ways
by the probability that M specific points will be before and K specific points

will be after. If point A is at place x then the probability is x (1-x)", so in

general we get integral over probability measure of this dx. In the end we get

M+K)!
%JXM (l—x)K dx

0
The second way to compute the same thing: all animals are equal, so the
probability for point A to be on each place, from 1 to M+K+1 is the same:

1
M+ K+1
Hence
M +K)!
(M + )JxM(l—x)dez !
MK! Y M+K+1
0 MK
So: Y(1-x)" dx=
? -([x( ) dx (M +K+1)!

Of course, this solution, as well as integration by parts, works for integer
values only.



2. Second solution (Gal & Dan) We shall compute (—%)!, and

(lj!z(—l)!-%. Let u =\/;, then du =ﬂ, hence 2udu = dx, so:

2 2 2x
(__jv—j—dx T 2udu_2j ”du—]oe du

—o0

This integral is classical and equal to J7 . So the answer is

(-4

oo

Remark. How to compute J e du was explained in the second solution
for problem 3. This function, e , is called Gaussian, bell-shaped (y»ys), or
normal distribution function, and it plays important role in probability
theory, partly because of central limit theorem.

Though we know the total integral under it, we can’t get its indefinite
integral as an elementary function (it is not arithmetical combination of
powers, exponents, logs and trigo), hence a special notation was invented, it
(up to some coefficients) is called erf(x).

3. Third solution (Oded). Like in the first solution, for the volume of the

1 N-1
ball we wrote, V,, = JVN_I -(\/1 -7 ) dz . So all we need is
-1

! N-1 ! N-1 N-1
(i) e (7))
-1 -1
Use a linear substitution which brings interval [-1,1] to interval [0,1]
u=z+1)/2 , du=dz/2 , we get
N-1 N-1

'1[(\/1—z2 )N_l dz = '1[( l—z)N_l(\/E)N_l dz =j(2u)2(2(1_u))2 2y =




v

4.(a) I, =JsinN(x)dx

. : e —e™ ..
Second solution (Alexey). sinx = YR when we raise it to the power N
i

N -
we get sum of expressions of the kind (Kje(NK)”e_K’x all divided by (2i)" .

So, we have to compute Je(NfzK)"xdx.
0
If K=2N then we get integral of 1, which is 7. In other cases we get

T

z (N-2K)ix

J‘e(N—zK)ixdx _ € '

7 (N — 2K)l .

this 1s O for even N —2K , that is, for even N, and for odd N we get.
T . e(N—ZK)ix z 9

J‘e(N—zK)zxdx _ | = :

7 (N—ZK)ZO (N—2K)l

Hence the answer i1s, for even N:

i ij LZJ(—l)Ke‘N‘K”’"e’“"dx ( N jﬂ

. N/2
I, = |sin™ (x)dx =220 =
For odd N

N T N ‘ N (N V4 ‘
Z (_1)K e(N—ZK)lxdx Z (—I)K e(N—ZK)lxdx
f =\ K -\ K
IszsinN(x)dx=K_ 0 =X 0 =
0

(2i)" (2i)




Second solution (Alexey). Let ¢ =sin’ x, then 1 —¢=cos’ x, % =2dx

t(1-1)

N
()
IN=J‘sin1\'(x)dx=2jsinN(x)dxzj‘tN/2 di 2

0 0

NI =(§_1}¢;

Because of 1(b).

/(2N 1
4(b).M<4/[N J< (N+§)7£

An elementary aproach, which gives a less good but similar inequality based
on a classical riddle, I recalled it two days after the meeting.

LJ2NY 2V (N (M) (2N)
4/(N j_ (2N)  (2N)!  (2N-1)!!

2N)!!
Denote ANZL_EE . 2—N

YT o(2N) 247 2N

. 2 : : .
Since —> 5 >—> > > 3 >...>1 we get, when we multiply such inequalities

2B, > A, >B,.
On the other hand, B,_ A, =2N , ByA, =2N +1 hence 4N > A >2N +1.

A more precise inequality was found by Alexey.

Tt o

Start by taking the In:
Inz+In (N + lj

1n7z'+ln(N+1j

<NIn4+2In(N!)-In((2N)!) < z

Let us denote the left Ly, the middle My, the right Ry. Lets compute
Lysi— Ly My — My Ry.1— Ry
We get



1n(N+1+1j—ln(N+1j
4 4
2
In4+2In(N+1)—In(2N +1)-In(2N +2) ,

ln(N+1+1j—ln(N+lj
T T

2

2

Simplify it and multiply by 2

In| 1+ ! , 2| In| 1+ ! , In| 1+ !
N+1/4 2N +1 N+1/x

If we would prove Ly,; — Ly < My,; —My< Ry,; — Ry we would get the
statement by trivial induction. Unfortunately, the inequalities are vice versa.

Let’s prove In| 1+ ! >2| In| 1+ ! >In| 1+ !
N+1/4 2N +1 N+1l/x

1 2
1+ > 1+ >+
N+1/4 2N +1 N+1/x
1 2 1 1
> + >
N+1/4 2N +1 (2N+1) N+1/x

1 1 1 1 1
N+1/4 N+1/2° (2N+1) N+1l/m N+1/2

I 1

1/4 S S 2 r
(N+1/4)(N+1/2) (2N +1)" (N+1/7)(N +1/2)

4
1 1 2=

> >
2N+1/2 2N+1 2N+2/x

This is easy.
So, we can’t apply standard induction from 1 to infinity, we can only hope to
do it vice versa — from infinity to 1. By the easy version of inequality,

limV¥ GVNJ /4N =1

Hence L, — M, ,M, —R,, for huge H are very close to 0, closer than any
given positive epsilon, and we have proved that



(LN+1 - LN) - (MN+1 - MN)’(MN+1 - MN) - (RN+1 - RN) is always negative,
hence

H-1
Lyy—My, =L, —M, + Z ((LN+1_LN)_(MN+1_MN))<€’

N=K+1

H-1
My, =Ry, =M, —R, + Z ((MN+1_MN)_(RN+1_RN))<8

N=K+1

for each positive € hence L., — M, .M, —R,,, <0 and so
L,—-M.M,—-R, <0,
QED.

Especially for those who think that was not cool enough, Alexey had
improved this inequality even further three days later:

e/

The idea is the following. Suppose we want to prove a good upper bound for
our expression. In the spirit of what was done before, we have to choose a
smaller number 7, such that an inequality

2 In| 1+ ! >In 1+; will hold forall M > N .
2M +1 M+t+1/4

He found out that when you choose any t, the expression

D, =2|In|1+ ! —1In 1+;
2M +1 M+t+1/4

1s negative for small M and positive after it passes certain point.

This point is N for which the original inequality can be proven.

To find this point he sets the derivative D, as a function of M to be 0,
and gets an expression for t.

(Wj I

5. lim

N—oo0 N B

Gal asked, whether it is possible to prove it using Stirling’s formula. I didn’t
accept it, since this equality is a first step in proving or guessing Stirling’s
formula.

For the sake of those who couldn’t come to the meeting, here we shall give

the proof of Stirling’s formula.

e



Stirling’s formula is about approximating N!
The problem 5 gives a (false) hope, that

N
'

M thats, 1im(ij N!=1.

N e N—oe\ N

Let us check how far from truth is that.

N
Denote A, =ln[(%j N!JzN—NlnN+ln(N!) , let

By =1+NInN—(N+1)In(N +1)+In(N +1) =1—N1n(N]:]_1)=1—Nln(l+%)
We want Ay to have a limit, it is equivalent to convergence of the series

ZBN . From the expression B, =1— Nln(l + ij =~ (0 we have a hope, but if
N

N=1
we look closer

1 11 . 1 .
B, :I—Nln(1+ﬁj:1—N(ﬁ—2N2 +0(N 3)J:E+O(N )

So ZBN diverges even though By goes to 0.

N=1

However, would we have
BN=1—(N+lj1n(1+i)=1—(N+1)(i— 12+0(N‘3)j=0(N‘2)
2 N 2)\N 2N

Then ZBN would converge and Ay would have a limit.
N=1

This would happen if we’d have
B, =1+(N+%jlnN—(N+l+%jln(N+1)+ln(N+1)

and A, =ln[(%jN%jz N—(N+%jlnN+ln(N!).

N
: e N! . e e :
So, the expression (—j —— has a finite positive limit ¢, in other words
N) N

N
N!za\/N(ﬁj
e

To find o take Wallis formula, of exercise 4(b) which is a more precise
version of Wallis formula.



M((N)!):MW@)NT
(2N)! “M(zivj]v

Surprisingly, all powers of N and e and most powers of 2 cancel out and we
get o =~/2x and Stirling’s formula is

N!zﬁ(ﬂf

VN7 =

e

It is on of the most beautiful and important formulas about factorials.

The most natural prove, which I showed above, I have read it in a book on
probability theory, by a famous French mathematician, Henri Poincare, who
lived about a 100 years ago. Stirling’s formula has also several other
classical proofs.

Gal has remarked, that Wallis formula z_ z : % : f . f . E . E . follows
2 133557
. |sin(7zx) = x’
from Euler’s formula for sine: . =X H l—— 1l
N=1

If you revert Wallis formula you get
2 133557 1335577 9 -1 4-1 6" -1
7 2244667 2 & & & 7 2 4* 6>

(D2

This is precisely what You get when You substitute ¥2 into Euler’s formula.

Another nice conclusion from Euler’s formula turns out when You compute
2

.. . V4
the coefficient of x°, on both sides: —— =— F
N=1

sin(7x)

Intuitively, Euler’s formula presents as a polynomial, whose roots

are all integer numbers, and hence it is a product over all integer numbers.



Gal has asked for the proof of Euler’s formula. Unfortunately, the only proof
I know uses complex functions (merukavot) so some of You may not
understand it. But anyway, here it comes.

Firstly, let us discuss convergence. In general when you have a product

oo

H(l +a, ) and the sequence a, tends to 0. We say that this product
N=1
converges well if it converges to a number, which is neither 0 nor infinity.

Lemma. H(l +a, ) converges well iff Y a, converges.
N=1 N=1

(iff 1s short for “if and only if”)

Proof of lemma. [ [(1+a,) converges well iff its log, which is
N=1

> log(1+a,)converges. But for small numbers log(1+a,) = a, . QED.
N=1

From this lemma, we see Euler’s product converges.

For every function f(z) there is a nice construction, called logarithmic
derivative f’(z)/ f(z). It is defined well and nicely even when definition of
logarithm is messy. A logarithmic derivative of a product is a sum of
logarithmic derivatives (this is precisely Leibniz rule).

Logarithmic derivative of Euler’s formula (of both sides) gives:

( 1/N -1/N | - 1 1
metg(7zx) —+Z :_+Z +
X 1+x/N 1 xIN) x §5\x+N x—N

It 1s as beautiful as the orlgmal formula itself, and is equivalent to it.
Take derivative of both parts, and change the signs, You will get a third
beautiful equivalent formula,

7’ 1

sin’ (7x) 4 (x+N)’

It converges even better so the order of summation is not important.

We shall prove the third formula. Both left hand and right hand sides are
defined in all complex plane, periodic with period 1, and analytic
everywhere except integer points. At integer points they have precisely the



: .1 : : :
same singularity —- at all integer points, and far from real line both are
Z

bounded and tend to O.

So the difference of the 2 is an analytic bounded function on complex plane,
and it is constant by Liouville theorem, O in our case since it goes to 0 far
from real axis. QED.



Factorials — solutions.

1. (a) Prove that Je‘xxN dx = N for any natural N.
0

; M !
(b) Prove that JxK (1-x)" dx= KM o natural K, M.
4 (K+M +1)!

Solution. (a) Induction. For N=0 You get integral = 0.
The step of induction: proving that Je‘xxN dx=N '[e_"xN “dx.
0 0

Apply integration by parts. First function is x”, the derivative of the second

is e . Minus (of deriving ¢ ") times minus (of integration by parts) is plus.

(b) I think that the first solution (I saw it in Euler’s book) was integration by
. K . . M

parts (integrate x", differentiate (1—x)" ).

However, there is another classical solution I like better.

Consider double integral over quadrant (% plane):

I(K,M)= T]oxKyMe_x_ydxdy
00

We shall compute it in two ways.
First way: split it into product of two integrals.

I(K,M)= T]oxKyMe_x_ydxdy =TxKe_xdx]o ye 'dy=K'M !
00 0 0

: X o
Second way: substitute 7z =x+ y,f = TWthh 1Isx=zt,y=z—2t
ATy

_ X Y K+M _—x— (K1 _\M KM -z
I(K,M)—_([_([(Zj (Zj 77 e ydxdy-!_!t (1—-1)" "™ e *dxdy

To continue this computation we need to convert dxdy into dzdt which is
done by the Jacobian.

Iz

1 0

I a%z a%t _( t zj_
B 8% % 1=t -z
z

So dxdy = |Jldzdt = zdzdt, hence

=—Z




I(K,M)= ]O]Ot" (1-1)" 2 e “dxdy = j]otK (1=1)" 25" e dedrt =
0

0 1 1
= jz’“M“e‘ZdzjtK (1-2)"dr =(K+M+1)! - ftK (1-1)"dr
The two answers for the same questions that we have computed in two ways

should be equal, hence (K + M +1)! It Yar=KIM!

QED.

Remark. First part of the question gives a natural extension of N! to all real
non-negative numbers, or in fact to all complex numbers for which ReN > 0.
In fact, it can be extended to all complex plane, and it will have poles
(infinite values) at all negative integers. The standard notation is

I'(N)= Je M dx=(N-1)!
0
and it is called “gamma function” or “Euler’s gamma function”.
Different mathematicians have found some nice properties of I" and proved
several theorems of the type “why I' is the most natural extension of
(N —1)! to the positive/complex numbers”.

Here are some colored pictures http://mathworld.wolfram.com/GammaFunction.html

As for the second part, it allows to build the natural extension of binomial
coefficients to non-integer number. The integral we asked about is usually
denoted B(K+1,M+1) and called “beta function”.

The formula we proved in standard notation looks so: B(p,q)=

2. Define (using 1a) and compute V2!

Solution. As it was explained in the above remark, the natural definition is

(%) = Ie"‘ \/;dx . I don’t believe there is an elementary function, whose
0

derivative is e*x\/; . So, we need a trick.
Substitute K = M = V2 in the formula 1(b):



2t - [N 3))

1

So. It is enough to compute J1 |t(1—1)dt . This integral is related to a circle.

0

Really, let u —t—L Then t(t-1) =(%—uj(%+uj =i—u2and

2
i _% T
! t(l—t)dt—J;/ 7Y dr.

This is precisely the are between diameter of a circle of radius ¥2 and its arc,
which is half a circle of radius Y2 so it is % :

So, we have 2! %z((%)v)2 and hence (%)!=\/2! E2 =\/% =JEA

Remark. The calculator in Windows knows it ©

3. Compute the volume of the N-dimensional ball of radius 1 and the area of
its surface.

Solution. Denote Sy the area of its surface, V) the volume. Firstly,
SN =N VN
This easy fact can be explained in 2 ways.

First explanation. Divide the surface into small (or infinitesimal) countries.
Divide the volume into conic parts, whose vertex is the center of the ball,
and bases are countries on the surface. Each N-dimensional cone can be
computed as SA/N. In our case h=1, so each volume part is N times smaller
than corresponding area part. This constant ratio will be preserved after
integration.

Second explanation. To compute volume of the ball, we shall split it into
thin concentric spherical layers (like cabbages). At radius R we have layer of
width dR and area SyR""' , and integration of this gives

1
S
vV, =|S,R""dR="2.
/ v

So, it is sufficient to compute the area or the volume and not both.



First solution. Let z be one of the coordinates. The hyperplane at level z
intersects the ball along a thin layer of radius v1—z° , hence its N —1-

N-1
dimensional volume is V,,_, - (\/1 -7 ) . The total volume is given by the
integral of this expression times dz.
1 N-1
Vo= [V (Vi-2)
-1
This integral begs for trigonometric substitution:
Z=CO0SX
dz = —sin xdx

V1=z% =sinx

Then we get
V,=V,, I (sinx)" dx

So now we have to solve 4(a) and multiply the answers.
The details are left to the reader (if he or she will really want to finish the
first solution after they see the second one).

Second solution. Consider N-dimensional integral:

G, = ]:’ T T e_(x12+x§+"'+xs)dxldxz...de

—00 —00 —o0

We shall compute it in 2 ways. First way is splitting it into product:

2 2 2
— X . X . . X — N
G, = Je dx, j e dx,-... j e "dx, =G

—o0 —o0 —o0

Second way is integrating it thing cabbage-like spherical slices of radius R
centered at zero. The volume of each slice is S,R""'dR so we get

G, = Je‘RZ SnRN “dR , now substitute u = R*,du =2RdR :

_ S, [ R N2 S e 5 N
GN—7J.€ R 2RdR—7Je u? du—— (/) (——1)

0 0

So, G = (% - lj!Sz” nd G = (%) 1V . To conclude this solution, we have

yet to find G;.



Instead of computing it directly, use the fact that we know the area of the
v, N
7 ¢ _nE7

2 2
W)t (M)
Remark. And if someone asks what is (y)' or (y)' we say that

2 2
(- V)= and (N +1)!=N!(N +1)

hence (%)':g , (%)':\/;%% , (%)':\/;%%%

Of course, for N=2k+1 we can write the formula in usual notations

(N-1) (N-1)

(27) % (2z) 7

vy=2"L__ 5, = ,
1-3-..-N 1-3-..-(N-2)

where the denominators contain products of first odd numbers.

unit circle in plane. G12 = . The answer: |V, = (

T

4*, (a) Let I, = JsinN (x)dx. Compute I, for each integer N.
0

(b) Show that VN7 < 4N/(]2VNJ < (N+%jﬂ'

Solution. (a) Use integration by parts. sin” (x)is a product of 2 functions:

first, sin"™ (x), second sin(x). We will differentiate the first and integrate

the second. The integral of sin is - cos, but minus will cancel out with minus
of integration by parts. The value at the limits is 0, hence:

1, = [sin® (x)sin(x)dx = (N 1) [sin** (x)cos ) cos ) dx =

= (V=1) sin™ (x) (1sin? (x)) v =(N 1) (1., -1,

Hence I, =(N-1)(1,,-1,) so NI, =(N-1)I, ,or I, =NT_IIN_2.
It is easily computed that /, =7 and I, =2.
2k-1 2k-3 1 2k 2k-2

So, I,, = coor—- yand L., =
Kook 2k=2 2 Aok +1 2k -1

2.
3



Remark. To write those formulas shortly, special notations were invented.
The product of all natural numbers up to N having the same parity as N is

denoted N!! . In this notation, /,, = M fand 1., =w
(2k)1! (2k +1)1!
(b) The value of sin is not bigger (and usually smaller) than 1.
Hence the value of sin” (x) decreases as N grows, at least on the interval
[0,7]. That is why 1, is decreasing sequence. So, we can write
IZN > I2N+l > 12N+2 :

One obvious consequence of this is so-called Wallis formula.
Since 1,, =1,,,,,and1s I,,, between, I,, =1,,., hence

z (N 224466

2 eN-)N2N+D! 133557
But we shall pay more attention and obtain more precise inequalities.
First we shall reduce !! to ! .

(2N)1=2-4.6-...-2N=2"-1-2-3-....N=2" - N!
(2N +1)! (2N +1)!

(2N)1!  2Y.N!
Now lets develop 1,, > 1,,,,>1

(2N +1)1=

2N+1 2N+2°

(2v-1n _(2N)-2 (2NN
e T N N2 T
(v 1) %> ((2N)1)’ 2>(2N+1)2£

2 ((2N_1)!!) 2N+2 2

(N+lj-7z>((2N)”)4 >4N2+4N.£
2 ((2N)!)2 PN+2 2
(




NN
5. Compute lim[ N'J.
N—o0 N

First solution.
Lemma 1. If sequence {a,} has a limit, then the sequence of its averages

a+a,+..+a,
n

} has the same limit.

Proof is direct, with epsilons and deltas. All element of the second sequence
after some index are near the limit, and others give finite (and reducing)
contribution.

Lemma 2. To find a limit of a sequence {b,} it is enough to find the limit of
the sequence {(n+1)b,,; — nb,}, and if we do, the limit of {b,} is the same.

Proof : it follows directly from lemma 1, since sequence {b,} are averages of
sequence {(n+1)b,,; —nb,}.

Lemma 1°. If sequence of positive numbers {a,} has a limit, then the
sequence of its geometric means {\"/ aa,-..-a, } has the same limit.

Lemma 2’. To find a limit of a sequence of positive numbers {b,} it is

n+l

enough to find the limit of the sequence {”—“} has the same limit.

n
n

The last two lemmas follow from the former two by taking exp of all
sequences. We shall use lemma 2’, but I wanted to show you other things
which are useful.

N,
So, for limit of -it would be enough to find the limit of
(Ny+1)! /NY O NY ]
(N + 1)N+1

NY (N +1)" _(HJUN

The denominator is a famous expression for e, so this sequence and the

original one two converge to % :



Second solution (I learned it recently from a 13-year old who invented it

v lni+ln£+ +lnﬂ
N

himself, Gil Gitik). Take the log. In N

1
This is Riemann sum for an integral Iln xdx=(xInx— x):) =-1.
0

So, before taking In, the limit was e,



Targil 4. This time — combinatorics.

1. Six singers came to a festival. Each day several singers make a
performance at the scene, while others listen from the audience.

How to organize the shortest possible festival, so that each singer will listen
to every other singer?

2. Once upon a time, 17 cannibals have gathered together for a feast. During
the feast, some cannibals were killed and eaten by some other cannibals.

It is known however, that there were no 5 cannibals such that neither of them
has eaten any of the other 4.

Prove that there is a chain of 5 cannibals, such that each (except the 5™ was
eaten by the next member of the chain.

3. (a) A graph of 10 vertices doesn’t contain 3 vertices which are all adjacent
to each other. How many edges (at most) can it have?

(b) A graph of 10 vertices doesn’t contain 4 vertices which are all adjacent
to each other. How many edges (at most) can it have?

4. Yoav, when he was at school, once participated in a test in Arabic
language (mevhan bearavit). During the test, he should have connected 10
Hebrew words to their 10 Arabic translations. He didn’t know Arabic at all,
so he has chosen the translation at random. His mark was 0, which means he
had no correct guesses.

Many years later he asked me a question, and it is also my question to you.
What was a probability of getting O at that test?

5*%, There is a long line of m+n people, which all want to buy an ice-cream.
The price is Sm, and out of those people m have a coin of 5o, and n have a
coin of 10r, and the stand in random order. In the beginning, the cashier has
k coins of 5. What is the probability that they won’t get stuck?

6**, A rectangle is called good, if one of its sides is integer. A big rectangle
1s divided into a finite number of smaller rectangles, which are all good.
Show that the big rectangle is also good.



Targil 4. This time — combinatorics.

1. Six singers came to a festival. Each day several singers make a
performance at the scene, while others listen from the audience.

How to organize the shortest possible festival, so that each singer will listen
to every other singer?

Solution. Well, the question for 6 is too simple, the answer is 4, so of course
we want to formulate the solution in a generalizable way.

We shall apply “duality”. Speaking vaguely, we shall not see the days of the
festival as subsets singers, but vice versa, the singers as subsets of days.
Strictly speaking, each singer defines a subset of the days of the festival,
those are days when he sings. A forbidden situation is when singer A was
singing on all days when singer B was singing, that is, one subset is
contained in another.

So, the question can be reformulated as follows: how big should be the set,
so that it has a family of 6 subsets, none of which contains another?

One way to form such a family of subsets is to take subsets of given size.
The number of such subsets is a binomial coefficient. The greatest number in
each line of Pascal’s triangle is the middle one (or the closest to the middle).
For example, a set of 4 has a family of 6 subsets of 2 elements each.

So, to prove the general claim (for any number of singers/days) we must find
the number of maximal family on mutually not-containing subsets in a set of
days. We shall prove that the example we gave is a maximal.

Assume we have a family of mutually not-containing subsets in the set of
size N, and they are of different size. Of course, this family can be replaced
by another family, of the compliments to the original family, and it will have
the same properties. So we may assume that some subsets have more than
N/2 elements. Suppose the largest subsets in the family have M elements.
Let us replace all the subsets of M elements by all the subsets of M — 1
elements, which are subsets of those subsets of M elements. The new subsets
will be mutually non-containing between themselves and with the other
members of the families. The question is, how this replacement affected the
number of the subsets?

Each set of order M contains precisely M subsets of M — 1 elements. Each
subset is counted no more than N — M + 1 times, but M > N/2, Hence

N —M + 1 <M. Hence the number of subset was not decreased by such a
replacement. Hence, we can assume no subset is bigger than N/2. By
symmetric procedure (or taking the compliment and repeating the same
procedure) we conclude that all subsets should have the same size, [N/2].



2. Once upon a time, 17 cannibals have gathered together for a feast. During
the feast, some cannibals were killed and eaten by some other cannibals.

It is known however, that there were no 5 cannibals such that neither of them
has eaten any of the other 4.

Prove that there is a chain of 5 cannibals, such that each (except the Sth) was
eaten by the next member of the chain.

Solution. A cannibal will be called kind if he didn’t eat anybody.

The cannibal is of the second kind, if he ate only kind cannibals at the feast.
The cannibal is of the third kind, if he ate cannibals of the second kind, and
maybe also some who were kind, but no others.

Similar we define cannibal of k™ kind, those who ate some cannibals of k-1%
kind, maybe of lower kind also, but no others.

If there is a cannibal of the 5™ kind, then he ate someone of the 4™ kind, who
ate someone of the 3™ kind, and so on, which is a chain of 5 cannibals who
ate each other. If there is no cannibal of the 5" kind, then there are only 4
kinds of cannibals, so there is a kind of cannibals for there are at least 5
cannibals of that kind. Those 5 cannibals didn’t eat each other.

Remark. This fact is known in combinatorics as Dilworth’s lemma. Here is
a more scientific way to formulate it: a set of AB+1 elements with partial
order must have a chain of length A+1 or an anti-chain of length B+1.

Remark. A proof might be alternatively formulated as follows:
A cannibal is considered cool if he survived the feast. He is considered
almost cool if he was eaten only by the cool people, and so on...

3. (a) A graph of 10 vertices doesn’t contain 3 vertices which are all adjacent
to each other. How many edges (at most) can it have?

(b) A graph of 10 vertices doesn’t contain 4 vertices which are all adjacent
to each other. How many edges (at most) can it have?

Solution

(a) The answer is 25. It is achieved when by a bipartite graph (>773-17 773),

5 vertices on each side, all the 5 left vertices are connected to all 5 right
vertices, but left vertices, as well as right vertices, are not connected among
themselves. The hard part is the proof of maximality.



It is also true that the best result for any number of vertices for a graph
which doesn’t contain triangle is a bipartite graph, whose sides are as equal
as possible: for 2N vertices there are N vertices on each side, for 2N+1
vertices there are N vertices on one side and N+1 on the other.

We shall prove that the bipartite graph is the best by induction.

Suppose we have proved it for graphs with fewer vertices than N. We are
given a graph G with N vertices, many edges and no triangles, we have to
prove that the number of edges is not bigger than it would be for a bipartite
graph B.

The degree of each vertex of B is at least [N/2]. If we find a vertex of whose
degree not greater than [N/2], we win. Indeed, we can erase two vertices,
one from G and another from B. After that, bipartite graph will have not less
edges by the assumption of induction, but it lost not less edges.

So, it is enough to show that for a graph G of N vertices with no triangles,
there is a vertex of degree no more than N/2. If not, than the degree of each
vertex 1s (N+1)/2 at least. It means that each vertex has at least (N+1)/2
neighbors, and at most (N — 3)/2 non-neighbors. So each two adjacent
vertices have at least one common neighbor, hence we get a triangle.

(b) The same can be proven for a general case. In graph theory, a complete
subgraph is called a clique. So, the general question is: given a graph of N
vertices doesn’t contain K-cliques, how many edges can it have, at most?
The answer i1s: split N vertices in K — 1 subsets of almost equal size, and
connect all pairs of vertices from different subsets, and that is the maximum.

The proof is by induction, same as (a). Suppose a graph with no N-cliques
surpasses our construction. If we have a vertex of degree no more than

N

, erase it and apply the induction assumption. If all vertices have

greater degree, then each vertex has less than —1 non-neighbors.

Than choose the vertices, one-by-one, so that each vertex is a neighbor of all
previously chosen vertices. Even after we have chosen K—1 vertices, all their

non-neighbors a fewer than N — (K —1), so we can choose a clique of K.



4. Yoav, when he was at school, once participated in a test in Arabic
language (mevhan bearavit). During the test, he should have connected 10
Hebrew words to their 10 Arabic translations. He didn’t know Arabic at all,
so he has chosen the translation at random. His mark was 0, which means he
had no correct guesses.

Many years later he asked me a question, and it is also my question to you.
What was a probability of getting O at that test?

Proof. There are 10! permutation from which Yoav could choose. We shall
use inclusion/exclusion principle to count how many permutations will be
marked by 0. The answer is number of zero-mark permutations / 10!

Take all 10! permutation and subtract the permutation with one correct
guess. There are 10 words that can be guessed correctly, foe each word there
are 9! ways to be correct. So 10! — 9!10, now add double intersections,
subtract triple intersections, and so on.

10 10
There are (2 j double intersections, each having 8! elements, ( j triple

each
k
10
13
And if we divide it by 10! we get the probability:
1 1 1 1 1 1 1 1 1 1

l-l+———— 4 o

21 31 41 5! 6! 7! 8! 9! 10! e
Well, it is a rational number of course, and 1/e is irrational (why?), but it is a
very good approximation, the best we could get with denominator 10!,

which is 8 digits long, so it has precisely the same first 8 digits as 1/e:
0.3678794.

intersections, each having 7! Elements, and so on, in general

having (10 — k)! elements. So we have 10!—9!10+8'( j

5*%, There is a long line of m+n people, which all want to buy an ice-cream.
The price is S, and out of those people m have a coin of 5w, and n have a
coin of 10r, and they stand in random order. In the beginning, the cashier
has k coins of Sm. What is the probability that they won’t get stuck?



Solution. The solution is, surprisingly, geometrical. There are

(m+nj (m+n)!

=-——->— ways to arrange the people in the line, we should count
m m!n!

the number of all good ways and divide it by the number of all ways.

The key idea is to count the number of bad ways, instead of counting the
number of good ways, and then we can subtract.

The ways to arrange people can be seen as ways to have a shortest walk in a
city where all streets are parallel or orthogonal to each other, when you have
to pass m blocks from west to east and n blocks from south to north, suppose
between point (0,0) and a point (m,n).

Getting stuck means arriving to a point (x,y) which is on certain diagonal, on
which “the cashier would have spent k+1/ coins of change”, that is x+k+1=y.
The bad ways are ways which pass through that “red” diagonal.

Let’s reflect the part of the way after its first time it touches the red diagonal
with respect to the red diagonal.

We shall have a way which goes from (0,0) to (n—k —1,m+ k +1), which is

the point symmetric to (m,n) with respect to the red diagonal.

This reflection gives one-to-one

correspondence between all bad ways to bl mik+]) ~ XTktl=y
(m,n) and all ways to (n—k —1,m+k +1), T

. . m+n
so their number is .
m+k+1

Hence the number of good ways is

m+n m+n
good(k,m,n)= - .
m m+k+1

. m-+n m+n ((.),O)
So the chance is 1 — )
m+k+1 m

Remark. The special case of the ice cream problem, the number of good
ways when n=m , k=0 has a name: Catalan numbers,

2n 2n (2n)! (2n)! (2 )' n+l—-n (2n)!
Cc = — = — = nj! =
" n n+l) nln! (n-1)(n+1)! nl(n+1)! nl(n+1)!
Catalan numbers have a lot of combinatorial descriptions: number of legal
sequences of n left and n right brackets, number of minimal triangulations of
a convex polygon of n+2 vertices, several description with trees, number of
ways to build a tower of base length n from cylindrical sticks, ant others.




6**. A rectangle is called good, if one of its sides is integer. A big rectangle
is divided into a finite number of smaller rectangles, which are all good.
Show that the big rectangle is also good.

First solution. Firstly, it is obvious that all sides of small rectangles are
parallel to the sides of the large rectangles (since if rectangle is parallel, then
all its neighbors are parallel).

Consider integral Ije2”ixe2”i}’dxdy over each rectangle. It is easy to verify

that it is O iff the rectangle is good. The integral over the big rectangle is a
sum of integrals over small rectangles, so it is 0. Hence the big rectangle is
good.

Second solution. We shall translate the first solution into a more elementary
language. Let f(x) be a function such that f{x) = f(y) iff x—y is integer.
It can be ¢*™ or, to keep it more elementary, {x} , the fractional part of x.
Define a function of rectangle

F(rectangle) = ( f{lmax x) — f{min x)) X ( f(max y) — f(min y))
F 1s 0 iff a rectangle is good. F'is an additive function, that is, if a rectangle
R is divided into two rectangles, R, and R,, then F(R) = F(R,) + F(R»)
Hence, is small rectangles are good, F' each of them is 0, then F of big
rectangle is also 0, so the big rectangle is good.
(There is a subtle point here: for some partitions you can not unite any two
rectangles into one, but then you can split them in parts and unite them
afterwards).

Third solution. Paint the big rectangle in checker-board coloring, starting
from the bottom-left corner, such that the sides of checker squares will be V2.
It is easy to see that for each good rectangle its black area is equal to its
white area. It is also easy to see that vice versa is true if one corner of
rectangle is also a corner of a checker-square (why?).

In the big rectangle black area = white area, since it is divided into parts,
each having black area = white area. So the big rectangle is good.

Fourth solution. Lets prolong all the sides of all rectangles to intersect with
the sides of big rectangle. Introduce coordinate axis along the sides of big
rectangle (left-bottom corner is (0,0)).

Take all lines, which have non-integer coordinates (both vertical and
horizontal), and move them by the same distance d and in the same
direction. All integer sides of small rectangles will remain the same. But



non-integer sides might change by d, so their area will change by ad. So the
change of area, of each small rectangle and total, is a linear function of d.
But if it would have all non-integer sides, it would be a quadratic function,
that would give a contradiction.

The next solution is in the based on Euler’s path method, which was

developed by Euler to solve the riddle of Koenigsberg bridges:
http://en.wikipedia.org/wiki/Seven_Bridges of K%C3%B6nigsberg

Fifth solution. Consider a graph: its vertices are vertices of small rectangles,
its sides are integer sides of small rectangles. If a rectangle has 4 integer
sides, only the horizontal sides will be considered to be edges of the graph.
If two rectangles have a common integer side, we should take it twice.

It is easy to see that degrees of all corners of the big rectangle are 1, while
the degrees of all other vertices are even.

Start traveling from a left-bottom corner along the edges of the graph,
burning the bridges behind you (never repeat the edge which was taken
before). At some moment, you will have to stop. It can happen only at a
vertex of odd degree, which can only be another corner. But the increment of
each coordinate is integer on each step. And one of coordinates of total
increment is either width or height.

Sixth solution. From double-counting, we see that each graph has even
number of vertices of odd degree. Since sum of all degrees of all vertices is
twice the number of edges. Consider the graph that was constructed in the
previous solution, and consider in it the connected component of the left-
bottom corner. It should contain another vertex of odd degree, so one more
corner. But all elements of its connected component have integer
coordinates, so either width or height is integer.

Next solution will be based on a topological fact:

Lemma. Suppose a rectangle is painted in 2 colors, black and white. Then
you can either find a white path from left to right, or a path from top to
bottom.

Proof of lemma. Paint the area to the right of the rectangle white. Consider
the white connected component of the white spot near the white side. If it
reaches the left side — cool, we have a white path from left to right. Suppose



it doesn’t. Then the border of this white spot is all black. And that is the
black path from top to bottom.

Seventh solution. Divide all good small rectangles into W-type (those have
integer width) and H-type (all the others). Paint the interior of W-type
rectangles white and the interior of H-type rectangles black.

Paint the interior part of all horizontal sides of all small rectangles black, and
the interior part of all vertical sides of all small rectangles white.

The only unpainted points now are cross-intersections, paint them black, it
doesn’t matter.

If we have a white path from left to right, it goes along W-type rectangles
between vertical sides, so it gives an integer increment of x. So, in this case,
width is integer.

If not, by the lemma, we get a black path from top to bottom. In this case, for
the same reason, the height is integer. QED.

The last solution is in the spirit of algebraic topology. In algebraic topology,
there is a nice notion of homology. It has many definition, one is based on
chains. A k-chain, roughly speaking, is a k-dimensional oriented piece of a
space, or k-dimensional polytope, or a formal linear combination of such.
There is a notion of a boundary (sum of boundary pieces) which is k-/-chain
and of a cycle — a chain whose boundary is O.

If there is a mapping from one space to another, the chains can be pushed
from the first space to the second.

Eighth solution. Consider each rectangle as a 2-chain. We can consider it
on the plane or on the torus, since there is a natural mapping from R to the

torus, which is factorization over Z*.

For rectangular 2-chains and their formal sums, define operator horizontal
boundary, which is upper side minus lower side. It is obvious that the
rectangle is good if and only if its horizontal boundary is a cycle on the
torus. But horizontal boundary is additive, and sum of cycles is a cycle

The horizontal boundary of the big rectangle is sum of horizontal boundaries
of the small rectangles, so it is cycle, so the big rectangle is good.



Targil 5. Combinatorics again, but now with infinite sets.

1. Show that each sequence {a,} of real numbers has either infinite non-decreasing
subsequence or infinite non-increasing subsequence.

2. Consider a set of distinct points in space {(x;, y;, z;)} such that all their coordinates are
natural (positive integers). (Not all points of that kind, just some of them.)

Point (x;, y;, z;) of this set is called minimal if for every other point (xx, yk, zx) in this set,
point has a smaller coordinate x; < xi, or yx <y;, Or z; < Z.

Can a number of minimal points be infinite?

3. Show that there is a point in the plane, such that distances from it to all integer points
are different. (A point (x,y) is called integer if x and y are integer).

4. (a) Is it possible to find 1000000 points in the plane, not all of them on one line, so that
the distance between each two is integer?

(b) Is it possible to choose an infinite set of points in the plane, not all of them on one
line, so that the distance between each 2 is integer?

5*. (a) We have a family of subsets of a countable set (say, natural numbers).

Each two members of the family have no more than 100 common elements.

Prove that the family is of countable size (at most).

(b) We have a family of subsets of a countable set, such that intersection of each 2 is
finite. Can this family have more than a countable number of elements?



Targil 5. Combinatorics again, but now with infinite sets.

1. Show that each sequence {a,} of real numbers has either infinite non-
decreasing subsequence or infinite non-increasing subsequence.

Solution. Denote A, = {a,| n > m}. If any A, has maximal element, then
building non-increasing subsequence is easy: choose maximal element in A;,
then choose maximal element of all elements after it and so on, each time
choose maximal element of all elements that have bigger index then all
chosen ones, and we have non-increasing sequence.

If some Ay has no maximal element, then for any m > k , A, has no maximal
element either. Then for any element there is a bigger element with bigger
index, so we can choose a strictly increasing subsequence.

2. Consider a set of distinct points in space {(x;, y;, z;)} such that all their
coordinates are natural (positive integers). (Not all points of that kind, just
some of them.)

Point (x;, y;, z;) of this set is called minimal if for every other point (x, Vi, Zx)
in this set, point has a smaller coordinate x; < x;, or y,<y;, or z; < Z.

Can a number of minimal points be infinite?

Solution. This is done by induction over dimension.

For 1-dimensional case it is trivial — in each subset of natural numbers there
is one minimal element.

For 2-dimensional case choose one minimal point (x;, y;). For each x
between 1 and x; there can be no more than 1 minimal point with that x.

For each y between 1 and y, there can be no more than 1 minimal point with
that y. There can be no minimal points such that x > x; and y > y;, so we
have no more than finite number (x; +y;) of minimal points in plane.

Now for 3 dimensional case. Choose one minimal point (xy, yi, z1).

For each x between 1 and x, there is only finite number of minimal points
with that x. For each y between 1 and y, there is only finite number of
minimal points with that y. For each z between 1 and z; there is only finite
number of minimal points with that z.

There can be no minimal points such that x > x; and y > y, and z > z;, so we
have no more than finite number of minimal points. QED.

Remark. Of course this induction can continue to higher dimensions.



3. Show that there is a point in the plane, such that distances from it to all
integer points are different. (A point (x,y) is called integer if x and y are
integer).

First solution. Take (ﬁ 3 ) , and show it works. Suppose two points
(x,,¥)and (x,,y,) give the same distance, then

53] (3-8 =(ss 2 4235

X+ oy —2x1\/§—2y1\/§ =X, +y; —2x2\/§—2y2\/§

(xl2 + yl2 —x§ —y§)+(2x2 —2)61)\/§+(2y2 —2y1)\/§=0

Lemma 1. If a + bﬁ + C\/§ = (Ofor some rational numbers a, b, ¢ then
a=b=c=0.

Lemma 2. \/5,\/5, % are irrational numbers.

From lemma 1 it follows that in our case x, = x,,y, =y, so the points are

actually the same. So it remains to prove lemma 1, but first we shall prove
lemma 2.

Proof of lemma 2. If /2 = ™ then square it and multiply by denominator:
n

n*> =2m’, then in the left hand side you get even power of 2, and on the right
hand side the odd power of 2 (in prime decomposition), it contradicts unique
decomposition theorem.

The same will happen with \/g and /3 , but in the last case you should

count powers of 3 (odd on one side, even on the other).

Proof of lemma 1. a+ b2 +¢+/3 =0. If all 3 numbers a, b, ¢ are 0, that’s it,
if 1 of them is nonzero its nonsense, if two of them are nonzero, we
contradict lemma 2 which was proved already. The only remaining case, that
we have yet to exclude, is when all 3 are nonzero.
a+bJ2 =—c\3 , square both sides, you get a” +2b° + 2ab~\2 =3¢,

3¢’ —a’ —2b°

But 2ab # 0, hence \/_ = " 1s a rational number, contradiction.
a




Second solution. A very natural solution to a more general question belongs
to a French mathematician Baire (1874-1932).

A set is called dense if any ball (say, in R") contains its point.

A set is called nowhere dense if any ball contains a smaller ball which is
disjoint to given set.

A set is called meager or of first (Baire’s) category if it is a countable union
of nowhere dense sets.

A set is called of second (Baire’s) category if it is not of the first category.

Examples:

A set of rational points is dense, though it is countable.

A sphere (set of points on given distance from the given point), or a line in
the plane or a hyperplane in R" are nowhere dense.

Any countable set is meager. A set of points, on rational distance from at
least one rational point, is meager. A set of perpendicular bisectors to all
intervals with rational ends is meager.

A union of 2 meager sets 1s meager.

A ball, a full cube, and a complement to any meager set are of second
category. Why? Because of

Baire’s theorem. A complement of meager set is dense.

So, we can choose a point which is on different distance from all rational
points, since union of (countable number of) all perpendicular bisectors to
intervals with rational ends is of first category. You can also demand that all
those distances would be irrational, transcendental, and add any other
countable number of other “nowhere dense demands”.

Proof of Baire’s theorem. A meager set M is a union of countable number
of nowhere dense sets Aj, A,, A;, ... .Take any ball B. It has a sub-ball B,
disjoint from A,. B, has a sub-ball B, disjoint from A,. B, has a sub-ball B;
disjoint from Aj, and so forth. The intersection of all those balls has a point
which is not in M. Since we found it in arbitrary ball B, complement of M is
dense. QED.



4. (a) Is it possible to find 1000000 points in the plane, not all of them on
one line, so that the distance between each two is integer?

(b) Is it possible to choose an infinite set of points in the plane, not all of
them on one line, so that the distance between each 2 is integer?

(a) First solution.

Yes. There are infinitely many Pythagorean triples a” + b = ¢, such as
azmz—nz,b=2mn,c=m +n".

So the distance between points B(0,1) and A, = ((k2 — 1)/2k, 0) 1s rational,
for any k between 1 and 1000000.

If we multiply all things by common denominator, or 1000000!, all
coordinates and distances will now be integer. Those are 1000000 points,

and not all of them are on one line.

Second solution. (Agnis Andjans) Construct a small angle o with rational
sine and cosine. To do this, take an angle in Pythagorean triangle with m ~ n.
Now take points on unit circle at angles 0, 2a, 4, 6, 8q, ...

The distances between those points are 2sin(k«), and those are rational,
since it is easy to prove by induction over k, that sin(ka) and cos(kq) are

polynomials with integer coefficients in sin(«) and cos(a) hence they are

rational numbers. By the way, coordinates of those points are also rational
and for the same reason. If we multiply by common denominator, we get
integer points, and all distances are rational, and no 3 points are on one line,
since all are on one circle.

(b) No. Consider 3 non-collinear chosen points A, B, C. Every other chosen
point D is on integer distance from A and B, so IAD — BDI = k where k i1s a
natural number not exceeding AB, by triangle inequality.

A locus of points D which satisfy IAD — BDI = k is a hyperbola (or a line), so
D belongs to a finite family of (less than AB) hyperbolas (with foci A and
B), or to line AB, or to perpendicular bisector of AB.

For the same reason D belongs to a finite family of different hyperbolas
whose foci are A and C, or to line AC, or to perpendicular bisector of AC.
Intersection of two different hyperbolas have no more than 4 common points
(see targil 1), two different lines no more than one, and a straight line
intersects a hyperbola in 2 points at most, so we have only a finite number of
points.



5*. (a) We have a family of subsets of a countable set (say, natural
numbers).

Each two members of the family have no more than 100 common elements.
Prove that the family is of countable size (at most).

(b) We have a family of subsets of a countable set, such that intersection of
each 2 is finite. Can this family have more than a countable number of
elements?

Solution. (a) Suppose not. Take an uncountable family of subsets.

Firstly, we can assume that all of them are infinite, because there are only X,
finite subsets in a countable sets, so if there are finite sets, it won’t hurt to
exclude them.

Consider all pairs (subset, element) so that subset contains element. Since
there are only X, elements, and more than X, subsets, one element should
belong to more than X, subsets. Denote this element a;, and consider subsets
that contain it. For the same reasons, more than X, subsets should have yet
another common element, a,. For the same reason, more than X, subsets
containing a,, a, should have another common element, a3, and so on.

After you keep on this induction long enough you conclude that more than
Yo subsets contain 1000001 common points.

(b) First solution. Yes. Consider a countable set P of all points in plane
with positive integer coordinate. For each positive real number a define a
subset of this set of all points that satisfy [ax] = y.

It is easy to see that the intersection of two sets defined by two different
numbers is finite, and there are continuum subsets.

Second solution. For any real number, choose a sequence of rational
numbers which converges to it. It is a subset of countable set of rational
numbers, and each two have final intersection.

Remark. It seemed to me at first that those two solutions are completely
different, but they are actually the same. Rational numbers can be visualized
as points of integer lattice, y is nominator and x is denominator, and a
sequences of points we constructed gives a sequence of ratios converging to
the slope.



Problems 6 — polynomials

1. Prove that a polynomial with real coefficient p(x) is nonnegative for all real values iff
it is a sum of two squares (of polynomials with real coefficients).

2. A polynomial with real coefficients of 2 variables p(x,y) is always positive. Is it true
that it is always bigger then some positive €?

3. (a) Suppose that a polynomial with integer coefficients is can be decomposed into a
product of two polynomials with rational coefficients. Show that it is decomposed into a
product of two polynomials with integer coefficients.
(b) Suppose p is a prime number and a polynomial with integer coefficients
X"+, X+ @y a +a x+ag

has the following properties:

a, is not divisible by p,

An-1, Qn-2,... ,A2,a;,a0 are divisible by p,

but ay is not divisible by p*.
In this case the polynomial is not decomposable into the product of two polynomials with
integer coefficients.

Definition. A polynomial is called irreducible if it can’t be presented as a product of two
polynomials of degree>0. Of course, this definition depends on the field (for example, it
can be irreducible over Q and split over R).

4. Determine whether the following polynomials are irreducible over Q:
(a) 20°4+3x°+5x+7

(b) x*+19x*+2x+99

(c) x*+x+1

#(d) x"+x"'+...+x*+x+1 (here answer depends on n)

5. Proof that if two polynomials of degree less then N have the same values at N different
points, then they coincide.

6. Given two polynomials p(z) , g(z) with complex coefficients. It is also given that for
any complex number 7 ,

p(z)=0iff g(z) =0

p(z)=1iffg(z) =1
Prove that the polynomials are equal.



Problems 6 — polynomials

1. Prove that a polynomial with real coefficient p(x) is nonnegative for all
real values iff it is a sum of two squares (of polynomials with real
coefficients).

Solution. A sum of squares is obviously nonnegative. The other part is more
interesting.

Complex conjugation keeps the polynomial, so for each root above the
complex line a+ib there is corresponding complex conjugate root below the
complex line a—ib. Also, each real root is of odd multiplicity, otherwise
function to both side of this root wouldn’t be positive.

Thus we can divide all the complex roots into pairs: &,,«,,,,0,,....¢, ,C, .
Hence the polynomial can be written as

p(x)= A(x—al)(x—az)-...-(x—ak)-(x—al)(x—az)-...-(x—ak),

where A is the highest coefficient. (x—¢;)(x—@,)-...-(x—¢, ) is a
polynomial with complex coefficients, it can be written as r(x)+ig/(x)

where r(x),q(x)are polynomials with real coefficients. So

p(x)=A(r(x) +ig(x))(r(x) +ig(x)) = A(r(x) +ig(x))(r(x)-ig(x)) =
:A((r(x))2+(q(x))2)

Since p(x) is nonnegative so A should be nonnegative, so

p(x)= A((r(x))2 + (q(x))z) = (\/Z-r(x))z +(\/Z : q(x))z.

2. A polynomial with real coefficients of 2 variables p(x,y) is always
positive. Is it true that it is always bigger then some positive €?

Solution. No. p(x,y) = (1 — xy)*+ x” is always positive, since both squares
can’tbe 0 —if x=0then 1 —xy = 1.

Butif 1 —xy = 0 and y is very large then x can be very small. Hence the
polynomial accepts all positive values.

3. (a) Suppose that a polynomial with integer coefficients is can be
decomposed into a product of two polynomials with rational coefficients.
Show that it is decomposed into a product of two polynomials with integer
coefficients.



(b) Suppose p is a prime number and a polynomial with integer coefficients
axX"+a, X+ a, X" ra vax+ag
has the following properties:
a, 1s not divisible by p,
An-1> no2ye-. 502,a1,00 are divisible by p,
but ay is not divisible by p*.
In this case the polynomial is not decomposable into the product of two
polynomials with integer coefficients.

Remark. (a) is called Gauss lemma, (b) — Eisenstein criterion.

Solution. (a) We can multiply our rational factors by an integer numbers so
that they will become integer. So product of two integer polynomials is a
given polynomial times integer number: N-s(x) = g(x)-r(x).
We want to prove that we can get rid off that integer number. Suppose N has
a prime factor p. We shall prove either all coefficients of g(x) or all
coefficients of r(x) are divisible by p. So p can be cancelled out, and in this
way N can be gradually reduced to 1.
Suppose not all coefficients of g(x) and not all coefficients of r(x) are
divisible by p. Let s(x) = a X" +... +a:x’+a;x+a,

g(x) = bx* + ... +bxX°+bx+by

HX) = X + ... +CX+Cix+cy
Let b, be the first coefficient of g(x) which is not divisible by p, and c¢,, the
first coefficient of r(x) which is not divisible by p. Then b,c,, is not divisible
by p, and for each j#0 the number b,,c,.,1s not divisible by p, so na,,, 1s
not divisible by p, which is impossible. QED.

Another way to formulate the solution — look at all those polynomial mod p.
You will get 0 = g(x)-r(x) (mod p). So either 0 = g(x) or 0 = r(x) (mod p).

(b) First solution.
Suppose our polynomial s(x) = a,x" +...+a’+a;x+ayhas a decomposition:
s(x) = g(x)-r(x) where

g(x) = bx* + ... +bxX’+bx+by

HX) = X + ... +CX+Cx+Cy
So, ay = bycyhence one of the numbers by, ¢ 1s divisible by p but not both.
Without loss of generality assume that p divides b, and not ¢,,.
a, = bocy + bicy and p divides a; and bycy, so p divides also b;.
a, = b()C2 + blcl + bgC() andp divides a , b()Cg R blcl, sop divides also bz.
And so forth, we proof in & steps that p divides b;.



But then p would divide a,, = bic,,, which is impossible. QED.

Second solution. Write everything mod p. You get a,x" = g(x)-r(x) (mod p).
This means only the first coefficient of g and only the first coefficient of r
are nonzero mod p. Hence both by and ¢, are divisible by p, so ay = bycy 1s
divisible by p°.

Definition. A polynomial is called irreducible if it can’t be presented as a
product of two polynomials of degree>0. Of course, this definition depends
on the field (for example, it can be irreducible over Q and split over R).

4. Determine whether the following polynomials are irreducible over Q:
(a) 2°+3x7+5x+7

(b) X" +19x°+2x+99

(c) x*+x+1

#(d) x™+x"'+. . .+x"+x+1 (here answer depends on n)

Solution. (a) Yes.
If a polynomial of degree 3 is split, the factors are of degrees 1 and 2. Hence
it has a root (in the same field over which it splits).
There 1s a way to find all rational roots of a polynomial. Every rational
number has a representation m/n, where m and n are coprime, m integer and
n natural. Substitute it into our polynomial:

2(m/n)*+3(m/n)’+5(m/n)+7 = 0
, in our case n’:

2m+3m’n +5 mn® +7n° =0

Now you have an equation in integer numbers. All terms in left hand side
except the last one are divisible by m, and all terms the first one are divisible
by n. So the last term 2m’ is divisible by n, and the first term 7n° is divisible
by m. But m and n are coprime, hence the 2 is divisible by n and 7 is
divisible by m. So there is only finite number of numbers which can possibly
beroots: 1,7, -1, -7, Y2, -Y2,7/2, -7/2.

degree

Multiply it by n

Remark. That’s the general principle: if polynomial with integer
coefficients has a rational root, its nominator divides the free coefficient and
1ts denominator divides the first coefficient, so the root can be found in finite
number of verifications.

In our case, odd integer number is not an option, since value will be odd, and
positive numbers are also out of question, so the two remaining possibilities



are -1/2 and -7/2. Of course, first gives positive value and second negative,
so this polynomial has no rational roots.

(b) x*+19x*+2x+99 = x* + 20x* + 100 — x*+ 2x — 1 = (x* + 10)* = (x - 1)*=
= +x+DE—x+11)

(¢) x*+x+1 . The answer — yes.

Consider number @ = # = "3/1 " (cube of this number is 1).

It is root of polynomial x’ —1 and since it isn’t one it is even a root of
x*+x+1.But @ +w+1=@& +@+1=0 so, our polynomial is not co-prime
to x* + x+1. Their greatest common divisor is a polynomial with coefficient
in Q, since it is given by Euclidean algorithm, so it is of degree 2 and not 1,
soitis x> +x+1. Conclusion x* + x +1is divisible by x* + x+1.

Perform long division to verify yourself, and you get a decomposition

xS+x+1=(x2+x+1)(x6—x5+x3—x2+1).

(d) x"+x""+. . .+x"+x+1 is irreducible iff n+1 = p is prime.

If n+1 = k-m then

K ] = R e DT e DD,
The hard part is to prove irreducibility for primes.

The simplest prove uses a trick — shifting by 1. Denote x =y + 1.
This transformation doesn’t influence irreducibility property. But

)4

r—1 (y+1)"=1 F 4 .

X xal=t IR Sl =1V :Z(?jyrl
x—1 y y =)

So, we have a polynomial with first coefficient 1, last coefficient p and all

coefficients in the middle are divisible by p, so it is irreducible by

Eisenstein’s criterion (3b).

(m-1)k

S. Proof that if two polynomials of degree less then N have the same values
at N different points, then they coincide.

Solution. The difference of two such polynomials would be a polynomial
with N roots, and a polynomial of degree less then N has less than N roots,
unless it is constant 0.



Remark. Of course that problem was not a real challenge; it is a hint for the
next problem. The inverse problem is bit more interesting: given N distinct
points xi, X», ... Xy, and n arbitrary values, a,, a, ..., ay , prove that there
exists unique polynomial of degree < N such that p(x;) = a;. We have proven
only uniqueness, there are different proofs for existance, from constructive
ones to dimension counting.

6. Given two polynomials p(z) , g(z) with complex coefficients. It is also
given that for any complex number z ,

p(2)=0iff g(z) =0

p(x)=1iffg(z) =1
Prove that the polynomials are equal.

Solution. We may assume without loss of generality that deg p > deg q.

A point z happens to be a root of multiplicity k of p(z) iff it is a root of p(z)
and a root of degree k — 1 of polynomial p’(z).

Total number of roots of p(z) with multiplicities is its degree n.

Number of distinct roots of p(z) is n minus total multiplicity of distinct roots
of p(z) as roots of p’(z).

Number of distinct roots of p(z) — 1 is, for the same reason, n minus sum of
multiplicities of roots of p(z) — 1 as roots of p’(z). So, number of points in
which p(z) is O or 1 is at least 2n —deg(p’) =n + 1.

So, p and g are both polynomials of degree less than n + 1, and they coincide
in at least n points, hence they are equal.



Targil 7.

This targil is about groups and groupish ideas. Groups are popular in IMC.
For those who don’t know: use wikipedia
http://en.wikipedia.org/wiki/Group_(mathematics)

1. Consider Rubik’s cube (n°721177 7°21p). Is it possible to find a certain sequence of
moves, such that you can solve the cube from any situation, if you repeat that specific
combination of moves sufficiently many times?

2. Consider a table:

W UL —
EENIV) e RN )
NN =N W
AN =W
N = N WA W
—_— N WA U0
DD Wk N

2345671
You are allowed to flip each two rows and to flip each two columns. How many different
tables can You get by a sequence of such steps?

3** We play the following game. On the circle, we have some red and blue points
(always at least two). We can insert a red point into certain arc, and flip the colors of the
ends of that arc (red changed to blue, blue changed to red). Conversely, if we have at
least three points, we can erase a red point, simultaneously flipping the colors of its
neighbors.

In the beginning of the game, we have only two points on the circle and both are blue.
Can we perform a sequence of moves, so that in the end we shall have only two colored
points, and both red?

4*, Let G be a finite group. For arbitrary subsets U,V,W of G, denote by Nyyw the
number of triples (x,y,z) in U XV xW, for which xyz is the unity.

Suppose that G is partitioned into three sets A, B and C (i.e. sets A,B,C are pairwise
disjoint and G = AUBUC).Prove that Nagc = Ncga.

5**, Let G be a group of 2%(2m+1) elements and suppose it has an element of order 2.
Prove that all the elements of odd order (together with the unit element) form a subgroup.



Targil 7.
1. Consider Rubik’s cube (01177 7°23p). Is it possible to find a certain sequence of
moves, such that you can solve the cube from any situation, if you repeat that specific

combination of moves sufficiently many times?

Solution. If we would, the group of rotations of Rubik’s cube would be cyclic. Then, it
would be commutative. It isn’t. Rotations of two adjacent faces don’t commute.

2. Consider a table:

W U —
EENILV) e SN I \°)
NN =N W
AN =W
N =N WA W
—_— N WA U0
D Wk N

2345671
You are allowed to flip each two rows and to flip each two columns. How many different
tables can You get by a sequence of such steps?

Answer. 716!

First solution. Consider the stabilizer of this table (subgroup of operations that keep it).
It consists of at least 7 elements (any cyclic rotation of rows with the same rotation of
columns). The set of possible tables is the (right) factor over the stabilizer.

We have 7!% elements in group, so no more than 7!%/7 possible tables. But we can make
any of 7! Permutation in upper row, and 6! permutations of the elements of left column
disregarding the upper-left corner, so at least 7!6! different tables.

Second solution. For each 4 cells forming a rectangle ABCD, sides parallel to edges of
the table, it is easy to proof that we have A+C = B+D (mod 7) for the values of the cells.
This property (a) holds when we perform our operations (b) allows to reconstruct the
table by first row and left column only. It is easy to that we can make 7!6! different
situations in the first row and left corner, so...

3** We play the following game. On the circle, we have some red and blue points
(always at least two). We can insert a red point into certain arc, and flip the colors of the
ends of that arc (red changed to blue, blue changed to red). Conversely, if we have at
least three points, we can erase a red point, simultaneously flipping the colors of its
neighbors.

In the beginning of the game, we have only two points on the circle and both are blue.
Can we perform a sequence of moves, so that in the end we shall have only two colored
points, and both red?

First solution. Let R be a clockwise 120°-rotation of equilateral (regular) triangle, B its
reflection with respect to a certain altitude. Then BRB = RR , BRR =RB , RRB =RB
(all those equalities are obviously equivalent, first is obvious — conjugating rotation by



reflection gives you a rotation in opposite direction). Now, take your circle, go clockwise
from certain point, and write down R for each red and B for each blue point. You get an
element of group S; (group of 3-permutations or of triangle symmetries) when you write
everything down. The element you get depend on the starting point, but its conjugation
class doesn’t. From the equalities we wrote, we see that the class of conjugacy won’t
change under those operations.

So, two red points correspond to RR, which is conjugate to rotation (element of order 3)
and BB corresponds to identity, so they can’t be transformed one into another.

Second solution. The parity of number of red points is an invariant, but it doesn’t
distinguish between two situations: it is even in both cases. So, assume we have an even
number of red points and red points split the circle into even number of arcs. Count the
number of blue points on odd arcs minus number of blue points on even arcs modulu 3.
One can show with a routine verification it is an invariant, it is 2 in one case and O in
another, QED.

Actually it is the same as the first solution, though the reason, why this particular
invariant works, is unclear here.

4*. Let G be a finite group. For arbitrary subsets U,V,W of G, denote by Nyyw the
number of triples (X,y,z) in U xV xW, for which xyz is the unity.

Suppose that G is partitioned into three sets A, B and C (i.e. sets A,B,C are pairwise
disjoint and G = AUBUC).Prove that Nagc = Ncpa.

Solution. Firstly, it is obvious that Ncga = Npac since zyx = 1 iff yxz = 1 because they
are conjugated: zyx =z yxz- 7! So, enough to prove Napc = Npac.

The elements (x,y) in U xV are of 3 kinds: (xy)'1 canbein A, B, or C.

So Nyva+Nuys+Nuve = IUINVI. But Napa = Npaa , Nags = Npap because of conjugation,
therefore Nagc=IAlBI — (NABA + NABB) =|AllBI — (NBAA + NBAB) = Ngac = Ncga.

5**, Let G be a group of 2%(2m+1) elements and suppose it has an element of order 2.
Prove that all the elements of odd order (together with the unit element) form a subgroup.

Solution. We shall use induction on k. for k = O the statement is obvious.

Consider left action of group on itself. Each element of a group, when you multiply group
elements by it, defines a permutation of group elements. Any element of odd order
defines only odd cycles, so it defines an even permutation. An element of order 2* defines
2m+1 cycles of even order (2), and that is odd permutation.

Consider a subgroup of those group elements that correspond to even permutations.
Those elements contain all elements of odd order, but not all elements in the group.

It is a subgroup of order 2, so we reduced our problem to a problem on a smaller group,
which follows from induction assumption.



Targil 8: polytops.

1. Compute: an angle between faces of a regular tetrahedron, an angle between the
adjacent faces of a regular octahedron, and an angle between the two different long
diagonals (connecting pairs of opposite vertices) in a cube.

2. (a) Tetrahedron A (not necessary regular) contains strictly tetrahedron B.

Can we claim that the sum of lengths of all edges of A is bigger then the sum of lengths
of all edges of B?

(b) Can we prove a similar statement if we would take rectangular parallelepipeds

(= cuboids = boxes) instead of tetrahedron?

(c) Can we prove a similar statement if we would take sums of areas of faces instead of
sums of lengths of edges both in (a) and (b) ?

3. Is it possible to inscribe a regular octahedron in a cube, so that all octahedron’s vertices
will be inside cube’s edges?

4. Given a unit cube, a line, and a plane orthogonal to the line. Prove that the length of
the projection of the cube on the line is equal to the area of the projection of the cube on
the plane (of course, line is not necessarily parallel to one of the cubes edges).

5. A dodecahedron and an icosahedron (both regular) have a common circumsphere
(means they are inscribed in the same sphere). Prove that they have a common insphere
(means there is a sphere tangent to all the faces of both polytops).

6. We are given 100 vectors {(Xx , yk , zx)} such that —1 <xy, yx, zx <1 for all k.

A sum of all this vectors is considered, while we are allowed to change signs in certain
vectors. We change the signs in such a way, that the result of this sum will be as short as
possible.

(a) Show that we can choose the signs so that the length of the sum will be < 3.

(b) Show that the previous statement would be wrong if we would take 2 instead of 3.
**%(¢) Find the minimal value, for which (a) will hold.



Targil 8: polytops.

1. Compute: an angle between faces of a regular tetrahedron, an angle between the
adjacent faces of a regular octahedron, and an angle between the two different long
diagonals (connecting pairs of opposite vertices) in a cube.

Solution. Consider octahedron, whose vertices are (x1, 0, 0) , (0, 1, 0), (0, 0, £1).
Normal vectors to the faces are (1, 1, £1), and by coincidence, those are long diagonals
of a unit cube, whose sides are parallel to the axes. So it is not hard to find the cosine of
angle between two of those by the means of scalar product:

1) (-1 -1
cos(a)=(|1],|1 11 =3
1) (1 1)1

So, angle between diagonals of cube and between normals of octahedron's adjacent edges
are arccos(1/3), hence the angle between adjacent edges of octahedron is 180°—arccos(l/3).

Now consider tetrahedron, and consider another tetrahedron which is symmetric to it with
respect to the center. It is easy to see that the intersection between two tetrahedrons is
octahedron. So, each of the two original tetrahedrons consists of an octahedron and 4
smaller tetrahedrons. Hence, an angle between the faces of octahedron and an angle
between the faces of tetrahedron form 180° together, hence the angle for tetrahedron is
arccos(1/3).

2. (a) Tetrahedron A (not necessary regular) contains strictly tetrahedron B.

Can we claim that the sum of lengths of all edges of A is bigger then the sum of lengths
of all edges of B?

(b) Can we prove a similar statement if we would take rectangular parallelepipeds

(= cuboids = boxes) instead of tetrahedron?

(c) Can we prove a similar statement if we would take sums of areas of faces instead of
sums of lengths of edges both in (a) and (b) ?

Solution. (a) No. Let A be a long thin sharp spike, 3 vertices form a small triangle, and
another is far away from those three, at distance d.

Sum of edges in A is approximately 3d.

Take inside A 4 points (not in one plane) — 2 close to the base, and 2 close to the tip of
the spike. They form a tetrahedron, some of edges is approximately 4d.

(b) First solution. Let x be a unit vector, x(A) length of projection of the box A to the
line of vector x. There are three quadruples of edges in a box, choose a representative of
each quadruple: intervals u, v, w. Denote x(u), x(v), x(w) lengths of the projections of
those intervals to the line of vector x. It is easy to see that x(A) = x(u) + x(v) + x(w).

If we substitute all possible values of x and integrate over the unit sphere, we get an
equality mean(x(A)) = mean(x(u)) + mean(x(v)) + mean(x(w)) = C (lul + vl + Iwl),

Here C is a constant, which doesn't depend on anything.

So, if a box B is inside the box A, then x(B)< x(A) for each x, hence sum of edges of B is
less than sum of edges of A. QED.



Second solution. Consider the locus of points, whose distance for given box is not bigger
than R. Compute the volume of this form.
This form consists of the original box, 6 boxes of height R adjusted to its faces, 12
quarter-tubes of radius R and lengths = edges, and 8 equivalent parts which can be glued
together to make a ball of radius R. So the volume is a polynomial in R:
“4mR’ + m(a+b+c)R* + SR+ V

Here V is a volume of the original box, S area of its surface, and a,b,c its edges.
If the first box contains the second one, then its enhancement by R contains the
enhancement of the second box, so we would have an inequality.

AR’ + m(a+bi+¢)R* + SR + V| > 4R’ + m(ar+bo+co) R* + SyR + V,
Now cancel out the term of R?, divide by R? and see what happens when R tends to
infinity.

(c) We can prove it not only for box or tetrahedron, but also for arbitrary convex
polytops. Project the polytop onto a plane, passing through zero. Any point of projection
is covered by twice, from both sides of the polytop. So, twice the area of projection is
sum of projections of all faces of the polytop.

Now, take all possible planes passing through zero, and consider all projections, of the
polytop and of the faces. It can be considered as a function of a unit normal vector, to the
plane, since a unit vector defines orthogonal plane. When we shall integrate over unit
sphere, each face will contribute a quantity, proportional to its area, with the same
coefficient.

Now consider this integral for two different polytops, the second inside the first. It is
obvious that for the first will be bigger, but as we saw, those integrals are proportional to
surface areas.

3. Is it possible to inscribe a regular octahedron in a cube, so that all octahedron’s vertices
will be inside cube’s edges?

First solution. Let the cube be a unit cube. Let X, Y be two opposite vertices on the
cube. Choose each of 6 edges, adjacent to those vertices points on distance d from X or
from Y respectively. These 6 points form a non-regular octahedron, some of its edges
(between two points close to X or 2 points close to y) are of length a, and others are of
length b. If we take d close to zero, we see that a < b, if we take d close to 1, then a > b,
so by continuity there is a value of d the octahedron will become regular.

Second solution. Consider 6 points: +(—'4, 1,1),+(1,-'4,1), +(1,1,-"'4)
The vectors (- 1/2 ,1,D),0,- 1/2, n,a,1,- 1/2) form an orthogonal frame, since
the scalar products are zeroes, they are of the same norm, so the 6 points form a regular

octahedron. All 6 points are on the edges of the cube [-1, 1]x[-1, 1]x[-1, 1].

4. Given a unit cube, a line, and a plane orthogonal to the line. Prove that the length of
the projection of the cube on the line is equal to the area of the projection of the cube on
the plane (of course, line is not necessarily parallel to one of the cubes edges).



Solution. A projection of a cube is a hexagon ABCDEF, such that each 2 opposite sides
are parallel and equal (of course, it can be rectangular, but this is a degenerate case which
can be considered as a limit of general case). Consider triangle ACE.

Let ABCK be parallelogram, then KCDE and KAFE are also parallelograms, these three
parallelograms are halved by their diagonals: AC, CE, AE respectively, hence ACE is
half of the area of ABCDEF. It is easy to see (draw the picture Yourself), that A, C, and
E are projections of vertices K, L, M of the cube, which have a common neighbor vertex
P on the cube, and the projection on the cube. Diagonal PQ of the cube is orthogonal to
the plane KLM, hence the angle between the projection plane and KLLM plane is the same
as the angle between the line orthogonal to projection plane and the PQ line. It is obvious
from the picture that P and Q are highest and lowest points of the cube w. r. t. the plane,
so the projection of the cube to the line is the same as the projection of PQ to the line.
Anyway, projection of the cube to the plane is twice the area of KLM, and projection of
the cube to the line is the projection of PQ to the line, and both are proportional to the
cosine of the same angle since the angle between the planes equals the angle between
their normals (orthogonal lines).

So, the two things (projection length and orthogonal projection area) are proportional
with constant coefficient, to prove they are the same we should either compute this
coefficient or to check it holds in some specific, (for example degenerate) case.

We shall check it in the case, when the plane is parallel to a face of the cube,

hence the line is parallel to the edge of the cube, then both length and area = 1.

5. A dodecahedron and an icosahedron (both regular) have a common circumsphere
(means they are inscribed in the same sphere). Prove that they have a common insphere
(means there is a sphere tangent to all the faces of both polytops).

Solution. It is well known (and obvious) that dodecahedron and icosahedron are dual,
that is, if you take a convex hull of the centers of faces of dodecahedron you get
icosahedron, and vice versa.

Let O be the center of dodecahedron, C center of one of its faces, V one of the vertices of
that face. It is obvious that OCV is a right-angled triangle, C is the right angle.

OC is a radius of dodecahedrons insphere, OV of its circumsphere, so the ratio between
two radii is the cosine of COV. Obviously, this ratio is the same for each dodecahedron.
Now, consider the icosahedron whose vertices are centers of that dodecahdron’s faces.
Then on the line OV we shall have a center of certain face of this icosahedron, D.

For the same reason, the ratio between the radii of icosahedron’s insphere and
circumsphere is the cosine of COD, but COD = COV.

Hence the ratio between the inradius and the circumradius is the same for dodecahedron
and icosahedron, and so if the two have a common circumsphere they inspheres have the
same center and the same radius, so they are the same.

6. We are given 100 vectors {(Xx , yk , zx)} such that —1 <xy, yx, zx <1 for all k.

A sum of all this vectors is considered, while we are allowed to change signs in certain
vectors. We change the signs in such a way, that the result of this sum will be as short as
possible.

(a) Show that we can choose the signs so that the length of the sum will be < 3.



(b) Show that the previous statement would be wrong if we would take 2 instead of 3.
**%(¢) Find the minimal value, for which (a) will hold.

Solution. (a) We can assume without loss of generality that for each vector (x,y,z), the
last coordinate z is nonnegative. Coordinate planes divide the 2x2x2 cube into eight
Ix1x1 sub-cubes, out of those only the upper 4 contain vectors. If we have two vectors in
the same sub-cube, replace them by their difference — it will still be inside the 2x2x2
cube, and the number of vectors will be reduced by one, making the problem less
frightening. This reduction can be performed repeatedly, until there are no more than one

vector in each sub-cube, so no more than 4 vectors. Suppose there are really 4 AlB

vectors. Denote these 4 vectors A, B, C, D, where Dl

Ay, By>0>C,, Dy,
Cw, Bx>0>A,, Dy .
If By — A, <1, then B — A is still a vector inside the 2x2x2 cube so we can reduce the
number of vectors even more, same if Cx — Dy <1,or By—Ay<1,or Ay—-D,<1.
Also, if A, + C, <1 we could replace A and C by A + C, similarly if B, + D, <1, we
could replace B and D by B + D. So, if none of these happens and we can’t replace 4
vectors by 3 vectors, we have
1<By—Ax<2, 1<Cy-Ds<2,
1<By-Ay<2, 1<A,-Ds<2,
1<A,+C, <2, 1<B,+D,<2.
Consider then A — B + C — D, all 3 of its coordinates are between -1 and 1, so its norm is

less then \/5 .

So, it remains to consider the case when we can reduce the problem to only 3 vectors.
Norm of each < \/§ . Before summing firs two, chose signs so that the angle between

them will be not acute, so the length of the sum, by Pythagoras, isn’t bigger than \/g .
Before adding the third, choose its sign so that the angle with the previous result won’t be
acute, the norm of the sum, again by Pythagoras, won’t exceed 3. In order to make

equalities of those inequalities, all vectors should have norm \/g , so they should be
vertices of the 2x2x2 cube, and they should be orthogonal to each other. Each of those
conditions is achievable, but not both together at the same time, so it never comes to 3.

(b) Consider just two vectors: (1,1,1) and (1, —1, 0), and let all other vectors be 0.
The two are orthogonal, so the choice of signs doesn’t matter, the length of the sum will

be \/g anyway.

(¢) I don’t know the solution, though I have thought a lot about it, if You solve it please
tell me. The best lower bound (example) I know is described in problem 3, it was found

by Alexey Gladkich (and that is how problem 3 was invented) and it gives \/6.75 .

I suspect it is the precise answer.

The solution, as we have shown above, should consist of the best example of 3 vectors,
and a prove that this example is the best.



Targil 9 (following Alexey’s story, about catastrophes and linear variations)

1. Given a polynomial of degree 3 with real coefficients: x° + ax + b.
Prove that it has 3 distinct real roots iff (a/3)3+(b/2)2 is negative;
and that it has only one real root of multiplicity one iff (al3)*+(b/2)* is positive.

2. In Moscow they have 9 sky-scrapers (assume Moscow is a plane, and sky-scrapers are
points). A tourist, that stands at a certain point and looks around (counterclockwise), will
see them in a certain cyclical order, at least if he doesn’t stand on a line connecting two
sky-scrapers. There might be 8! different cyclic orders.

(a) 1s it possible that each order will appear at some point?

(b) for which minimal number of buildings, will it be possible to see the buildings in
every cyclic order?

3. A convex body C is contained by the unit cube. Projection of C to every face of the
cube cover it completely. What is the minimal possible volume of C?

4. A rectangle is divided into disjoint union of the finite number of squares. Prove, that
the aspect ratio (width / height) of the rectangle is a rational.

5. A square matrix is called bi-stochastic if all its numbers are nonnegative and sum of
numbers in each column and in each row is one.

Prove that any bi-stochastic matrix is a linear combination of permutation matrix, with
positive coefficients.



Targil 9 (following Alexey’s story, about catastrophes and linear variations)

1. Given a polynomial of degree 3 with real coefficients: x° + ax + b.
Prove that it has 3 distinct real roots iff (a/3)3+(b/2)2 is negative;
and that it has only one real root of multiplicity one iff (al3)*+(b/2)* is positive.

First solution. The sum of roots is 0, the sum of product of pairs is a, the product of al 3
is —b. Consider different cases:
First case: we have 3 real roots, m , n , and —m — n (cause the sum is equal 0), and
WLOG we can assume that m, n are both negative or both positive (if we have a zero
root, the statement is obvious).
Then a = — m(m+n) — n(m+n) + mn = — (m2 +mn + nz)

b = mn(m+n)
Hence it remains to verify that

_[mz +mn+n2j3 _|_(mn(m+n)j2 <0

3 2

mn(m+n) 2< m* +mn+n’)
2 3

Divide by m>n® and denote x = m/n, and it is positive.

X x? 2< x+1+x" !
2 3

. Then y > 2.

12, _-1/2
Denote y=x""+x

Then x+14+x7' = y2 —1 and our inequality becomes:
3
2 2 _
y =1
()
4 27

Denote z = y2 — 1, then z > 3, and it remains to prove:

27 3
—(z+1)<
S(z+1)<z

For z = 3 we get equality, but the right hand side climbs faster, because its derivative is
27

greater: T <3z”, hence the inequality holds for z > 3.

Second case. We have a double root, so the roots are k, k, and —2k.

Then it is easy to compute (al3)*+(b/2)* = 0.

Third case. We have two complex conjugated roots m+in, m—in, and a real root —2m.

Then b = —2m(m2+n2) and a = m*+n” — 4m* = n*— 3m*. So, it remains to prove that in this
case



2,2 2m(m* +n*
(” 33m j + (2 ) >0
2 2y
(m(m + ) >[m2__j
2 4 6
m6+2m4n2+m2n4>m6—m4n2+mn _L
3 27

6
3m'n’ + zm2n4 +n_ >0
3 27

And that is obvious.

That was a straightforward and messy solution.
Let us see a nicer, catastrophic one.

Solution 2. Consider the discriminant of the polynomial — the resultant of it with its
derivative. (If you forgot or don’t know about resultants, read the solution of problem 2
from targil 1)

1 0 a b O I 0 a b 0

01 0 a b 01 O a b —2a -3b 0

30 a 0 0f=0 0 —2a -3 0 |=| 0 —2a -3b|=4a’+27b’
0 30 a O 0 0 0 -2a -3b b 0 a

0 0 3 0 a 0 0 3 0 a

Hence (a/3)*+(b/2)* = 0 iff there is a double root. The line a =33 (b/ 2)2 divides the

a,b plane into two parts, one is a > 33 (19/2)2 and another is a < 33 (]9/2)2 )

If we move a couple of complex conjugated roots and the real root along the plane,
without creating double root, we can continuously transform the polynomial with just one
real root into a polynomial with just one real root, and the sign of the discriminant won’t
change since the discriminant won’t go through O.

Similarly, if we move all three real roots, keeping their order, we shall keep the sign of
discriminant. Hence, each case, of 1 real root and of 3 real roots, correspond to a
connected component of the plane with the zeroes of discriminant cut out.

It remains to verify, which of the 2 connected components (or alternatively, which sign of
discriminant) corresponds to 1 real root and which to 3 real roots. To check it, substitute
an example. For instance a polynomial with roots 1, —1, 0, which is X —x.

Or a polynomial with 1 real root 0, and two complex i, —i, whichi is * +x

2. In Moscow they have 9 sky-scrapers (assume Moscow is a plane, and sky-scrapers are
points). A tourist, that stands at a certain point and looks around (counterclockwise), will



see them in a certain cyclical order, at least if he doesn’t stand on a line connecting two
sky-scrapers. There might be 8! different cyclic orders.

(a) 1s it possible that each order will appear at some point?

(b) for which minimal number of buildings, will it be possible to see the buildings in
every cyclic order?

Solution. (a) Let us count the number of areas we get, when we draw all the lines going
through the couples of all the skyscraper points. This number will give us an upper bound
for the possible number of observable cyclic orderings of the buildings, since all the
points in the same part give you the same ordering, since no changes in the order of the
buildings can happen if you don’t cross any line.

N) N(N-1) , L
For N skyscrapers we get ) = T couples/lines. Each line is intersected by

many lines at the 2 points that define it, and it may also be intersected at all lines defined
by other N-2 points, if there are no trapezoids (no parallel lines). Also, we can complete
(compactify) the plane by the infinite point, which is contained in all lines, and then we
shall have a map (meaning countries and borders) on the sphere, and we shall be able two

use Euler’s formula. So, on each line we shall have 3 +( j points and the same

number of edges (at most, if there are no trapezoids or coincidences), so total number of

N N-2
edges is at most E = |3+ )
2 2

Each trapezoid or coincidence reduces the number of faces (it is easy to see, that if you
stir the points a little bit to avoid coincidence, you have all faces you had previously and
usually more, so if we count the number of faces when there are no coincidences, we
shall get the possible maximum.
The total number of vertices is: N original points, 1 at infinity, and number of pairs of

, . . N(N-1)(N=-2)(N-3)
couples (since each two lines give an intersection .

8

Since F—E+V =2, we get F=2 + E -V, hence maximal F is

2{12\/) 3+(N2_2D—(N+1+N(N_l)(]\;_z)(N_3)j=

=1-N+ ZJ(3+(N_2)2(N_3)(1_%D:

N(N-1)  N(N-1)(N-2)(N-3)
8

Of course, it would be easier to substitute the numbers from the beginning, but we want
to prove a stronger claim. Assume we have N=6 buildings in Moscow, then the plane is
divided into only

=1-N+3




1—6+36;+6'Sé4'3=1—6+45+45=85 parts, and there are 5! = 120

possible cyclic orderings for 6 buildings, which is considerably more, so even if we
choose a subset of 6 buildings, we won’t be able to observe them in arbitrary order.

Now let us substitute N=5

1—5+35'24+5'4é3'2=1—5+30+15=41.

It is more then 5! = 120, so we cannot extend the statement by this method for 5
buildings.

Of course, it cannot be considered a proof that for 5 we have a configuration of buildings
either, since different parts of the plane, even those separated by lines might correspond
to the same cyclic order.

(b) We have found some upper bound, lets start with lower. If we have 3 points in
“generic situation” they form a triangle, and there are two possible cyclic orders, one is
observed from each internal point, and another from almost every external point (w. r. t.
that triangle), so 3 is still possible.

4 points in generic position can form 2 kinds of configuration — either a convex
quadrilateral or a triangle and a point inside. In both cases, it is not too hard to check you
have all orderings.

As for 5 points, I had a really nice proof that some orderings are not achieved when I
gave this problem, but as I found out when I started typing it down, it was wrong. Right
now I don’t know neither the solution, nor the answer.

3. A convex body C is contained by the unit cube. Projection of C to every face of the
cube covers it completely. What is the minimal possible volume of C?

Solution. Every edge meets this convex body, otherwise projection to the orthogonal face
wouldn’t cover one of the corners. Conversely, each edge meets the body, than each
projection covers 4 corners, then, since it is convex, it covers the face. So we can take the
condition of taking a point from each of 12 edges, and forget the original condition. After
we choose 12 points, one on each edge, we should take their convex hull, and the volume
of that body should be minimized y a smart choice of points on the edges. So, we have
reduced the problem with infinite number of parameters to a problem with 12 parameters.
Instead of computing/minimizing the volume of the convex hull, it is easier
compute/maximize the volume of the complement. It consists of the “corners” — right-
angled tetrahedrons, adjacent to each vertex of the cube. 4 vertices of such a tetrahedron
are the vertex of the cube, and 3 points we have chosen on the edges, attached to that
cube vertex.

Let us try moving one of those 12 points on edges, and look how it influences the volume
of the complement. When we try to move it along the edge, only 2 corner tetrahedrons
change, and their both volumes depend linearly on the position of that point. Hence, the
maximum (and the minimum) will occur only when the point is on one of extreme
positions. So, we may assume that in the best situation all points we choose on each of 12



edges are vertexes. Hence, the volume of each corner tetrahedron is either O (if these
point was chosen as one of those 12 points) or 1/6 (if all neighbor vertices were chosen).
Divide all vertices into 4 subsets of 2, members of the same subgroup are connected by
vertical edges. Only one of the members of each subgroup can invest 1/6 to the volume of
the complement, the other will give 0. So we can have at most 4/6 = 2/3 of volume in the
complement, so the volume of the original body is at least 1/3.

From the above, it is easy to guess the construction for the 1/3.

Color the vertices of the cube in two colors, black and white, so that neighbors will be of
different colors. Now take the convex hull of the white vertices.

4. A rectangle is divided into disjoint union of the finite number of squares. Prove, that
the aspect ratio (width / height) of the rectangle is a rational.

Solution. Consider the certain sub-division of the certain rectangle into squares. Denote
x; the sides of the squares. The subdivision defines certain linear equations over the
numbers x;, such as: if a certain interval in the picture is presented as sum of sides of
different subsets of squares, then those sums should be equal. Two more equations clame
that sum of all sides of squares touching the lower rectangle’s border is w, and sum of
two rectangle’s squares touching the right rectangle’s border is A.

All coefficients in that system of equations are rational, except for w and h. After
applying scaling we shall assume /# = 1, and then w will be the aspect ratio.

The configuration of squares solves the problem for given w if and only if the system of
linear equations has a solution in nonnegative real numbers. When we apply Gauss
method to solve the system of all equations except the one containing w, we shall get
either a single rational solutions (because coefficients are rational), or an infinite family
of solutions, which depends linearly (with rational coefficients) upon a finite number of
parameters. A solution we get from Gauss methods is limited by several inequalities,
corresponding to non-negativity of all x;. So, if we have an infinite family of solution
(and that is the only way to get irrational w) then w moves in certain limits, between two
rational limiting values, a and b.

In such a case, we might write x; = k;t + m;, and for every ¢ we shall get the same
configuration of squares, but of different sizes. Say at r = 0 we shall get rectangle of
width a, at = 1 we shall get a rectangle of width b, and at some intermediate value we
shall get width w. Sides of all squares change as a linear function of ¢. So their areas are
quadratic functions, with corns up (all smiling), unless they are unchanged. But height is
constantly 1, and w changes linearly, hence the area changes linearly. That’s a
contradiction.

Hence, there are no configurations which give infinite families of solutions, only those,
that give a single rational solution.

S. A square matrix is called bi-stochastic if all its numbers are nonnegative and sum of
numbers in each column and in each row is one.

Prove that any bi-stochastic matrix is a linear combination of permutation matrix, with
positive coefficients.



Solution. When talking about elements of bi-stochastic numbers, all numbers in the open
interval (0, 1) will be called fractional, to distinguish them from 0 and 1 which will be
called extreme.

We shall prove the statement by induction over the number of fractional matrix entries.
If we have 0O fractional elements in the matrix, all elements are Os or 1s, it is easy to see
that the matrix is a permutation matrix, and that is the base of induction.

Consider a matrix with K fractional elements. In the same column with any fractional
element we obviously have a fractional element. In the same row with any fractional
element we also have a fractional element.

Start with arbitrary fractional element of the matrix and build a sequence of fractional
elements, passing with each odd time to a different fractional element of the same row
and in each even time to a different fractional element in the same column. At a certain
moment, You will have to repeat an element which occurred before in that sequence.

We can assume that the repeated element will be repeated after even number of moves (if
for example, we want to make a vertical move from element Q to A, then either A was
followed by a horizontal move, or A was followed by a vertical move to B, but then we
can move directly from F to B). Hence, from this sequence, we can choose a cycle of
fractional, each even element connected by vertical move to the next and by horizontal
move to the previous.

If we add the same number x to all odd numbers in that cycle and subtract it from all even
numbers of that cycle, then the sum in each column and the sum in each row is preserved.
Choose maximal possible x and minimal possible x so that all elements of the matrix will
be still in [0,1]. We shall get two matrices, C and D, both bi-stochastic, which both have
less fractional elements than the original matrix. Hence, by induction, C and D are
positive linear combinations of permutations.

It is obvious that the original matrix is positive linear combination of C and D.



Targil 10.
Some linear algebgra, from former IMC mostly.

1. Let n>2 be an integer. What is the minimal and the maximal possible

. 2 . . 2
rank of a nxn matrix whose n” entries are precisely 1,2, 3, ... ,n" ?

2. A polynomial P(xy, x,, ..., xi) 1s called good if there exist 2x2 real
matrices A , A, ..., Ag such that P(x,x,,...,x,) :det(zn:xkAkj.
i=1

Find all values of k for which all homogeneous polynomials of degree 2
of k variables are good.

3. Let A be a real 4 x2 matrix and B be a real 2 x4 matrix such that

1 0 -1 0

ag=| 0 10 TN LA
10 1 0]l :
0 -1 0 1

4. Let AB be real n xn matrices such that AB + A + B=0.
Prove that they commute, 1. e. AB = BA .

a a a, .. a

n

n—1

5 A=|la, a a, .. a,,
a, a,, a, , .. da,
Compute det A if

a) ax=dap+ d-k
b) a = apq"



Israeli Team for SEEMOUS
Second Stage Solutions.

1. A graph is, by definition, a collection of vertices and a collection of edges
that connect pairs of vertices. Two vertices are called adjacent, if they share

an edge.

Given a graph, consider the function ¢(n) — the number of ways to color each
vertex with one of n given colors, so that no two adjacent vertices will have

the same color. Show, that ¢(n) is a polynomial of n.

First solution. Induction over number of vertices + number of edges.

The only graph of 1 vertex gives c¢(n) = n.

Of course, if graph is disconnected function c(n) is a product of functions,
corresponding to his connected components, and product of polynomials is a
polynomial.

Take two adjacent vertices A, B in a graph. Let us erase the edge AB.
Number of ways to color the new graph, ¢;(n) is a polynomial by induction
(same vertices, less edges). Of those, there are c(n) ways to color it so that A
and B will be of different color, and c,(n) ways to color it so that so that A
and B will having the same color. If we shall glue vertices A and B, the new
graph will have less edges and less vertices than the original graph, and it
can be colored in c,(n) ways. Hence c(n) = c¢;(n) — c5(n), so it is a difference
of two polynomials, hence it is itself polynomial.

Second solution. A way to split the vertices of given graph into certain
equivalence classes will be called configuration. Configuration is called
good if no to vertices of the same class are adjacent. There is only finite
number of configuration.

Each coloring corresponds to a specific configuration: vertices of the same
color are declared equivalent. Let us count, how many colorings correspond
to the same configuration. Take a configuration which has M classes.

First class can be colored in one of n colors, second in one of n-/ colors, and
so on, hence if M > n it corresponds to n(n-1)(n-2)...(n-M+1)

If M < n then the product we wrote, as well as the number of colorings, is 0.
So, number of colorings corresponding to certain configuration is a
polynomial (which we wrote explicitly) and since we have finite number of
configurations, the total number of colorings is a sum of finite number of
polynomials, which is a polynomial.



2. A disc of radius 'y is rolling inside the circular box of radius 1,

where N > 2. (The friction between the edge of the disc and the wall of the
box is very high so the disc doesn’t slip with respect to the box at the point
of tangency). A red point on the boundary of a small circle goes along a star-
shaped closed trajectory.

Compute the area, bounded by this trajectory (as a function of N).

First solution. Let us start by building a parametrical equation of the star.

The center of the disc goes in circles of radius 1—% so it can be described
1 1. .
asv=||1— ﬁ cost,| 1— ﬁ sint |. The vector which goes from the center of

: : : U :
the disc to the red point goes around a circle of radius N in the opposite

o : : 1 |
direction, so it can be described as u:(ﬁ cos S’_ﬁ sin sj . Both parameters

depend linearly on the length of the arc that we cover, t.
While the center goes around one time, the red point meets the boundary N
times. This means the small discs rotates around itself N —1 times, hence

u=(%cos((N —l)t),—%sin((N ¥ l)t)j.

The point on the star can be described as w = u + v, which is also a vector
function of z. A simple way to check we wrote it correctly — differentiating
vectors u, v shows that their velocities are equal in their absolute value and
that they cancel each other when the red point is near at the boundary (and
then its velocity should be 0, because of the friction).

Of course, since u looks always directly clockwise and v is of the same
absolute value the vector will always go clockwise so the star won’t have
self-intersections.

Integrating —ydx around the star should, as usual, give the area inside.

Minus sign is because the trajectory, the way we have parameterized it, goes
clockwise, so the upper boundary must be consider with plus and the lower
with minus. So we get the following integral:

T—((l—%)sint —%sin((N —l)t)j%((l—%Jcost +%COS((N —1)t)jdt -

0

=#T((N —1)sint —sin((N = 1)¢))(N —1)(sint +sin ((N 1)) dt =



- NN_ZIT(N—l)sin2t—sin2((N—1)t) +(N —2)sintsin((N —1)1)dt

To finish this, it is useful to know the following exercises:

Exercise 1. Tsin2 tdt = Tsin2 (N-1)t)dt=x
(Hint: sin2+:sos2 =1) 0

Exercise 2. Tsintsin((N ~1)t)dt =0

(Hint: 2sin ao- sinb =cos(a—b)—cos(a+b))

(N-1)(N-2)

So, the answer 1s .
N2

Second solution. Like before, we describe the position of red point as the
sum of two vectors w = u + v where u goes clockwise in a circle of radius

1 ) .. ) ) 1
1- N one time and v goes counter-clockwise in a circle of radius N N -1

times, but we don’t write the coordinates explicitly.
For any to vectors k = (kx,ky ),m = (mx,my) denote the oriented area of the

parallelogram they form k = (kx, ky ),m = (mx,my) . So, in time dt the vector

Xw .. : : :
(since its clockwise) which gives total area

w SwWeeps arca

2z

2r
JdWXWZJ% du+dv u+v Jduxu+dv><v+du><v+dv><u
0 0
2r 2r
The integrals I duxv, I dvxu are 0, since the angle between du and v, as
0 0

well as dv and u rotates uniformly around 0 and makes several full circles.

2r

2
1 J duxu =7r(1 - ij since u sweeps one circle of radius (1 — ij
29 N N

2z 2
% J dvxv=—(N - 1)75(%) since v sweeps N —1 circles of radius in the
0

opposite direction. So the total integral is:



%ZfdMXu+dvxv=7£(l—%j2 -(N-1)z(%j2 ”{(NT_IJ —(N-1)&D=

N-1 (N-1)(N -2)

=z e (N-1-1)=x -

3. A natural number k is considered good, if for each N the number
I*+2"+...+N'is divisible by I+2+...+N.
Describe the set of all good numbers.

Solution. If k is good, then it 7*+2" is divisible by 3. So I+(-1)" = 0 (mod 3)
hence k can’t be even.

Suppose now k is odd. I*+2"+...+N* is divisible by I+2+...+N if and only if
2(1*+2+...+N") is divisible by 2(I*+2"+...+N*)=N(N+1).

N and N+1 are co-prime, so it is sufficient to verify separately that it is
divisible by N and by N+1. It is enough to prove 2(1*+2"+...+N) is
divisible by N+1 for all N, then 2(1*+2*+...+(N-1)") is divisible by N and
2(1%+2"+...+N*) also. We shall use “Gauss trick”:

2(1"+2%+.. . +N") = 2((I*+N*) +(2*+(N-1)") +...+(N*+1Y)).

But this is definitely divisible by N+ since a*+b" is always divisible by a+b
for odd k since a*+b" =(a+b)(a"' — a*?b + a*7b* — . . . + a"").

4.LetA; Ay,...,Ay be nonzero matrices MxM (a matrix is called nonzero if
at least one of its elements is nonzero). Prove that there exists a matrix B of
the same size such that BA;BA,B... BAyB 1s a nonzero matrix.

Solution. The key is to consider the kernel and image spaces of matrices.
We shall construct projection matrix B of rank 1, which satisfies the
conditions. Projection matrix of rank 1 is defined by 2 linear subspaces:
kernel of codimension 1 and image of dimension 1, which doesn’t contain
kernel. Each vector can be uniquely decomposed into sum of two vectors —
one from the space of dimension 1 and second from the space of
codimension 1. So, the projection can be described as taking the first vector
of that decomposition.

For this product to be non-zero, all we need is that the image of B won’t be
sent into its kernel. So, we have to prove that we can choose a nonzero
vector v (or the one-dimensional space) and a space W of codimension that
neither A; will send v into W.



To do this, we must achieve 2 things:

a) Find a vector v which don’t belong to kernel of A; for all i.

b) Find a hyperplane (containing 0) which doesn’t contain A,v for all i.

So, it remains to prove 2 lemmas:

Lemma 1. There exists a vector which is not contained in all given linear
subspaces, where number of subspaces is finite.

Lemma 2. There exists a hyperplane (containing 0), which doesn’t intersect
with a given finite set of points.

Since any subspace can be enlarged to hyperspace, lemma 1 is equivalent to
its special case:

Lemma 3. There exists a vector which is not contained in all given
hyperplanes, where number of hyperplanes is finite.

Lemma 2 is also follows from lemma 3, since if we replace a hyperplane

a;x;+ax+...+a,x, = 0 by a vector (ay, a,, ..., a,) and vice versa, the
condition “a hyperplane contains the vector” turns into “a vector belongs to
the hyperplane”.

So, it is enough to prove lemma 3.
Remark. All this works only for infinite fields.

Proof of lemma 3. Apply the induction over dimension of the space.

The base of induction: space of dimension 1 can’t be covered by finite
number of points (field is infinite).

The step of induction: assume it is proven for spaces of dimension smaller
than n. So, we have finite number of hyperplanes, and we try to prove they
don’t cover the space. There is infinite number of hyperplanes in the space,
so we can choose a huperplane H which is different from all given
hyperplanes. Intersection of H with other hyperplanes are sub-hyperplanes in
H, so, by induction, they can’t cover it.



5. An infinite sequence of real numbers {x;} will be called nice if inz
converges. Let {a;} be a sequence, such that for each nice sequence {x;} the
series Y a;x; converges. Prove that the sequence {a;} is nice.

Solution. Assume {a;} isn’t nice. So Ya;” diverges. We can cut the sequence
{a;} into infinite number of segments, each of which is greater than 1.

(That is done by induction, simply sum up the numbers from the end of
segment number k until it exceeds 1, and that will be segment k+1.)

Let segment number £ start at m; and have n; elements.

Ty
Then, by construction, bk = Z aJZ- > 1. We shall use a nice lemma:
Now, construct a sequence X, = ! for each j which belongs to segment
bk

number k. Then

o oo my, ) m 2

Yap=y Y ax=> ) =

JJ J k-b
j=1 k=1 j=m,—n,+1 k=1 j=m,—n,+1 k

- -
Zx _Z;J > nk- bzzzkz-kbzzzkz-bk<zﬁ<w

=m,—m+



Targil 10.
Some linear algebgra, from former IMC mostly.

1. Let n>2 be an integer. What is the minimal and the maximal possible
rank of a nxn matrix whose n’ entries are precisely 1, 2,3, ..., n* 7

Answer. Maximum », minimum 2.

Solution. Minimum. Write all the numbers in their natural order.

Then all the lines are linear combinations of the first two. Because the
difference of first two lines is (1 1 ... 1) and by adding this line to the
first line you can get all lines.

You can't achieve rank 1. If You can, lets permute rows and columns so
that a; =1, a; <ap<...<ap,a;<a<...<da,.

Then, since every 2x2 minor is 1, we have ay, = dx; din.

From this follows, that the lower-right corner number is bigger than any
other matrix entry by 2 at least.

Maximum. Take all entries on main diagonal to be odd, and all elements
below it — even. Then det mod 2 1s 1, so det 1s odd. So det isn't 0.

So rank is 7.

2. A polynomial P(xy, x,, ..., xi) 1s called good if there exist 2x2 real

Find all values of k for which all homogeneous polynomials of degree 2
of k variables are good.

Solution. By playing a bit with numbers, it is easy to construct an

example for 2:
_ Y
—cy ax+by

o (%)

It is always easy to reduce number of variables. So for 1 it works also.

=ax” +bxy +cy’

Now the question is, which polynomial of degree 3 can we construct.
All possible polynomials are



xal a, +y b, b, +7 6 G
a, a, b, b, G

ax+by+cz ax+by+c,z
ax+by+cz ax+by+c,zz

=(ax+by+cz)(ax+by+c,z)—(ax+by+c,z)(ax+by+cz)
But each homogenous polynomial of degree 2 in 3 variables can be seen
as a bilinear form, in which you substitute twice the same vector, or

Ay Gp G [ X
(x Yy Z) yy Ay Gy || )Y
a3 Ay Ay )\ L
The form (a,x+b,y+c¢,z)(a,x+b,y+c¢,z) or
—(ayx+b,y+c,z)(ax + b,y +c,z) corresponds to the matrix of rank 1.

So, the question is, which forms can be presented as sum of two matrixes
of rank 1, and those are forms that can be presented as matrixes of rank 2.
Matrices of rank 2 always have nontrivial kernels, so their forms become
0 on non-zero vectors. That is why polynomial x*+y* +z* can’t be
represented by matrix of rank 2, since it is never 0 on real nonzero vector.

Remark. Notice, that quadratic form x* + y* + z* can be represented by

. . . ) 1 —a —c
many different matrices, precisely by any matrix of the form {a 1 b}‘
c b 1

3. Let A be areal 4 x2 matrix and B be a real 2 x4 matrix such that

1 0 -1 O
O 1 0 -1 .
AB = . Find BA.
-1 0 1 O
0O -1 0 1

A
Solution. Matrix A can be written as (AIJ and matrix B as ( B; B,)
where A, A,, By, B, are 2x2 blocks.

AB = (AIBI Ale
AZBI Asz

2 0
Hence BA = B|A| + B-A, = 1+1= (O Zj

j, hence A1l is inverse to B1, and A, is inverse to B,.



4. Let AB be real nxn matrices such that AB+ A + B=0.
Prove that they commute, i. e. AB = BA .

Solution. Add unit matrix to both sides of the given identity. You get
(1+A)(1+B) = 1.

That means, matrices 1+A and 1+B are inverse to each other, hence
(1+B)(1+A) =1

So BA+A+B=0
AB= —-(A+B)=BA.
ao al a2 an
a, d, a, e a,
5. A= a, q a, .. a,,
a, 4a,, a,, a
Compute det A if
a) ax=ap+d k
b) ax=ay "

Solution. a) Subtract second row from the first, then third from the
second and so on. After n operations You get a matrix of same
determinant:

-d d d d
-d —-d d d
-d —d —d d
a, a, , a, , .. a,

Now subtract row n-2 from row n-1, then row n-3 from n-2, and so on, in

the end subtract the first row from the second. After n-1 operations You
still get a matrix of the same determinant:

-d d d .. d
0 -2d 0 .. O

0 0 -2d .. O

a a

n n-1
Now, there are just 2 permutation which we need to count, since in all the
rows except the first and the last You have to choose the diagonal
element, hence the determinant is
(-2d)"™" (- day - da,) = (-2d)*" (ap+dn/2)

a,, ... 4,



b) Subtract q times second row from the first, then q times third from the
second and so on. After n operations You get a matrix of same
determinant:

a, —qa, 0 0 .. 0
* a, —qa, 0 .. 0
* * a,—qa, .. 0
* * * . a,

I didn’t write the terms below the diagonal, because they don’t matter.
The only nonzero permutation which remains here is diagonal, so

. . _1
determinant is aon (1- q2) ! .



Targil 11.
Periodicity and sequences.

1*. A necklace consists of R red and B blue beads. We say that it is good, if for any two
substring of the same length a number of red beads in them differ by 1 at most.

a. Prove that a good necklace exists for each R and B.

b. Prove that it is unique up to rotation.

2. A sequence of natural numbers is defined by recursive formula a,,, = ag” . Show that

the a,, stabilizes modulo m, for each natural number m.
(“Stabilizes” means that we start getting always the same number after some index).

3. (a) Winnie the Pooh and Piglet walk over the infinite street, tiled by blocks 1 feet long.
They start at the first corner of the first block. They make constant strides, Pooh of length
p and Piglet of length ¢, both p and g are irrational numbers of feet. After the first tile,
each tile is stepped on by precisely one animal. (They walk on their toes.)

For which p and q can it happen? Find the precise condition.

(b) Is it possible to decompose the set of natural (integer positive) numbers into disjoint
union of two strictly increasing sequences, {a,} and {b,}, such that b, = n + a,,
foreachn ?

4. Two infinite sequences are given, {a;} of period n and {b;} of period m.
ay = by for k < m+n. Show that these two sequences coincide.

5**, The set of natural numbers is decomposed into a disjoint union of arithmetic
progressions. Show that some two of those progressions have the same step.



Targil 11.
Periodicity and sequences.

1*. A necklace consists of R red and B blue beads. We say that it is good, if for any two
substring of the same length a number of red beads in them differ by 1 at most.

a. Prove that a good necklace exists for each R and B.

b. Prove that it is unique up to rotation.

Solution. Suppose that R > B. Then between each two blue beads there is at least one red
bead. If not, and there are two adjacent blue beads, then there also are two adjacent red
beads, so there are two substrings of 2 which differ by 2.

So, each necklace of the kind we consider has substrings of red, delimited by single blue
beads. For each such necklace we can consider a reduced necklace of R — B red beads
and B blue beads, by taking one red bead out of each red substring of that kind.

The original necklace can be reconstructed easily from the reduced one, by inserting one
red bead between each pair of blue beads.

Lemma. The reduced necklace is good iff the original necklace is good.

The lemma is easily proved. If the reduced necklace is bad, there are two substrings of
equal length, one having precisely k, another having at least k+2 blue beads. By taking
minimal substrings of equal length which demonstrate badness of the reduces necklace,
we can replace condition “at least k+2” by “precisely k+2”. Now enhance it back, we
have to add red bead to each red substring, and we can add red bead on both ends of
substring or we can not, as we wish. So in the enhanced necklace we also have two
substrings of the same length, one with k and another with k+2 blue beads.

The other direction is even easier, we have two different substrings, one with only k and
another with at least k+2 blue beads. Now we shrink it, and the second substring shrinks
more than the first, so we can append new beads to it, to keep it as long as the first
substring. But the first substring has only k blue beads, and the second has at least k+2
and might get some new ones. QED of the lemma.

Hence, to construct a good circle for R and B, first construct a good circle for R — B and
B, it is already done by induction (base of induction is obvious), and then enhance it.

To prove that two different good circles are actually the same, shrink both, use induction,
and enhance them back again.

Remark. I didn’t formulate things accurately here, but there are two ways to formulate
proofs like that. First way: prove it for n = 1, and then show that if it is true for n < N then
it is also true for n = N.

The second claim: choose minimal n for which the claim is wrong, and create a
contradiction. The second way of proving such claims is shorter when You write it down.

2. A sequence of natural numbers is defined by recursive formula a,,, = a," . Show that

the a,, stabilizes modulo m, for each natural number m.
(“Stabilizes” means that we start getting always the same number after some index).



Solution. Consider the minimal number m for which there is such ag so that the claim is
wrong. If m is decomposable into product of two relatively prime numbers, p and ¢, then
the sequence will stabilize mod p and mod ¢ so by the Chinese Remainder Theorem, it
will stabilize mod m, which is impossible. Hence m is a power of a prime, m = .

If ay is divisible by p, than its large powers are divisible by m, so it is not the case.

So, ap and m are co-prime. Hence aon mod m depend only on n mod ¢(m).

But a, stabilizes mod ¢(m), because ¢(m) < m, hence ag” stabilizes mod m. QED.

3. (a) Winnie the Pooh and Piglet walk over the infinite street, tiled by blocks 1 feet long.
They start at the first corner of the first block. They make constant strides, Pooh of length
p and Piglet of length g, both p and g are irrational numbers of feet. After the first tile,
each tile is stepped on by precisely one animal. (They walk on their toes.)

For which p and q can it happen? Find the precise condition.

(b) Is it possible to decompose the set of natural (integer positive) numbers into disjoint
union of two strictly increasing sequences, {a,} and {b,}, such that b, = n + a,,

for eachn ?

1

Solution. (a) The precise condition is —+—=1.
P 4

It is easy to understand why this condition is necessary. Because if we look at first N

N N
tiles, where N is large, Pooh will take ~— tiles and Piglet ~— tiles and together they
p q

. N N o 1 1
should take ~ N tiles so —+—~ N, when N goes to infinity, we see —+—=1.

P q P 4q

Now we shall so this condition is also sufficient. Before the end of N’th tile Pooh will

. N | . . . N | . N N
take precisely | — | tiles and Piglet precisely | — | tiles. Both — and — are not

P q P q
N N N N

integer so since —+—= N is integer we get {—} + |:—} =N-1.
P 4 P q

N +1 N +1 , .

Hence + = N . The difference between two last expression is 1, so
p q

there is one more animal trace on N+1 first tiles than on N first tiles. So, precisely one

animal stepped on tile N+1.



Remark. It is interesting what would happen for 3 animals, say Pooh, Piglet and Rabbit,

1

or four animals, with Tigger for example. Of course —+—+—=1 or
p q T
I 1 1

—+ —+—+—=1 will be necessary condition, but I am not sure whether it is sufficient.

p q r I

(b) We shall see two solutions. From first solution it will be clear that this decomposition
is unique, but not how it looks like. From the second it will be clear how precisely does
this decomposition behave, but not the uniqueness.

First solution. Paint all natural numbers in two colors, pink and brown, in the following
way. In the beginning all numbers are colorless. At step number k choose the least
colorless number, call it ay and paint it pink. Then take number ay + k, call it by and paint
it brown. It is obvious that ak is a strictly increasing sequence, hence so is by, so by is
bigger than all numbers which were painted earlier, so the numbers don’t repeat
themselves. It is also obvious that all numbers will be painted after X, steps.

Second solution. Let ¢ be the positive root of quadratic equation ¢* = ¢ + 1.

1 1

Then —+—= 1. So if the bear makes ¢ steps, and his friend ¢ steps (maybe because
N

they are superstitious and think that will bring them gold), then each tile will be stepped

upon once. So, natural numbers are nicely decomposed into 2 sequences : ay = [N (0]
and by = [N ¢2:| , as we have proven in (a).
But ay + N =[Ng]+N =[N (p+1)]|=| N¢’ |=b,.

4. Two infinite sequences are given, {a;} of period n and {b;} of period m.
ay = by for k < m+n. Show that these two sequences coincide.

Solution. If m and n have common divisor r > 1, we can consider r pairs of sub-
sequences {a;+x} and {b;..}, where k is a constant number, 0 <k < r.

This way we reduce the problem to the same problem for sequences with lesser periods,
m’ = m/r and n’ = n/r. So, it is enough to prove the statement when m and n are coprime.
For any k < m we have by = ay = ai4n = b -

Since by depends only on k mod m, we can visualize all values of by as a vertices of
regular m-gon, and at vertex number k we write number by.

Consider all lines, connecting vertex number k to vertex number k+n (mod m).

The vertices of regular m-gon and those lines form a graph. This graph is a circle of
length m, because m and n are coprime, so making jumps by n mod m will bring you to
original point only after m moves. So, this graph is connected, and it will remain
connected even when we erase one edge.

As we saw before, by = by, for any k < m, so if we take only m—1 of those edges, the
connected vertices will all have the same value, but the graph is connected, so all values
of b sequence are the same, so b is constant, so a is constant at its first m + n — 1
elements, so a and b are equal.



5*%, The set of natural numbers is decomposed into a disjoint union of arithmetic
progressions. Show that some two of those progressions have the same step.

Solution. Let P be common multiples of all periods. After certain moment, the only thing
which influences the belonging of a number to any of those sequences is its remainder

2ki
mod P. Remainders k mod P can be represented as vertexes of the regular polygon, e % .
Remainders corresponding to one arithmetic progression are vertexes of regular sub-
polygon. The sequence of largest difference correspond to the sub-polygon with fewest
number of vertexes, n. Consider function z". The sum of this function over all vertices of
the polygon is 0. The sum of this function over vertices of regular polygon with more
than n vertices is obviously 0. The sum over vertices of polygon with precisely n vertices
is nonzero. So there should be more than one polygon of n vertices.



Targil 12 — some inequalities.

1. a) What is greater: ¢” or 7° ?
b) The sum of several natural numbers is 2008.
What is largest possible value of their product?

2. Let 0 < x < /2. What is greater: tg(sin(x)) or sin(tg(x)) ?

3. We are given 5 positive real numbers: a, b, c, d, e such that
aA+b+F=d+é
a+b'+ct=d+¢

What is greater: @’ +b° + > ord’ + €’ ?

4. a) Let {x;} be a decreasing sequence of positive numbers.

Prove that | x2 <>
rove tha ;xl ;\/;

b) Prove that there exists a universal constant C, such that for each
decreasing sequence of positive numbers

VLN .2<Cn .

5** Let {a,} be a sequence of positive numbers, such that Zan < oo,

n=1
a) Prove that Z{l/al Ay ... a, < eZan .
n=l1 n=l1
b) Prove that the constant in the inequality can’t be improved, 1. e. for any

positive € we can find a sequence of positive numbers s.t. Zan <oo and
n=1

oo oo

Zm>(e—8)zan

n=l n=1



Targil 12 — some inequalities.

1. a) What is greater: ¢" or z° ?
b) The sum of several natural numbers is 2008.
What is largest possible value of their product?

a) First solution. ¢" is a strictly convex function, so it is above the tangent
line at 1. Tangent line at 1 is ex. Hence ¢ > ex, and since convexity is strict
the equality may happen only when x = 1.

Hence ¢ >e-n/e = 7.

So " > 7°.

Second solution. The question is, actually, what is greater, </Z or (’/; .

To find compute the derivative of </; function (or, if you don’t like the hard
work, the derivative of it logarithm, xInx). You will see that the derivative
1s positive before e, negative after e, and O at e.

So ¢/e is the greatest of all Ix .

b) If k>4, then k(k-2) is bigger then k, so there should be no numbers bigger
than 4. If k = 4, we can replace it by 2-2 and still have the same product.
Hence WLOG, we can assume we have only 2’s and 3’s. But 3-3 is greater
than 2-2-2, so we have less than three 2’s.

2004 1s divisible by 3, so we can have two 2’s and 668 times 3, or one 4 and
668 times 3. The product is 3°-4 .

Remark. The question is, morally, which numbers, k’s or m’s, are more

useful, which is bigger, m* or k", ore in other words, Q/E or % . The
answer is, that the best number is e, but as long as we are bound to use
integer numbers, the best is 3, the next two are 2 and 4, which are equivalent

since ¥/2 =4/4 and other number are worse since they are worse

approximations of e. If the question would be about real, and not integer
numbers, we would get equal numbers (by AM-GM) very close to e.

2. Let 0 < x < /2. What is greater: tan(sin(x)) or sin(tan(x)) ?

First solution. Let us start with a guess. On the domain sin goes upwards
from O to 1 so tan(sin) goes monotonically upwards. While tan(x) goes
upwards from O to infinity hence sin(tan) oscillates on the domain, dives to
negative and returns to positive many times. So, at least sometimes the first



function is bigger, and there wouldn’t be a point in this question unless it is
always bigger. So, we shall prove that tan(sin(x)) > sin(tan(x)).

It is enough to prove the claim on the domain where both functions are still
growing, i.e. when tan(x) < n/4. At arctan(n/4) the sin(tan(x)) reaches its
global maximum, 1, while tan(sin(x)) keeps growing.

Denote y = tan(sin(x)). Then sin(x) = arctan(y) (o)

Hence the main claim is arcsin(y) > tan(x).

It is enough to prove that the rate of growing of LHS is higher, i. e.
dx dy

While from * we have
dy

I+y

cosx-dx= >

. dy . )
Hence we can substitute d_y into the claim:
X

1+y°
J1-y?

But from * we can express cosx =4/l —arctan’ y so now we have to prove

1<cos’x

arrive to an innocently looking inequality, with no composed functions:
32 14+ y°

«/I—y2

Where 0 < y < 1. Here we have square roots twice, so let’s take the square:

I< (1 —arctan’ y)

ﬁ < (l—a.rctan2 y)3
+y
But we can write =1 Y

1+ y2 1+ y2
Hence if z = arctan y, then we can rewrite the claim as

(1 —tan’ z)(l —sin’ z)(l —sin’ z) < (1 - z2)3

[cos2 z—sin’ Zj(cosz Z)z <(1- 22)3

COS2 <




cos(2z)cos’ z<(1- z2)3

cos(2z)+cos*(2z) 1+ cos(2z)

< (1— z2)3
2
cos(4z)+24003(2z) +1 <(1- Z2)3

Here 0 < z < arctan(1) = /42 <1.

So, we shall estimate the left hand side by its Taylor series. We know from
Lagrange remainder that if we take 4k+1 terms we shall get upper bound for
cosine. Hence:

cos(4z)+2cos(2z)+1 1[1+1_ (42)° . (42)"  (42) . (4z)3}+

=cos(2z)

<_ —
4 4 2 24 6 8!

+1[1_(zz>2 22 _<zz>6+(zz>8J

2 2 2% 6 8!
3 3 5 5 7 7
g EY  HD 4D 22 43
6! 8! 15 105

So, to achieve happiness, 1. e. to prove that LHS < (1 — 22)3 it is enough to
prove that
1-3z>+37* —gz(’+£z8 <1-3z2+3z"-7°
15 105
ﬁ Zg < l Z6
105 15
, 135
< _
645
It is true in the domain which we consider. QED.
Sorry people, less Taylor terms are simply not enough. And yes, I did the
computations by hands.

<

Second solution (the official one). Let f{(x) = tan(sin(x)) — sin(tan(x)). Then

£ COS x cos(tan(x)) cos’x—cos’(sinx)cos(tan(x))
x) = _ _

cos” (sin x) cos’x cos” (sin x)cos® x
Let 0 < x < arctan(n/2). Since cos is concave (sad) on (0, 7/2) we get
cos(tan x) + 2cos(sin x) tan x + 2sin x

{/cosz(sinx)cos(tan(x)) < 3 <cos 3 < cos(x)




The last inequality follows from tan x +32 LN x , which is because

. /
tan x + 2sin x 1 1 1
=— > +2cosx |>3 > -cosx-cosx =1
3 3| cos” x CcoS™ x

3. We are given 5 positive real numbers: a, b, ¢, d, e such that
A+ +lf=d+é
a+b+ct=d+é

What is greater: a* +b° + > ord’ + €’ ?

First solution. Let A=a’, B=b*, C=¢*, D=d", E=¢".
P=A+B+C=D+E , Q=A+B*+C*=D*+E~.
Consider in the {(x, y, z)} space the set defined by
x+y+z=P
X+ +7=0
The first equation is a plane, the second is a sphere. So, the intersection is a
circle. It cuts coordinate planes at points (D, E, 0), (E, D, 0), (D, 0, E), etc...
Hence it has three symmetric arcs in the positive domain x, y, z > 0 (one arc
is where x is the greatest; another where y is greatest; the third is where z is
greatest). So, let us assume that A > B > C and D > E so that points
(A, B, C) and (D, E, 0) will be one the same arc of the circle (actually, on the
same half of the same arc, because y > z in both cases).
Let (X(¢) , Y(¢) , Z(¢)) be a parametric curve, going along that arc from the
point (D, E, 0) to the point (A, B, C), which means, for instance, that
X(0), ¥(0), Z(0)) = (D, E, 0)
X(1), ¥(1), Z(1)) = (A, B, ©)
We shall also assume that the curve goes always forward along the arc with
constant speed v. By upper dot we denote, as usual, derivative over ¢.
So, since X + Y + Z and X* + Y* + Z* remain constant during the motion
X+Y+Z=0
2XX +2YY +27Z =0
So the vector (X,Y,Z) 1s orthogonal to both (1, 1, 1) and (X, Y, Z) and so it
1s proportional to their vector product (Y —Z,Z-X,X -Y).
But we know that Z is growing along the way, and X is the greatest of 3, so
the coefficient of proportion is positive.

So, we have computed (X,Y,Z) up to a positive coefficient.

The question which really bothers us is whether the value of the function
Fi)=X" 4y 47"



is greater at the beginning or at the end of the motion?
Let us derive it and find its sign.

6y =2 (XX + VY + ZZ ) =a((Y - Z)VX +(Z= X)VY +(X ~Y)VZ)

2
Here a is a positive coefficient so it doesn’t influence the sign.

Denote xzﬁ,yzx/?,z:\/?. Then, since X > Y > Z > 0 on our half-arc,
so also x >y > z>0. Then

(Y—Z)\/Y+(Z—X)\/?+(X—Y)\/E=(y2—z2)x+(zz—x2)y+(x2—y2)z:
=y’ x =2’y =2 (x=y)+(x=y)(x+y)z=(x=y)(-y -2 +(x+y)z) =

= —(x=y)(x=2)(y=2)<0
(Of course, this expression was Vandermonde of size 3).
So, F(t) <0, and the value if

&+ =F0) >F()=d’ +b* + .

Second solution (the official). WLOG, we may assume that a>b>c and d>e.
Letc®=e*+A. Thend” =a’* + b* + A.
Hence a' +b* + (e’ +A)4 =(a’+b" + A)2 + et

20°A=2a’b"+2(a’ +b*)A

But a® +b* —¢* 2§(a2+b2+c2)—%(d2 +ez)=é(d2+ez)>0

So A is negative.

2 2 2 2
0<c? o ab et +bt—et—a? (a’—€)(e-b7)
<c'=e ——5——F—= — — A

a +b" —e a +b" —e a +b"—e
Soa>e>b.
212 212
ab ab
Therefore d” =a’ +b° —— —<a’+b-——=d
a +b° —e a

Hencea>d>e>b>c.
Consider the function
fX)=a" +b" +c" -d -¢€
WLOG a = 1(if not, divide everything by a").
We shall prove that this function has only 2 zeroes on the real line, 2 and 4,
and that f changes its sign at those points. Suppose the contrary. Then, by



Rolle’s theorem, there f' has at least two distinct zeroes, x; < x;,
f'(x1)=f'(x2) =0.

f'(x)=Inb-b*+Inc-c* —Ind -d* —Ine-¢"
Hence Inb-b" +Inc-c"" =Ind -d" +1ne-e" fori=1, 2.
But 1 >d>e>b>c.So
(-Inb)b" +(=Inc)c™ < i < g < (-Ind)d" +(~Ine)e™
(=Inb)b™ +(=Inc)c”® (-Ind)d™ +(-Ine)e”
a contradiction.
Hence f(x) has constant sign at intervals (—o0,2),(2,4),(4,0). It is positive

b

at 0, so it is negative at 3.

4. a) Let {x;} be a decreasing sequence of positive numbers.

P that N ?sni
Tove a ;xt ;\/;

b) Prove that there exists a universal constant C, such that for each
decreasing sequence of positive numbers

OQL o 2<Cn

2
Solution. a) Take the square: Y x < (Zij
i=1 i=1 V1
But if You replace all numbers by lower numbers with higher indices:

[Z%T:xf+%(2xl+%xzj \/_(2 +2\/2_+T)+ >

i B R E B a e E )

It remains to estimate sum of inverse roots. It is easy to guess (for example,

if you approximate series by integral) that it is approximately Jn.
To make precise statement consider



C(n=An=1)(Yn+dn-1) 1 1
e =R s =i i

(Because always ! < (1 + lj 4= A+B .
A+B \A B 4AB

Since 4AB <(A+ B)’, which is same as 0<(A—B)’.)
Sum up such inequalities from 2 to m and You get

[_kif A AS J—‘JJ

omezs i 2 ]
\/I\/E\/g \/m—lx/g

(The last formula could be obtained with less subtle technique, but technique
1s what we want to learn). Now we can finish the proof:

n 2 2

X, 2 XS 1 j x3( j

— | >x + 2+ 2+2 o>+ + X
[12:1:\/;) : \/2( \/2 \/_ \/ \/_ ! 2 } -

oo

m1 ;,,: m1 ,m\/l+1 m szx/_ Ni+l—m

All we have to do 1s to estimate

3 11 _iz 11 ~j dx
“Im Ni+l-m imzl\/Z 1+i_@ 0\/;\/1—)6
A

Because it is approximately Riemann’s sum for that integral. Actually, if we
divide the interval [0,1] into i equal parts, then in the part number m we have

x<ﬂ1—x<1+1—ﬁhence L. !
i i m \/_\/1 x

1+f——f

i

Jy i T MJ_J_T_qfﬁi

So, it remains to compute that integral, and it will serve as (a pretty tight)
universal constant. It is done by a trigo substitution: x = sin’t
dx = 2sint cost dt




™
j2dt—

e

There is a more elementary way to find a less tight bound:

i/2 1 1 1 i/2 1
=2 : 2\il2 =4
Z\/_ \/l-l-l m ;\/Z Ji+l-m \/1/2;\/_ \/l

5*%, Let {a,} be a sequence of positive numbers, such that Zan <oo,

n=l1
a) Prove that Z:wn/a1 Ay -...ma, < eZan .
n=1 n=1

b) Prove that the constant in the inequality can’t be improved, i. e. for any

positive £ we can find a sequence of positive numbers s.t. Zan < oo and
n=l

oo

S ia-aya,>(e—£)Ya,

n=l1 n=1

This inequality is called Carleman inequality. Carleman is a famous
Swedish mathematician.

This inequality was given at IMC and it was the most expensive problem in
its year. We shall start with b) part, since it is easier and gives a clue to a).

b) Consider the sequence a, = Lu where u is only slightly bigger then 1.
n

Then the sum of a, is bounded, but very big, so the first few terms are only a
small part of the sum. For large n’s,

1 ! e)
da-a,-...a =| ———| ~|— | =e€"a, ~ea

Hence for u sufficiently close to 1, the LHS and RHS of Carleman inequality
are approximately equal. QED.

This gives a clue to a part. It is very natural to try and decompose Carleman
inequality into sum of Cauchy (AM-GM) inequalities, say

b . +b .a,+..+b a
n,171 n27"2 n.nn
dbn,l.bn,z"--'bn,ndal'az'...'a <

n
n




Then, if you choose the coefficients smartly, so that dbn’l ‘b, ,...-b,, isless

than e times sum of all coefficients before each a;, you will get Carleman.
But how to guess those coefficients?

It is well known that Cauchy inequality becomes equality only if all the
numbers in it are the same. Assume (though it is literally wrong, but morally
almost true), that Carleman inequality becomes equality for the sequence

a,= l So, the coefficients should be chosen so, that the numbers will
n

become equal, so a, should be multiplied by n before applying Cauchy.

That was the main philosophical idea, now we shall execute it.

a) We shall start with reminding classical calculus lemmas:

Lemma 0. (1+a)">1+na if 14a >0 and nis anatural number.
(Bernoulli inequality). Equality holds only if a=0 orn = 1.

Lemma 1. b, :(1+lj :(n+1j <e
n n

Lemma 2. n_+1< W
e

Proof of lemma 0. By induction, for n = 1 it is obvious, for n+1, supposing
it was proven for n, it follows:
(1+a)""" = (1+a)"(1+a) > (1 + na)(1+a) = 1 + (n+Da +na*>1 + (n+1)a

Proof of lemma 1. It is well known that b, — e. So, it would be enough to
prove that b, is monotonically increasing, i. €. b, < b,,;.

(n+1jn (n+2jn+l
<
n n+1

no_ n(n+2) "
(n+1) (n+1)2

That is a direct consequence of Bernoulli inequality (lemma 0).

Proof of lemma 2. Since b, <b, <...<b <e we get



7\1/4;1 (n+1)" \/—

Finally, let’s prove Carleman inequality. By Cauchy and lemma 2:
n+l l-a,+2-a,+3-a,+..+n-a,

‘Ay-...0q, <Q/n!-a1-a2-...-a <

n

e n

l-a,+2-a,+3-a,+...+n-a

Hence #/a,-a,-...-a, <e— : - L.
n(n+1)

Sum all these inequalities. You get

Sy, <3 a, Y — :eikaki(l_szeikakize
n=1 k=1 n:kn(n+1) - k

QED.




Targil 13 - limits.

2x :1.m
1. Compute lim J sin” (1)

x—0+ t
x

(the answer may depend on m and n).

dt , where m and n are natural numbers,

- 1
2. D ?
a) Does kzz(;k-(lnk)-(ln(lnk)) converge
b) Does i ! > converge?

o k-(Ink)-(In(Ink))
3. Let {a,} be a sequence defined by a, = 1 and recursive formula

1 & a
a =
™ n+1kzz(;n—k+2

k

Find the limit 3 2«
k=0 2

sin tan (x)) - tan(sin(x))

4%, C te i '
ompute lim arcsin ( arctan ( x)) - arctan( arcsin(x))

5*.{a,} is a sequence of positive real numbers such that a, + a,, > a,,, for
all m, n.
Prove that the sequence a,/n converges.



Targil 13 - limits.

2x :1.m
1. Compute lim J sin” (1)

x—0+ t
x

dt , where m and n are natural numbers,

(the answer may depend on m and n).

Solution. By mean value theorem of integration

2x +..m 2x : " 1 " 2x
JSID (t)dt=J£81nt(t)j tnl—mdtz[&(y)] J. 11dt,wherex§y§2x.

tn y tn—n

X X

Hence sm(y) ——1,s0 (sm(y)j —5—1 . Therefore
y y

2x s..m 2x

) sin™ (¢ . 1 m—n
lim ( ) dt = lim dt =

x—0+ t" xo0+d g t

n—m+1 v

2x
= llm (m - n)( n_1m+1 - 1) n—1m+1
2 X

X

if n—m #—1. Since the integral is positive anyway, it only matters whether

Iim — tends to zero or to infinity in these cases, so

x=0+ x
if n—m>—1 then it tends to infinity,
if n—m<—1 then it tends to zero,
and if n —m =—1then

2x

2x j:..m
lim [ ) gy = tim [ Lt = tim (1n (24)=In ) = In2
t x—=0+ g t x—=0+

x—0+
X

Remark. This problem is pretty obvious, but it really did appear on IMC.

converge?

- |
2. a) Does
kzzl():ok-(lnk)-(ln(lnk))
- |
b) Does converge?
k:zl(:‘ok-(1nk)-(1n(1nk))2

Solution. a) Apply the “harmonic trick” : split the sequence into sub-strips:
strip number n will contain numbers between 2"+1 and 2n+1.
Then all numbers in the strip number n are (up to a bounded factor)

1

————— and there are 2" elements in this strip.
2"-n-(Inn)



Therefore the sum of that strip 1s

n-(Inn)

1
So it is enough to investigate the convergence of the series Z (in7) :
—n-(Inn

Apply the harmonic trick again: cut the sequence into strips, strip number m
will contain n’s between 2"+1 and 2m+1.

The elements in strip number m are, up to a bounded factor , this strip

has 2" elements, so the sum in the strip is, up to a bounded factor —
m

So the sum over all strips behaves like Z— and that one diverges (the
m=2 1M

easiest proof for that is applying harmonic trick again.

b) As in a), apply the harmonic trick twice. Each time you get the series with

: o - 1
the same convergence properties. After firs time you get E ﬁ, and
= n-(Inn

: 1
after second time you get 2—2 and that one converges.

m=?

3. Let {a,} be a sequence defined by a, = 1 and recursive formula

1 & a
a =
™ n+1kzz(;n—k+2

Find the limit 3 2&

k=0
Solution. Consider a generating function of that sequence f(x Za x"

Then the limit of the series that we should compute is simply f (%) :

n

The equation (n+1)a,,, = Za— after we multiply both sides by xn and

—n—k+2
52X

k=0

sum them up turn to i:(n+l)an+1 =Zzn:ak —:i

n=0 n=0 k=0




x)z x+2

m=0

=] m

X 1
So, we should try to compute g(x)= =—+
Y pute g (x) mzz(:)m+2 2 3 4 5
2 CR R
But we know that —ln(l—x)=x+7+?+_+_+m

45
In(1-
Therefore g(x) :_x-l—n—(zx)‘
x
Hence & —_x*n(1=%)
x

2

\
1nf+const=—_|‘@— Md =—lnx+1(uj - ! dx =
x x

In(1- In(1-
=—Ilnx+ ( x)+J dx=—lnx+M+J‘(l+Ljdx=
X 1 x) X x l—-x
In(1- _
it ) (e x) = S (1 )
X X

When x = 0 the right hand side might be seen as a limit (since it comes from
power series) soitis —1; f(0) =1 and its In 1s 0, hence left hand side is
equal to const, so const = —1.

So f(x)zexp(1+—1n (1- xj

Therefore f( ! j = exp[l + ln(;)j iz =

sin(tan( ))—tan(sin(x))
4*. Compute lim : '
0 aresin (arctan (x)) — arctan (arcsin (x))

Simple lemma. Suppose we have a function f (x) such that f (0) =0 and f
has a continuous derivative around 0.

Suppose also that u,v — 0 and always u # v. Then f ()= f() — 1'(0)
u—v
Proof. By Lagrange theorem, f ()= /() = f'(w) where w is between u
u—v

and v, so when u,v — 0, w also tends to 0. QED of lemma.



Notice that all functions are analytic.
sin (tan (x)) # tan (sin (x)) at least sometimes, for example when

X =arctan (% nj because, then LHS is negative and RHS is positive.

Since functions are analytic, their points of coincidence are isolated, so at
some neighborhood of 0, except for 0 itself, sin(tan(x))# tan(sin(x)), so
we learn from complex functions. So, at some neighborhood of 0O their
inverse functions, arcsin(arctan(x)),arctan(arcsin(x)) also don’t coincide,

hence we can consider that fraction without problems.

From now on we shall say p(x) ~ q(x) to indicate that ling% =1.
xX—> q x
It is known that x ~ sin x ~ tan x.

Denote y = tan(sin(x)) then y ~ x.

. sin(tan(x))— tan(sin(x)) _
x—0 arcsin (arctan (x)) —arctan (arCSin (x ))

sin(tan (arcsin(arctan(y)))) -y
=lim =
x>0 aresin ( arctan ( x)) — arctan (arcsin (x))

sin(tan(arcsin (arctan(y)))) -y

=lim
X —tan (sin (arctan (arCSin (x))))

The last equality follows from the above lemma, when you apply function
f(x)=tan(sin(x)) to u =arcsin(arctan(x)),v =arctan (arcsin(x)), you get

arcsin (arctan (x)) — arctan (arcsin (x)) ~ x — tan (sin (arctan (arcsin (x)))) :
If we denote g(y)=sin (tan (arcsin (arctan ( y)))) , and its inverse function
g '(x)=tan (sin (arctan (arcsin(x)))) , then what we got is

. g(y)l—y
x=0 X—g (x)
From x ~ sin x ~ tan x it follows that x ~ g(x) ~ g7 (x).

But we have seen before that both numerator and denominator are nonzero,
so g has no stable points in the neighborhood of 0 other than 0.



Hence Taylor series of g has at least 2 nonzero terms, and the first is x:
g(x)=x+ax" +..., where a is an nonzero number which I know nothing
about, and n > 1 is a number which I know almost nothing about, and I don’t
want to (though they can be computed). Then g™' (x)=x—ax" +... .

Now since y ~ x,

limg(y—zl_yzlim a+oly) |
x—>0x_g (X) x—)O_(_ayn+0(yn))

So, the answer is 1.

5*.{a,} is a sequence of positive real numbers such that a, + a,, > a,,, for
all m, n.
Prove that the sequence a,/n converges.

Proof. Firstly, a, <na, hence the sequence a,/n is bounded from above. It is
also bounded from below by 0. So it is bounded. Hence it has liminf (lower
limit) which will be denoted by L.

For each ¢ > 0, we can find an index & such that ai/k < L + ¢.

Then a, < k(L + ¢) .

Then a,x <ma, < mk(L + ¢) .

For each natural N, we can write N = mk + r, where r < k (division with
remainder). Hence ay <a,; + a, <may; + ra; < mk(L + &) + ma, .

Therefore ay/N < L + ¢+ ma;/ N <L + 2¢, for sufficiently large N.

So, for any ¢ >0, ay/ N < L + 2¢, for sufficiently large N.

Since L 1s liminf, then for sufficiently large N also ay/N > L —2¢ .

Hence the sequence converges to L.



Targil 14 - functions.

1. Let f:R — R be thrice differentiable.

Show that there exists £e (—1,1) s. t. f"éé:) = f(l)_zf(_l) - 7'(0).

2. Does there exist a continuously differentiable function s. t. for every real x

fx)>0and f'(x)> f(f(x)) ?

3. Consider continuous function f:[0,1] >R such that

x-f(y)+y-f(x)<1.
1 T
a) Prove that !f(x)dxsz.

b) Find such a function f that the inequality of a) will become equality.

4.let f,g: [a,b] - (0,<>o) be continuous, non-decreasing functions, such

X X

that for every xe [a,b] we have J‘ﬂ [f()dt < I, |g(r)dr

a a

and [J7 @ =[ J (i
Prove that j,/1+ f(r)dr= j«/1+ g (r)ds

5%. Does there exist a
a) continuous
b) monotone
¢) continuously differentiable

function f : [0,1] - [0,1] s. t.every ye [O, 1] it has uncountable number of

inverse images of y ?
Uncountable means strictly bigger than X,.
Inverse image of y is such an x that f (x) = y.

6**, For a continuous function f: R — R it is given that any positive

real x, y the sequence f{x+ny) , for n€N, tends to infinity.

Does it follow that f{x) — o0 as X — o ?
(It is similar to the problem we had in the competition, but now we require continuity).



Targil 14 - functions.

1. Let f:R — R be thrice differentiable.

Show that there exists £e (—1,1) s. t. f"éé:) _SW=-r(=) - 7'(0).

Proof. One proof, which is not completely honest, but acceptable at IMC, is
to say that the LHS is f[-1,0,0, 1] (Newton’s divided difference), and
hence it is true.

F(=1) £0)=rf(-1) £'(0)=(r(0)-r(-1))
£(0) £'(0) f(1)=£(0)-£'(0)
f£(0)  £(1)-r(0)

f()

A more honest way is to give a proof, at least for this special case.
Construct a polynomial of degree 3 which coincides with f at points -1, 0, 1,
and touches f at 0.

g(x)=—@x2(x—1)—f(O)(x—l)(x+1)+¥x2(x+l)—f'(O)x(x—l)(x+1)

f()=21'(0)- f(=1)
2

So, the function f— g has 3 root, one of those of multiplicity 2, on [-1, 1].

By Rolle’s theorem, its third derivative has at least one root. So, at one
point, the third derivative of f coincides with the third derivative of g. But
the third derivative of g is constant and equal to LHS of the original
expression times 6.

2. Does there exist a continuously differentiable function s. t. for every real x

f@)>0and f'(x)> f(f(x)) ?

Solution. fis positive, hence f” is positive, hence fis growing monotonically.
Hence f'(x)> f(f(x))> f(f(0))=const>0, hence the slope of fis
bounded from below, hence when we go to negative direction the value of

the function goes down by at least given rate, hence it reaches negative
values, which was specifically forbidden.



A more algebraic way to write this down (and it would cause less argument
between the judges at the Olympiad):
Denote C = f(0)>0

f'(x)> £(f(x))>0, hence f monotonically increases.
f(x)>0, therefore f(f(x))>f(0)=

So f'(x)> f(f(x))>C.

By Lagrange for each x < y there is z between them such that
F3)=f(x)=f'(2)(y=x)>C(y=x)
F(3)=Cly=x)>1(x)

2
Choose any y, take A = féy) and take x=y—A.
Then 0> f(y)-C-A=f(y)-C(y—x)> f(x).

Contradiction.

3. Consider continuous function f:[0,1] >R such that
x-f(y)+y-f(x)<1

a) Prove that J f(x)dx <%

b) Find such a functlon f that the inequality of a) will become equality.

Solution a)
/2 /2 /2

If )dx = I f (sint)dsint = I f (sint)cosz-dt = I f (cosu)sinu-du

Here we did substltutlons x=sint ,u=n/2-1t .

Hence the integral can be computed as the mean of the two last expressions:

Jf dx——[ﬂj f (sint)cosz- dt+”j f (cosu)sinu- du}

/2

J (f(Sint)cost+f(cost)sint)-dtg

z/
l'[l-dtzZ
2 4

Nlr—



b) For example: f(x)=+/1-x*. The integral is % since the area bounded

by the graph is a quarter of unit circle. The condition holds
x-f(y)+y-f(x)=x-\/l—y2 +\/1—x2 -ys(x2 +1—x2)(1—y2 +y2)=1
by Cauchy-Schwartz inequality.

It can be also shown with trigonometric substitution: f (x)=cos(arcsin x),
x=sina,y=sinf, f(x)=cosa, f (y)=cos S therefore:
x-f(y)+y-f(x)=sinacos B +sin fcosa =sin(a+ ) <1

4.Let f,g: [a,b] — ( O,oo) be continuous, non-decreasing functions, such

that for every xe [a,b] we have Jw/f(t)dtSJJg(t)dt

b b

and [J£(@)de=[g(r)ar

a a

Prove that j1/1+f(t)dt2j1/1+g(t)dt

Solution. ./ f(¢),,/g (), are non-decreasing, therefore

X X

F(x)= '[Jf(t)dt , G(x)= Jw/g(t)dt are convex. So, we have two convex

a a

graphs one above another, with common ends: F(a)=0=G(a) ,

F(b) :j.\/mdt - j\/mdt =G(b).

Let us rewrite the statement we have to prove in terms of F, G:

jmdfzj\/H(G—'(f))zdt.

That is precisely the expression for the length of the curve:

b 5 b dF 2 b b b
[1+(F(x)) dx=| 1+Ed—j dy= [Ndx* +dF* = [NdI’ = [dl =length.
X




So, what we have to prove is that the graph of F is longer than the graph of
G. The length of arc of a convex function might be computed as a limit of
inscribed broken lines. So all we need to prove is

Lemma. If one convex polygon is inside another, then its @
perimeter is smaller.

Proof. Extend one of the first interval of the internal line. It will cut the
external polygon into 2 parts. If we drop the lower part, the perimeter of the
external curve decreases. Now we may omit the common side of two curves
which we have created, and reduce the number of the sides of the upper line,
so upper line is shorter by induction.

5*. Does there exist a
a) continuous
b) monotone
¢) continuously differentiable
function f:[0,1] >[0,1] s. t. every ye[0,1] it has uncountable number of

inverse images of y ?
Uncountable means strictly bigger than .
Inverse image of y is such an x that f (x) = y.

Solution. a) Consider Peano curve, which is a continuous curve covering the
square, or (which is the same) an onto map from [0,1] to [0,1]x[0,1].

The first coordinate of Peano curve is a continuous function, and inverse
1mage has at least one point for each possible value of second coordinate,
which is 2% .

Peano curve is constructed by limiting procedure like this:
http://en.wikipedia.org/wiki/Space-filling_curve
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Here is another example by_Hil‘t;rt:



L
1T

b) No. Inverse image of a point under monotone function is either a point or
an interval (if two points belong to inverse image, than all intermediate
points also do). Each interval contains a rational point.

If we would have such a function, then inverse image of each point would
have a rational point. That would give an injective (¥"117) mapping from
[0,1] to the countable set of rational numbers, which can’t exist.

¢) No. Let f be such a map. Then for each value y of this map there is an x
such that y = f (x) and f’(x) = 0, since inverse image of y contains an
accumulation point and clearly derivative at the accumulation point should
be 0.

Every x such that f’(x) = 0 belongs to an open interval on which | f’(x)l <e.
Union of those intervals for all y’s can be represented as disjoint union of
intervals. Total length of those intervals <1, so f will send union of those
intervals to the union of intervals of total length < .

If € < 1, then we see that image of these intervals can’t cover everything,
QED.

Remark. If we choose smaller and smaller €, we see that the image of these
points such that f’(x) = 0 is of measure 0. This is actually the 1-simensional
case of the famous Sard’s theorem.

Definitions. (1) A function f from R" to R™ is called differentiable, if it can

be locally, at each point, approximated by linear function /(x) = Ax + b,



where A and b are matrix and vector of appropriate size (function depends

on the point at which we approximate).

(2) Linear transformation, corresponding to A matrix, which approximates

differentiable function at a point, is called differential of a function.

(3) If rank(differential at point x) < dimension(target space) then x is called
critical point.

(4) If x is critical point, f (x) is called critical value.

Theorem (Sard). The set of critical values is of measure O.
6**, For a continuous function f: R — R it is given that any positive

real x, y the sequence f{x+ny) , for n€N, tends to infinity.

Does it follow that f(x) — o0 as x — o ?

It is similar to the problem we had in the competition, but now we require
continuity and the answer is different.

Solution. Yes, it does.

Suppose it doesn’t. Then for some M there is a sequence x;, converging to
infinity, such that f (x;) < M. Then, since f is continuous, for lx — x| < &,
we have f(x;) <2M = N, where ¢, are small numbers, chosen separately for
different k. So, to get the contradiction we need to do one thing: build an
arithmetic sequence which intersects infinite subset of these small intervals.
Assume we have built a sequence {ny} which intersects K intervals:

nye (xmk —&,.%, TE&, ) , for some indices ny , my for k <K.

my, ?
We can move the y in certain interval so that the conditions
nye (xmk —&,.%, +&, ) still hold for the same n; , m;, because

intersection of open intervals is still an open interval, if it is nonempty.
We shall find such y that satisfies this condition for as large K as we want by
induction over K. For K =1 it is obvious.

Assume that n, ye (xmk —&,.%, TE&, ) , for given ny , my for k <K, in the
interval ye (a¥,Y), where a < 1.

Possible values of ny will cover the interval between ny and (n+1)y if
I n+l1 1

. o
(n+1)aY <nY i.e 1+—= <—,orn>—.
n n o -




So, all numbers above Y Ll will be covered by possible values of ny.
a —_

But x; tends to infinity, so we can choose x,, such that it can be equal to ny
for a certain value of y in the interval. This completes the induction.
By this inductive procedure we shall build an infinite set of indices m; and a

nested system of intervals (@,Y,,Y,) such that if we choose y in interval
X, tE, ) for k <K, the

intersection of all those intervals has at least on point y, and for that y
sequence {ny} intersects infinite number of intervals. Hence f (ny) doesn’t
tend to infinity, contradiction, QED.

&

my, ?

number K then {ny} intersects intervals (xm

k



Selection of Israeli Team for IMC 2008.

1. A group is generated by two elements a,b. The following relations hold:

a2 =1
b =1
(ab)'® =1

Find the maximal possible size of this group.

2. Forf: R — R it is given that any positive real x, y the sequence fix+ny) ,

for neN, tends to infinity. Does it follow that f{x) — o as X — o0 ?

3. Denote [ X,Y]= XY —YX (it is called commutator). Assuming that A, B,C
are 2x2 matrices, prove that [[A,B]2 ,C J =0.

4. For which N can we draw a full graph of N vertices on the plane, so that
each arc will be intersected no more than once, and no three arcs would have
a common inner point?

(A graph is called full, if each two vertices are connected by an arc.)

S. For tetrahedron ABCD, an altitude (721) is a straight line passing trough
one vertex and orthogonal to the plane containing 3 other vertexes.

It is given, that no two edges of ABCD are orthogonal.

Prove that there exists a straight line, passing through vertex A and having a
common point with each tetrahedron’s altitude.

Good luck!



Selection of Israeli Team for IMC 2008.

1. A group is generated by two elements a,b. The following relations hold:

a2 =1
b =1
(ab)'® =1

Find the maximal possible size of this group.

Answer. 20.

Solution. a ' = a, b ' = b, hence every element in the group can be
expressed as an a product of @’s and b’s .

But ab ab ab ab ab ab ab ab ab a = b , hence every element can be
expressed as a word starting with a. Represent each element by the shortest
word starting with a. It cannot have aa or bb in the middle, otherwise we
could make it shorter. So, a’s and b’s alternate in this word. So the word is
abab... and it is determined by its length. We cannot have more than 20
symbols, since they would cancel out. So there are no more, than 20
elements in the group.

Now let’s see an example of such a group with precisely 20 elements.
Consider the group of symmetries of regular 10-gon. There are exactly 20.
Let a be a mirror reflection with respect to an orthogonal bisector of two
opposite sides, and b be a mirror reflection with respect to a diagonal,
passing through two opposite vertices of those sides. Then ab is a rotation by
36° hence (ab)'’ = 1 . Since a, b are reflections a* = b* = 1. It is easy to see
that the group is generated by a and b, since ab generates all rotations, it also
has 2 reflections, so we have more than 10 elements of the group generated
by a and b. The order of subgroup generated by a, b, is a divisor of 20 which
is bigger than 10, so it is 20.

2. For f: R — R it is given that any positive real x, y the sequence fix+ny) ,

for neN, tends to infinity. Does it follow that f{x) — o as X — o0 ?

Answer. No.

Solution. Let a > 1 be a transcendent number, and consider the following
function: f{a") = 0 for every natural n, and f(x) = x” for all other points.

Any arithmetic progression can have no more than two common points with
the sequence a”, since if it would have 3 common points, a would be a root
of a polynomial with rational coefficients. Hence any sequence f{x+ny) tends
to infinity, and f{x) doesn’t.



3. Denote [ X,Y]= XY —YX (it is called commutator). Assuming that A, B,C
2

are 2x2 matrices, prove that [[A,B] C} =0.

Solution. tr XY = tr YX. Hence tr(XY — YX) = 0.
Consider matrix [A,B] in its Jordan form. It has either one Jordan cell 2x2

0 1
or two Jordan cells 1x1. Trace = 0, so in the first case this matrix is [O Oj

. /1 0 2 a 0 X
and in the second case . In both cases the [A,B] = , SO 1t
0 -4 0 a
commutes with any C.

4. For which N can we draw a full graph of N vertices on the plane, so that
each arc will be intersected no more than once, and no three arcs would have
a common inner point?

Solution. N < 7.

The picture shows a graph for N = 6, such
pictures for smaller N can be obtained by
erasing points from this picture.

Suppose we have a full graph for 7
vertices, which satisfies all conditions. It
has 21 edges, and X crossings between
edges.

Let O be a crossing point, between arcs
AC and BD. Consider quadrangle defined by arcs AB, BC, CD, and DA. We
can assume that its edges are uncrossed, because if an edge would enter
triangle ABO by crossing AB, it will have to exit the triangle through AB,
AOQO, or BO and make second crossing with an edge which is crossed already.
Unless the edge enters ABO through AB and stops at A or at B, but then we
can shift the edges a bit and eliminate that intersection.

So, if we draw a graph with minimal possible number of crossings, then
around each crossing we shall have 4 uncrossed edges. Here each uncrossed
edge can be counted at most twice, hence the number of uncrossed edges is
at least 2X. The number of crossed edges is precisely 2X, so 4X < 21, hence
X <5




Consider a graph whose vertices are points of crossing together with the

original vertices, and edges are original uncrossed edges and halves of

crossed edges. This graph, unlike the original, is planar. It has V=7+X

vertices, E = 21+2X edges, and F < ?/:E faces hence by Euler’s formula
2=F-E+V<V-E3=7+X-(7+2X/3)=X/3

Hence 6<X.

But before we proved X <5, a contradiction.

Since we cannot build such a graph for 7, we can’t do it for higher N either.

5. For tetrahedron ABCD, an altitude (7213) is a straight line passing through
one vertex and orthogonal to the plane containing 3 other vertexes.

Prove that there exists a straight line, passing through vertex A and having a
common point with each tetrahedron’s altitude.

Solution. Assume A is (0,0,0), denote vectors u = AB, v =AC, w = AD.
Normal vector to the plane ABC is [u,v] , the vector product, each vector x
in that plane is orthogonal to [u,v]. The plane, passing through A, and
containing the altitude from D, is contains vectors w and [u,v], so it’s normal
vector is [[u,v],w], (vectors w and [u,v] are parallel, since it is given, that w is
not orthogonal to u and v). Hence any line, passing through A and
orthogonal to [[u,v],w], intersects the altitude from D, unless they are
parallel. So, we need to have a line which is orthogonal to [[u,v],w] and two
similar vectors [[w,u],v] and [[v,w],u], but at the same time, that line should
not be parallel to any of altitudes from B, C, D, which are parallel to the
vectors [u,v], [w,u] , [v,w]. Recall Jacobi identity:
[[uv].w] + [[w,ulv] + [[v.w]u] =0
If You don’t, prove it by applying thrice a well known formula of analytic
geometry:
[[u,v],w] = (u,w)v — (v,w)u
From Jacobi identity, it follows that vectors [[u,v],.w], [[w,u],v], [[v,w],u]
really are coplanar and have a common orthogonal vector. It still remains to
prove that this vector can’t be, say, [u,v].
Assume that [u,v] is orthogonal to [[v,w],u].
Then there are real numbers a, b such that
alv,w]+ bu = [u,v]
Take scalar product with v, and we get
b(u,y) =0
But u isn’t orthogonal to v, hence b = 0, so a[v,w]= [u,v] , so normal vectors
of two different faces are parallel, so two different faces are parallel, which
1s impossible.
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Israeli Team for SEEMOUS
Final Selection Exam

Please write your solutions in English.

1. A graph is, by definition, a collection of vertices and a collection of edges
that connect pairs of vertices. Two vertices are called adjacent, if they share

an edge.

Given a graph, consider the function ¢(n) — the number of ways to color each
vertex with one of n given colors, so that no two adjacent vertices will have

the same color. Show, that ¢(n) is a polynomial of n.

2. A disc of radius 1/N is rolling inside the circular box of radius 1,

where N > 2. (The friction between the edge of the disc and the wall of the
box is very high so the disc doesn’t slip with respect to the box at the point
of tangency). A red point on the boundary of a small circle goes along a star-
shaped closed trajectory.

Compute the area, bounded by this trajectory (as a function of N).

3. A natural number k is considered good, if for each N the number
I*+2"+.. Ntis divisible by 1+2+...+N.
Describe the set of all good numbers.

4. LetAj Ay,..., Ay be nonzero matrices MxM (a matrix is called nonzero if
at least one of its elements is nonzero). Prove that there exists a matrix B of
the same size such that BA;BA,B...BAxB is a nonzero matrix.

5. An infinite sequence of real numbers {x;} will be called nice if inz
converges. Let {a;} be a sequence, such that for each nice sequence {x;} the
series Y a;x; converges. Prove that the sequence {a;} is nice.

Good luck!



Israeli Team for SEEMOUS
Second Stage Solutions.

1. A graph is, by definition, a collection of vertices and a collection of edges
that connect pairs of vertices. Two vertices are called adjacent, if they share

an edge.

Given a graph, consider the function ¢(n) — the number of ways to color each
vertex with one of n given colors, so that no two adjacent vertices will have

the same color. Show, that ¢(n) is a polynomial of n.

First solution. Induction over number of vertices + number of edges.

The only graph of 1 vertex gives c¢(n) = n.

Of course, if graph is disconnected function c(n) is a product of functions,
corresponding to his connected components, and product of polynomials is a
polynomial.

Take two adjacent vertices A, B in a graph. Let us erase the edge AB.
Number of ways to color the new graph, ¢;(n) is a polynomial by induction
(same vertices, less edges). Of those, there are c(n) ways to color it so that A
and B will be of different color, and c,(n) ways to color it so that so that A
and B will having the same color. If we shall glue vertices A and B, the new
graph will have less edges and less vertices than the original graph, and it
can be colored in c,(n) ways. Hence c(n) = c¢;(n) — c5(n), so it is a difference
of two polynomials, hence it is itself polynomial.

Second solution. A way to split the vertices of given graph into certain
equivalence classes will be called configuration. Configuration is called
good if no to vertices of the same class are adjacent. There is only finite
number of configuration.

Each coloring corresponds to a specific configuration: vertices of the same
color are declared equivalent. Let us count, how many colorings correspond
to the same configuration. Take a configuration which has M classes.

First class can be colored in one of n colors, second in one of n-/ colors, and
so on, hence if M > n it corresponds to n(n-1)(n-2)...(n-M+1)

If M < n then the product we wrote, as well as the number of colorings, is 0.
So, number of colorings corresponding to certain configuration is a
polynomial (which we wrote explicitly) and since we have finite number of
configurations, the total number of colorings is a sum of finite number of
polynomials, which is a polynomial.



2. A disc of radius 'y is rolling inside the circular box of radius 1,

where N > 2. (The friction between the edge of the disc and the wall of the
box is very high so the disc doesn’t slip with respect to the box at the point
of tangency). A red point on the boundary of a small circle goes along a star-
shaped closed trajectory.

Compute the area, bounded by this trajectory (as a function of N).

First solution. Let us start by building a parametrical equation of the star.

The center of the disc goes in circles of radius 1—% so it can be described
1 1. .
asv=||1— ﬁ cost,| 1— ﬁ sint |. The vector which goes from the center of

: : : U :
the disc to the red point goes around a circle of radius N in the opposite

o : : 1 |
direction, so it can be described as u:(ﬁ cos S’_ﬁ sin sj . Both parameters

depend linearly on the length of the arc that we cover, t.
While the center goes around one time, the red point meets the boundary N
times. This means the small discs rotates around itself N —1 times, hence

u=(%cos((N —l)t),—%sin((N ¥ l)t)j.

The point on the star can be described as w = u + v, which is also a vector
function of z. A simple way to check we wrote it correctly — differentiating
vectors u, v shows that their velocities are equal in their absolute value and
that they cancel each other when the red point is near at the boundary (and
then its velocity should be 0, because of the friction).

Of course, since u looks always directly clockwise and v is of the same
absolute value the vector will always go clockwise so the star won’t have
self-intersections.

Integrating —ydx around the star should, as usual, give the area inside.

Minus sign is because the trajectory, the way we have parameterized it, goes
clockwise, so the upper boundary must be consider with plus and the lower
with minus. So we get the following integral:

T—((l—%)sint —%sin((N —l)t)j%((l—%Jcost +%COS((N —1)t)jdt -

0

=#T((N —1)sint —sin((N = 1)¢))(N —1)(sint +sin ((N 1)) dt =



- NN_ZIT(N—l)sin2t—sin2((N—1)t) +(N —2)sintsin((N —1)1)dt

To finish this, it is useful to know the following exercises:

Exercise 1. Tsin2 tdt = Tsin2 (N-1)t)dt=x
(Hint: sin2+:sos2 =1) 0

Exercise 2. Tsintsin((N ~1)t)dt =0

(Hint: 2sin ao- sinb =cos(a—b)—cos(a+b))

(N-1)(N-2)

So, the answer 1s .
N2

Second solution. Like before, we describe the position of red point as the
sum of two vectors w = u + v where u goes clockwise in a circle of radius

1 ) .. ) ) 1
1- N one time and v goes counter-clockwise in a circle of radius N N -1

times, but we don’t write the coordinates explicitly.
For any to vectors k = (kx,ky ),m = (mx,my) denote the oriented area of the

parallelogram they form k = (kx, ky ),m = (mx,my) . So, in time dt the vector

Xw .. : : :
(since its clockwise) which gives total area

w SwWeeps arca

2z

2r
JdWXWZJ% du+dv u+v Jduxu+dv><v+du><v+dv><u
0 0
2r 2r
The integrals I duxv, I dvxu are 0, since the angle between du and v, as
0 0

well as dv and u rotates uniformly around 0 and makes several full circles.

2r

2
1 J duxu =7r(1 - ij since u sweeps one circle of radius (1 — ij
29 N N

2z 2
% J dvxv=—(N - 1)75(%) since v sweeps N —1 circles of radius in the
0

opposite direction. So the total integral is:



%ZfdMXu+dvxv=7£(l—%j2 -(N-1)z(%j2 ”{(NT_IJ —(N-1)&D=

N-1 (N-1)(N -2)

=z e (N-1-1)=x -

3. A natural number k is considered good, if for each N the number
I*+2"+...+N'is divisible by I+2+...+N.
Describe the set of all good numbers.

Solution. If k is good, then it 7*+2" is divisible by 3. So I+(-1)" = 0 (mod 3)
hence k can’t be even.

Suppose now k is odd. I*+2"+...+N* is divisible by I+2+...+N if and only if
2(1*+2+...+N") is divisible by 2(I*+2"+...+N*)=N(N+1).

N and N+1 are co-prime, so it is sufficient to verify separately that it is
divisible by N and by N+1. It is enough to prove 2(1*+2"+...+N) is
divisible by N+1 for all N, then 2(1*+2*+...+(N-1)") is divisible by N and
2(1%+2"+...+N*) also. We shall use “Gauss trick”:

2(1"+2%+.. . +N") = 2((I*+N*) +(2*+(N-1)") +...+(N*+1Y)).

But this is definitely divisible by N+ since a*+b" is always divisible by a+b
for odd k since a*+b" =(a+b)(a"' — a*?b + a*7b* — . . . + a"").

4.LetA; Ay,...,Ay be nonzero matrices MxM (a matrix is called nonzero if
at least one of its elements is nonzero). Prove that there exists a matrix B of
the same size such that BA;BA,B... BAyB 1s a nonzero matrix.

Solution. The key is to consider the kernel and image spaces of matrices.
We shall construct projection matrix B of rank 1, which satisfies the
conditions. Projection matrix of rank 1 is defined by 2 linear subspaces:
kernel of codimension 1 and image of dimension 1, which doesn’t contain
kernel. Each vector can be uniquely decomposed into sum of two vectors —
one from the space of dimension 1 and second from the space of
codimension 1. So, the projection can be described as taking the first vector
of that decomposition.

For this product to be non-zero, all we need is that the image of B won’t be
sent into its kernel. So, we have to prove that we can choose a nonzero
vector v (or the one-dimensional space) and a space W of codimension that
neither A; will send v into W.



To do this, we must achieve 2 things:

a) Find a vector v which don’t belong to kernel of A; for all i.

b) Find a hyperplane (containing 0) which doesn’t contain A,v for all i.

So, it remains to prove 2 lemmas:

Lemma 1. There exists a vector which is not contained in all given linear
subspaces, where number of subspaces is finite.

Lemma 2. There exists a hyperplane (containing 0), which doesn’t intersect
with a given finite set of points.

Since any subspace can be enlarged to hyperspace, lemma 1 is equivalent to
its special case:

Lemma 3. There exists a vector which is not contained in all given
hyperplanes, where number of hyperplanes is finite.

Lemma 2 is also follows from lemma 3, since if we replace a hyperplane

a;x;+ax+...+a,x, = 0 by a vector (ay, a,, ..., a,) and vice versa, the
condition “a hyperplane contains the vector” turns into “a vector belongs to
the hyperplane”.

So, it is enough to prove lemma 3.
Remark. All this works only for infinite fields.

Proof of lemma 3. Apply the induction over dimension of the space.

The base of induction: space of dimension 1 can’t be covered by finite
number of points (field is infinite).

The step of induction: assume it is proven for spaces of dimension smaller
than n. So, we have finite number of hyperplanes, and we try to prove they
don’t cover the space. There is infinite number of hyperplanes in the space,
so we can choose a huperplane H which is different from all given
hyperplanes. Intersection of H with other hyperplanes are sub-hyperplanes in
H, so, by induction, they can’t cover it.



5. An infinite sequence of real numbers {x;} will be called nice if inz
converges. Let {a;} be a sequence, such that for each nice sequence {x;} the
series Y a;x; converges. Prove that the sequence {a;} is nice.

Solution. Assume {a;} isn’t nice. So Ya;” diverges. We can cut the sequence
{a;} into infinite number of segments, each of which is greater than 1.

(That is done by induction, simply sum up the numbers from the end of
segment number k until it exceeds 1, and that will be segment k+1.)

Let segment number £ start at m; and have n; elements.

Ty
Then, by construction, bk = Z aJZ- > 1. We shall use a nice lemma:
Now, construct a sequence X, = ! for each j which belongs to segment
bk

number k. Then

o oo my, ) m 2

Yap=y Y ax=> ) =

JJ J k-b
j=1 k=1 j=m,—n,+1 k=1 j=m,—n,+1 k

- -
Zx _Z;J > nk- bzzzkz-kbzzzkz-bk<zﬁ<w

=m,—m+



First stage of Israeli students competition, 2009.

1. Let C be a convex polygon and P a point inside it. Let N be number of vertices,
such that an interval connecting P to the vertex divides the angle of C into two
acute angles. Denote n number of sides of C, such that the foot of perpendicular
from P to that side is strictly inside that side.

Proof that N = n.

2. Let A be a 2x2 invertible matrix with real coefficients. One of its coefficients
1s 200. Can it happen that all the coefficients of matrices A'l, Az, A3 A% ees A

belong to the interval (-10, 10) ?

3. The sequence {x;} is defined by the initial value x, —[0,1] and recursive
I-1-x,

—

Find lim(x, -4").

n—o0

formula x , =

4. Two players play a game on the infinite chess-board. First player plays with 3
white pieces called sheep, and the second player plays with 3 black pieces, called
wolves. They move in turn. In his move each player can move only one piece to an
adjacent cell (having a common side with its previous cell). Sheep can be moved
only horizontally. If a wolf and a sheep happen to be in the same cell, the wolf eats
the sheep. Is it always possible for wolfs to catch at least one sheep?

5. When in three-dimensional space the center of the ball of radius r goes along a
circle of radius R (here R>r>0), the ball covers a three-dimensional body called
torus. Compute the surface area of that torus as a function in r and R.

Good luck!



Second stage of Israeli students competition, 2009.

e |
1. Which is bigger: arctan(e) or %-I_E ?

Calculator is not allowed.

|

First solution. It is the same as to ask what is greater arctan (e) I or 5

arctan (e) —% = arctan (e) —arctan (1) = Jarctan'(x)dx =
1

e

1-0 1

¢ odx  rdx 1
=J > < —=—In(x)| = =

1+ xT 12x 2 . 2 2
That is because for all x > 1 we have 1 + x> > 2x since it is the same as
(x-1)*>0.

1
Therefore, arctan(e) < %+E

. : T
Second solution. It is the same as to compare e versus tan (Z +Ej’

since arctan is monotonously increasing.

tan z + tan l 1+ tan l
(7: 1) 4 2 2
tan| —+— |= 7 = 7
4 2 1—tan z tan| — 1—tan| —
4 2 2

+

X . : : :
" is monotonously increasing for 0 < x < 1. Indeed, when x is
- X

The expression

increasing then 1—x is decreasing so —— is increasing, and 1+ x is increasing

: . : 1) 1
too, so their product is increasing. But tan(aj > > hence

1
1+tan(j 1+—
tan(£+lj— 2 > 2—3>e

= 1 o=
I-tan| ~| 1=
(3] 15



2. Prove that l+l+i+...+
4 7 10 3n+1

1s non-integer for any n.

Solution. Consider 2", the greatest power of 2 which appears in the sequence of
denominators 4, 7, 10, ... , 3n + 1. The question is, whether this sequence of
denominators contains other numbers divisible by this power of two.

If not, then multiplying by 28~ "-1-3-5-7...*(4n + 1) will turn all the summands
except one into integer numbers, so number will be non-integer even after
multiplying by such a large integer number, so in this case the problem is solved.
If yes, then the sequence of denominators contains another number of the form k2".
Here k cannot be 2 or 3 because multiplying by k turns number of the form 3m+1
into another number of the form 3m+1, so k is 4 or greater. But 42" is a greater
power of 2, and it turns out to be in the sequence of denominators.

This is a contradiction, since we have chosen the greatest power of 2.

3. A triangle is contained by an 11-dimensional unit cube inside P''. What is the
maximal possible perimeter of that triangle?

Answer. \/7+ 7 +\/§=2(\/7+\/§)

Solution.
Lemma 1. The perimeter will be the greatest, if the vertices of triangle are the
vertices of the cube.

It follows directly from:

Lemma 2. If two points are fixed, than the third point giving maximal sum of
distances from the first two is a vertex of the cube.

Proof. Sum of distances from two given points is a convex function. That happens
because each of those 1s a convex function, and sum of the convex function is a
convex function.

Reminder. A convex function is a function, for which above-the-graph domain is
convex (above-the-graph domainis { (x, y) | f(x) <y }, here x may be a vector).
Considered on a closed interval, convex function has maximum in one of the ends.
So, considered on the bounded polygon, convex function has maximal value at on
of its vertices. Distance function is convex since above-the-graph is a cone over a
ball, which is a convex body.



Now, back to 11 dimensions. Because of lemma 1, the problem degenerates into a
combinatorial problem. Instead of trying to find 3 points, we have 3 sequences of
zeroes and ones. The distance between two points in each coordinate is O or 1 also,
so the distance is square root of number of differences.

Between all 3 points in a given coordinate there are not more than 2 differences.
Therefore, in all 11 coordinates, there are no more than 22 differences. So, if
numbers of differences between 3 coordinate sequences are K, M, N then the

perimeter is JK +M ++N , which should be maximal while K+M+N < 22.

Lemma 3. If N> K + 1, then \/E+\/N < \/K +1 +\/N —1. (Actually, this kind of
lemma is true for any concave function, not just for square root)

Proof of lemma 3. Reformulate it:

N -JIN=-1<JK+1-JK

Multiply and divide by adjoint:

1 1
JN +JN -1 <\/K+1+\/E
IN +JN-1>JK +1+K

So, VK +~/M ++/N the number will be maximal none among K, M, N differ by
more than 1. Of course, we may also assume K+M+N = 22, otherwise adding 1 to

one of the numbers will improve JK +M +N .
So, all K, M, N are equal to either L or L+1 and 22 = K+M+N = 3L + R, where R
1s0,1,2,0or3.So,L=7, R=1,and K, M, N are 7, 7, 8 in some order.

Of course, after seeing that 7, 7, 8 is the best under algebraic restriction we got
from the cube, we have to check that these lengths are attainable in our cube.
For example:
0,0,0,0,0,0,0,0,0,0,0)
1,1,1,1,1,1,1,0,0,0, 0)
0,0,0,0,1,1,1,1, 1,1, 1)

So, the greatest possible perimeter is V7 +7 +4/8 = 2(\/7 +/2 )

4. Can a polynomial with rational coefficients have —/2 as its minimal value?

First solution. Let us try p'(x)= k(x2 - 2)(x —a)=x"—ax’—2x+2a.



4 3
X ax )
x)=k| ————x"+2ax |+c.
p(x) ( T3 j
The extremal points are +/2, a, so when we substitute them into p(x) we have

good chances to get something with +/2 . Of course, if k > 0, then the middle
extremum 1S a maximum, and the other two are minima.

p(iﬁ) =k(1m2a;6 —2i2aﬁj+c=k(—112aﬁ§j+c

Choose a = % . Then that will be the middle extremum.

The local minima are at £+/2, and the global minimal value is the least between
p(#v2)=k(-1£2)+c, whichis p(—v2)=k(-1-+2)+c. Take k=c =1 and

You get a polynomial with rational coefficient satisfying all conditions.

Second solution. Consider g(x)= (x2 - 2)2 =x"—4x> +4.

It is zero at i\/z , and positive elsewhere.
3
Now consider polynomial satisfying r'(x) = %(x2 -2) , r(x)= % - 37)6 :

That polynomial has extrema at +1/2, a local maximum at —/2 and a local

=2\/§ 3\/§=_\/§.

minimum at +2 . The coefficient was chosen so that r(\/i ) T — T

Now consider a polynomial p(x)=r(x)+ Ag(x). where A is a positive number.

It has local minimum with value —/2 at +/2, and positive value of +/2 at —/2.
The values at far negative numbers are positive, since x* is stronger than x”.

If we enlarge A then values outside small neighbourhoods of —/2 and 2 become
as big as we can wish, say positive. Since values near —J2 are also positive, the
value at \/5, which 1s —\/5 , becomes a global maximum.

5. Consider a shape consisting of a finite number of unit square cells.

We try to cover a board of mxn cells by equivalent copies of that shape, so that
each cell of the board will be covered by the same number of layers.

Prove that it is impossible if and only if we can write a real number in each cell of
the board, in such a way that the sum of all those numbers will be strictly negative,



while a sum that can be covered by the given shape is strictly positive (wherever
we place it on the board).

Solution. Consider an mn-dimensional linear space of all tables with real values in
the cells. For each cell we can take a coordinate unit vector in that space, and a
scalar product between that vector and the vector of that table will give the value in
that cell.

To each subset of cells we match the sum of the unit vectors. The scalar product
with that vector will give sum of numbers in the corresponding set.

Suppose that we have a set of some shapes inside the board, and we construct a
vector corresponding to each. To tile the board in k >0 layers is the same as to find
integer nonnegative coefficients such the linear combination will be (k, k, &, ... , k).
Which is the same as to express (1, 1, 1, ..., 1) as a linear combination of some of
those vectors with positive rational coefficients.

The rest of it follows from two lemmas:

Lemma 1. Consider vectors with rational coordinates vy, vy, ..., v, and v.
If v is a linear combination of vy, v,, ... , v, with positive real coefficients then it is
a linear combination of vy, v,, ... , v, with positive rational coefficients.

Lemma 2. Consider vectors with nonnegative coordinates vy, v, ..., v, and v.
If v is not a linear combination of v, vs, ..., v, with positive real coefficients then
there exists a vector u such that (#,v)<0Oand (u,v;,)>0fori=1,2,..., 4.

From the first lemma we see, that if there is no tiling, then the vectors
corresponding to our shapes don’t generate the vector of the whole board as a
linear combination with nonnegative coefficients. From the second lemma we see
that in such case there is a table which has negative sum over all the cells and
positive sum over each shape. That proves the problem in a non-trivial direction.
(The other direction is obvious: if such a table exists, then the tiling doesn’t, since
the sum in the cells of that tiling should be negative, but it will be positive.)

So, it remains to prove the lemmas.

Proof of lemma 1. Solution of the system of linear equations, which is written by
one vectorial equation xv; + x,v; + ... + x,v, = v is a shifted linear subspace in the
g-dimensional space. So, if it exists (and it is given it has a positive real solution),
it can be solved by Gauss method and we shall have an answer:

(X1, X2 .oy Xg) = U+ YU+ Yollo+ ... + Yy, Where u, uy, up, ... , u; are some g-
dimensional vectors, and yy, y,, ... , y; are arbitrary real numbers.



Since Gauss method is an algebraic procedure, all the coordinates of u, uy, ... , u,
will be rational.

It is given that for some values of y;, y», ... , ¥, all the coordinates will be positive
real numbers, so they will also be positive if we change y;, y», ... , y; by sufficiently
small numbers, since linear functions are continuous. But in any neighborhood of
each real number there is a rational number. So we can shift coordinates slightly so
that x;, x,, ..., x, will remain positive and yi, y, ... , y, will be rational, but then all
x’s will also be rational since they are algebraic expressions in y’s and coordinates
of u’s.

Proof of lemma 2. Let S be a hyperplane defined by the equation:

Sum of all coordinates = 1.

Positive linear combinations of vy, vy, ... , v, cut S along a convex body C.

This convex body is bounded, since it is inside a simplex, whose vertices are
coordinate vectors, because the coordinates are positive (a simplex is a
multidimensional generalization of triangle).

A ray generated by vector v cuts S at a point P which is not in C.

We shall prove that there is a sub-hyperplane 7 in S, such that P is on one side of T
and P is on one side, and C is on the other side.

From that it will follow that a hyperplane, passing through 7" and 0, such v will be
on one side, and vy, vs, ... , v, on the other side, and the equation defining that
hyperplane will have one sign on vy, vy, ..., v, and another sign on v.

So, it remains to prove the following statement inside hyperplane S, which is
Euclidean space by itself:

Lemma 3. Let C be a compact convex body in a Euclidean space, and P a point
outside C, then there exists a hyperplane 7 that defines that C is which separate P
from C.

Proof of lemma 3. Let Q be the point of C closest to P (it exists since C is
compact).

Let T be a perpendicular bisector to interval QP. (Perpendicular bisector is a
hyperplane cutting the interval perpendicularly in the middle, it is also the set of all
points which are at the same distance from both ends).

We shall prove that 7 separates P from C. Suppose not: there is a point R in C
either on T itself or on the same side of 7 as P. The whole interval QR is in C,
since P is convex. But the angle POR is acute. So, if we start going by OR from Q
to R we get closer to P, at least at first. But Q is the point of C that is closest to P,
that is a contradiction. QED.

Remark. We don’t really need the convex set to be compact for lemma 3, enough
to require that it is closed. Infinite-dimensional version of lemma 3 is called Hahn-



Banach theorem, and it i1s considered one of the central theorems of functional
analysis.



Olympiad of Israel Mathematical Union
Selection of the team for IMC 2009

Please write your solutions in English

1. Denote A be number of ways to paint the cells of the 8x8 chessboard in 3 colors,
so that no two adjacent cells are of the same color (by adjacent cells we mean cells
having common side). Denote X the number of ways to write integer numbers in
the cells of the chessboard, so that the number in the bottom left corner is 0, and
the difference between numbers in any two adjacent cell is 1 (here by difference of
x and y we mean |lx — yl).

Express X via A.

2. Let ABCD be a convex planar cyclic quadrilateral (21011 2P ¥2171) and P a
pOil’lt n space. Show that PDZ'SABC + PBZ'SACD = PAZ'SBCD + PCZ'SABD .

3. It is given that le. converges, and {x,} is a sequence of real numbers.
i=l

Can we claim that ) _sin(x,) converges?
i=1

4. Suppose A is an mxn matrix and B is an nxm matrix. Prove that the set of
nonzero eigenvalues of AB coincides with the set of nonzero eigenvalues of BA.

5. (a) Find a function defined on closed interval [-1,1], which has only finite
number of discontinuity point, such that its graph is invariant under rotation by the
right angle around the origin.

(b) Prove that there is no function on open interval (-1,1) which satisfies the same
conditions.

Good luck!



Third stage of Israeli students competition, 2009.

1. Denote A be number of ways to paint the cells of the 8x8 chessboard in 3 colors,
so that no two adjacent cells are of the same color (by adjacent cells we mean cells
having common side). Denote X the number of ways to write integer numbers in
the cells of the chessboard, so that the number in the bottom left corner 1s 0, and
the difference between numbers in any two adjacent cell is 1 (here by difference of
x and y we mean |lx — yl).

Express X via A.

Answer. X = A/ 3.

Solution. Assume we have a table of numbers, satisfying the condition. If we paint
the cells having numbers of type 3k red, cells having numbers of type 3k+1 green,
and cells having numbers 3k+2 blue, we get a coloring of the board in 3 colors, and
the left-bottom cell al is red.

So, we get a coloring of the board satisfying the condition, with the specified color
at al, and that is only 1/3 of all possible colorings (it is easy to see that all colors
for a specific cell have equal probabilities, since we can rotate colors, by replacing
red = green = blue = red).

So, each one of permitted X tables of numbers can be turned into one of A/3
coloring. It remains to prove that this correspondence is 1-1. To show it, we should
explain why given a coloring of the board we can reconstruct — and uniquely — the
table of numbers.

Firstly, if we know the coloring and we know the number at a certain cell, we can
reconstruct the number at an adjacent cell. That is because we have only 2 options
(x + 1 or x — 1, where x is the number in the first cell), and these two options have
different remainders mod 3, so the coloring allows us to distinguish those two
options. Notice, that each of two remainders different from x are attainable, and
they correspond to both colors different from the color of x.

We start with the cell al and write O in that cell, since this is given. Then, as we

described before, we can reconstruct numbers of b1, c1, ... , hl and also numbers
a2, a3, ..., as.
From now on we shall reconstruct b2, b3, ..., b7, c2, c3, ..., c7 and so on. As we

saw before, reconstruction given one neighbor and color exists and unique, so the
question is whether reconstruction given 2 neighbors (down and left) and color
exists, because if it is, it is also unique. Suppose WLOG that we try to reconstruct
b2 when the colors, and the numbers of a2 and b1 are given. The conditions that
should be satisfied: the remainder mod 3 is given, and the difference with both
numbers, of a2 and b1, are given. If the numbers of a2 and b1 are equal, then the



two conditions are the same, so the whole reconstruction is the same as before, so
there’s nothing new to prove here.

So it remains to consider the case when the numbers a2 and b1 are different. Then
the difference between them is 2, since they differ by 1 from the same number. So
they have two different colors, so there is only one choice for the color of b2, to be
different from the both colors. The average of a2 and b1 is the only number that
differs by 1 from both and it is of color different from both, so that is the only
possible reconstruction of that cell.

So, reconstruction is in both cases feasible and unique. QED.

2. Let ABCD be a convex planar cyclic quadrilateral (21017 2P ¥2177) and P a
point in space. Show that PD* S pc+ PB*Sacp = PA*Sgep + PC*S App .

Solution. Choose a Cartesian coordinate system such that P is the origin and plan
ABCD corresponds is z = k. The coordinates of our points are

A(%, Y0k ), B(%,,3,,k),C(x., 3ok ), D (x4, ¥4k )

Since the points belong to the same circle, the pairs

(x,,9,):(x,.3,),(x.,¥.),(x,,y,) all satisfy the equation:
X +y +ax+By+y=0.

Consider the matrix

x, oy, 1 xX+y 4k x, vy, 1 PA’?
x, v, 1 x4y +k’ oy 1 PB’
x,oy, 1 X+y’+k? x, y 1 PC?
x, v, 1 x+y +k° x, y, 1 PD’
o
The vector b . belongs to its kernel, so it is degenerate either way.
}/_
1

So determinant is 0. Decompose the determinant along the last column and You
get the required identity (multiplied by 2), since minors are twice the areas of
triangles.

Second solution (from the work of Dan Carmon). Perform inversion with center
at P (and radius 1). Points A, B, C, D will go to points A’, B’, C’, D’.

It is well-known that inversion turns generic spheres (i. e. spheres or planes) to
generic spheres. So, intersection of generic spheres (which are circles or lines) are



turned into intersections of generic spheres. So, A’B’C’D’ is still cyclic (or
collinear). WLOG, it is cyclic: if we prove the formula in the case when P is not on
the circle, the degenerate case follows by continuity of the both sides of the
identity.
We shall use the famous formula for distance after inversion: A’B’ = AB/(PA'PB).
If you don’t know it, please prove it (hint: similarity of triangles).
All triangles ABC, ABD, ACD, BCD are inscribed in the same circle of radius R,
so their area might be computed as Sygc = AB-BC-CA/(4R).
Substitute all areas with that formula to the identity we need to prove, and multiply
by 4R. We get an expression with lengths only, without areas:

PD**AB'BC'CA + PB>*AC-CD'DA = PA>BC-CD'DB + PC**AB-BD'DA
Divide by PA*PB*PC*PD’. You get, by formula of distance after inversion,

A’B”"B’'CCA’+ A°C-CD'D’A’=B’C*C’'D'D’'B’+ A’B""B’'D’"D’A’
If A’B’C’D’ is circumscribed, we divide by 4R’ where R’ is the radius of
A’B’C’D’ circumcircle, we get

Sawc + Sacp =Spep + Sapp

That is obvious, since both are equal to the area of quadrilateral A’B’C’D’.

3. It is given that le. converges, and {x,} is a sequence of real numbers.
i=1

Can we claim that ) sin(x,) converges?
i=1

Answer. No.
Solution. For any y, consider triple: 2y,—y,—y.

Apply sine to all numbers in triple: sin(2y),sin(—y),sin(-y).
Denote f(y)=sin(2y)+sin(—y)+sin(—y)=2sin(y)(cos(y)-1).

It is nonzero when y is sufficiently close to O.

1 : o :
If for some y we repeat 2"| ——— | triples of that kind in the series, then sum of
1F ()
the corresponding interval in series le. 1s 0, and the sum of corresponding

interval in the ) sin(x;) has absolute value above 2".



So, take intervals of 2" _ triples constructed from y = il.
f (1/n)| n

The series le. will be converging, since each triple gives 0, and elements tend to

zero, so the estimate on the absolute value of every tail of this series is 4¢€, if € is
the estimate on absolute value.

At the same time, Zsin(xi) diverges, since it consists of intervals, and

contribution of each interval is above 2" by absolute value.

4. Suppose A is an mxn matrix and B is an nxm matrix. Prove that the set of
nonzero eigenvalues of AB coincides with the set of nonzero eigenvalues of BA.

First solution. By symmetry, WLOG, m<n. Let A’ and B’ be nxn matrixes
created from A and B by adding O rows below and columns on the right. Then
B’A’ = BA, and A’B’ i1s a block matrix, first block is AB, second block 1s 0-
matrix.

Anyway, eigenvalues of BA and of B’A’ are the same, and nonzero eigenvalues of
AB and of A’B’ are the same, so from now on WLOG we may assume that the
matrixes A and B were square matrixes from the beginning, i. e. m = n.

If B is invertible, then AB = B(AB)B™ so the matrixes AB and BA are similar, so
their eigenvalues coincide.

Lemma. The set of invertible matrixes is dense in the set of matrixes, in other
words for any non-invertible matrix B there is a sequence of matrices {B,} such

This lemma allows to extend the claim from invertible matrixes to non-invertible.
Indeed, for any non-invertible B we have a sequence of invertible matrixes
B,——=—B. For any element of this sequence, AB, is similar to B,A, in

particular AB,, and B,A have the same characteristic polynomial. The coefficients
of the characteristic polynomial are polynomials in matrix elements, so
characteristic polynomials of AB and of BA are limits of characteristic
polynomials of AB, and B,A respectively, so they are equal. Since AB and BA
have the same characteristic polynomials, their polynomials should have the same
sets of nonzero roots, QED.



It remains to prove the lemma.

Proof of lemma. The lemma is a direct result of the combination of 3 facts:
a. The set of invertible matrixes is non-empty.
b. Non-invertible matrixes are defined by a polynomial in coefficients.

c. In R", the set of non-zeroes of given polynomial is either dense or empty.
The fact a’ is obvious, the b’ is also obvious, so it remains to prove c’.

So, assume a polynomial p(x,,x,,...,x, ) has nonzero value at point (g, 8,8y )

and we need to find a sequence of such points converging to a given point
(x,,%,,...,xy ). Draw a line in space passing via this 2 points, in parametric form

(x, +1k,,x, +tk,,...,x, +1k,), here ¢ is the parameter. Consider our polynomial
restricted to that line ¢(¢)= p(x, +tk,,x, +tk,,...,x, +1k,), it is a polynomial in 1.

The polynomial g is nonzero for at least one value (when the line goes via th point
(g,,8,-»8y ), SO it is a nonzero polynomial of one variable and it has only finite

number of roots, so the non-zeroes are dense in this line and we can construct the
sequence. QED.

Second solution. Assume A is not an eigenvalue of AB. Then AB — Al is an
invertible matrix and its inverse is C, i.e. = (AB — AI)C = ABC - AC.
Consider matrix BCA.
(BA - A(BCA) = B(ABC)A —ABCA =B(AC + )A —ABCA =

=ABCA + BA - ABCA =BA
Therefore (BA —AI)(BCA —1) =BA —-BA + Al = AL
So, if A is nonzero, then (BCA —I)/A is the inverse matrix of BA — Al
To summarize: if a nonzero A is not an eigenvalue of BA, then it is also not an
eigenvalue of AB. Vice versa is also true by symmetry.

Third solution (from the work of Gal Dor). Let m(x), n(x) be the minimal

polynomials of AB, BA respectively.

So, by definition m(AB) = ay(AB)" + ... + ax(AB)* + ¢AB + a)I = 0

Multiply by B from the left and by A from the right. You get:
a(BA' + ...+ a,(BA) + a;(BA)* + aoBA =0

This is what happens when you apply polynomial xm(x) to BA.

Any polynomial that nullifies BA is divisible by n(x).

Therefore xm(x) is divisible by n(x).

For the same reason xn(x) is divisible by m(x).

Hence m(x) and n(x) have the same nonzero roots, QED

(and the same multiplicities, and multiplicity of O differs by 1 at most).



Fourth solution (from the work of Ilya Gringlaz). Assume 4 is a nonzero
eigenvalue of AB, so for a curtain vector v we have ABv = Av.

Notice that Bv is nonzero, otherwise ABv would be 0 and not Av.

But BABv = BAv = ABv, so vector Bv is nonzero and it gets multiplied by 4 when
we multiply it by BA, so BA has 4 as an eigenvalues with eigenvector Bv.

5. (a) Find a function defined on closed interval [-1,1], which has only finite
number of discontinuity point, such that its graph is invariant under rotation by the
right angle around the origin.

(b) Prove that there is no function on open interval (-1,1) which satisfies the same
conditions.

Solution. (a) One of the possible examples:

\ -—-x xe[-1,-))

/O X % Xe [_% > O)
f(x)=40 x=0

x+ Y% xe (0, %]
Yi—x xe (%,1]
(b) First solution. The graph consists of the finite number of continuous intervals,
open, closed and half-open (the isolated points will be considered as very short
closed intervals), because there is only finite number of discontinuity points.
On each interval function is strictly monotone, since if some value is accepted
twice then after 90° rotation we would see 2 values for the same x.
The continuity interval of the graph containing O is an isolated point. Would it be
longer, than for x sufficiently close to O from one side the sign of f (x) would be
the same, and that would contradict invariance with respect to rotation by the right
angle.
Except for isolated point at 0, no continuity interval of the graph will go to itself
after rotation by 180° around the origin. Indeed, if it would, than it would contain
0, and we proved it is impossible.
Also, except isolated point at 0, no continuity interval of the graph would go to
itself after rotation by 90° around the origin, since then it would also go to itself
after two rotations of that kind, and that is impossible.




Let S be the set of all continuity intervals of the graph except the isolated point at
0. Rotation by 90° around the origin divides S into orbits of four. Consider two
ends of each element of S: each of them can be either open or closed. Consider the
total number of open ends in S minus total number of closed ends.

Each element of S contributes 2, -2 or 0 to this quantity, so each orbit of four
contributes something divisible by 8. On the other hand, each non-integer
discontinuity point gives 1 open end and 1 close end which cancel out, and at O, 1,
-1 we have 4 open ends, so the total quantity is 4.

Contradiction: 4 is not divisible by 8.

Second solution. Like in the first solution, we explain that there are orbits of four
and one separate point. Union of all continuity intervals is the domain.

Now we count Euler characteristic. Euler characteristic is additive. Euler
characteristic of a point is 1, and of an open interval is -1.

So, Euler characteristic of the domain should be 4k+1, and it isn’t.

Remark. Another way to formulate the main condition of this problem, about the
rotation by right angle, is f(f(x)) =—x .



Targil 1 - polynomials.

1. A polynomial p(x) of degree n has only integer values in integer points.
(a) Show that n!p(x) has integer coefficients.
(b) Can we claim that p(x) has integer coefficients?

2. Let p(x) be a polynomial with integer coefficients, and a; < a,< ... < a, integer
numbers.
(a) Prove that there always exists an integer a such that p(a) is divisible by p(a,),

plas), ..., pa,).
(b) Can we claim that there always exists an integer a such that p(a) is divisible by

pladp(az) ... p(an) ?

3. Let P(x) be polynomial with integer coefficients of degree n > 1.

Consider a polynomial Q(x) = P(P(P(...P(P(x))...))), where P occurs n times.
Show that Q has no more than n integer stable points, i. €. no more than n integers
such that Q(z) = z.

4. Consider a graph of a polynomial p(x) of degree n on a plane, and a point P on
the same plane. Show that there are no more than » tangent lines to the graph of
p(x) passing through P.

5*. Prove that 5765°7+5766
(a) is not a prime number
(b) is a product of three numbers which are greater than 1.



Targil 1 - polynomials.

1. A polynomial p(x) of degree n has only integer values in integer points.
(a) Show that n!p(x) has integer coefficients.
(b) Can we claim that p(x) has integer coefficients?

Solution.
(b) No. For example p(x) = x(x+1)/2 or, more generally, the binomial coefficient
px) =x(x—-1)(x—2)... (x—n + 1)/n! (By the way, why is it integer for integer x?)

(a) For every k from O to n consider a polynomial
( )_x x—=1 x=-2 x—k+1 x—k-1 xX—n
O R 1 k—n
This polynomial is equal 1 at k£ and O at all other integer points from O to n.
And all these polynomial have degree n.
For each polynomial p(x) of degree n consider polynomial

q(x)=p(0) po(x)+ p(1) p,(x)+ p(2) p,(x) +...+ p(n) p, (%)
Notice, that p(x),q(x) coincide at0, 1,2, ... ,nso p(x)—g(x) have at least n+1

roots, that it impossible for polynomial of degree n unless it is identically zero.
So g(x) is p(x).
Hence it is enough to show that n!g(x) or even n!p, (x), has integer coefficients.

n!pk(x)=ik!(nn—_!k)!x(x—1)(x—2)...(x—k+1)(x—k—1)-...-(x—n)

!
And — 2 s integer (did I ask You how to prove that)?
k!i(n—k)!

2. Let p(x) be a polynomial with integer coefficients, and a; < a,< ... < a, integer
numbers.
(a) Prove that there always exists an integer a such that p(a) is divisible by p(a,),

p(a2) 9 e sp(an)°
(b) Can we claim that there always exists an integer a such that p(a) is divisible by

pladp(az) ... plan) ?

Solution. (b) No. p(n) = 4n + 2 is always divisible by 2 and never divisible by 4.
(a) It is enough to prove for n = 2 (that there is a such that p(a) is divisible by p(a,)
and p(a,) ), and then the statement is obvious by induction.



The most useful lemma about polynomials with integer coefficients:
p(x) — p(y) is divisible by x — y.

Since that fact is so important, we shal see 2 proofs:

First proof. x"' — y" = (x — y)@"" +x"%y + ... xy"") is divisible by x — y.

So sums of those expressions with integer coefficientsare also divisible by x — y.
Second proof. x = y (mod x — y) hence x" =y" (mod x — y) for all n,

therefore p(x) = p(y) (mod x — y)

So, back to the problem. All p(a; + kp(a,)) are divisible by p(a,), while all

p(a, + mp(ay)) are divisible by p(a,). So if a; + kp(a,) = a = a, + mp(a,), we won.
By the inverse part of Euclidean algorithm, we know we can do it if p(a;), p(a,) are
coprime (don’t have a common divisor > 1).

If they are not coprime, “make them coprime”. Let s be a product of all highest
powers of primes in the decomposition of p(a;) which are higher than
corresponding powers in the decomposition of p(a,). Let ¢ be the product of all
highest powers of all other primes in the decomposition of p(a).

Then gcd(s, ) = 1, while lem(s, 1) = Ilcm(p(a,), p(ay))

(Here Icm is the least common multiple, ged 1s the greatest common divisor.)
Then we can find a such that a; + ks = a = a, + mt, then p(a) is divisible by st
which is Iecm(s, t) which is the same as lcm(p(a,), p(a,)). That’s it.

3. Let P(x) be polynomial with integer coefficients of degree n > 1.

Consider a polynomial Q(x) = P(P(P(...P(P(x))...))), where P occurs n times.
Show that Q has no more than n integer stable points, i. €. no more than n integers
such that Q(z) = z.

Solution. It follows from the most useful lemma on polynomials with integer
coefficients (at the top of this page) that applying P to two different integers
performs one of the following 3 operations:

a. Glues them together

b. Keeps the distance between them

c. Magnifies the distance between them.
Consider two stable points of P(P(P(...))). Each time we apply P to both points,
they cannot be glued together, and cannot become more distant (since afterwards
after applying P more times they won’t get closer unless they’ll be glued together).
So P keeps the distance between each two stable points of P(P(P(...))).



So, if we have several stable points of P(P(P(...))), then P keeps distance between
them all, so action of P on that set of points is the same as action of a linear
function L(x) of slope 1 or -1. So all those points satisfy the equation P(x) = L(x).
But this is polynomial equation of degree n, so it has no more than n roots.

4. Consider a graph of a polynomial p(x) of degree n on a plane, and a point P on
the same plane. Show that there are no more than » tangent lines to the graph of
p(x) passing through P.

Solution. Shifting in both x and y direction doesn’t influence the degree of
polynomial, so we may assume that P is the origin (0, 0).

The equation of tangent line to p(x) at (z,p(2)) is y —p(z) = (x —2) p’(2)

If it passes via 0 we get — p(z) = —zp’(2)

That is a polynomial equation of z of degree n.

It cannot have more than n solution!

Unless... it is constantly O.

But the highest degree term coefficient in the left hand side is — aZz" and in the right
hand side is — naz" and they don’t cancel out, unless n = 1 and then degree is 1 and
tangent line is unique (though there are infinite number of tangent points).

5*. Prove that 5765°7*+5766
(a) is not a prime number
(b) is a product of three numbers which are greater than 1.

Solution. (a) 5765 = 5600 + 140 + 21 + 4 =4 (mod 7).
4 =2°= 1(mod 7) because of Fermat little theorem.
5765 =2 (mod 3) so

5765°7°+5766 = 4> + 5 =0 (mod 7)

So, it is divisible by 7.

3n+2

(b) Polynomial x™™~ + x + 1 accepts zero values at (those are the numbers

x =1

such that x> = 1 but x#1, i. e. =x"+x+1).

x—1



Since the set of roots of x"*> + x + 1 contains the set of roots of x* + x + 1 and the
last has roots of multiplicity 1, the first is divisible by the last. Since the first
coefficient of the last is 1 and other coefficients of both polynomials are integer,
we see that the result of division will be a polynomial with integer coefficients.

Therefore 5765°'°+5766 is divisible by 5765 + 5766. QED.



Targil 2 - some linear algebra.

1. Let R be a 3x3 matrix representing rotation of Euclidean space.
How to compute the angle of rotation? And the axis?

2. Assume «a #0 is a real number and F, G are two linear maps (operators) on R”"
such that FG -GF =aF .

(a) Prove that F*G —GF"* = akF*.

(b) Prove thatis F* =0 for certain k.

3. (a) Is it true that for each couple of square matrices A, B, matrices AB, BA are
similar?

(b) Is it true that A and AT are always similar?

(Reminder: matrices X and Y are similar iff X = PYP' for some invertible P, that
means, the matrices represent the same linear transformation in a certain basis.)

4*. (a) Let AjA,... A, be a regular polygon, O its center. For any point X, consider
perpendiculars from X to the lines of sides of the polygons as vectors starting at X
and ending on corresponding sides. Prove that sum of those vectors is nXO/2.

(b) In similar problem in a platonic solid of n faces, the answer is nXO/3.

5%%_Consider an anti-symmetric (A = — A") matrix with integer coefficients. Show
that the determinant is a perfect square.



Targil 2 - some linear algebra.

1. Let R be a 3x3 matrix representing rotation of Euclidean space.
How to compute the angle of rotation? And the axis?

Solution. Angle can be computed as arccos((trace — 1)/2)

Indeed, if the axis of rotation is z axis of the space the matrix would take certain
form, on the diagonal we would have two times cos(angle) and 1,

so trace = 2cos(angle) + 1.

But trace doesn’t depend on the choice of basis, so this formula holds in any basis.
Axis is a solution of linear system Ax = x and can be found by Gauss method.

Or, since that system is degenerate, and has one-dimensional solution, as a vector
product of two linearly independent lines of the matrix.

And yes, for unit matrix axis of rotation is undefined.

2. Assume «a #0 is a real number and F, G are two linear maps (operators) on R”"
such that FG —-GF =aF .

(a) Prove that F*G — GF* = akF*.

(b) Prove thatis F* =0 for certain .

Solution. (a) Induction over k. Base of induction is given. Step from k to k+1:
F*'G-GF*'=F"'G-FGF" + FGF* -GF"" =

=F(F‘G-GF")+(FG-GF)F" =

=F(akF*)+(aF)F" = akF*"' + aF "' = a(k +1) F**

(b) Consider a linear operator over the linear space of nxn matrices
L(X) = XG - GX.

If all F* are nonzero, than all of them are eigenvectors of that operator

corresponding to different eigenvalues. But linear operator on finite-dimensional
space can have only finite number of eigenvalues. QED.

3. (a) Is it true that for each couple of square matrices A, B, matrices AB, BA are
similar?

(b) Is it true that A and A" are always similar?

(Reminder: matrices X and Y are similar iff X = PYP' for some invertible P, that
means, the matrices represent the same linear transformation in a certain basis.)



Answers (a) no (b) yes.
Solution. (a) For example

0 0 0y(0O 1 O 0 0O
0 0 1|10 0 O0|=|0 O O
0 0 0)l0 0 O 0 0O
01 0y(0O 0 O 0 0 1
00 0O 0 1|=|{0 0 O
0 0 0)l0 O O 0 0O

(b) Every matrix A is similar to its Jordan form J =PAP".

Then A" is similar to J* = (P")'ATP" (by the way, why (A" =A™ ?).

So, it is enough to prove, that a Jordan cell is similar to its transpose.

The similarity is performed by a matrix R, having 1s on the secondary coordinate
and zeroes elsewhere. That is permutation matrix, it reverts the order of all
coordinates, and R = R. Multiplying by R from the left reverts the order of rows,
and multiplying by R from the right reverts the order of columns, so conjugation
by R rotates the matrix by 180°. That will bring a Jordan cell C to C.

4*, (a) Let A|A,... A, be a regular polygon, O its center. For any point X, consider
perpendiculars from X to the lines of sides of the polygons as vectors starting at X
and ending on corresponding sides. Prove that sum of those vectors is nXO/2.

(b) In similar problem in a platonic solid of n faces, the answer is nXO/3.

Solution. Everything depends linearly on X, so the formula in Cartesian
coordinates should be MX + v, where M 1s a matrix, and v is a vector.

If the O is the origin, the result is O, since it is preserved by many rotations, and
the only vector that is preserved by all those rotations is O.

So the formula is linear, MX, multiplication by a certain matrix.

If X is on a perpendicular from O to a face, then rotation or symmetry that keeps
this perpendicular line sends the polytope/polygon to itself, so X should be sent to
aX, where a is a constant. This constant is the same for all perpendiculars to faces,
because of the symmetry. So, our matrix acts as multiplication by a on all those
vectors, and they span the whole space, so our matrix is a times unit matrix.

But what is a?

a = trace divided by dimension. Our linear transformation is some of projectional
linear transformation — projecting vector to a line perpendicular to a certain face.
Trace of each summand is 1, since trace doesn’t depend on coordinates, and if the
axis of projection would be a coordinate axis, matrix would have 2 in one
corresponding diagonal call and O in all other sells.



So, we have summands, number of summands is equal to number of faces of the
polytope, and trace of each is 1, so total trace = number of faces, hence
a = number of faces / dimension.

5%*, Consider an anti-symmetric (A = — A") matrix with integer coefficients. Show
that the determinant is a perfect square.

Remark. det A =det A" = (=1)" det A, so it is nonzero (and non-obvious) only for
even dimension.

First solution. Determinant is integer, so it is enough to prove the it is a square of
rational number, then we shall know it is a square of integer. If we apply a certain
permutation on rows and the same permutation on columns, matrix will remain
anti-symmetric and will keep the same determinant.

So we may assume that unless the matrix consists of zeroes only, then cells near
the left-top corner (1,2) and (2,1) are non-zero: one is a, another is —a. Then by
adding linear combinations of first and second rows to all other rows, we can
eliminate all numbers in the first and second columns after the second row. These
Gauss method operations are equivalent to multiplying the matrix from the left by
an invertible matrix.

If A is anti-symmetric, then it is easy to see that BAB is also anti-symmetric. Let
B be the matrix that is doing Gauss method operation to eliminate the first two
columns under the top-left 2x2 block. Then B does the same operations on the
columns. Obviously, both B and B” are rational, so determinant is multiplied by a
square of rational number. That number is nonzero, since B is invertible.

But now we get a block matrix, that consists of 2 anti-symmetric blocks, so the
statement follows by induction over dimensions.

Second proof. It is known, that over anti-symmetric multi-linear forms the wedge
product is defined, that makes a k+m-form out of k-form and m-form.

1

(A p)(n2vyema,, ) = m(,; sgn (o) K(va(l)’va(Z)""’va(k)) ' 'u(v(f(m+l)’va(m+2)""’v6(m+k))

(here we divide by k!m! to kill ambiguity — no need to sum equivalent summands
several time, so this formula is actually integer).



This product is super-commutative and associative.

Any anti-symmetric 2-form can be represented in a general form as Za‘ X AX;,

1] 1
i<j

where x; are basic linear functionals corresponding to “taking i’th coordinate”, or,
when suitable basis is chosen, in a canonic form:
WO=kx Ax,tkx; Ax, tkx; Ax +..+kx, (AX, .

Actually, that was what we have proven in the first solution.

But since the definition of the wedge product doesn’t use coordinates, as well as
some definitions of determinant, if we prove certain equality between those in the
canonical basis, we shall know it for any basis.

. ONWDN...\NW . . 1. . .
Consider the product , where @ is multiplied by itself n times.

n!

When we open brackets, all products with similar factors cancel out. So we get n!
equivalent products, so after dividing by n! we get an expression which is integer
and not fractional in the coefficients, and that is (kkk;...k, )X, A X, AXs AcA X,

product of all coefficients time standard volume form.

The determinant of the anti-symmetric matrix is k'k;k: -...- k.. It is the square of

.. OANDNAN...ND ..
the coefficient before the volume form of . So 1t will be not

n!

necessarily in the canonical basis.

Example. Consider n = 4. Matrix A=

is represented by a
—a; —ay; 0 ay

—-a, —a, —ay 0

form @=a,x, Ax, +a;x, A Xy +a,X A X+ Ay Xy AXyF Ay Xy A X+ Ay Xy A X,

Then AL

= (a12a34 = Q30,40 ) X ANXy NXZ AN Xy



(When computing this things, just multiply each couple of terms once and don’t
divide by 2).

2
So det A= (a12a34 —a;3ay, T al4a23) :
Outline of third solution (Ofir Gorodetzky)

We know (either by guessing or from previous solution) the formula for the
expression whose square is the determinant: it is a sum over all ways to decompose
the set of all indices into pairs, of product of cells corresponding to that pairs (one
index is of row, another of column), signs are chosen by the sign of a permutation
which is formed when we write down all those pairs in a row, pair after pair.

So, we can prove combinatorially, that the square of that expression is the
determinant. The determinant is a sum of all products over all permutations (or
maximal rook arrangements). Some of those permutations contain odd cycles,
others only even cycles. We can show that any permutation containing at least one
odd cycle will cancel out with another permutation because the matrix is anti-
symmetric (by transposing only that specific cycle).

So, we remain with permutations having even cycles only. Sides of even circle
might be colored into black and white. That splits the permutation into two perfect
matchings. Each of those perfect matchings can be considered as a summand in the
polynomial we described, so the determinant is what we get after multiplying that
expression by itself (since each time we unite 2 pair decompositions, we get a
permutation with even cycles). Working out the signs is left as an exercise ©.



Targil 3 - functions.

) ) 1 1 1
1. Consider a function f (x)=x— — — , where ay, ... a, are
x—a, x-—a, x—a,

some real constants. Compute the total length of f~' ([a,b]) :

(Here [a,b] is an interval between a and b, f~'(set) denotes the inverse image of

that sef under f, that is all points that are sent by f to that set, and total length of
several intervals is the sum of their lengths).

2.Let f(x)=2x(1-x), for xe R. Define fn(x)zf(...f(f(x))...),Wheref is

applied n times.

1
(a) Compute limj f, (x)dx

(b) Compute I f, (x)dx for all natural n.

3. Prove that there is no function f:R — R such that f(0)>0 and
f(x+y)=f(x)+y- f(f(x)) forall x,yeR.

4. Prove that for every continuous function f :[0,1] X [0,1] ->R,

11 11 2 2
_” x,y) dxdy+UIf X,y dxdyj >J[If X,y de dy+_|.(J.f X,y dyj dx
00 00

5*. Can a minimal value of a polynomial with rational coefficients be V22

2

By minimal value here we mean the value at a point of global minimum.



Targil 4 — parity and divisibility.

1. We are given a herd 2009 cows. For each cow, if it is taken aside, others can be
divided into two sub-herds of 1004 cows and equal total weight.
Prove that all the cows have the same weight.

2*%, (a) A square is divided into N triangles of equal area. Prove that N is even.
(b) Generalize it for higher dimensions (a cube is divided into simplexes).

3. On infinite empty chessboard, a rectangle of mxn pieces is placed. One type of
operation is allowed: a piece can jump above the piece in adjacent cell to the next
cell after it, which should be free, and then the piece above which it jumped is
removed.

By adjacent cells we mean cells with common side.

The purpose of the game is to leave only one piece on the board.

For which m, n is it possible?

4. Two players play a game on the standard empty chessboard.

They have a chess knight (horse). The first player places it on the chessboard at
any cell he wishes, then the second makes a legal move with the knight, then the
first makes a legal move and so on. In addition to standard chess rules, the knight
1s forbidden to step on the same cell twice.

The player that can’t make a move in his turn loses. Who of the two players has a
chance to win?

5%, Let T be the set of all numbers of the form m", where m > 1 and n > 1 are

integer. Compute ZL .

teTt_

(Since T'is a set, a number which can be represented both as m" and a” is counted
only once.)



Targil 4 — parity and divisibility.

1. We are given a herd 2009 cows. For each cow, if it is taken aside, others can be
divided into two sub-herds of 1004 cows and equal total weight.
Prove that all the cows have the same weight.

Solution. Let us fix a partition into two halves for each 2008 cows. This choice of
partitions will be called configuration. The condition that both halves of the
partition will be of the same weight specifies a linear equation for the weights of
COWS, X1, X2, ..., X2000- 50 the complete configuration specifies a system of 2009
linear equations. Those equations might be linearly dependent. However, with
Gauss method, we can solve it: we can take several unknowns as parameters and
obtain get the other unknowns as linear expressions in those parameters. All
coefficients in those expressions will be rational, since Gauss method is an
algebraic procedure.

So, for each configuration, and for each possible set of weights of cows, we can
find e-close rational weights of cows which satisfy all the condition with the same
configuration. So, without loss of generality, we can assume that if not all cows
will have the same weight, then they have rational weights. So, by multiplying
weight of each cow by the denominator (or, alternatively, by choosing appropriate
measurement units, since multiplying weight of a cow by a large number might not
have physical meaning), we can assume, WLOG, that all cows have natural
weights.

Out of all solutions with natural weights of cows, with not all cows of the same
weight, take the minimal one, with minimal total weight. Then all weights cannot
be simultaneously even, since otherwise we would be able to divide by 2.

Also, all weight all weights cannot be simultaneously odd, otherwise we could add
1 and divide by 2 and get smaller solution, unless all cows are of weight 1.

But all cows have to be of the same parity, since if we take any cow apart, we
remain with the herd of even weight (since it can be divided into two equal parts).
That is a contradiction. QED.

2*#%, (a) A square is divided into N triangles of equal area. Prove that N is even.
(b) Generalize it for higher dimensions (a cube is divided into simplexes).

Alexey believes he had a very nice proof of this, which we cannot reconstruct.
Several ideas he remembers from that prove:



(1) Assume first coordinates are rational and arrive to a contradiction with that.

(2)If all coordinates are rational, multiply everything by the common
denominator and make them integer. If common denominator was odd, it
turns out that vertices of each triangle are on one line mod 2. Because an
expression in coordinates with vector products is equal twice the area, so if
number of triangles is odd those expressions turn out to be even. But the
vertices of the square are not on one line mod 2.

(3) If the denominator is even, shift all odd coordinates by 1 mod 2, so that all
conditions will still hold, and then divide all coordinates by 2.

(4) Though we cannot assume all coordinates are rational, we can assume all
coordinates are algebraic. Algebraic numbers are similar to rational in some
ways, and the proof for rational numbers can be modified to work with
algebraic numbers.

3. On infinite empty chessboard, a rectangle of mxn pieces is placed. One type of
operation is allowed: a piece can jump above the piece in adjacent cell to the next
cell after it, which should be free, and then the piece above which it jumped is
removed.

By adjacent cells we mean cells with common side.

The purpose of the game is to leave only one piece on the board.

For which m, n is it possible?

Answer. When both m,n are >1 and not divisible by 3,
or when they are 1 and 2.

Solution. We can paint the board into 3 colors, like on
the picture. Each move is equivalent to inversion of
1x3 rectangle, so number of pieces on each color will
change by 1, so parity of pieces on each color will
change. If one side of rectangle is divisible by 3, then
in the beginning there is the same number of pieces on each color, so on any stage
of the game, we shall have either odd number on all colors or even number of all
colors, so we won’t arrive to 0, 0, 1 and so we shall never remain with just one
piece.

If one side of rectangle is 1 we are trapped in just one line. We have just one
sequence, so we can make a move on each edge outside, and after each move we
shall still have just one sequence and a few separated discs, and we shll not able

Now for the good case. Here is a way to eliminate a rectangle 1x3 near the corner:
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Using this elimination, we can turn a rectangle mxn
into rectangle mx(n-3) for m >3, n > 3: eliminate top
3 discs in each column one by one, from right to left ::: : : :
until only 3 columns remain, then eliminate top 3 ee 2000
discs with one move 3 times.
2900000
9200080

We can also turn a rectangle mxn into rectangle mx(n-3) form =2, n> 3, using 3
moves and elimination of a triple:

Also, for m,n > 3 we can turn rectangle mxn into rectangle (m-3)x(n-3) in a
method, similar to the described above: from right to left, eliminate top 3 discs in
each column until only 3 remain, then from top to bottom, eliminate left 3 discs in
each row until only 3 remain, then from left to right, eliminate 3 leftmost discs 3
times.

After several procedures of that kind (reducing the biggest side of the rectangle
each time if the difference between sides is bigger than one, and if sides are almost
equal reducing them simultaneously), if m and » are not divisible by 3, we shall get
either rectangle 2x2, or 2x1, or 1x1. The case 2x2 is reduced to 2x1 by 2
horizontal moves in the same direction. The case of 2x1 is reduced to 1x1 by 1
move.

4. Two players play a game on the standard empty chessboard.

They have a chess knight (horse). The first player places it on the chessboard at
any cell he wishes, then the second makes a legal move with the knight, then the
first makes a legal move and so on. In addition to standard chess rules, the knight
1s forbidden to step on the same cell twice.



The player that can’t make a move in his turn loses. Who of the two players has a
chance to win?

Answer. The second.

Solution. Divide the cells into pairs, connected by the
move of the knight (for example, like in the picture).
Each time the first player takes one of the cells of a
certain pair, the second will take another pair.

B, - ol e, W
A T | A
B o e, S g
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B, - ol e, W
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P S ol "N I S ~ols N

5%, Let T be the set of all numbers of the form m", where m > 1 and n > 1 are

integer. Compute ZL .

teTt_

(Since T'is a set, a number which can be represented both as m" and a” is counted
only once.)

Remark. This problem was proposed to us by Dan, he also wrote down both
solutions below.

First Solution Denote for any number te T, ¢,(t) =#{(m,n)lm,n=1,m" =t} the
number of ways to represent ¢ as a power. Also denote by
c,(t)=#{(m,n)lm,n=22,m" =t} the number of ways to represent ¢ non-trivially as
a power, and ¢,(r) =#{(m,n)IlmeT,n=1,m" =t} the number of ways to represent ¢

as a power of a perfect power.

It is easy to verify that for any re T, c,(t) =c;(t) = ¢, (1) —1.

We now have, using summations of geometric and telescopic series:



>LyyLtyY ¥ -yall

teT teT n=1 t seT (t,n):teT ,n>1, t"—s seT

o 1_aal & 1
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Second Solution (Due to Euler and Goldbach)

Denote by S =N\T\{0,1}={n>=2In¢ T}the set of all numbers greater than 1

which are not perfect powers. Let x = Zl denote the harmonic series. Then we
n=11

my rearrange and write x = 11+z ! ,as TUS ={2,3,4,...}. On the other

teT ses S 1
hand, we have the property that any number n > 2can be expressed uniquely in the
form n=s" where s€ S is a non power and m 21 some natural. Hence by using

Z Z Z— = x—1, from which we can

the geometric series we get Z —
seS m=1 s n= N

ses §

1
derive =XxX— ——x (x-1)=1.
; ses S -1
Note that this proof is far from rigorous: The value of the harmonic series x is
well known to be infinite, and so it is not quite necessary that rearrangements as
those we did by adding and subtracting x, as well as manipulating the terms of the
divergent ZLI will really yield the correct answer. However, the proof can be
ses S
modified (with some work) to a rigorous proof, as is done in this article.

( http://www.recercat.net/bitstream/2072/920/1/776.pdf )




Targil S — double counting.

1. In one country, there are 5 big and 19 small cities. The country is divided into 9
regions. Each big city is connected by bus to at least 14 cities, while each small
city is connected by bus to at most 3 cities (each bus goes in both directions).
Show that there exists a region in which no two cities are connected by bus.

2. a. Show that each map on a sphere has a country with less than 6 neighbors, and
conclude that each map can be painted in 6 colors, so that countries having
common border of positive length will be of different colors.

b. Show that each map on a sphere can be painted in 5 colors.

¢. What is the maximal number of necessary colors for a map on a torus?

3. There are [ unit vectors in n-dimensional space which are pair-wise orthogonal,
and the orthogonal projection of each vector to a given k-dimensional subspace is
longer than ¢. Show that <k /¢ .

4. In a table there are N columns and M rows, N > M.
Some cells are marked by stars, and in each column there’s at least one star.
Show that there is a star for which there are less stars in its column than in its row.

[Another way to formulate essentially the same problem: the books in the library
were rearranged, so that for each book we have more books on the same shelf with
it than before; show that now there is an empty shelf].

5*. Show that in a group of 50 people there are two that have an even number of
common friends (maybe 0), assuming that friendship is symmetric.



Targil S — double counting.

1. In one country, there are 5 big and 19 small cities. The country is divided into 9
regions. Each big city is connected by bus to at least 14 cities, while each small
city is connected by bus to at most 3 cities (each bus goes in both directions).

Show that there exists a region in which no two cities are connected by bus.

Solution. Estimate the connections with 19 small cities in two ways:
(a) Each small city is connected to at most 3 big ones, totally at most 57
connections.
(b)Each big city is connected to 14 cities at least, only 4 of those may be the
other big cities, so at least 10 of connected cities are small, which is at least
50 connections.
We see that (b) is just slightly greater then (a), while (a) counts each (b)-type
connection of big and small cities once, and each connection of two small cities
twice. So twice the number of connections between 2 small cities is at most 7.
Therefore there can be at most 3 connections between pairs of small cities.
Since there are 9 regions, there’s a region that contains neither those 3 connections
between small cities nor any of the 5 big cities. Therefore, in that regions there are
only small cities which are not connected to each other.

2. a. Show that each map on a sphere has a country with less than 6 neighbors, and
conclude that each map can be painted in 6 colors, so that countries having
common border of positive length will be of different colors.

b. Show that each map on a sphere can be painted in 5 colors.

¢. What is the maximal number of necessary colors for a map on a torus?

Solution. a. As in the famous Euler formula, denote: F number of faces, E number
of edges, V number of vertices.

Count the edge-vertex incidence relations X two ways: it is exactly 2E, and at least
3V, since each vertex is at least on 3 edges. Hence | 2E/3 = X/3 >V |.

Now count the number Y of face-edge incidence relations: it is again 2E, since
each edge is of 2 faces, and at least 6F if we assume that each country has at least 6
neighbors, therefore |E/3 = Y/6 > F|.

If we sum up the two inequalities we get E >V + F, therefore the Euler expression
V — E + F is not positive, but it is equal to 2 by Euler formula.

Exercise. Find a map on sphere which is a counter-example to Euler formula and
complete the proof for those cases too (hint in the end of the solution).




Remark. This statement (and Euler formula itself) can be proved by double-
counting of angles in either Euclidean, spherical or hyperbolic geometries, but then
an extra explanation is required that we can make all the borders straight line.

For example in Euclidean geometry: total sum of all angles is 360 degrees times
number of vertexes, so the average angle is at most 120 degrees, so the average
number of vertexes in the polygon is at most 6, but if you do it carefully you make
it less than 6.

Theorem about 6 colors is proved by induction over the number of countries.

Since there’s a country of less than 6 neighbors, if one of the neighbors would
temporary take that country, we would be able to paint it into 6 colors by induction
assumption, and when that country gains independence again, we can choose one
of 6 colors which is different from all of its neighbors.

Remark. As for b’ - we can’t prove that there’s a country of less than 5 neighbors:
a dodecahedron is just one counter-example, and there’s a lot of others, so a more
subtle approach is required.

b. If the map has a country of less than 5 neighbors, we can use the induction. If
not, consider a country C with just 5 neighbors (it can’t be that all countries have at
least 6 neighbors, as we have proven before).

It cannot happen that all 5 neighbors of C are connected to each other, since a full
graph with 5 vertexes, Ks, is not a planar graph. So A and B, some two neighbors
of C, are not connected.

Temporary unite A, B, C into one country. Since number of countries is smaller,
now the map can be painted in 5 colors. Then make C a separate unpainted
country. It has 5 neighbors, out of those 2 have the same color, so its neighbors
have only 4 colors, so we can choose for C one of the 5 colors different from all its
neighbors. A and B already have a color, and it doesn’t make a problem since they
are not neighbors.

¢. Every map on torus can be painted into 7 colors, and there are
maps that require all 7 colors. An example of a map which requires
7 colors 1s on the picture. It is cut out of periodic hexagonal pattern
of 7 colors, each color touches every other color. When we glue the
corresponding opposite sides of the parallelogram, we get a map of 7 countries on
the torus, where each country is a neighbor of each.

As in a’, double count and Euler formula prove that there is a country with no
more than 6 neighbors, and after that we can apply induction.




Euler formula on torus is V- E + F = 0.

By double-counting we get: 2E/3 > V and E/3 > 2E/7 > F (if each country has at
least 7 neighbors).

So E >V + F and Euler expression is negative when it should be 0.

Hint to the exercise: consider countries with holes.

3. There are [ unit vectors in n-dimensional space which are pair-wise orthogonal,
and the orthogonal projection of each vector to a given k-dimensional subspace is
longer than &. Show that [ <k /& .

Solution. For any set of less than n vectors, we can find a unit vector orthogonal to
them all. So, we can complete our [ unit vectors to an orthonormal system of n
vectors. Choose a rotated coordinate system such that the mentioned k-dimensional
space would contain the first k coordinate axis.

Now write down each vector in coordinates as a column, one after another, first the
[ given vectors and then the rest, and you get an orthogonal matrix.

Within this matrix, consider a sub-block of first kK rows in the first / columns.
Apply double-counting to the sum of squares of the numbers in that sub-block.
Each of [ first vectors in projection to the first k coordinates is of length & at least,
so the sum is at least /e*. On the other hand, sum of squares in each row (even the
whole row of any orthogonal matrix, not to talk of the sub-block), is at most 1, so
the total sum of squares in the sub-block is at most k.

Conclusion: l¢* < k. QED.

4. In a table there are N columns and M rows, N > M.
Some cells are marked by stars, and in each column there’s at least one star.
Show that there is a star for which there are less stars in its column than in its row.

[Another way to formulate essentially the same problem: the books in the library
were rearranged, so that for each book we have more books on the same shelf with
it than before; show that now there is an empty shelf].

Solution. Draw two tables, A and B, of the same size as the original table.

The cells that correspond to the empty cells of A or B will still be empty.

The cells that correspond to the marked cells of the original table will contain
numbers according to the following rule:

If in the original table the row of the original cell contains k stars, the number that
in table A will replace each star of that row is 1/k.



If in the original table the column of the original cell has [ stars, the number that in
table B will replace each star of that column is 1//.

Sum of all numbers in B is equal N, the number of columns, since each column
had a star and sum in each 1s 1. Sum of numbers in A is at most M, the number of
rows, which is less than N. So for some cell, the corresponding number in A is
smaller than in B, so for that cell 1/k > 1/[, and [ > k, so for that star number of stars
in the same row is bigger than the number of stars in the same column.

Remark. A combinatorial solution that doesn’t use double counting can be devised
for that problem, but neither as short nor as elegant, see for instance
http://taharut.org/Solutions/Ikarit/T11/Autumn/S 11 A O I6.doc

Of course, we could have allowed to mark more than one star in each cell, then
there would be more than one number in both A and B table, but the proof would
remain the same.
The story about books: if the rows of the table are shelves before the reordering,
the columns of the table are the shelves after the reordering, and the stars are the
books, we get again the same problem.

5*. Show that in a group of 50 people there are two that have an even number of
common friends (maybe 0), assuming that friendship is symmetric.

First solution. Assume there’s someone (denote him Yossi) who has an odd
number of friend. Consider the subgroup of friends of Yossi. If there’s anyone with
even number of friends inside that subgroup, we got someone who actually has
even number of friends with Yossi, QED.

If not, then we have that between odd number of people, each having odd number
of friends in that group, so total number of pairs “someone and his friend” is odd,
but it cannot be since it is equal to twice the number of friendships in that group.

So, it remains to consider the case where each person among the 50 has even
number of friends. Then consider someone called Kobi. The rest of the crowd can
be divided into two parts: even number of the friends of Kobi, denote them F, and
odd number of the others, that group will be denoted as O.

If someone in has even number of friends in then he has an even number of the
common friends with Kobi and we are done. So, it remains to assume that each



person in has an odd number of friends in F. In particular, each person in F has
even number of friends: odd number in F, Kobi himself, and even number from O.

So the number of friendships between F and O is even number of even numbers,
and that is even.

On the other hand, each person in O has odd number of friends in F, and O is of
odd order, so the number of friendships between F and O is an odd number of odd
numbers, and that is odd.

That is a contradiction: the number of friendship connections between O and F is
both even and odd.

Second solution. Consider the incidence matrix A: each number in column i row j
is 1 if people i and j are friends and O otherwise. It can be considered in two ways:
either as a matrix over integers or as a matrix with coefficients in the {0,1} field of
two elements; we shall use the field of two elements.

Let v be a vector all coordinates of which are 1.

Like we have shown in the beginning of the previous solution, WLOG we can
assume that each person has even number of friends. That means, each row/column
is orthogonal to v, since the sum in each row is even, so Av = 0.

Consider A% On the cell (i ,j) for i #j You will have the number of common
friends of i and j which is always 1 unless we get what we want, and on diagonal
cell You get the number of friends of someone mod 2, which is O.

So we know the A* matrix precisely, and A% = v # 0, which contradicts Av = 0.



Targil 6 — discrete derivative.

1. Which functions satisfy the following condition: for every triple of different real

f(x) f(y) f(z)

numbers, X, y, z, the inequality + + >0

(r=y)(x=2) (y=x)(y=2) (z=x)(z=v)

holds?

2. A grasshopper performs an infinite sequence of jumps on the straight line. The
length of the jump number n should be n°’®, but it is allowed to choose a direction
of each jump. Show that it can visit all integer points if it wants.

3. Is it possible to divide [0, 1] into black and white intervals so that for each

polynomial of degree < 5769, we shall have I p(x)dx= I p(x)dx ?

white black

4. a. Show that each integer number can be written as a sum of 5 cubes of integer
numbers.

b. Find some natural number N (as small as You can), such that each integer
number is a sum of N numbers of type k***, for integer k.

5*. Consider a set of points (x, y, z) such that x, y, z are integer nonnegative
numbers not bigger than n, which cannot be simultaneously 0. What is the minimal
number of planes not passing through (0, 0, 0) that contain all those points?



Targil 6 — discrete derivative.

1. Which functions satisfy the following condition: for every triple of different real

f(x) f(y) f(z)

numbers, X, y, z, the inequality + + >0

(r=y)(x=2) (y=x)(y=2) (z=x)(z=v)

holds?

Answer. Convex functions.
First solution. WLOG x < y < z. Multiply by (y — x)(z = x)(z — y).
(z=y)f(x)+(x=2) f(y)+(y—x)f(2)20

The LHS (left hand side) is twice the formula for oriented area of the triangle

(% £ (2))s (3 £ (3)): (2. £ (2)).

Therefore, that triangle is positively oriented. Since the points go from left to right,
it means that they are on a convex (smiling) function. Since the condition of the
convex function is enough to verify on triples of points, this means that the original
inequality means convexity.

Remark. If we wouldn’t specify the order of points, the sign of the inequality
might turn during multiplication, depending on the order of the points. Then we
would get equivalence between the sign of the permutation of the first coordinates
and the orientation of the triangle, which is essentially the same thing, but the
explanation would be slightly longer.

Second solution. Consider a quadratic function p(t)=a + bt +ct’*, which

coincides with f atx, y, z.
To find the coefficients, you have to solve the system of linear equations:

1 x x*)(a f(x)
Ly y|bl|=|f(»)
Lz 22 )c) | f(2)

The solution might be found by Leibniz-Cramer. For example, the most significant
coefficient, of second degree, the specifies the type of the parabola (smiling/sad) is

1 x f(x) 1 x x*
B N1Vl M ES IO MR IS e

1z f))) 1z 2 (z=y)(y=x)(z=x)




That is precisely the left hand side of the expression from the problem, so each
such parabola is smiling (or at least not sad), so each triple is convex and the
function itself is convex.

Very generic remark. Let function be given at points xy, xi, ... , x, and we want to
compute the main coefficient of the polynomial of degree n accepting given values
at given nodes. So, we write the system of equation (as we did above, but bigger)
and now we want to solve it.

There are two standard ways to solve a square system of linear equations: Gauss
method and Leibniz-Cramer rule. Gauss method is more practical, since it has
smaller computational complexity, while Leibniz-Cramer formula is more elegant
(at least if you like symmetric expressions), and both are applicable in our case.

If You apply Gauss method, You inductively obtain nice symmetric expressions,
called Newton’s divided differences http://en.wikipedia.org/wiki/Divided_differences .

They are easy to compute, but hard to penetrate (which is something You would
expect from Gauss method).

If you apply Leibniz-Cramer, it goes very similar to what we did in the second
solution. You get a ratio of two determinants. The denominator is the usual
Vandermonde, while the numerator is the Vandermonde with last column replaced
by values of function. When you expand the numerator determinant along the last
column, you get values of function multiplied by Vandermonde minors. If you
write these coefficients and the denominator as products, and cancel what can be
cancelled, you get Lagrange formula, which is equal to Newton’s divided
differences but much more symmetric:

f(xo) + f(xl) - f(xn)
(xo_xl)""'(xo_xn) (xl_xo)(xl_xz)'---'(xl_xn) (xn_xo)'---'(xn_xn—l)
In term k all brackets that didn’t contain x; were cancelled out.

For n = 1 you get the simple formula for slope, and for n = 2 you get the formula
which appeared in this problem.

2. A grasshopper performs an infinite sequence of jumps on the straight line. The
length of the jump number 7 should be n°’®, but it is allowed to choose a direction
of each jump. Show that it can visit all integer points if it wants.

Solution. Consider a combination: jump in one direction and then jump to another
direction. This will be called a combination of the first type. The length of the total

jump will be (n + 1)’ — n”’* which is a polynomial of degree 5768 in n, p(n).



Now consider a combination of the second type, which consists of combination of
the first type in one direction and the combination of the first type to another.

It gives a total jump of p(n + 2) — p(n) which is a polynomial of degree 5767.
Generalize that definition by induction: when the combination of type k is defined,
define a combination of type k+1 as performing the combination of type k to one
direction and then to another. By induction, we see that a combination of type k
starting with step n leads to the jump by Pi(n), where Py is a polynomial of degree
5769 — k. So, combination of type 5769 results in a jump by a constant number M
to a direction of our choice.

So if we make a N combinations of type 5769 to the left and 2N combinations of
type N to the right, we shall cover all integer points having the same remainder
mod M as the original points, which are in the NM neighborhood of the original
points. The only thing that remains to do is to learn how to switch to any given
remainder mod M. If we learn that, we can switch to every remainder mod M one
after another, and for each remainder cover a large interval of representatives,
while this intervals will become larger and larger every time.

Assume the current position of the grasshopper is L mod M, and we want it to be K
mod M. If M is even and K, L are of different parity, the first thing to do is to
change parity. That is a simple thing to do: parity is preserved by every even jump
and changed by each odd jump, so after one or two moves the parity will be the
same. Now, it is enough to learn how to add 2 to our position mod M, and repeat it
several times.

We can make several combinations of type 5796 without changing our remainder
mod M. The numbers which are 1 mod M will be called a good number. If we see
that the next combination of type 5769 doesn’t contain a step with a good number,
we shall simply do one more combination of type 5769 in arbitrary direction.

If we shall see that the next combination of the type 5769 will contain a step with a
good number g we shall do something slightly different. We shall consider the
combination of type 5769, direction chosen so that the jump number g will be to
the left, and perform this combination, but with the jump number g reversed.

If we wouldn’t reverse that jump we would have a combination of moves which
keeps the same remainder mod M, but since we have reversed the g jump, and it is
of length 1 mod M, we shall actually perform step 2 mod M, QED.



3. Is it possible to divide [0, 1] into black and white intervals so that for each

polynomial of degree < 5769, we shall have I p(x)dx= I p(x)dx ?

white black

Answer. Yes.
Solution. For every interval, painted into black and white, and every function f on

that interval, the zebra integral of the function will be [ f(x)dx— [ f(x)dx.
white black
We have to construct a coloring of [0,1] such that the zebra integral will be 0 on
every polynomial of deg < 5769. It really doesn’t matter if we work with the
interval [0,1] or any other interval, since linear substitution ax+b can send interval
[0,1] to any interval [a, a+b] and if p(x) 1s a polynomial of degree k iff p(ax+b) is
a polynomial of degree k.
We shall prove the statement by induction. If we paint first half of the interval
black and the second half of the interval white, the zebra integral of every 0-degree
polynomial is 0. Now assume we have constructed the coloring of [0,1] which is
zero on all polynomials of degree less than k but non-zero on x".
Let p(x) be a polynomial of degree k. Then its zebra integral with the given
coloring depends only on the first coefficient. Then p(x+1) has the same zebra
integral. So, if we would shift the colored interval by 1 the zebra integral would be
the same.
Now consider the following coloring of the interval [0,2]: is it equal to the original
coloring on the interval [0,1] and inverse to the shifted version of the original
coloring on the interval [1,2]. Then the zebra integral over [0,2] for each
polynomial of degree k is a difference between 2 equal numbers, so it is 0, QED.
Remark. In the coloring that we’ve constructed is a color in each point may be
described as the checksum of the first £ bits in the binary expansion of the point
coordinate.

4. a. Show that each integer number can be written as a sum of 5 cubes of integer
numbers.

b. Find some natural number N (as small as You can), such that each integer
number is a sum of N numbers of type k***, for integer k.

Solution. a. Consider the second discrete derivative of n’,
m+1)’ -2 +mn-1=6n
So every number which is divisible by 6 is a sum of 4 cubes
m+1Y +(n) +(n)’+@m—-17>=6n



Now it is enough to find one example of integer k for each remainder mod 6, such
that k&’ represents that remainder, and all other numbers would be obtained by
adding multiples of 6 to those numbers. We could have written a list of 6 numbers
with their cubes, but instead let us say that n’ = n (mod 6), since
3
n-n=m-nn+1)
and that is divisible by both 2 and 3.

b. We shall prove it for N which is not really small.

First, consider the discrete derivative of order 5768 applied to n
By the discrete derivative of a function f (n) defined at integer points we mean a
function f (n+1) — f (n). It reduces the power of a polynomial by 1.

By the discrete derivative of order kK we mean what happens after you apply the
discrete derivative k times, which 1s

f(n+k)_(k"_ljf(mk_1)+...i@f(n+2)¢G‘jf(n+1)if(n)

If the function is smooth, the discrete derivative is equal to the actual derivative at
some point.

So, the discrete derivative of order 5768 applied to n°’® is a polynomial of order 1,
of type ax + b. Among its values we have all the numbers which have certain
remainder mod a (to be precise, all numbers which are divisible by 5769!, but that
is not important for the proof), and all of them are sums of no more than 2°"°
numbers of type n°'*".

By adding to those no more than a ones or zeroes, we get all integer numbers.

5769

5*. Consider a set of points (x, y, z) such that x, y, z are integer nonnegative
numbers not bigger than n, which cannot be simultaneously 0. What is the minimal
number of planes not passing through (0, 0, 0) that contain all those points?

Answer. 3n.

Solution. It is not hard to construct an example of 37 planes that cover all the
points:

Example 1. {x + y + z = m}, where m is any integer between 1 and 3n.
Example 2. {x = m} and {y = m} and {z = m}, for m between 1 and n.

There are many others. The tricky part is to prove the minimality of those
examples. Denote G, the set of points with integer coordinates between 0 and n.
Each plane has an equation which can be written in a form ax+by+cz+d = 0.



Multiply the LHSs (left hand sides) all those equations, and you get a polynomial
in x, y, z that nullifies at all the points of G, except (0,0,0). The degree of the
polynomial is equal to the number of equations.

We shall prove the more general statement: if a polynomial p(x, y, z) nullifies at all
points of G, except (0,0,0), its degree is at least 3n.

The solution is simple: consider the discrete derivative in all 3 directions.

The discrete derivative in x, is p(x+1, y, z) — p(x, y, z), the discrete derivative in y is
plx, y+1, 2) — p(x, y, 2), and the discrete derivative in z is p(x, y, z+1) — p(x, y, 2).

It is easy to see that discrete derivative in each direction reduces the degree at least
by 1 (enough to check it no monomials and that is really easy).

After we apply discrete derivatives 3 times, once in each direction, we get
polynomial which nullifies on all elements of G,_; except (0,0,0).

So, if we do that triple discrete differentiation »n times, we get a polynomial which
is non-zero at (0,0,0), so it is nonzero, so in the beginning we had a polynomial of
degree 3n at least.

Remark. This was the last problem of IMO 2007 in Vietnam. It was solved only
by two contestants: Peter Scholtze from Germany and Konstantin Matveev from
Russia. The solution of Peter was approximately what was described above; as for
Kostia, he wrote that the bound of the degree on polynomial follows from a
theorem by Noga Alon, which was known to him, so-called combinatorial
Nullstellenzsatz, ( http://www.cs.tau.ac.il/~nogaa/PDFES/null2.pdf ) and reproduced
the theorem and the proof in his work.




Targil 7 — discrete convolution.

1. Without computer or calculator, find the decimal representation of é

2. (a) Is it true, that for each polynomial with real coefficients p(x) there exists a
polynomial q(x), such that q(x’) is divisible by p(x) ?

(b) A point will be called even if both coordinates are integer even numbers.
Function f:Z> — R will be called discretely harmonic, if

f(x,y):f(x+1,y)+f(x—l,Y)Zf(x,y+1)+f(x,y_1)'

Suppose we are given the values of a discretely harmonic function f at all even
points except (0,0). Can we reconstruct f(0,0)?

3%, Prove that x" +2x"* —6x"" +2x"° —10x® +4x° +60x° —44x* —4x+4 is
irreducible over Z .

4. You are given an NxM table of real numbers. The sum in every sub-square of
3%3 cells is positive, and the sum in any sub-square of 5x5 cells is negative.
What can we claim about M and N?

In other words, for which M and N a table satisfying the conditions exists?

5%, Consider the polynomial 1+ x*y* + x*y* —3x”y”. Prove that it is non-negative

for any real x, y and that this polynomial cannot be represented as a sum of squares
of polynomials with real coefficients.



Targil 7 — discrete convolution.

1. Without computer or calculator, find the decimal representation of é

Answer. 1/81 =0.0123456790123456790123456790... = 0.(012345679)
(when we take a sequence of digits in brackets, it means it is repeated infinite
number of times).
Solution. It is easy to see that 1/9 =0.(1) =0.111111111111....
So 1/81 = (1/9)* = 0.1+(1/9) + 0.01°(1/9) + 0.001(1/9) + ... =
0.0111111 11111111111, +
+0.0011111 11111111111, +
+0.0001111111 11111111 +
+0.000011111111111111... +
=0.123545...
Let us do it a little bit more carefully / rigorously.
First of all, if 10° — 1 is divisible by N, then 1/N has period K, since after moving
K position in long division the remainder will be 1.
10" = 1 (mod 9) , that is why period of 1/10 is 1.
So, 10M goes not over all remainders mod 81 but only over those that are 1 mod 9,
and there are only 9 of those. They form an abelian group with multiplication,
powers of 10 mod 81 form a subgroup, so the number of elements in the subgroup
divides 9, so 10° = 1 mod 81, and the period of 1/81 is no longer than 9.
Conclusion: we need to compute only 9 first digits after the decimal point, and the
repeat them periodically.
Denote by o(x) positive number not bigger than x.
So 1/9=10"+10% + ... + 102 + 0(10™).
1/81 =(1/9* =102 +2-107 + 310" + ... + 7'10%+ 8:10° + 9.10"°+10'10™" +
+ 11102 +12107 + 11110 + 10107 + ... +10% + 0(107%-2/9) =
=107 +210° + 310" + ... + 7:10°+ 8:10” + 10107 + 1110+
+0(10"%12/9) + 0(107%:2/9) = 0.012345679011 + 0(210™")
From here we see the first 10 digits, and as we have explained before, that is
enough.

2. (a) Is it true, that for each polynomial with real coefficients p(x) there exists a
polynomial q(x), such that q(x’) is divisible by p(x) ?

(b) A point will be called even if both coordinates are integer even numbers.
Function f:Z> — R will be called discretely harmonic, if

f(x,y)=f(x+1,y)+f(x—l,y)zf(x,y+1)+f(x,y_1).




Suppose we are given the values of a discretely harmonic function f at all even
points except (0,0). Can we reconstruct f(0,0)?

Answers. Yes and yes.

(a) First solution. Consider a linear map from a linear space of polynomials of x
to the linear space of polynomials of degree < deg p : remainder of division by p.
This map has a non-trivial kernel. QED.

Second solution. Consider w= # a number such that @’ =1.

Notice that for any polynomial p(@x)= p(x) iff powers of all nonzero monomials
are divisible by 3.
So, for each polynomial p consider the polynomial p(x) p(@x) p(a)zx) :

It is divisible by p(x), it is real since ®= " and it is stable under multiplication
of x by w so all its monomials have powers divisible by 3.

(b) We want to reconstruct f (0,0) given values of even points. The values of a

discretely harmonic function satisfy infinite number of linear relations, spanned by
f(m+1Ln)+ f(m=1n)+ f(mn+1)+ f(m,n—1)—4f(m,n)=0.

The trick is to construct a linear combination of those, in which all non-even values
cancel out and only even remain.

Consider polynomials in x, y, x', y"'; some call polynomial with negative powers
Laurent polynomials.

For each linear combinations of the values of our harmonic function we shall
correspond a Laurent polynomial in the following way:

f (m,n) corresponds to x™"y",

linear combination of those corresponds to linear combination of corresponding
monomial with the same coefficients.

For example f(1,0)+ f(-1,0)+ f(0,1)+ £ (0,—1)—4f(0,0) corresponds to

plx,y)=x+y+x'+y'—4.
Another example: f(m+Ln)+ f(m—1,n)+ f(mn+1)+ f(mn—1)—4f (m,n)
corresponds to x"y" p(x,y). Therefore, the basic relations and their linear

combinations that can be computed from them correspond to multiples of p(x,y).

So, in the new language, the question is: construct an example of Laurent
polynomial, which is even in both variables and divisible by p(x,y).

The simples construction is p(x,y): p(=x,y) p(x.—y): p(—=x,—y).



3*. Prove that p(x)=x"+2x" —6x"" +2x"" —10x" + 4x° + 60x° — 44x* —4x+4 is
irreducible over Z.

First solution. Assume that p(x)=(a,x" +...+4a,)(bx' +...+b,).

First of all, look on this equation mod 2. You conclude that all the coefficients
except a, and b, are 0 mod 2, so they are even, while are g, and b, odd.

a,b, 1s divisible by 4, but not by 8, and both factors are even, so neither of them is
divisible by 2. So, a, and b, are even but not divisible by 4.

WLOG (without loss of generality), k < [.
Consider k’th coefficient of p :

k
a.b, + Zaj_kbk .

j=1
The first term is divisible by 2 but not by 4, all other terms are divisible by 4. So
coefficient number &, which is in the lower half of polynomial p is divisible by 4

but not by 2. That is not our case: all coefficients from degree O to 6 are divisible
by 4.

Second solution. For each polynomial a,x* +...+a,, we shall build an unbounded

convex polygon in the following way.

First, we consider all nonzero coefficients. For each coefficient a,, let [ be the order
of 2 in prime decomposition that coefficient, which means that 2’ is the highest
power of 2 that divides a,,. On the plane, we mark the point (m, [) and construct the
ray going straight upward, starting at this point.

The convex hull of these rays is the unbounded polygon.

A polygon like that can be constructed for any polynomial. It is easy to see that for
any pair of polynomials p and g, the polygon of pg is Minkowski sum of the
polygon of p and the polygon of g.

Reminder. Minkowski sum of two sets A, B in the plane is the set of all a + b,
such that a belongs to A and b belongs to B.

It is easy to see that Minkowski sum of two convex polygons is also a polygon, and
that each side of it is either translated copy of a side of one of the polygons, or, if
two sides of the added polygons are parallel, it can be a side in the same direction,
and its length is sum of lengths of two sides.



Indeed, the points on the diagram can come from either product of coefficient in
the diagrams, which is sum of both degree and order of 2. Contributions from
product of different coefficients can cancel out partially or completely. If things
cancel out completely, we have less coefficients to draw; if things cancel out
partially, for example sum of two things that are divisible by 2 can sum up to
something divisible by 4 or by 8, but it will still be a point inside the diagram,
because we added those rays in the construction.

The important thing is, that points at the vertexes of the Minkowski sum don’t
cancel out. Indeed, each vertex of Minkowski sum come from two vertexes of the
two original polygons, both are the extreme points in the same direction, so we
have only one contribution at this vertex. Of course, we can have contributions
with the same power of x and higher power of 2, but it won’t influence the order of
divisibility by powers of 2.

These diagrams lead us to the nice

Dumas criterion. If the lower boundary (without the vertical parts) of the diagram
we have constructed doesn’t contain integer points except the ends, then the
polynomial is irreducible.

Indeed, a product of two polynomials would create some vertexes on the diagram,
or at least a side with integer points in the middle.

Remark 1. We have constructed the diagrams with order of divisibility by 2, but it
is possible to do the same thing with any prime number p instead 2.

Remark 2. The famous Eisenstein criterion is only a special case of Dumas
criterion.

Now look at the diagram of the polynomial in the problem:

——

5 10
The lower boundary does not contain integer point between the ends, so it is

irreducible.

—]

4. You are given an NxM table of real numbers. The sum in every sub-square of
3%3 cells is positive, and the sum in any sub-square of 5x5 cells is negative.
What can we claim about M and N?

In other words, for which M and N a table satisfying the conditions exists?



Answer. Either M or N should be less then 7.

First solution. In a table 7x7 sum of all sub-squares 3x3 is equal to sum of all sub-
squares 5x5. This can be checked directly. By condition, that number should be
both positive and negative. So, the table cannot contain 7x7 sub-square, so one of
the dimensions should be at most six.

Consider the following line of six numbers:

3-533-53

Notice, that the sum of any 3 consequent numbers is 1, and the sum of any 5
consequent numbers is -1. By writing this line many times, we get Nx6 table, such
that the sum in each 3x3 sub-square is positive, and the sum in any 5x5 sub-square
1s negative.

We can reduce number of columns, and so we get an example of a table of no more
than 6 rows. Rotation of those examples by the right angle produces examples for
no more than 6 columns.

Second solution. To prove that the table doesn’t exists for certain M and N, we
shall try to arrive to a contradiction in the following way. We shall try to build a
linear combination with positive coefficients of 3x3 sub-squares which is at the
same time a linear combination of 5x5 sub-squares with positive coefficients.
The expression which satisfies these requirements should be positive and negative
at the same time, and that 1s a contradiction.
Any linear combination of cells can be coded as a polynomial in two variables,
where cell in row a, column b is represented by x“y” (both rows and columns have
nonnegative numbers starting with 0) and linear combinations of cells will be
written as linear combinations of corresponding monomials with the same
coefficients.
Sum of sub-square 3x3 corresponds to some monomial times
pir,y) =1 +x+x)(1+y+))

Sum of sub-square 5x5 corresponds to some monomial times

g, ) =1 +x+X+X+xD) L +y+y +y +y)
Therefore, the polynomial corresponding to contradiction polynomial is, on one
hand, a(x , y) p(x, y) and on the other hand b(x , y) g(x , y), where a and b are
nonzero polynomials with nonnegative coefficients.
The product p(x , y) g(x , y) certainly is of that kind, it has degrees 6 in x and in y,
so we have built a contradiction for M, N > 7.
The question is, whether there exists a contradiction polynomial of lower degree in
one variable at least. The answer is no: indeed, there is unique factorization for
polynomials, so any contradiction polynomial must be divisible by (1 + x + x%), by
1+y+y), byl +x+x"+x +x)and by (1 +y+y* +y +y"), the polynomials



are coprime, so it must be divisible by their product. So any contradiction
polynomial must be divisible by p(x , y) g(x , y), so it requires M, N > 7.

This doesn’t complete the proof yet. Indeed, even though we can’t find the
contradiction with linear combinations of conditions, it still doesn’t obviously
follow that the table of numbers exists. One way out of this is to present an
example (like we did in the first solution, another way is to prove a generic linear
algebra statement (which reminds the last problem of second shlav).

Theorem. Let F and G two families of cellular shapes on a board of K cells.
Assume we try to put a number in each cell so that sum of numbers in any shape
from F will be positive and in any shape from G will be negative. That is possible
if and only if it is not possible to find an equality between linear combination of F
shapes with positive coefficients and linear combination of G cells with positive
coefficients.

One direction is obvious (if the table exists then linear combinations of F shapes
give positive values on the table and linear combinations of G shapes give negative
values). The other direction is what we actually need.
We shall consider cells as basic unit vectors in K-dimensional space, and shapes as
their linear combinations. Linear combinations of F-shapes form a convex cone, as
well as linear combinations of G-shapes. The statement we come to is geometric: if
we have two non-intersecting convex cones, and we want to separate them by a
hyperplane via the origin (so linear combination of F will be on the positive side,
and linear combinations of G will be on the negative side. The values in the cells of
the table are the values of the linear functional, which defines the hyperplane, on
the basic unit vectors.
In our case, all the rays of both cones intersect the hyperplane

H = {sum of all coordinates = 1}
in the compact simplex, whose vertexes are basic unit vectors. So, in hyperplane H
intersection with both cones are compact convex polytops, P and Q. If we separate
the two polytops in H by a K — 2 plane S, then the hyperplane passing through S
and the origin separates the cones. Hence somewhat unexpectedly, the theorem is
reduced to a

Lemma. Two disjoint compact convex bodies P and Q in K — 1 dimensional space
can be separated by a hyperplane.



Proof of lemma. Let X, Y be points in P, Q respectively, such that XY is the
minimal. A pair like that exists, since P and Q are compact, hence PxQ is compact
too, hence each function on PxQ has a minimal value.

The hyperplane that will be taken is perpendicular bisector of interval XY.

5%, Consider the polynomial 1+ x*y* + x*y> —3x”y”. Prove that it is non-negative

for any real x, y and that this polynomial cannot be represented as a sum of squares
of polynomials with real coefficients.

Solution. The non-negativity is Cauchy inequality for n = 3:
2.4 4.2
1+x y3+x y > 3/x6y6 =x2y2

So, it remains to prove that it is not a sum of squares.

Definition. For each polynomial p(x;, x,, ... , X;), each monomial specifies an

integer point in R* such coordinate j of the point is the power of x; in that

monomial. Convex hull of those points is called Newton polytope.

Basic fact. If p, g are two polynomials, then the Newton polytope of pg is the
Minkowski sum of Newton polytopes of p and of 4.

Explanation. Consider generic vector v in R*. The point having highest scalar

product with v on given polytope is unique. In that way, for each direction we have
one vertex of Newton polytope of p and of g. Sum of this two points is a vertex on
Minkowski sum, and all vertexes of Minkowski sum can be described that way.
Product of corresponding monomials cannot cancel out with products of other
monomials in pg, since it is the extreme point is some direction.

Exercise. Make sure this explanation can be made into a proof.

Squaring any polynomial multiplies its Newton polytope by 2.

After squaring, the coefficients corresponding to the vertexes of Newton polytope
are positive. Indeed, they are squares of coefficients corresponding to the vertexes
of Newton’s polytope of the original polynomial.



Consider several polynomials, such that coefficients corresponding to the vertexes
of their Newton polytope are positive. Then the Newton polytope of their sum of is
the convex hull of their Newton polytopes. (In general, without the positivity
condition on vertexes, it is wrong). Indeed, if any vertex of Newton polytope of
one of the polygons cancels out with some coefficient of another polynomial, then
the vertex is internal for another polytope and isn’t on the convex hull of all
polytopes anyway.

From now on we shall talk about Newton polygons, to indicate that we came down
from general facts about polynomials to our specific polynomials of two variables.

Newton polygon of the polynomial which was mentioned in the problem is triangle
00,24 ,42)
Assume that it was sum of squares. So, each square that participated in the game
had Newton polygon covered by that triangle, therefore Newton polygons of each
original polynomials before squaring was contained in the triangle
0,0),(1,2), (2,1
There are only 4 integer points in it: the 3 vertexes and (1,1). So each polynomial
before squaring was of form a + bxy + cxy” + dx’y.
When we take the square, the only contribution to coefficient (2,2) is b°x’y’.
So, if our polynomial would be sum of squares then the coefficient of x*y* woud be

sum of squares, and hence nonnegative. And it is negative, contradiction.

Historical remark. This kind of examples was in fact known to Hilbert, and led
him to formulate 17" problem in his famous list
http://en.wikipedia.ore/wiki/Hilbert%27s _seventeenth problem




Group action.

For definition see http://en.wikipedia.org/wiki/Group_action

This targil contains a crucial error, but I won’t say which problem.

1. (a) Assume that prime number p divides x'° + 1. Then p is of form 32k + 1.
(b) Without using the general Dirichlet theorem or L-functions, prove that for any
k there is infinite set of primes of form kn + 1.

2. (a) Pizza consists of p sectors (p is a prime number). Each triangle can be one of
a types (onions, olives, mushrooms and so on). Compute the number of possible
nonequivalent pizzas.

(b)* Let p be a prime number. Compute the quantity of subsets of p elements of a
set {1, 2, 3, ..., 2p} such that sum of subset elements is divisible by p.

3*, The order of group G is 2%(2/+1), and the group has an element of order 2".
Prove that elements of odd order form a subgroup.

4**, Prove that the group of rotations of dodecahedron is As (the group of even
permutations of 5 elements), and groups of all dodecahedron symmetries is Ss (the
group of all permutation of 5 elements).

S. Let p be a prime number.

(a) Show that group of order pk has nontrivial center (in other words, it has
elements other than unit that commute with all the other elements).

(b) Show that any group of p” elements is commutative.

(¢) Can a group of p’ elements be non-commutative?



Group action - solutions.

The wrong statement was the second part of problem 4.

1. (a) Assume that prime number p divides x'® + 1. Then p is of form 32k + 1.
(b) Without using the general Dirichlet theorem or L-functions, prove that for any
k there is infinite set of primes of form kn + 1.

Solution. (a) Modulu p, the equation x'° = —1 has a solution. So, there is a
remainder x mod p, which is of order 32. By Fermat little theorem, order of each
element mod p divides p — 1, therefore p — 1 = 32k.

(b) We shall need the following notion:

Definition. Cyclotomic polynomial is.

In other words, it is a monic polynomial that has simple roots which are “roots of 1
of degree n precisely”.

A simplest way to construct it is to take x" — 1 and divide it by all common divisors
with x* — 1 for k < n. From this it can be seen that cyclotomic polynomial has
integer coefficients.

Generic remarks on cyclotomic polynomials:

a. If You write down first one-hundred-something cyclotomic polynomials, you
will get an impression that all their nonzero coefficients £1. That impression is
wrong.

b. It can be shown that all cyclotomic polynomials are irreducible. But that’s an
exercise with 2 stars, and we won’t discuss it right now.

¢. Cyclotomic polynomials have many applications, for example to geometry of
regular polygons and to Galois theory.

Back to the original problem. Assume that there is only a finite number of primes
of type kn + 1. Let P be the product of all those primes.

Consider the number @, (P). It is not divisible by the divisors of P, since the free

coefficient of cyclotomic polynomial is 1 for n > 1 (why?). But it has a prime
divisor, p. We claim that p is of form kn + 1, which contradicts the assumption.

Indeed, @, (P)=0(mod p) hence P" =1(mod p) and for no m < n it we shall get
P" =1(mod p) because @, (x),x" —1 are coprime polynomials.
Therefore, the order of P mod p is n and by Fermat little theorem, n divides p — 1.



2. (a) Pizza consists of p sectors (p is a prime number). Each triangle can be one of
a types (onions, olives, mushrooms and so on). Compute the number of possible
nonequivalent pizzas.

(b)* Let p be a prime number. Compute the quantity of subsets of p elements of a
set {1, 2,3, ..., 2p} such that sum of subset elements is divisible by p.

2
Answers. (a) u+ a (b) p—+ 2
14 14

Remark. From these one can get nice conclusions about divisibility.
From (a) we get Fermat little theorem: a” = a(mod p)

. o . (P n
Obvious generalization of (b) is o 171 (mod p)
P

Solution. (a) If pizza wouldn’t rotate, we would obviously get a” pizzas.

However, group of rotations divides pizzas into orbits. As it usually happens with
group action, order of orbit X order of stabilizer = order of group, which is p in our
case. Since p has only two divisors, we conclude that each pizza belongs to orbit of
1 or of p. Pizzas which belong to the orbit of 1 are monochrome pizzas (all
rotations keep preserve it, so all sectors are the same).

There are precisely a monochrome pizzas and a” — a non-monochrome states of
pizza, the second amount must be divided by p since it consists of p-orbits.

(b) Consider the following rotation of numbers: each number smaller than p is
increased by 1, and p is replaced by 1.

Like pizza rotations, this operation splits all subsets of p elements into orbits of p
or 1. There are only two stable sets of order p, which are invariant with respect to
that rotation: {1, 2, ..., p} and {p+1, p+2, ..., 2p}.

Obviously, sums of elements in those two sets are divisible by p.

2
The other ( pj — 2 sets are divided into orbits of p. Consider one orbit. Sets in it
p

have k elements not bigger than p, where 0 < k < p. Each rotation adds k to the sum
of elements mod p. So, in each orbit of p there will be only one set with the sum
divisible by p.



3*. The order of group G is 2%(2/+1), and the group has an element of order 2",
Prove that elements of odd order form a subgroup.

Solution. We shall use induction on k. for k = 0 the statement is obvious.

Consider left action of group on itself. Each element of a group, when you multiply
group elements by it, defines a permutation of group elements. Any element of odd
order defines only odd cycles, so it defines an even permutation. An element of
order 2* defines 2m+1 cycles of even order (2"), and that is odd permutation.

Consider a subgroup of those group elements that correspond to even
permutations.

Those elements contain all elements of odd order, but not all elements in the group.

It is a subgroup of order 2, so we reduced our problem to a problem on a smaller
group, which follows from induction assumption.

4+*, Prove that the group of rotations of dodecahedron is As (the group of even
permutations of 5 elements), and groups of all dodecahedron symmetries is Ss (the
group of all permutation of 5 elements).

Solution. The statement about Ss is false. Dodecahedron happens to have a
transformation of central symmetry. Choose dodecahedrons center as a origin of
Cartesian system, central symmetry is multiplication by -1 and all other
transformation are linear, and multiplication by -1 commutes with any linear
transformation.

So, the group of symmetries of dodecahedron has a nontrivial center, while Ss
doesn’t.

Now we shall prove that is the group of rotations of dodecahedron is As.

Remark. A convenient way to draw a convex polytope on
a plane is to perform stereographic projection from the
center of some face.

We paint the edges of dodecahedron in 5 colors (see the
picture). When you look at any face, each edge has the
same color as the edge containing the opposite vertex of



this face and lying outside this face. In that way, any edge defines all the edges of
the same color.

Every symmetry of the dodecahedron defines some permutation of colors.

That gives us a mapping from group of rotations of dodecahedron to the Ss.

There are 60 rotations: a given face can be sent to every face in 5 ways.

There are also 60 even permutations in Ss.

There are 24 possible cyclic orders of 5 elements; on the faces of our
dodecahedron we see 12 different cyclic orders. Therefore, all rotations correspond
to different permutations. Therefore the mapping that we constructed is injective.
It remains to prove that all the permutations we get are even.

Rotating of any face around its axis gives cycle of order 5, which is an even
permutation. Any other rotation can be decomposed into product of those simple
rotations, so it also corresponds to an even permutation. QED.

Remark. Another ways to formulate this group action:
a. Middle points of edges form 5 regular octahedrons. Rotations
permute those octahedrons.
b. It is possible to inscribe 5 cubes into dodecahedron, so that the vertexes of
the cubes are also vertexes of dodecahedron. Rotations permute those cubes.
I’ve decided that it is easiest to explain when picture can be made planar.

5. Let p be a prime number.

(a) Show that group of order p* has nontrivial center (in other words, it has
elements other than unit that commute with all the other elements).

(b) Show that any group of p* elements is commutative.

(¢) Can a group of p’ elements be non-commutative?

Solution. (a) Consider conjugation action of group by itself. That is, each element
g in the group G defines a permutation: & goes to ghg ™.

So, each element 4 has certain orbit: orbit is the set of all elements, to which 7 is
sent by different g. A very naive, but also a very powerful fact: when group acts on
the set, the order of orbit x order of stabilizer (a subgroup of elements which don’t
move the element) = order of group.

In our specific case, order of group is p, so any orbit is of size power of p. That
means, each orbit is either divisible by p or 1. Orbit of 1 under conjugation is of
size 1, so there are several more orbits of size one, since one orbit of size 1 +
several orbits of size divisible by p will never give you p*.



Elements having orbit of size 1 are central elements, so center is nontrivial.

(b) Consider center C of group G. By (a), it is nontrivial. So C has p or p°
elements. If it 1s pz, we won, so from now on we shall assume it is p.
Let a be an element outside C. Then a and C span a commutative group. Its order

is more than p, but still a divisor of p?, so it is p°. So it is the whole G and like we
said, it 1S commutative.

1
(¢) For example, consider matrixes over Z , of the form | 0
0

S = =X
_ N <

It is easy to check they form a non-commutative group of p° elements.



Targil 9 - unique factorization.

Reminders:
(a) A ring is a set of numbers with 3 arithmetic operation: +, —, *, and some obvious axioms (for
lists of axioms, use google/wikipedia).

(b) Z[a] = the ring generated by integers and a.

(c) Units of the ring are elements invertible under multiplication (such a that there exists b such
that ab =1).

(d) Element a is irreducible, if for any decomposition a = bc either b or c is a unit (but not both).
(e) Irreducible factorization of some element of a ring is a representation of it as a product of
irreducible elements.

(f) A ring has unique factorization property, if any two irreducible factorizations of any element
differ only by permutation of factors and multiplication of factors by units.

1. Consider ring Z[ix/g } , Where d is a positive integer.

(a) Prove that if d < 3 there is unique factorization property.
(b) Prove that if d > 3 there is no unique factorization property.

2.* Find all integer solutions of equations:

@x’+4=y

b)x*+2=y’

3. Represent 1234321 and 123454321 as a” + b°, where a, b are positive integers

(using computer here is the moral equivalent of driving the morning run, and has
the same effect but on a different group of muscles©).

4. (a) How many ways are there to represent 2° pj pZ -...- p - ¢/ qJ -...-q)" as a
sum of 2 integer squares, if p; are prime numbers of type 4a + 1 and g; are prime

numbers of type 4b + 3 ?
(b)* For R > 0, show that number if integer points in the disc { x* + y* <R } is

R

(¢)* Consider “triangular” lattice, formed by points of Z[®], where ®#1, @ =1.
Show that number of points of this lattice in the disc { x* + y* <R } is

fe BRI

k
5. Suppose n > m > 0 are integers, ¢ = arctan(m/n), prove {@} > l[;j .

) T\ Nm’+n®

({x} denotes fractional part of x, which is a number in [0,1) equivalent to x mod 1)



Targil 9 - unique factorization.

1. Consider ring Z[ix/g } , where d is a positive integer.

(a) Prove that if d < 3 there is unique factorization property.

Solution. For any z, denote || = ‘z‘z =z-z.If z=a+ibJd e Z[i\/g] then

HZH =a’ +b’d is anonnegative integer.
The proof is based on a sequence of lemmas, known as division with remainder
and Euclidean algorithm, most of which must look familiar.

The ring that we investigate, Z[i] or Z[i\/z], will be denoted R.

Lemma 1. If z,we R,w#0, there exist g,r€ R, such that z = gw + r and
][> -
Lemma 2. For every z, w there exists a common divisor ce R such that any

common divisor of z and w in R is also divisor of ¢, and ¢ = mz + nw, where
m,ne€ R. This c is unique up to multiplication by a unit and it is called greatest

common divisor.
Lemma 3. If p is irreducible, and st is divisible by p (while s,¢, pe R), then either

s or t is divisible by n.

After we prove the, life becomes easy. Indeed, take two different irreducible
factorizations of the same number: p,p,-...-p. =q,q,-...-q,, .
Both sides of the inequality are divisible by p;, so by lemma 3 one of the factors g;
in the right hand side is divisible by 1. If one irreducible number is divisible by
another, the quotient is a unit. So we may cancel out p; with g; and a unit will
remain in RHS, but this unit can be hidden into another element of the product.

So we shall have a shorter identity, for which equivalence is already known by
induction (base of induction: if one side of identity had only one element of the
product, we get irreducible = something, so something is also irreducible, so both

factorization have 1 element and it is the same).

So, it remains to prove the lemmas:

Proof of lemma 1. Consider s = z/w, a complex number but not necessary in R.
Let g be the number in R closest to s. Since R geometrically is a rectangular
lattice, |s — gl is at most half the diagonal of a small rectangle, which is less than 1.



ls—gl<1
Iz — gwl =lsw — gwl =1ls — gl'lwl < Iwl
If we denote r =z —gw we got Irl <1 and
Z=qgw+r
QED.

Proof of lemma 2. Using lemma 1, we build a sequence of identities:
Z=qw+n
w=qirn+n
= qor + 13
ra=qsr3 + 14

I'no = {qnilp1 + 1y
The sequence Hrk H 1s decreasing. A decreasing sequence of positive integers must

stop, so at some moment the remainder will be 0:
-1 = 4nln

If certain k in R divides both z and w, by first identity of the sequence it divides ry,
so by second identity it divides r, and so on, hence by induction it divides r,. Also,
by the last identity r, divides r,_; so by the identity before the last it divides r,, and
hence by the identity before that r,, ; and so on, and in the end we see that it divides
both z and w.

Since each common divisor k of z and w 1s a divisor of 7, so HrnH = Hkl” = Hk” . Hl

2

therefore HrnH > HkH . So r, 1s the longest among all common divisors of z and w.

Any other common divisor of the same length is divisible by r,, and the ration is of
length 1, so it is a unit, so any other divisor of maximal length is equivalent to r,.
From each identity we can express the r, as a linear combination r,; and r, with
coefficient in r. We start with r,, = 1,5, — Ggp.17.1-

Substitute 7,.; = 1,3 — quatn2, and we get r, = uir,3 + Vir,o.

Substitute 7, = 1.4 — Gu3tn3, and we get r, = uir,4 + Vir,3.

This process continues until we get r,, = uz + vw.

Remark. { uz + vw } is an ideal, spanned by z and w. All its elements are divisible
by all common divisors of z and w. What is more, with Euclidean algorithm we
found d, such that { kd } = { uz + vw }. Ideals for which such d exists are called
principal ideals.

The word “ideal” in ring theory historically appeared from thinking about rings
where these statements are wrong, so attempt to find one number generating the
ideal spanned by w and z fail completely, so they talked about “ideal numbers”,
which are not actual numbers we want them to be but subsets of the ring.



Proof of lemma 3. Assume that st is divisible by p but s and ¢ separately are not.
The common divisor of p and anything is either a unit or equivalent to p, but s is
not divisible by p, so the greatest common divisor of s and p os 1, therefore
l1=as+ bp
For similar reasons
l=mt+np
Therefore
1 = (as + bp)(mt + np) = amst + (asn + bmt +bnp)p = Mst + Np = Kp
Hence p is a unit, which contradicts the assumption.

1. Consider ring Z[i\/g } , where d is a positive integer.

(b) Prove that if d > 3 there is no unique factorization property.

Solution

(1+iVd )(1-ivd ) =d +1
(iVd )(-ind ) =d

One of these two numbers is even and hence divisible by 2.
2 is irreducible: indeed, if 2 = k/, then ||| -|[{] =4, so either k or / is a unit or

HkH = HZH =2 but we don’t have numbers of length V2 inour ring.

So, if we would have unique decomposition, either 1+ iNd or 1—ixJd or ixJd or

—ixJd would be divisible by 2, but they are not (you can divide them by 2 as
complex numbers, but you will get outside R).

2.* Find all integer solutions of equations:
(a) X +d= y3

Solution. (x + 2i)(x — 2i) =y’

The difference of between the two factors is 4i = — i(1+i)*.

1 +i is irreducible, so the greatest common divisor of x + 2i and x — 2i 1s (1+0)",
where N is nonnegative integer not greater than 4.

Irreducible factorization of x + 2i is complex conjugate to irreducible factorization
of x —2i, and 1 + i is equivalent to its complex conjugate, so 1 + i and its
equivalents appears in the same power in x + 2i and x — 2i.

The total power should be divisible by 3, therefore it is O or 3.



Apart from power of 1 + i the two factors x + 2i and x — 2i have no common
divisors, so both are cubes (because of unique factorization in the ring of Gaussian

numbers Z[i]).
So, x+2i=(a+bi) =(a’—3ab’)+(3a’b-b)i.
x=a’—3ab’ = (a2 —3b2)a
2=3a’b-b"=(3a’-b")b
The last equation implies b=%1 or b=12.
First option: b=+1.
3a° —1=3a"-b" =12
3a® =—1 or 3, so in previous equation it was + and b = 1

a’=1
We get x=12,y=0.

Second option: b=12.
3a° —4=3a"-b" =+l
3a’ =5 or 3, so in previous equation it was — and b = -2
a’ =1
We get x=(a’-3b")a=%(1-12)=%11,y=5.

Verification shows that (£2,0),(%11,5) are indeed solutions.

2.* Find all integer solutions of equations:
(b)x* +2 = y3

Solution. (x+ i\/z)(x— l\/z) =y’

In Z[i\/z] we also have unique factorization.

The greatest common divisor of both brackets also divides their difference, which
3 k
18 i2\/§ = (—i\/z) . So, it 1s (1\/5) , k not bigger then 3.

Irreducible factorizations of x +iv/2,x —i/2 are complex conjugate and iN2 is
equivalent to its complex conjugate, so i~/2 and its equivalents appears in the
same power in x + i\/z,x —i\2.



The total power of i~/2 should be divisible by 3, and apart from that
X+iv2,x— i\/a have no common divisors, so both are cubes.

x+ix/§=(a+ib\/§)3 =(a3 —6ab2)+(3a2b—2b3)i\/§
x=a’ —6ab’ =(a2 —6b2)a
1=3a’b-2b" =(3a" - 2b% )b

b=+l
3a® - 2b* =+1

The last equation gives two options for 3a’: either 3 or —1.
It should be divisible by 3, so in both last equations sign is +, a =
a=11,b=1
x=a’—6ab> =75
Both options give a solution with y = 7.

From the last equation:

3. Represent 1234321 and 123454321 as a* + b*, where a, b are positive integers.

Solution: 1234321 = 11117 = (101-11)?
101=10"+1
(@ + b + d°) = (ac — bd)* + (ad + bc)*
1017 = (10% + 1)(10* + 1) = 99% + 20°
(101-11)* = (99% + 20°) -11%= 1089* + 220°

123454321 = 11111 = (41-271)*
41=25+16=5"+4
417 = (5% + 45 (5% + 4%) = 9> + 407
(41-271)* = (9> + 4072717 = 2529% + 10840°
Remarks.
I. In this solution, we used the lemma: sum of two squares times sum of two
squares is sum of two squares. This can come out of an ingenious algebraic trick,
(@ + b + d*) = (ac — bd)* + (ad + bc)*

or from a simple-minded observation: Ha + biH : Hc + diH = Hx + in.

II. In each case, we had two factors: one was 4k + 1, another 4m + 3.
There is no sense even to try decomposing ¢* into sum of two positive squares, if ¢
1s a prime number of type 4m + 3. Because the only solution of the equation

x* +y =0 (mod q)



is (0, 0). If we would have a different solution we would get:

(x/y)2 =x*/ y2 =—1 (mod g)
Then x/y is an element is of order 4 mod ¢, so g — 1 is divisible by 4 by Fermat
little theorem. Therefore, if a* + b* is divisible by 11 (or 271) then both a and b are
divisible by 11, so divide each of them by 11 and sum of squares by 11* and
continue from there. So, when we took 11% out of the brackets, it was the only
choice.

III. We could factorize each number in Gaussian integers. Decomposing natural
prime number only has a chance when it is 2 or of form 4k + 1.
So, for example

(a + bi)a —bi)=1234321 = 1111* = (101-11)*= (10 + i)*(10 — i)*11°
Factorization of a + bi 1s a unit times some factors from the right.
Norms of a + bi and a — bi are the same, so they should get the same number of
factors. Each of them should get 11 (since they are conjugate) and two from the
following 10 + i, 10 + i, 10 — i, 10 — i. That leaves us with only two options either
each factor gets 10 + i and 10 — i, or one takes 10 + i twice and another gets 10 — i
twice. So, there are only two ways to represent it as a sum of squares of integers.
The first way is 11117 + 0%, and the second is the only answer to our question.
Similar with 1089” + 2207,

4. (a) How many ways are there to represent 2 pi pZ -...- p" - ¢/ qJ -...-q)" as a
sum of 2 integer squares, if p; are prime numbers of type 4a + 1 and g; are prime
numbers of type 4b + 3 ?

Answer. 4(i; + 1)(i + 1)...(i, + 1) if all j; are even and O otherwise.

Solution. As we noticed in the remark II above, if ¢, divides a* + b® then it divides
both a and b, and we so we can say there are no decomposition into some of
squares if j, = 1 and if j, > 1 it can be reduced by 2 and we get an equivalent
problem. Repeating this, we get that if at least one jk is odd, then decomposition
into 2 squares doesn’t exist, and if all are even, the number of decompositions is

the same as for 2° p' p2 - ...- p".

The crucial fact is
Lemma. A prime number p of type 4k + 1 is representable as sum of integer
squares.



First proof of lemma. (with Gaussian integers and unique decomposition)
Consider the equation a* + b* =0 (mod D).

It is equivalent to (a/b)* = -1 (mod p) or to the statement a/b is of order 4 precisely
mod p and so it has solution (because primitive root exists mod p and p — 1 is 4k).
In other words, we have a” + b* = mp but neither a, nor b nor m is divisible by p.
Let z be the greatest common divisor of a +bi and p in the ring of Gaussian

integers, then ||2|| is a divisor of both ||a +bil|=a’ +b* and p?, so itis 1, p or p”.

But z is a common divisor of a —bi and p, SO 2z is divisible by p and so z is not a
unit. Also |z| is not p* otherwise a” + b° would be divisible by p°. So |z|= p.

Second proof of lemma. (Elementary)

As before, we argue that there is “\/—_1 ” mod p, 1. €. a number c s. t.

¢® =—1 (mod p).

Let S be a set of nonzero integer numbers in [O\/; ) Then ‘S‘ = (\/; —‘

Denote ¢S = {cx | x € §}. Mark points on a circle of length p corresponding to the

points of ¢S. You get a circle of length p divided into (\/; —‘ arcs. So one of the

arcs 1is shorter than \/; So, we have 0<k,l < \/; such that ck — ¢/ = b (mod p)

and O0<b<,/p.Take a = k—1[and we get ‘a‘<\/;,a;t0,andca = b (mod p).
Therefore 0 <a” +b*<p + p=2pand a* + b* =a’ (1 + ¢*) = 0 (mod p).
So, a* + b* = p. QED

From the first approach we see that this decomposition is in fact unique: indeed if
(a + bi)(a — bi) = p then Ha +biH = Ha —biH = p 1s prime so a + bi and a — bi are
irreducible. So if ¢ > + d > = p then ¢ + di is equivalent to either ¢ + di or ¢ — di,
under multiplication by units.

Notice that a + bi and a — bi are not equivalent unless the angle between them is a
multiple of 90°, that happens only when p = 2. Therefore for 2 we have 4
representations as a” + b°, and for prime p = 4k + 1 we have 8 representations.

. . ki i i,
Now consider a composite number 2° p/'p3 -...- p*.
Assume that qu =2 pipZ -...- pi, where z is Gaussian integer.

Up to multiplication by a unit, z is defined by its factorization, so we must count
number of possible factorizations and multiply by 4. The only irreducible number
of H H =2 up to equivalence is 1+ i, so we should have it in power k. Othe



irreducible factors should have H H = p,. For each ¢, we should have precisely i, of

those, and there are two types (up to equivalence), any we can have 0, 1, 2, ... , i,
of the first type and the rest of the second type. So, for each ¢ we have i, + 1
choices and these choices are independent, so there are (iy + 1)(i; + 1)... (i, + 1)
factorization. Now multiply by the number of units to get the answer.

4. (b)* For R > 0, show that number if integer points in the disc { x* + y* <R } is
1+4[R]—£+£—£+£—£+£—....
3 5 7 9 11 13

Solution. Let us consider again the question that we have solved in 4(a): how
many ways are there to represent integer N > 0 as a” + b°, where a and b are
integers (or, in other words, how many integer points does a circle with center at

the origin and radius v N have). We had an answer in terms of factorization, but
there is a nicer way to formulate the answer.

Notations. Let Z(N) be number of pairs of integers (a, b) such that N as a’+ b,
A(N) number of all divisors of N of type 4k + 1 (not necessary prime),
B(N) number of all divisors of N of type 4k + 3 (not necessary prime).

Claim. For N> 0, Z(N) = 4(A(N) — B(N)).

Proof. We shall conclude it from the answer of 4(a) which uses factorization
N=2pip;-..op; q4l'qr .. g

First of all, both answers disregard even divisors, so it is enough to prove it for odd
N,i.e. k=0.

Now there 1s a matching of divisors of N related to ¢, each couple has a ratio ¢,
precisely: for any d which is a divisor of N, if of g; in the decomposition of d has
the same parity as j; we divide by g;, otherwise we multiply by d.

In each pair of this matching one divisor is of type 4k + 1, another of type 4k + 3.
If j; 1s odd then the matching is perfect and A(N) — B(N) = 0, and so is Z(N).

If j, is even then the matching is not perfect: the things that aren’t cancelled out by

this matching are precisely divisors of N’ =N/g/'. But we saw that Z(N) = Z(N’)

so it is enough to prove for N’.
Doing the same for every g, we either prove the statement or reduce it to the same

statement for number M = p|' p2 -...- pi. All its divisors are of type 4k + 1, hence
AM)=(>G;+ DG+ 1)...(i,+ 1), B(M) =0, and the rest of it follows form 4(a).



Now that we have proved the claim, we shall prove 4(b).
Number of points in the disc is

gz(N) =Z(0) +L§22(N) :1+41[VZI:]:1(A(N)—B(N))

Notation. D(d, N) =1 if d divides n
0 otherwise.

[ZR]‘,(A(N)—B(N)) :[i[iD(Mc +1,N)—iD(4l+3,N)J:

N=1 N=1\ k=0 1=0
S5 bk )-S5 p(arean) =3 LS R
= D(4k+1,N)— D(4l+3,N)= —
k=0 N=1 1=0 N=1 k=0 4k+1 1=0 4l+3
QED
Remarks.

1. No convergence issues here when interchanging brackets because all summands
except finite number of them are zeroes.

2. I know 4(b) from a wonderful book of Hilbert and Con-Vossen “Anschauliche
Geometrie” (it has English and Russian translations).

3. Of course, in the limit when we neglect the [], we get the famous Gregory-

Leibnitz formula 7 = 4arctan (1) = 4(1 — % + % — j . It makes sense, since for large

circles the discrete area (number of integer points) is close enough to the normal
area (the difference of this two is bounded by the number of tiles chopped by the
boundary, which is bounded by constant times length of circle, which is O(radius)
while area is O(radius?).

4. Area can be roughly measured also by triangular lattice, so formula of 4(c) also
produces a formula for 7' when applied to large discs, but this time there’s an ugly
irrational factor related to area of regular hexagonal tile. This is no great wonder

3

. 1 1 1 (S s N fx—x° .
s1ncel—§+z—§+...='[2(x3k Py 2)dx='[1_x dx , and that is an

0 k=0 0

: 1 : : :
elementary integral of type Jl dt so it comes to an expression with 7.

2
t
5. The question “when a number is sum of two squares” is known as Fermat
theorem, it has many proofs (thanks Shahar for the link
http://en.wikipedia.org/wiki/Proofs of Fermat's theorem on sums of two squar

es#Zagier.27s_.22one-sentence_proof.22 )




4. (¢)* Consider “triangular” lattice, formed by points of Z[®|, where ®#1,

@ =1. Show that number of points of this lattice in the disc { x* + y* <R } is
1+6[R]—£+£—£+£—£+£—£+....

2 4 5 7 8 10 11
Solution. Open discs of radius 1 centered at points of Z[a)] cover the plane, from

here we get in Z[a)] the logical chain we got in problem 1(a):

Division with remainder => Euclidean algorithm => unique factorization.
Notice, that there are 6 units.

Next we come to a question, which circles of radius +/ N have points on integer
lattice and how many. It is the same as representing N in the form a” — ab + b* (or,
which is an equivalent problem, in the form a” + ab + b°).

The first answer, similar to 4(a), is: if N= 3" pii p2 - .- p» - q/'qJ> - ...- ¢ , where p;
are of type 3s+1, and g; are of form 3s+2, then it depends on the parity of j;.

If at least one of them is odd, then it is impossible; if all of them are even, then the
number of representations is 6(i; + 1)(i; + 1)...(i, + 1).

Of course, 6 here is the number of units in our ring.

The proof is very similar to 4(b), so we shall say only about the differences.
Firstly, the ring of Gaussian numbers is replaced by Z[)].

Secondly, the modular arithmetic is slightly different: in the previous example, we
were reducing a* + b* =0 (mod p) to (a/b)* = -1 (mod p); in a similar way it is
possible to reduce a* + ab + b* =0 (mod p) to (a/b) = -3 (mod p).

So this time we have to prove that —3 is quadratic mod p if and only if p isn’t 3k—1.
This is known from quadratic reciprocity for example.

After that, we reformulate the answer:

Notations. Let 7(N) be number of pairs of integers (a, b) such that N as a* +ab+ b*,
U(N) number of all divisors of N of type 3k+1 (not necessary prime),
V(N) number of all divisors of N of type 3k+2 (not necessary prime).

Claim. For N > 0, T(N) = 6(U(N) — V(N)).

The proof and the rest of it is similar to 4(b), I won’t rewrite it (I could’ve cut and
paste it, but it wouldn’t be fair to the readers).



k
5. Suppose n > m > 0 are integers, ¢ = arctan(m/n), prove {@} > l[;) .

) T Nm’+n®

({x} denotes fractional part of x, which is a number in [0,1) equivalent to x mod 1)

Solution.

Notation. Given a real number a and a positive number b we shall denote a % b a
number x in [0, b) such that x — a = nb, where n is integer. It is quite obvious that x
1s uniquely defined.

k
The statement of the problem can be rewritten as (k@) %7 > L;j :
Nm® +n’
We shall need the following lemma.
Lemma. Let z = x + iy be a Gaussian integer. Let B be the union of four lines,
coordinate and diagonal B={x=0} U {y=0} U {x+y=0} U {x=y}.
If Z* is not in B, then z is not in B.

We shall prove the lemma in the end. Denote w = n + im. Then (k@) %7 is the

. . k . ..
angle between horizontal axis and w", measured counterclockwise. By lemma, it is

Im(w") |[Im(w"
nonzero. So, sin((k(z))%f[):‘ (ZV ) =‘ m(v: ) .
W
‘Im(wk) 1 1 ¢
k@)% inl((k@)%x)= > =
(ke)ore>sin{(ko) %) == =2 [m j

QED, if we prove the lemma.

First proof of lemma. In the previous questions we have actually classified all
irreducible Gaussian numbers:
(a) there are 4 things equivalent to 1+i.
(b) There are real or imaginary things, equivalent to natural prime numbers of
type 4k+3.
(c) For each natural prime p of type 4k+1 there are 4 Gaussian irreducible
numbers equivalent to a + bi and 4 other prime equivalent to a — bi; here
a +b*=p.



If 7* is in B, then 7 is real. Therefore, for each irreducible factor a + bi in 7 of
type (c) we have the complex conjugate factor. So, the same is true for z. So, the
factorization of z has complex conjugate pairs of type (c) which give a real number
in the product times real factors of type (a) times units and factors of type (b)
which preserve the British cross B.

Second proof of lemma. Consider the formula cos(2x) =1 — 2c0s’x

It means that if cos x is a rational number of denominator more than 2, then the
sequence cos(2x), cos(4x), cos(8x), ..., cos(2"x), ... has growing denominators and
can’t have finite number of states, so x is not rational number degrees.

Cosine of a Gaussian number is a square root of a rational number.

Soif z=re” and the argument of " is rational in degrees, then the argument of z is
rational in degrees, and cos(2¢) is also a rational number, so its denominator is 2

at most. This leaves finite number of possibilities: cos(2¢)= O,il,i% :

Some of these (¢) =130°,£60°,£120° ,i150°) have irrational tan which cannot

appear in Gaussian numbers; others are the British cross.



Targil 10 —algorithms
1. A road in desert area is a real line with camps at integer points. It is a day’s walk
between two camps. A human can carry 3 packed lunches, while he or she
consumes one lunch each day. There is a base at 0. Things can be left only in the
camps. It is required to organize an expedition, which will leave a packed lunch at
camp 5, and all members of the expedition should return alive to the base. How
many packed lunches are required?

2. (a) A soldier is a finite automata: his head has a finite number of states, and he
can respond to a finite number of commands. A row consists of N soldiers, which
are in the same initial state. Prove that they can be programmed so that several
seconds after the leftmost soldier will receive a specific command, they will shoot
simultaneously. Each soldier can pass a command to every neighbor during any
second.

(b)* Show that for a row of length N no more and no less than 2N — 2 seconds are
needed between the first command and the shooting, if the most efficient algorithm
1s used.

3. Show that in Conway’s game “Life” there is a configuration without pre-image.

(The Game of Life http://en.wikipedia.org/wiki/Conway's_Game of Life is played on an
infinite two-dimensional grid of square cells, each of which is in one of two possible states, live or dead.
Every cell interacts with its eight neighbors. At each step in time, the following transitions occur:

1. Any live cell with fewer than two live neighbors dies, as if caused by underpopulation.

2. Any live cell with more than three live neighbors dies, as if by overcrowding.

3. Any live cell with two or three live neighbors lives on to the next generation.

4. Any dead cell with exactly three live neighbors becomes a live cell.)

4.* Denote C(n) minimal number of operations required to multiply a segment by n
using compass. Denote CR(n) minimal number of operations required to multiply a
segment by n using compass and ruler. Prove that C(n)/CR(n) is unbounded.

5.%* An infinitely wise but a shortsighted cockroach is trying to find the truth (on
the Euclidean plane). If he is in a distance of less than one step from the truth, he
will reach it with the next step. After each step he is told whether he got closer to
the truth. In the beginning he knows, that the truth is N steps from him.
Prove that the minimal number of steps required to find the truth is

(a) Less than N + 10 log(N)

(b)More than N + log,(N)/10



Targil 10 —algorithms
1. A road in desert area is a real line with camps at integer points. It is a day’s walk
between two camps. A human can carry 3 packed lunches, while he or she
consumes one lunch each day. There is a base at 0. Things can be left only in the
camps. It is required to organize an expedition, which will leave a packed lunch at
camp 5, and all members of the expedition should return alive to the base. How
many packed lunches are required?

Answer. 243 (= 3°)

Solution. Let us construct an example of expedition which consumes 243 lunches.
We shall divide the expedition into 3 equal companies. First two companies will
arrive to camp 1, place leave there 1 packed lunch each and come back.

The third company will take the lunches left by the second company and continue
with the expedition. After they shall return to camp 1, they shall take packed
lunches left by the first company and return home. So we see that if K lunches are
enough to leave a lunch at camp N, then 3K lunches are enough to leave a lunch in
camp N+1, so by induction 3" lunches are enough to leave a lunch at camp L.

A proof that in no way we can manage with less than 243 packed lunches, can be
constructed by introducing an appropriate energy function (a. k. a. semi-invariant).
Define the energy of packed lunch at camp K as 3K, and the energy of a soldier at

K
camp K as —Z 3 = —(3 +9+..+3F ) That is precisely minus the energy required
=1

to bring him home, so any soldier returning home without extra supplies is
preserving the energy. The total energy is sum of energies of all lunches and all
soldiers.

If a soldier that takes 3 lunches from camp K to camp K+1 the energy of lunches
changes from 3-3% to 2:3%*' 50 it goes up by 3%*', but the energy of the soldier is
reduced by the same amount. If a soldier takes less than 3 lunches from K to K+1,
or takes less than one lunch from K+1 to K, or stays in the camp and eats a lunch,
then the energy is obviously reduced.

In the beginning of the expedition, all soldiers have energy 0, and lunches have
energy N, where N is number of lunches acquired at afsanaut. In the end, all
soldiers have energy 0 and lunch at camp 5 has energy 243. Since energy is not
growing, N is at least 243.



Remarks (1). We used 81 soldiers. In fact, we could do it with one soldier, that
would be coming back and forth many times. However, the expedition would take
months, instead of ten days.

(2) The problem can be solved “from the end”: assume that now we have a lunch at
camp 5. Before that we had a man with 2 lunches there and 1 lunch waiting for him
at camps 1, 2, 3, 4. Before that, we had a man with 4 lunches at camp 4 and one
lunch waiting for him at camps 1, 2, 3. And so on. Of course, explaining
minimality would be a mess.

2. (a) A soldier is a finite automata: his head has a finite number of states, and he
can respond to a finite number of commands. A row consists of N soldiers, which
are in the same initial state. Prove that they can be programmed so that several
seconds after the leftmost soldier will receive a specific command, they will shoot
simultaneously. Each soldier can pass a command to every neighbor during any
second.

(b)* Show that for a row of length N no more and no less than 2N — 2 seconds are
needed between the first command and the shooting, if the most efficient algorithm
is used.

Solution. (a) First, we shall explain how to find the middle. We send two signals:
one with a speed 1 soldier/sec and another with speed 1/3 soldier/sec. It means, the
soldiers get an order to pass order A on next second after receiving it, and to pass
order B on 3 seconds after receiving it. The rightmost soldier will pass the orders
back.

The two signals meet in the middle of the row. Actually, they can almost meet:
they can come with a delay of two seconds, but a soldier of finite brain can deal
with that. Also, there can be one middle soldier or two middle soldiers.

Anyway, when the signals meet in the middle, the middle soldier/soldiers decides
that he is an end-most soldier of a sub-line (or two sub-lines) who have just
received an order to organize shooting, and row splits in halves (autonomous but
synchronized).

In such case, he starts the process described above recursively.

If a signal comes back too quickly, means that halves of halves of etc. are short
enough already (say of two soldiers), the soldier orders his neighbor to shoot and
shoots the next second.

The process takes O(n) (about 3n I think) seconds to run.



(b) There is an easy way to prove that it cannot be better than 2n-2, even if soldiers
would have infinite memory and brainpower. To synchronize the shooting, the
chain should first compute its length (because the shooting time obviously depends
on the length of chain). Before soldier O received an order, nobody knows nothing
about the length of chain. Suppose soldier d was the first to get some indication of
chain length. It can happen only after 2n-2-d seconds, because it can only be done
after a signal from soldier O reached soldier n-1 and got back. Only then the
decision can be made about the moment of shooting, and the earliest possible
moment of shooting is 2n-2 because otherwise the command to shoot at that
moment won’t reach soldier O in time.

I don’t really know the algorithm for 2n — 2, but there are some references and
hints in wiki: http://en.wikipedia.org/wiki/Firing squad synchronization problem
They claim that the optimal solution was found by Abraham Waxman in 1966 after
being an open problem for almost 10 years. I shall lay my hands on that article in a
couple of days and send it to the community.

3. Show that in Conway’s game ‘“Life” there is a configuration without pre-image.

(The Game of Life http://en.wikipedia.org/wiki/Conway's_Game of Life is played on an
infinite two-dimensional grid of square cells, each of which is in one of two possible states, live or dead.
Every cell interacts with its eight neighbors. At each step in time, the following transitions occur:

1. Any live cell with fewer than two live neighbors dies, as if caused by underpopulation.

2. Any live cell with more than three live neighbors dies, as if by overcrowding.

3. Any live cell with two or three live neighbors lives on to the next generation.

4. Any dead cell with exactly three live neighbors becomes a live cell.)

First solution. Consider configurations in NxN square. They depend on the
situation in the previous moment of (N+2)x(N+2) square.

Divide the of (N+2)x(N+2) square into 3x3 tiles (one or two untiled rows and
columns may remain. A tile will be called special if it has one of the following two

configurations:
0(0]0 0100
0[1]0 or 0[0]0
0/0]0 0010

We shall roughly estimate number o configurations with less than K special tiles.
There are less than 7% ways to choose K tiles out of 7, and the probability that all

: . _ 255
the tiles that weren’t chosen are not special is &’ * where o =—=——

256

So the probability that there are less than K special tiles is less than T5a" %
Take K = N °”, and see what happens for large N:



3/2

3/2 2 302 172 N 172 N2
Pr<TKg K = NN gV V" _ (NZOJN 71) < (NZOJN ) _
=(mta)" =(mp )"

Where M =+/N, b= Yo <1. Geometric sequence is stronger than arithmetic, so
for sufficiently large M (same as sufficiently large N), the number M y" <<1

where ¥ = \/E . Therefore the probability we’ve estimated
Pr<(MﬁM)4M <(;/V,/2)4M‘ :;/2M4=ﬁN2

Let us divide all configurations on (N+2)X(N+2) square into two types:

3/2

I. Those that have less than N™ special tiles. According to above estimation, there

are less than of 2"*? B " those. Pre-images of those configurations, for large N,
can give not more than 1% of all possible configurations in the smaller square.

Indeed, for large N we have p(N+2) BY < Lo because 2V gV < ﬁ
2 1
"16)" =16 % <« ——
('B ) p 1600
Since for large n even 8716 < 1 :
1600

IL. Second type: those that have at least N** special tiles. In each special tile, the
central cell can be taken 0 or 1, and the outcome at the next stage will be the same.

Therefore, this configurations come in families, each family has N
configurations that become the same one on the next step. So, those configurations

2 3 . . .
are pre-images of at most 2(V+2) / N configurations. That is also no more than

1% of all possible outcomes for large N. Indeed, oV / AP DL / 100 because
2NN 2972 £1/100 for large N.

So, both kinds together give only 2% of configurations, and hence 98% of
configurations don’t have a pre-image.

Second solution (Alexey Gladkich). Consider a big square of nxn distinct squares
of size 3x3. Chance that center cell of a 3x3 square being alive after one step is
less than 50%. Denote it 27'~°. Therefore, number of big squares such that after a

. s AP (e A8 —en?
step, center of each of the 3x3 squares is alive is 2 =2 :



However, number of squares (3n — 2)x(3n — 2) in which these cells are alive is

(3n-2)*-n? 8n?—12n+4 Cp . 2
2 =2 , which is, for large n, much greater (since en” >>12n).

4.* Denote C(n) minimal number of operations required to multiply a segment by n
using compass. Denote CR(n) minimal number of operations required to multiply a
segment by n using compass and ruler. Prove that C(n)/CR(n) is unbounded.

Proof. Recall that diameter of a set is the biggest distance between its points.

With compass only, the diameter can be only doubled by each action. Therefore,
logarithm of diameter grows linearly.

With compass and ruler, if you have interval 1 and d you can build also interval d2
using Thales theorem (see the picture). So, we can take squares in constant number
of operations. Therefore, we can double the logarithm of diameter, say, each then
moves.

In other words, CR (22n ) is only linear is O(n) while C(22n ) is at least 2",

5.%* An infinitely wise but a shortsighted cockroach is trying to find the truth (on
the Euclidean plane). If he is in a distance of less than one step from the truth, he
will reach it with the next step. After each step he is told whether he got closer to
the truth. In the beginning he knows, that the truth is N steps from him.
Prove that the minimal number of steps required to find the truth is

(a) Less than N + 10 log,(N)

(b)More than N + log,(N)/10

Solution. (a) The set of potential location of the truth is a circle.

First move (in any direction) turns it into an arc of length ~ TN+2.

During next k moves, the arc can be divided into equal halves by each move.
Indeed, consider a line going through the middle point of the arc on distance %2
from the location of the roach, and step to the symmetric point w. r. t. that line.
Then we shall be told, which half plane (among the two half planes generated by

that line) contains the truth. After (log2 (ZN )—| steps the location of the truth will

be limited to an arc shorter than 1. It will take no more than N+1 + (log2 (N )—|

additional moves to arrive to the middle of that arc, and then the roach will see the
truth.

What we got here is N + 2-1og,(N) + const, where const is a small number.
Actually, it can be made N + log,(N) + const, if at first stage we would arrange
steps to approximately cancel each other.



(b) Definition. During the solution, the location of truth will be denoted T. A step
from a point A to a point B will be called verification step, if the angle BAT is at
least m/3.

Obviously, a verification step reduces the distance between the roach and the truth
only by 2 at most. Indeed, if BAT is obtuse then the distance even got bigger.
Otherwise, if P is a projection of B to AT, then BT > PT = AT — AP > AT - Y.

So, it we have an algorithm of N + log,(IN)/10 steps, no more than log,(N)/5 are
verifications. Otherwise, we would approach by less than log,;(N)/10 during those
steps, and by no more than N — log,(N)/10 during the other steps, so we would not
arrive to the truth.

Definitions. (1) Let O be the initial position of the roach. The circle of truth is a
circle with center O and radius N.

(2) The arc of truth is an arc of the circle of truth having central angle /3 and the
truth as middle point. The endpoints of that arc will be denoted X and Y.

Lemma. While the roach is still in the circle of radius N/2 and center O, only
verification steps can give any information concerning the location of truth within
the arc of truth.

Proof. Consider regular (equilateral) triangle TXG, such that G is inside the truth
circle. A simple computation of angles shows that OGX = 15° = GXO, so the
triangle OGX is isosceles, GO = GX =GT = TX. Since circle of radius OG passing
through G intersects the circle of truth, its radius greater than N/2.

Therefore circle with center O and radius N/2 doesn’t contain G. Since the closest
point of circle TXG to O is G, we see that circle with center O and radius N/2 don’t
intersect.

Therefore, for each point C within N/2 steps from O, TCX is less then 60° = /3.
Similarly, for each point C within N/2 steps from O, TCY is less then /3.

Each step among first (N — 1)/2 generates two half-planes. If that step is not a
verification, because of what we proved, X and Y are in the same half-plane as T,
and so are all the points between X and Y. QED of lemma.

Let C be the point at which cockroach first time reaches the circle of radius N/2
with center O. Since there are no more than log,(IN)/5, by the moment he arrives to
C, the arc of truth will be divided by the generated pairs of half-planes no more



than log,(IN)/5 times. Therefore, the arc of assumed location of truth by the move

N/2 might be at least of length N”/Zlogzw)/5 = I]XS .
3 3N

Therefore, the roach’s idea of location couldn’t be better than %2 of that number.
The way that has to be done is at least OC + CT. Let Q be a projection of T to the

line OC. We may assume that x = QT is at least —— 5 N

Nl G (Although arc of circle is

longer than perpendicular, but the ratio between them is less than 7/3).

By Pythagoras: QC=Q0O—N/2=+/N*-x> —N/2

2
T2=x2+(\/N2— 2—N/z) N2+NT—§ N?— i =

2 2 2 2 2
=N’ 1+l—1/1—— >N? 1+l—1+x—2 N2 1s x2 N
4 N* 4 N 4 2N 4 2

Lemma 2. If b > a and ¢* = a” + b then ¢ > b + a’/3b.
The proof is an easy exercise.

2 2 2 3/5
SO, CT> N_+X_>E+L 37N E+X_>E N .
4 2 2 2/ 2 2 3N 2 12

N3/5 N3/5
So the total way is at least OC+CT = N + N + =N+ :
2 2 12 12

And that is much longer than we wanted.



Targil 11 — once again, linear algebra

1. Let A;A,...A, be a polygon inscribed in circle. Consider a skew symmetric nxn
matrix (a;), such that for i <j, a;; = AjA;. Prove that the rank of this matrix is not
greater than 2.

2.Let A, B, C be nxn square matrices. Prove that

rk(AB) + 1k(BC) < rk(ABC) + rk(B).
3.* (a) A linear operator A over C" can be considered as a linear operator A, over
R*", because C" is a 2n-dimensional space over R. Prove that ldet(A)I* = det(A)).
(b) Formulate and prove a more general claim, about finite field extension (field C
is an extension of field R of degree 2).
4. Consider matrix equation AX — XB = C, where A, B, C are given nxn matrixes,

and X is an unknown nxn matrix. Show that the solution of the equation exists and
unique if and only if A and B don’t have a common eigenvalue.

5.* Let A be an invertible nxn real matrix, U, V be linear subsets of R". Assume

that U and V are almost disjoint, which means they have no more common
elements except 0.
Show that there exists an integer k such that A“U and V are almost disjoint.



Targil 11 — once again, linear algebra

1. Let A;A,...A, be a polygon inscribed in circle. Consider a skew symmetric nxn
matrix (a;), such that for i <j, a;; = AjA;. Prove that the rank of this matrix is not
greater than 2.

Solution. Assume that the circle is unit circle with center at O (it just divides the
matrix by radius and doesn’t affect the rank). Then A; = (cos(2¢,), sin(2¢,)).
WLOG, the points go clockwise.

Then a;;= sin(p; — ¢;) = sin(@;)cos(p;) — sin(p;)cos(p;).

Both matrixes {sin(¢;)cos(¢;)} and {sin(¢;)cos(¢;)} are of rank 1, hence their
difference is of rank 2.

Remark. For the case of 4 points, the determinant is (see targil 2 problem 5):
(A1A AzAL — AJA3 ALAL + A1A4'A2A3)2, and that is equal to 0, so for inscribed
quadrilateral AjAy AzAy + A1A4 ArA3 = AjAs AyA,. This fact is called Ptolemy’s
theorem, so problem 1 is sometimes called generalized Ptolemy’s theorem.

2. Let A, B, C be nxn square matrices. Prove that
rk(AB) + rk(BC) <1k(ABC) + rk(B).

First solution. In other words,
rk(AB) — rk(B) <rk(ABC) — rk(BC).
Denote V=ker B, W=ker BC. Obviously VcW.
For every linear transformation rk = n — dim(ker), therefore the statement may be
rewritten as follows:
dim V — dim ker(AB) <dim W — dim ker(ABC)
Let vy, vy, ..., vi be the basis of ker A.
Complete it to the basis vy, vy, ..., Vi, Vitts - ..» Vi Of ker(AB).
By adding some more vector we can make the basis for ker(ABC):
V1o V25 eves Vis Vikls o vs Vitls Vititls <« o5 Vitl+m-
Here k, [, m are nonnegative integers.
We claim that a non-zero linear combination of Avi.i1, AVitis2s -« .y AViirim 1S DOt IN
V. Indeed, if a1AVi1+ ... + @A Viiiom = A(@1Vig11 + ... + QpVise1am) 1810V = Ker B,



thus a\Vis1 + ... + @uVisrom 18 In ker(AB), so it is a linear combination of vy,..., Vi,
but that is impossible since vy, ..., Vi m are linearly independent.
Therefore, if u;, u,, ..., u,1s a basis of V, then uy, u, ..., ,, AVisists -+ AVisiom
form a linearly independent system in W. Hence r + m < dim W.
We wanted to prove that:
dim V — dim ker(AB) <dim W — dim ker(ABC)
In our new notation, that is
r—(k+D)<dmW-(k+1+m)
r+m<dmW
QED.

Second solution. This proof will be much shorter, but it uses some higher
mathematics, namely quotient spaces. Recall, that if X is a linear subspace of linear
space Y, then Y can be divided into equivalence classes: two vectors are equivalent,
if their difference is in X. The set of those equivalence classes forms a linear space,
which is called quotient space and denoted Y/X.

Like 1in the first solution, we shall transform the claim into form:
dim V — dim ker(AB) < dim W — dim ker(ABC)
Where V = ker(B), W = ker(BC). Also denote V’ = ker(AB), W’ = ker(ABC). Then
the claim may be rewritten as follows:
dim W’ —dim V'’ <dim W—-dim V

A maps space W’ into space W. If we W’ and AweV then weV’.

SO, if Wi, Wh € W’ and AWl —AW2 € V, then Wi — Wy € V.

Therefore A induces an injective linear map from W’/V’ to W/V. Hence
dim(W’/V’) < dim(W/V).

The LHS is dim W’ — dim V’, and the RHS is dim W —dim V.

3.* (a) A linear operator A over C" can be considered as a linear operator A, over

R*", because C" is a 2n-dimensional space over R. Prove that Idet(A)I2 =det(A,).

(b) Formulate and prove a more general claim, about finite field extension (field C

is an extension of field R of degree 2).



Solution. (a) We shall apply Gauss method to simplify the determinant
computation of the complex matrix A, and see how will the determinant of the real
matrix be transformed in the process.

Permutation of two rows in the complex matrix, that will multiply the complex
determinant by -1, will result in permutation of two pairs of rows in the real matrix
which won’t change its determinant.

Subtracting the multiple of one row from another row in real matrix will result in
subtracting linear combinations of two rows from two different rows in the real
matrix, so both determinants will be preserved.

Same operations will behave in the same way on columns.

Complex matrix can be diagonalized by those operations. The elements on the
diagonal will be x+iy;, xXo+iyy,..., x,#+iy,. The real matrix, at the same time, will

x, - x, - x -
become a block matrix ( ! ylj,( 2 yzj,...,( " y"j.
oo Yo X Yo X

The determinant of the real matrix is product of determinants of the blocks, hence
the statement becomes obvious.

(b) Let K[a] be a separable finite field extension over field K. That means a is an
algebraic number over K, its minimal polynomial over K is p(x) which is of degree
n, and it has n distinct roots in algebraic closure of K (but not in K).

Questions™*: Is it true that irreducible polynomial of degree n over a field always
has n distinct roots in its algebraic closure? Is it true that the finite field extension
1s always generated by one number?

So, in simple words K[a] is a set of polynomials of degree less than n in a. These
polynomials have natural sums, differences, products and divisions (except by 0)
which follow from the relation p(a).

A polynomial p(x) has n distinct roots in the algebraic closure: a;=a, o, a3, ..., o,.
So each number g(a) in K[a] has n distinct conjugate numbers, itself included:

Q(al)7 q(aZ)s ceey Q(an)
Product of these n numbers will be called the norm of g(a).

Example. C = R[{], it is field extension of degree 2 over R. Any number in C can

be represented as a + bi, polynomial of degree 1 in i.
The minimal polynomial x* + 1 has two roots, i and —i. Each element a + bi has a
norm a” + b*, which is a product of two conjugate numbers, a + bi and a — bi.

Now we can formulate the generalization.



Theorem. Let A be a matrix / linear operator over K[a]™. It can be considered as
Ak a linear operator over K™, because K[a] is an n-dimensional linear space.
Then the norm of det(A) equals det(Ag).

Proof. Like in (a), the theorem is easily reduced to 1-dimensional case by Gauss
method, so we won’t repeat it. But here, the one dimensional case is nonobvious.
Multiplication by «a is a linear operator over K[a].

In the basis 1, a, ocz, ... "t looks as follows:

0 0 .. 0 a

o

1 0 .. 0 aq
01 .. 0 a

0 0 .. 1 a,
Here the last column contains minus the coefficients of the minimal polynomial of
a, which is p(x) = X" — a, X" — ... — ax’ — a1x — ay.

Since it 1s hard to guess eigenvalues of that matrix, we shall take the transposed
matrix which has the same eigenvalues (see targil 2, problem 3b), and use it for the

guessing. For any root oy of the minimal polynomial,

0 1 0 .. 0! o

00 1 .. 0] o

T | I I

O 0 o0 .. 1

a, a a, .. a,.)\la"” o)
So, that is an eigenvector and ¢ is an eigenvalue and all eigenvalues are different.
So the matrix of a is diagonalizable, and has eigenvalues a;, ay, ..., a,. Therefore
the matrix of g(a) = g(matrix of a) and its eigenvalues are g(a,), g(a), ..., g(ay,).

Hence the determinant is the product of those.

4. Consider matrix equation AX — XB = C, where A, B, C are given nxn matrixes,
and X is an unknown nxn matrix. Show that the solution of the equation exists and
unique if and only if A and B don’t have a common eigenvalue.

Solution. I could have written a shorter proof, but I prefer to introduce ideas step
by step. First, assume that A and B have a common eigenvalue A. Then it is also
eigenvalue of B', since B and B have the same characteristic polynomial.



We can find a vector v and a row u such that Av = Av and uB = Au (the latter is
equivalent to B'u" = Au").

Take Y = vu. Then AY — YB = Avu — vuB = Avu — Jvu = 0.

So, for C =0 we have an infinite family of solutions kY, and if for a certain C we
have at least one solution X, then we also have an infinite family of solutions
X+kY.

. T . .

Now consider the case when A and B are diagonalizable. So, A has and
. . T . . T T T
eigenbasis of vectors vy, v,, ..., v, and B has eigenbasis of vectors u; , u, , ..., u, ,

where u; are rows. Then {vl.u j} 1s an eigenbasis of the operator X = AX — XB.

First let us check that it is a basis in the vector space of nxn matrixes. Since
number of elements equals to a dimension, it is sufficient to show that {vl.u j} span

the space; linear independence will follow. Denote by {e,} the standard basis of

R". Since both v; span the space, for any k, we can write e, = Zakivl. . For the same

reason, for every m we can write e, = mej“/‘ . Therefore, for each k and m we

T _ . .
have e.e, =D > a.b, vu, . So, matrixes{v,u,} span the standard basis for nxn

matrixes (that is, matrixes having 1 in one cell and zero at all other cells) so they
really span everything and thus they are basis.

By definition of eigenvector, Av; = 4;v;, and u;B = pu,.

If X =vu;, then AX — BX = Aviu; — v, B = (A;— upX.

So we see that it is an eigenbasis for the operator X +— AX — XB, and its
eigenvalues are 4;— u,. The operator is invertible iff all eigenvalues are nonzero and
that is when all the eigenvalues of A are different from all the eigenvalues of B.

Now, assume that A and B are not necessarily invertible. But anyway, for every
matrix we can choose a basis (in algebraically closed field) such that the matrix
will be upper triangular. In non-coordinate language bringing matrix A to upper
triangular form means the following: we can choose a basis {v;}, such that Av, is a
linear combination of v; for j <k, and the coefficient of v in that decomposition is
the corresponding eigenvalue.

So, we choose such a basis for matrix A and a basis {ujT} with the same property
for matrix B. Then, for the reasons we’ve already explained, {v;u;} is a basis for
matrixes. We shall index this basis by i + nj (indexing is needed to define upper
triangular property).

Then Avju; — viu;B = (4;— ;) viu; + linear combination of previous basis elements, so
this basis brings the operator X — AX — XB to a triangular form, and 4,— y; appear
on the diagonal, QED.



5.*% Let A be an invertible nxn real matrix, U, V be linear subsets of R”. Assume

that U and V are almost disjoint, which means they have no more common
elements except 0.
Show that there exists an integer k such that A“U and V are almost disjoint.

First solution. This solution is very short, but it uses some higher math. I shall try
to explain it here, but if it is not clear enough, we shall discuss it in greater detail
during one of the meetings. The required higher math in this case is exterior power.
If we have a linear space W, we can construct k exterior power of that space, A* W
as follows:

First consider expressions wiAw,A...Awy , where w; € W.
Consider linear combinations of those expressions. Introduce 3 types of relations:
a WiAWA. AW AW)= WiAWIAL L A(aw)A. .. Awy
WIAWIA AU+ WHALLAWE = WIAWLA LLAUNA AW + WIAWA AW AWy
WiIAWOIALLAWA AW AWE = = WIAWALLAWNLLAWA LAWY
The linear space formed by these linear combinations with these relations, is A* W.

The following properties of exterior powers are easy exercises:
1. Tf dim(W) = n, then dim (A'W )= Uj

2. There is a natural distributive product: A'W x A"W — A""W |, (it is called

wedge product and denoted by A)
3. A linear operator A:W — W naturally induces a linear operator

A, :A'W — A'W . If A is invertible, then A, is also invertible.

Remark. The last fact gives the most generic way to define determinant.
If you solved these exercises, you can read on.

In our problem, we have sub-spaces Vand U in R".

Let vy, vo, ..., v; be a basis of V and uy, u,, ..., u,, be a basis of U.
Denote v = viAWA ... Avyand u = uAupA ... Au,,.
What we actually need is to find &k such that (A*k u) N\ v is not zero.

A, is invertible, so by Cayley-Hamilton theorem: A"+ ky. AN +...+ k1A, +koI =0.

Here I is the identity matrix, k) = +det(A,) # 0 and N = Uj .



Apply this identity to u:
A*N u+ kl\,_lA*N'l u+...+ kA, u +kou = 0.
Multiply it externally by v:
AN WA + (kv ALY WA+ + (A, WAV +kguiv = 0.
The last term in this sum is nonzero, so there must be yet another term in the same
sum which is non-zero. QED.

Second solution (Alexey Gladkich). It is sufficient to solve the problem when

dim V+ dim U = n.
Otherwise we have a vector v which is not in span of U and V, add it to V and
repeat it several times until dim V + dim U = n.

Letvy, vy, ..., v, be abasis of Vand u,, u,, ..., u,.,, be a basis of U.

For every k we construct M a matrix, first m columns of which are v, v,, ..., v,
and last m — k columns are Au,, Au,, ..., Au,.,. The determinant M, is nonzero iff
A*U and V are almost disjoint.

Also, we may assume that A is of Jordan form in the standard basis.

Recall that the numbers appearing in the k’th power of Jordan cell of eigenvalue 4
and size j are A*p(k) where p(k) is a polynomial of degree less than k (and all
eigenvalues are nonzero since the matrix is invertible).

So, the numbers in M, are sums of expressions of the kind 2*p(k) and so det(M,) is
sum of products of those so it is also linear combination of expressions of that
kind. Then the statement follows to the following theorem, applied to the function
f (k) = det(M,)

Theorem. Consider a function f (k) which is a sum of functions /likpi(k), where p;
are polynomials, and all 4;# 0. If f(0) # 1 then f (k) # O for a positive integer k.

We shall show two proofs for this theorem.

First proof of the theorem. Take terms with highest number I4;]. There can be
more than one of that kind.

Out of these, take terms with highest power of x (for example, if you have 10 k>
and 10°k’ take only the last one). These terms after several steps become greater by
much than all other terms.

So, the sum of these terms is k" (@, A" +...+a, A} ) =k"r* (a,e" +..+ a,e*"),
where r=|4|=|4,|=...=|4,|.




The bracket b, = (ale”“1 +..+a, e " ) can be O for all nonnegative integers. In that

case, we can easily delete these terms from the sum, and consider a shorter and
smaller sum of all the other terms, and do the same thing to it. So, we shall assume

that for a certain integer nonnegative g, we have a,e™ +...+a e =d #0.
Choose 0< € << ‘d ‘ . We shall prove that we can find infinite number of & as large
as we want, such that ‘bk —d ‘ < &. From this it will follow that ‘bk‘ > ‘d ‘ — &, hence

for those k, the expression k"r*(a,e" +...+a,e™" ) will be growing at least as fast
as k"r*(|d

of the whole determinant for those k will be very large and far from zero.

— 8) and faster than all the other terms in the sum. So absolute values

The proof of that statement will be based on the following lemma.

Lemma. Given positive real numbers sy, s,, ... ,s,, for any >0, we can find
infinitely many positive integers k, that will be as great as we wish, such that for all
J the distance from s; to a positive integer will be less than ¢

First, let us see how this lemma implies the solution of our problem.
Take s, =c, / 27 . If ks; are close to positive integers, then " are close to 1, and

by+q are close to by. So to make | by, — by | < € , we should simply choose a
sufficiently small J and apply the lemma.
Now it remains only to prove the lemma.

Proof of lemma. It is done by induction over m. For m = 0 we have an empty set
of s; and element of empty set satisfies every condition.
Suppose we already have a technology to produce sufficiently large k’s that satisfy
the condition for all numbers except s,,. Let us build a sequence of such numbers,
which is very long and each number is bigger by much than the previous, and all
numbers satisfy the condition for sy, ..., s,.; with /2 instead of J:

ki, ko, ..., ky
We may assume that N >2+1/6.

Then {k;s,,} gives us N points on [0,]) interval, and at least two of them, i < j are
closer than . Then k = k; — k; satisfy the condition. QED.



Second proof of the theorem. We shall apply discrete differentiating operators

(like in targil 6). We have a function which is f(k)=) A/p,(k), which is
i=1

nonzero at 0 and zero at all positive integers.

Consider the operator 0, : f (k) g(k)=f(k+1)=Af (k).

Applying such an operator to /1;‘ pj(k) (which is an easy exercise) produces
Z]'.‘qj(k), where g; is polynomial of the same power as p; if 4,#4, and a
polynomial of lower power if 4, = 1.

Also, when we apply such an operator to a function which is nonzero at 0 and O at
all positive integers, we get again a function of the same kind.
But application of all d, sufficiently many times will turn our function into a

constant, which is a contradiction.



Targil 12 — Analytic Geometry.

1. Consider segments AB, such that A is on x axis, B is on y axis, and
length of AB is 1. The union of these intervals is a planar shape. Find an
equation of the boundary of that shape.

2. For each ¢, take a line going through two points: (¢, 0) and (0, 1 — 7).
When we draw all these line, part of the plane will be painted. Find a
curve that separates the painted part of the plain from the unpainted.
y2
o

2
3.* We are given an ellipse x—2 + X 1. A circle with center O is tangent
a

to the ellipse externally (meaning they don't have internal common
point); at the same time, there are two parallel lines tangent to both the
circle and the ellipse. Find the locus of O satisfying these conditions.

4.* Let P be a point upon the rectangular hyperbola {xy =1}.

Let D be a symmetric point to P with respect to 0. Suppose a circle with
center at P intersects the hyperbola {xy = 1} at 4 points: A, B, C, D.
Prove that ABC is equilateral (regular) triangle.

Reminder. Each hyperbola has two asymptotes — straight lines that
approximate it very well at all distant points. Hyperbola is called
rectangular, if the asymptotes are orthogonal.

5.** For a triangle ABC in plane, consider rectangular hyperbolas, going
through A, B and C simultaneously. Each of those hyperbolas has a
center of symmetry. Prove that all these centers lie on one circle.

6. ABCD is a tetrahedron in the space. For each edge, consider plane
passing via its midpoint and orthogonal to the opposite edge (for instance,
a plane via the middle of AB orthogonal to CD). Prove that these 6 planes
intersect in one point.



Targil 12 — Analytic Geometry.

1. Consider segments AB, such that A is on x axis, B is on y axis, and
length of AB is 1. The union of these intervals is a planar shape. Find an
equation of the boundary of that shape.

Solution. Playing a bit with a pencil sliding along the edges of the desk
shows you that it sweeps star-like area consisting of 4 symmetric concave
triangles. The whole point is to find the envelope of that family of lines.
AOB is aright triangle and AB = 1, we can take

A(cos(?), 0) , B(0, sin(?))
So, let us take the intersection between two near intervals:

(cos(1), 0) , (0, sin(¢)) and (cos(t +9), 0) , (0, sin(t +9))

In general, the line passing via points (a, 0) and (0, b) has the equation
x/a + y/b =1 (it might remind the canonical form of equation of the
ellipse equation). So, the two lines are

x/cos(t)+y/sin(t)=1

x/ cos(t+0) + y/sin(t+ o) = 1

This is the same as

x=sin(r+J)—sin()

y=cos(t+0J)—cos()

sin(t+J—1)
cos(r+J)cos(t)

-x=sin(t+5)—sin(t)

—sin(r+J0—1)
sin(z+0)sin(z)

-y =cos(t+5)—cos(t)

When ¢ tends to 0, we get:

x=cos*(t)

y =sin’(t)
And that is parametric description of this curve.

From here we can get also the equation: Vx> +3/y* =1.

When we know the answer already, the solution can be made much
shorter: simply compute the tangent and see that it cuts axes where it
should.

Remark. This curve is called astroid. Notice that



%(cos(3x) + 3c0s(x)) =cos’ ()
%(sin(3x) —3sin(x)) =sin’(#)

So, another way to describe the astroid is as follows: a trajectory of a
point on the boundary of a coin of radius 1/3 which is rolling inside the
circular box of radius 1.

There is yet another unexpected way to describe the astroid: the locus of
curvature centers of an ellipse.

2. For each ¢, take a line going through two points: (¢, 0) and (0, 1 — 7).
When we draw all these line, part of the plane will be painted. Find a
curve that separates the painted part of the plain from the unpainted.

First solution. Like before, we shall take two close lines and find their
intersection point.
The line equations are:

AT |

t 11—t

R
t+0 1-t-90

t+dt 4
y - =dt
(l—t—dt l—tj

(t+0)(1-1)-t(1-1-9)
(1-r=38)(1-1)
d-(1-t)+t-8 _
U=i=8)(1-1)
o
Y0z=e)in
v=(1-1-8)(1-1)
When 6 tends to 0, we get y=(1-1)".

There is a symmetry: we can replace x by y, and y by x, and t by 1 — ¢, and
get x = ¢°. Alternatively, we can substitute the known value for y into the
first equation, and get:

=0




So, we have the parametric description: (tz, (1- t)z) )

It is tempting to write \/x ++/y =7+ (1—)=1. However, it is wrong.

Indeed, the square root is the inverse of square only for positive numbers,
so that equation only describes the arc of the curve when fr and 1 — ¢ are
both nonnegative.

Also, that would be a sure way to get a contradiction in mathematics. The

curve Vx + \/§ =1 is contained in the square [0,1]° so it cannot touch, for

instance, the line that goes via (3,0) and (0,-2).
Consider rotated coordinates:

u=x—y=t2—(1—t)2=2t—1

v=x+y=r+(1-1)" =1-2t+2¢
Clearly, since ¢ = (u + 1)/2, that line is a parabola.

So, the answer is: a parabola which is rotated by 45 degrees, and tangent
to the axes at (0,1) and (1,0). It remains to check that the outer side of
parabola is completely covered by our family of lines, and another isn’t.
It easy to see from the above computation, that the given family of lines
1s precisely the family of tangents to the parabola. The rest of it is an
exercise (it follows from the convexity of parabola, and the fact that it
doesn’t have asymptotes).

Second solution. This solution is very simple, but I wouldn’t find it if 1
wouldn’t guess the answer first, which was noticed by Markelov.
It is based on the deep similarity between the circle and the parabola.

For example, compare the next two lemmas:

Lemma 1. Let A, B be two different points on a circle such that the lines
PA, PB are tangent to the circle. Then PA = PB.

Lemma 2. Let A, B be two different points on a parabola y = ax” + bx + ¢
circle such that the lines PA, PB are tangent to the parabola. Then the
projections of intervals PA, PB to the x axis are of the same length.

The lemmas are simple exercises (if you didn't know them yet). That
similarity is deep: many geometric theorems about circles might be
translated into theorems about aligned parabolas. During the translation,
the distances must be replaced by the lengths of x—projections.

Consider parabola y = ax’ + bx + ¢ and consider two points, A and B,
such that the slope of tangent lines at those points is 45°. Let P be another
point on the parabola. The tangent line at P intersects tangent lines at A



an B at points K and L, respectively, and tangent lines at A and B
intersect at point T.
For each vector v, by v, we shall denote its x projection. So, by lemma 2:
KL,= KP,+ PL, = AK, + LB,
But
KL, + AK, + LB, = AB,
So
KL,=AK,+LB,=AB,/2

And from this the claim follows directly.
Y

2

2
3.* We are given an ellipse x—2+ =1. A circle with center O is tangent
a

to the ellipse externally (meaning they don't have internal common
point); at the same time, there are two parallel lines tangent to both the
circle and the ellipse. Find the locus of O satisfying these conditions.

Answer. A circle with center (0,0) and radius a + b.

Solution. The answer is easy to guess. When the pair of tangent lines is
rotating, O goes around the 0 by a symmetric curve, which is definitely
algebraic (since the conditions look algebraic) and probably of low
degree. The vertical and horizontal pairs of tangent lines give yet another
clue. So, now that we’ve guessed what to compute, let’s do it.

Let T be the point of tangency between a circle and the ellipse.

Since it is on the ellipse, it can be written as (a -cos(t),b- sin(t)) .
2 2
The gradient of the function x—2+y— 1S (2_);%) . It is orthogonal to the
a

a b
Co . 2 t) 2sin(t) ) .
level sets, one of which is an ellipse. So, the vector ( cos( ) sin )j 18

a b
orthogonal to the ellipse at (a-cos(t),b-sin(t)). It is easy to see that

vector looks outside the ellipse, so it is proportional to TO with positive
coefficient. The same thing can be said about any parallel vector, for

instance (b -cos(t),a-sin (t)) . Therefore,
O=T+TO = (a-cos(t),b-sin(t))+k(b-cos(t),a-sin(t))
Notice that if k = 1, we shall get ((a +b)-cos(t),(a+b)- sin(t)), and that

is the circle of radius a + b, which we have guessed already.

So, we should just check that there is a pair of common parallel tangents
to the circle with center at that point and the ellipse.

Theoretically, on one ray TO orthogonal to the ellipse and directed
outside, we could get more than one location of O. However, for each
pair of parallel tangents at both directions there is only one circle. So, if



((a+b)-cos(t),(a+b)-sin(t)) are solutions, then the pair of tangent

lines rotate continuously all the way around the ellipse, and we cover all
the possibilities. Therefore it is enough to check that those points satisty
the condition.

The pair of lines, symmetric with respect to 0 and tangent to the circle

with center at O=((a +b)-cos(t),(a+b)-sin (t)) is
x-sin(r)—y-cos(r)==*c,
since these are lines parallel to the line that goes via 0 and O.

Here c is the distance between O and those lines, because sum of the
squares of coefficients of x and y is 1.

TO is also a radius of the circle, and it is equal \/b2 cos’ (1) +a’sin®(1).
So, it remains to verify that the lines
x-sin(t)—y-cos(t)= i\/b2 cos’ (t)+a’sin® (1)

are tangent to the ellipse, or at least one of them (the other will follow
from the symmetry).

Substitute (a-cos(s),b-sin(s)) as (x,).

acos(s)-sin(7)—bsin(s)-cos( \/bzcos t)+a’sin® (1)
But by Cauchy-Schwartz mequahty,
acos(s)-sin(r)—bsin(s)-cos(t) <

< \/b2 cos”(t)+a’sin’ \/sm ) + cos? \/bz cos” () +a’sin® (1)
So, the ellipse is one 51de of that line, and it touches it precisely once,
when directions of vectors (bcos(t),asin(t)) and (—sin(s),cos(s))

coincide. QED.

4.* Let P be a point upon the rectangular hyperbola {xy = 1}.

Let D be a symmetric point to P with respect to 0. Suppose a circle with
center at P intersects the hyperbola {xy =1} at 4 points: A, B, C, D.
Prove that ABC is equilateral (regular) triangle.

Reminder. Each hyperbola has two asymptotes — straight lines that
approximate it very well at all distant points. Hyperbola is called
rectangular, if the asymptotes are orthogonal.

Solution. The following solution belongs to my high-school teacher, Dr.
Anatoly Schulman.

Assume P = (u, v). The circle with center P is (x — u)* + (v - v)? =R



A(xa, ya), B(xg, y8), C(xc, yc) and D(— u, — v) belong to the circle and the
hyperbola y = 1/x, so their x coordinate satisfies (x — w?’ + (1/x—v): =R~
If we multiply by x* and expand it we shall get an equation of degree 4:
X' -2uxX + kx> +mx+n=0

Notice, that to each value of x only one point on hyperbola may
correspond. So the four roots of this equation are precisely xa, xg, Xc, — U.
Then by Vieta theorem, x5 + xg + xc — u = 2u.

Xa+xg+xc =3u
Symmetric argument proves ys + yg + yc = 3v.
So the mass center of triangle ABC is P, which is also its circumcenter.
In other words, the meeting point of medians coincides with the meeting
point of perpendicular bisectors of the sides. Thus the medians are the
perpendicular bisectors, and hence the triangle ABC is equilateral.

5.%* For a triangle ABC 1in plane, consider rectangular hyperbolas, going
through A, B and C simultaneously. Each of those hyperbolas has a
center of symmetry. Prove that all these centers lie on one circle.

Solution. First of all, let us understand how does an equation of a
rectangular hyperbola look like. Equation of a conic is
ax> +bxy +cy  +dx+ey +f=0
Asymptotes are defined by intersection points with the infinite line. So,
only the quadratic part, ax* + bxy + cy’, influence the asymptotes. It can
be decomposed as a product of linear equations, and those lines will be
parallel to the asymptotes. If they are orthogonal then
ax® + bxy + ¢y* = k(mx + ny)(nx — my)
ax> + bxy + ¢y’ = k(mnx* + (> — m®)y — mny?)
It is easy to see that for given mn, the expression (n° — m°) may accept all
values. So rectangular hyperbolas and couples of orthogonal lines (which
are degenerate case of rectangular hyperbolas) are all the quadrics
satisfying a = — ¢ and only them.
Consider now rectangular hyperbolas quadrics passing through A(x;, y1),
B(x,, y») and C(x3, y3). They satisty 4 linear equation. First 3 are
axl—2 + bxy; + cyl-2 +dx;+ey;+f=0
where 1 =1, 2, 3. The last one is
a+c=0
All those are linear equations in a, b, c, d, e, f. In 6-dimensional space 4
equation probably define 2-dimensional space, unless one of the
equations is linear combination of the previous.
The second is not a multiple of the first, since it is easy to build a conic
which contains A and doesn’t contain B. It is also easy to find a conic
containing A and B but not C. It is also easy to find a conic that contains
A, B, C but isn’t a rectangular hyperbola (for instance, circumcircle). So,



neither equation is a linear combination of the previous, and indeed we
get a 2-dimensional linear space.

That space is spanned by each two non-proportional elements.
Actually, the space of our conics is better described a projective line,
since multiplication of an equation by a constant doesn’t alter the locus,
described by the equation.

From here we can deduce a few conclusions, which are so nice that I
cannot pass them by, even though they are not needed for the solutions.

(1) Three altitudes of triangle ABC have a common point. Indeed,
consider an equation of quadric g, which is a product of equations of two
lines: BC and the altitude from A. Consider an equation of quadric gg
which is a product of equations of two lines: AB and the altitude from B.
Define g, in the similar way.

Let H be intersection point of altitudes from A and B. Then g, and gg
have 4 common points: A, B, C, and H. But all rectangular hyperbolas in
our family, and gc among them, can be represented as Aga +ugg, so they
pass via A.

(2) Actually, we have generalized that elementary theorem about
altitudes: all rectangular hyperbolas containing A, B, C also contain H,
which is the orthocenter of triangle ABC.

Anyway, the equations of our rectangular hyperbolas are:
O=ax* +bxy+cy’ +dx+ey+f =
(Cl()‘l‘/léll).?C2 + (b0+/1b1)xy + (C0+/1C1)y2 + (d0+/1d1)x + (€0+l€1)y + (f()'l‘ifl)
Now we need a way to compute the center of a hyperbola.
Apply parallel shift by (s, 7) to the hyperbola. We get the equation
O=alx—0 +b(x—0D(y—5)+c(y—s  +dx—1) +e(y—s) + f=
= ax” + bxy + ¢y* + (d — 2at — bs)x + (e — 2cs — bt)y + F
(s, ?) 1s the center of symmetry iff the equation became even. A condition
for that is a pair of linear equation: linear coefficients are O.
d—2at-bs=0
e—2cs—bt=0
In other words
2at + bs =d
bt +2cs=e
The solution is
(4ac — b*)t =2cd — be
(4ac — b*)s = 2ae — bd
So the center is



2cd —be 2ae—bd —2ad —be 2ae—bd 2ad +be bd —2ae
4ac—b* dac—b’ —4a’ -b* —4a* - b’ 4a’ +b* " 4a’ + b’
The question is whether all those centers belong to one circle, 1. e.

whether they are described by one equation of the type
k(*+y?) + Ix + my +n=0

(2ad +bej2 J{bd —2aej2 _(2ad +be)’ +(bd —2ae)”

4a* +b* 4a* +b* (4a2 + b2 )2
_ 4a’*d* + b*e’ +4abde + b*d* + 4a’e* — 4abde B
(4(,12 + b2)2

4a’d* +b*e’ +b’d’ + 4a’e’ (402 +b2)(d2 +€2) d’+eé’
B (40> +5%)’ O (42+p?) 4D
So, we need to find &, [, m, n such that:
d*+é° 2ad + be bd —2ae

2 2 +l 2 2 +m 2 2
da”+b da” +b da” +b
Which is the same as:

k-(d2 +ez)+l-(2ad +be)+m-(bd—2ae)+n~(4a2 +b2)=0
Since the possible values of a, b, d, e, f are linear expressions in 4, hence
those brackets are quadratic expressions in A:
k-(p0 +p1/1+p2/12)+l~(q0 +q1/1+q2/12)+

k +n=0

+m-(r0+rlﬂ+ rzﬂz)+n-(s0+slﬂ+s222)=0

So, it is enough to find non-zero solution to the system of 3 homogenous
equations: pk+ql+rm+sn=0,fori=0, 1, 2. These equations have

nontrivial solution, hence the centers are on one line or circle.
But the foots of altitudes are not one line, so they are on one circle.

Remark. This circle is famous: it is called Euler’s circle, Feuerbach’s
circle, and nine-point circle. The nine point are: midpoints of the 3 sides,
midpoints of the intervals AH, BH, CH where H is the orthocenter, and
the foots of the three altitudes. The fact that those nine points are on one
circle is considered one of the gems of the elementary geometry.
Problem 5 gives a generic description for all points of the nine-point
circle, and not just for 9 of them.

6. ABCD is a tetrahedron in the space. For each edge, consider plane
passing via its midpoint and orthogonal to the opposite edge (for instance,
a plane via the middle of AB orthogonal to CD). Prove that these 6 planes
intersect in one point.



Remark. This point is called Monge point.

Solution. The uniqueness of that point is trivial (otherwise all planes
would be parallel to one line, but then all edges of ABCD would be
parallel to one plane, then ABCD would be a planar shape and not
tetrahedron). We are looking for the point M, such that M — (A+B )/2 is
orthogonal to C — D, along with all the symmetric conditions.
TryM=(A+B+C+D)/2,then M - (A+B)/2 = (C + D)/2.

Then we want to require 0 = (C — D, (C + D)/2). That is the same thing
as0=(C-D,C+D)=(C,C)-(D,D).

So, if we have chosen the origin to be the center of circumsphere of
ABCD, then |IAl = IBl = ICl = IDI and it will just work.



First stage of Israeli students competition, 2009-2010.

Duration: 4 hours

I 4 9 16
1 4 9
4 9 16 25
1. Compute: a.det|4 9 16 b. det
9 16 25 36
9 16 25
16 25 36 49

2. a. How many planes are required to cut all the edges of a cube?

b. How many planes are required to cut each edge of a cube twice?

Remark. Edges of a polytope (1385 %@ myigpn) are the intervals which are the sides of its faces.
We say that a plane cuts an interval if the plane contains precisely one internal point of that
interval.

3. Find all continuously differentiable functions f:R — R satisfying:
fx+y)-f(x=y)=2y-f'(x) Vx,yeR.

4. The Department of Social Equality has 15 workers. In the beginning, each has a
salary which is a positive integer number of NIS no greater than 10. Each year, the
boss can raise the salaries of exactly 13 workers by 1 NIS simultaneously.

Workers are immortal, they never quit or retire; new workers are never accepted.
The boss wants to make the salaries of all workers in the Department equal.

a. Prove that it is possible.

b. In the worst case, how many years will it take?

5. A function c over the set of natural numbers is defined as follows:
c(n)= 0if there are even number of ones in binary representation of n,
1 otherwise.
A positive integer number & is given.
Let /(N) be the number of integers n from 0 to N, such that c(k +n)#c(n).

I(N
Prove that lim Q exists and belongs to [%,%} :

N —o0

Good luck!



First stage of Israeli students’ competition, solutions.

I 4 9 16
1 4 9
4 9 16 25
1. Compute: a.det|4 9 16 b. det
9 16 25 36
9 16 25
16 25 36 49

Answers. a. -8 b. 0
Solution. a. Subtract second line from the third. After that, subtract first line from
the second. We get:

1 4 9 1 4 9 1 4 9
det|4 9 16 |=det|4 9 16|=det|3 5 7
9 16 25 57 9 579
Now do the same with columns (subtract second from third, first from second):
1 4 9 1 45 1 3 5
det| 3 5 7 |=det|3 5 2|=det|3 2 2
579 57 2 5 2 2
Now subtract second row from the third, and then second column from the third:
1 3 5 1 3 5 1 3 2
det| 3 2 2|=det|3 2 2|=det|3 2 O
5 2 2 2 00 2 00

Here we have only one permutation with nonzero product, which is the secondary
diagonal. The product is 8, but the permutation is negative. So it is -8.
b. The determinant can be written as follows

() f£(2) £(3) £(4)
e €1 8(2) 6(3) s(4)
h(1) h(2) h(3) h(4)
k(1) k(2) k(3) k(4)
(x

where f(x)=x",g(x)= (x+1)2 J(x)=(x+ 2) J(x)=(x+ 3)2.
Polynomials of degree 2 form 3-dimensional linear space, hence f, g, h, k are
linearly dependent. Therefore the rows of matrix are linearly dependent. So the

determinant is O (of course, we could compute it by subtracting the rows/columns,
but it is always better to get the result without computation).



2. a. How many planes are required to cut all the edges of a cube?

b. How many planes are required to cut each edge of a cube twice?

Remark. Edges of a polytope (%5 2w my1¥pn) are the intervals which are the sides of its faces.
We say that a plane cuts an interval if the plane contains precisely one internal point of that
interval.

Answer. a. 3. b. 4

Solution. a. It is easy to build an example of 3 planes cutting all the edges of a
cube: for instance, for each pair of parallel faces take a plane which is parallel to
both and is between them. The tricky part is to show why 2 planes are not enough.

The nicest explanation I saw belongs to Dan Carmon and was invented during the
competition. Suppose two planes A, B cut all edges. Consider the third plane C
which is orthogonal to both planes. We can rotate the cube slightly, so that planes
A and B will still cut the same edges but C won’t be orthogonal to any faces of the
cube. Project the picture orthogonally to the plane C. In the projection, the cube
becomes a convex hexagon, and planes A, B become straight lines. These two
straight lines should cut all 6 of the convex hexagon. But each line can cut only
two of them. This yields a contradiction.

b. An intersection of a plane and a cube is a polygon with at most 6 sides. The
reason is the following: each side is intersection of a plane and a face, and the cube
has only 6 faces (maybe less, since the plane doesn’t have to intersect all faces).
To cut each of 12 edges 6 times we need at least 24 intersection points, so at least
24 angles in our intersection polygons; each plane contributes at most 6, so at least
4 planes are needed.

A perpendicular bisector plane to any diagonal of the cube (by diagonal of a cube
we mean an interval connecting two opposite vertices) cuts precisely 6 edges at
their midpoints. The cube has 4 diagonals; so we can have 4 such planes, the
picture is symmetric, so each edge is cut by the same number of planes, so it is 2
(since the total number of intersection is 4x6 = 24). One could complain that the
different planes intersect any edge in the same point, precisely in the middle.

To fix this issue, it is enough to shift all 4 planes by very small, but different
distances.



3. Find all continuously differentiable functions f:R — R satisfying:

fx+y)-f(x=y)=2y-f'(x) Vx,yeR.
Solution. Derive by y:
frlx+y)+ fi(x=-y)=2f"(x)
Jx+y)+f(x—-y .
162y
Therefore, for each two points on the graph, the middle point is also on the graph.
Therefore, the interval connecting this two points and the graph of f’ coincide on a
dense set of points (the middle of the interval, the middle of subintervals formed by

the midpoints, the middles of smaller subintervals formed by those points etc.).
That fact, along with continuity of the function, implies that £’ is linear on any
interval, therefore it is linear. That means that f is quadratic function.

It is easy to see that any quadratic function satisfies the original equation (exercise
to the reader).

4. The Department of Social Equality has 15 workers. In the beginning, each has a
salary which is a positive integer number of NIS no greater than 10. Each year, the
boss can raise the salaries of exactly 13 workers by 1 NIS simultaneously.

Workers are immortal, they never quit or retire; new workers are never accepted.
The boss wants to make the salaries of all workers in the Department equal.

a. Prove that it is possible.

b. In the worst case, how many years will it take?

Answer. 70.

Solution. First of all, raising the salary of 13 by 1 is the same as decreasing
salaries of two by 1, at least to the people who think in abstract mathematical terms
and are interested only in social equality and not in actual money. That way, we
might eventually arrive to negative salaries, but so be it.

a. We can split all people except A into pairs and reduce salary of each pair. This is
the same as raising salary to A by 1. Using operations of that kind, we can clearly
arrive to the equality.

b. Assume that 13 workers have 10 NIS salary, one worker has 9 NIS salary, and
the last one has 1 NIS salary. We reduce salaries of two workers a year. To have an
equality, we have to come to a situation, in which all get no more than 1 NIS a
year. However, it cannot be that all would get 1 NIS a year, even after a long time,



since the total of all salaries is even and it shall never be odd. So, to achieve social
equality, we have to make all their salaries at most 0. Their total salay at the
beginning is 140, in the end 0 at most, so at least 70 years are required in this case.

It remains to prove that it cannot be more than 70. Without loss of generality, we
may assume that the last worker has salary 1 NIS in the beginning. If the total
salary is odd, we might try to arrive to a situation in which the salary of all workers
1s 1; if the salary is even, we might try to arrive to a situation where the salary of
all workers 1s 0. In the beginning, the largest possible total salary is 141 (all except
the last worker get 10), the largest possible even total salary is 141, and the largest
possible odd total salary is 140. If it is possible, it would take no more than 70
years to make all salaries to be the same number, which is 1 or O.

If we would also be allowed to reduce salary to the same person twice during the
same year (instead of reducing each time the salaries of two different workers) then
it would obviously be possible. We can write a plan, how to arrive to social
equality in at most 70 years, with two people in each year, but in some years the
same person can be mentioned twice. We can assume this plan is at least for 50
years: if not, we can add 15 more years, while in those additional years the salary
is reduced to each worker. Now we shall reorganize this plan so that nobody will
be reduced twice in the same year.

Notice, that each worker starts with a salary at most 10, and arrives to the salary at
least -9 (because bringing all people to salary -10 means total salary would be -150
and for that 75 years at least would be required). So salary of each worker will be
reduced less than 20 times. Therefore, if a salary of some worker according to the
plan is reduced twice in one year, it is possible to find a year in which his salary is
not reduced (since that plan has 50 years at least). We shall swap one name
between these two years, and the number of such bad years will be reduced. We
can do it as long as bad years exist, so after a finite number of operations we shall
have a plan with the same number of years in which bad years don’t exist.

5. A function c over the set of natural numbers is defined as follows:
c(n) = 0 if there are even number of ones in binary representation of n,

1 otherwise.



A positive integer number & is given.
Let [(N) be the number of integers n from 0 to N, such that ¢ (k +n)+#c(n).

[(N
Prove that }/im (V) exists and belongs to {%,%} :
. . _I(N) . .
Solution. Denote p (k) = lim ——=, where k is the number that was used to define

N —o

function /.
First compute the limit for k = 1. The parity is switched if the binary number has in
itsend 0, or 011, or 01111, or 0111111, ... and limit of density of these numbers
exists and equals p(1) =l+l+L+...=1/(l—lj=1/3=2.

2 8 32 2 4) 2/ 4 3
We shall prove the claim by induction. Suppose we have proved the claim for all
numbers smaller then &, and now we prove it for given k.
If kK = 2m then adding k& to the number is the same as adding m the number for

which the last binary digit is erased. Since p(m) exists and belongs to [%,%} , SO

does p(k).
Now suppose k = 2m + 1. Comparing c(k +n) to c(n) splits into two cases:

when n = 2s, then ¢(k +n) differs from c¢(n) if and only if c(m+s) equals c(s),

because last binary digit is changed, and to the rest of the number m is added.
Therefore the limit of probability that c¢(k +n) differs from c(n) exists and equals
to 1 — p(m).
If n =2s + 1, then the last digit is changed anyway, from 1 to 0, and we have a
carry, and then we should actually add m + 1 to the number which is n after erasing
the last digit. So for odd numbers limit density also exists and equals 1 — p(m + 1).
If we take both even and odd numbers, the limit also exists and equals the average
(since from 1 to N there’s almost equal number of evens and odds) which is

(1= p(m) + (1 p(m-+1)
p(k)= 5

. Since both 1- p(m) and 1— p(m+1) belong

to [%,%} by induction, their average also belongs to the same interval.



Second stage of Israeli students competition, 2010.

Duration: 4 hours

1. Let K = 22_”2 (where N is a set of positive integers).
neN

Is K rational or irrational?

2. ABCD is a tetrahedron (not necessarily regular). Denote a = distance between
the lines AB and CD, b = distance between the lines AC and BD, ¢ = distance

between the lines AD and BC. Prove that the volume can’t be less than aTbc.

3. We have a system of L lamps and B buttons. Each button has one of two states:
“on” or “off”. Each button is connected to several lamps. A lamp may be
connected to more than one button. Pressing a button toggles all connected lamps
to the opposite state.

(a) Prove that number of potential states of lamps is a power of 2.

(b) Suppose that for every subset S of lamps there is a button switching state of
odd subset of S. Prove that all lamps can be switched off.

T .

xsinx

4. Compute I—zdx.
o 1+ cos” x

5. A i1s a 2x2 matrix with integer coefficients. Absolute values of all entries of A
are less than 10. Absolute values of all entries of A'*
they are actually less than 10°.

are less than 10°. Prove that

Good luck!



Second stage of Israeli students competition, 2010.

1. Let K = 22_”2 (where N is a set of positive integers).
neN

Is K rational or irrational?

Answer. K is irrational.
Solution. Write a binary fraction of K. It is not periodic, since it has longer and
longer sequences of zeroes. Hence the number is irrational.

2. ABCD is a tetrahedron (not necessarily regular). Denote a = distance between
the lines AB and CD, b = distance between the lines AC and BD, ¢ = distance

between the lines AD and BC. Prove that the volume can’t be less than aTbc.

Solution. Move the tetrahedron so that the center of mass of A, B, C, D will be 0.

In other words, A+ B+ C+ D =0.

Construct 4 points K=—-A,L=—-B ,M=-C,N=-D.
AL+CN=L-A+N-C=-B-A-C-D=0

So vectors AL and NC are equal, and ALCN is a parallelogram.

Similarly, vector AL coincides with vector MD and BK.

Therefore ALDM and MDKB and BKCN are parallelograms. Hence points A, B,

C,D, K, L, M, N are the vertexes of parallelepiped.

The common perpendicular to AB and CD is orthogonal to two faces of the
parallelepiped. Therefore a is the distance between faces AMBN and CKDL.
Similarly, b and c are distances between other pairs of parallel faces.

Lemma. If a, b, ¢ are distances between parallel faces of parallelepiped then the
volume V > abc.

The parallelepiped consists of tetrahedrons ABCD, ABCN, BCDK, ACDL,
ABDM. It is easy to see that the last 4 have volume V/6 each, so volume of ABCD
is V/3. It remains to prove the lemma.

Proof of lemma. Volume = altitude of parallelepiped on AMBN times altitude of
face AMBN on AM times AM. First factor is a, second is greater than b, third is
greater than c.



3. We have a system of L lamps and B buttons. Each button has one of two states:
“on” or “off”. Each button is connected to several lamps. A lamp may be
connected to more than one button. Pressing a button toggles all connected lamps
to the opposite state.

(a) Prove that number of potential states of lamps is a power of 2.

(b) Suppose that for every subset S of lamps there is a button switching state of
odd subset of S. Prove that all lamps can be switched off.

Solution. (a) Consider linear space over a field of 2 elements of dimension L. Each
button specifies a vector in that space (coordinated 1 if the lamp is connected,
coordinate 0 otherwise). Combination of several buttons corresponds to the sum of
their vectors. Sums of given vectors form a linear subspace. Since it is still linear
space over the field of two elements, number of possible changes that can come
from combinations of buttons is a power of two.

(b) All possible changes that might be applied to the system form a linear subspace
in the space of all conceivable changes. If this subspace would not be everything, it
would lie in a hyperplane. That means all possible changes would have zero scalar
product with a given nonzero vector. That means there’s a subset of lamps, such
that every possible change flips even number of lamps in that subset. This is
specifically forbidden by the condition.

xsin x

4. Compute I—dx.

2
01+cos X

Solution. Denote f (x)= Lﬂf
I+cos™ x
T 17 17 zsinx 7w —d(cosx)
dx=— +f(m=x)dx=— T [Zaleosy)
If(x) " 2-([f( )+ (7=x) 201+cos x 201+coszx

~dy rx¢ dy & . rx(x z\\ = & x
——J =—J‘—2=—arctan‘_1=— — ||| = =
ey 2314y 2 204 \4a)) 22 4



5. A is a 2x2 matrix with integer coefficients. Absolute values of all entries of A
are less than 10. Absolute values of all entries of A'* are less than 10°. Prove that
they are actually less than 10°.

Solution. First consider determinant. det A = d which is an integer number.
det A1000 — 71000

If Id > 2, then det A'™ > 2'" > 1000'" = 10°” and that is definitely not a
determinant of a matrix having absolute values of entries less than 10°.
Therefore, the dis 1, 0, or -1.

We shall use the following lemma.

Lemma. Absolute values of eigenvalues of A are less than 1.2.

Proof of lemma. Assume A has an eigenvalue k such that |kl > 1.2 and it
corresponds to an eigenvector v. Then k*> =1.44 > J2 , hence k* >2, and
k* >2">1000.

Therefore k'™ >1000” =107. But A"y =k'"%y.
The vector is multiplied by a number, of absolute value greater than 10”; it
wouldn’t happen if all entries of A'°” are less than 10°. QED of lemma.

Therefore, absolute value of trace(A) can’t be 3 or greater: then absolute value of
one eigenvalue would be above 1.5 (since trace is the sum of eigenvalues) and that
can’t happen. Hence trace(A) can be 0, £1, or £2. Multiplying the whole matrix A
by -1 doesn’t change A'*, so we may assume that trace(A) is nonnegative.

To summarize: WLOG det(A) is -1, 0 or 1 and trace(A) is O, 1 or 2.
This gives us 9 possibilities. Let us check all of them:

a) det(A) =-1 and trace(A) = 2.

+
Eigenvalues satisfy x> — 2x — 1 = 0 which is x* — 2x + 1 = 2 so they are 1_2 2 . The

greater eigenvalue is

1+2\/§ > I+14 =1.2, and this can’t happen because of the

lemma.



b) det(A) = 0 and trace(A) = 2.
One eigenvalue is O (since the product is 0), another is 2 (since the sum is 2) and it
can’t happen because of the lemma.

¢) det(A) =1 and trace(A) = 2.
This is a hard case. Characteristic polynomial is x* — 2x + 1 = 0 so the eigenvalues
are equal 1. Let E be the unit matrix. Then A — E = N is a nilpotent matrix. Since
the dimension is 2, N* = 0. Therefore A = E + N, and

A" = (E +N)"™ =E + 1000N

Since all entries of N are less than 11 by absolute values, all entries of 1000N are
less than 11000 and all entries of A" are less than 11001.

d) det(A) =-1 and trace(A) =1.

Eigenvalues satisfy x> — x — 1 = 0 so they are . The greater eigenvalue is

bigger then 1.5, so this case is ruled out by the lemma.
e) det(A) =0 and trace(A) = 1.
By Cayley-Hamilton, A>— A = 0, hence A* = A. By induction. A" = A¥ and
therefore A'™ = A and its entries have absolute values no greater than 10.
f) det(A) =1 and trace(A) =1.
A>— A +E =0. We multiply that by A + E, and we get A* + E = 0.
Therefore A’ = —E and A = — E and A'™ = — A. It has the same entries as A,
maybe with different signs, but absolute values are still < 10.
g) det(A) = -1 and trace(A) = 0.
A’—E=0.S0A” = E. Therefore A'™ = E.
h) det(A) = 0 and trace(A) = 0.
The matrix is nilpotent. A> =0 = A",
1) det(A) =1 and trace(A) = 0.
A’ +E=0.S0A’=-E. Therefore A* = E. And A" = E.



Targil 1 - determinants.

1. All entries of a 10x10 matrix A belong to the interval [-1,1].
Can it happen that det A > 5770 ?

2. Matrix B has zeroes on the main diagonal and ones at all other places.
a. Prove that B is non-degenerate.
b. Compute det B.

I 1 1 1
2 3 4 5
3. a. Compute u =det 2 o3 g s
23 33 43 53
I 1 1 1
2 3 4 5. ..
b. Prove that v=det| _, 344 5 is divisible by u.
27 3 4§
1444
11 1 1
4*. The inverse and the determinant of the following matrix: f f ‘1‘ f
3 4 5 6
11 1 1
4 5 6 7

5%*, Consider an anti-symmetric (A = — A") matrix with integer coefficients.

Show that the determinant is a perfect square.



Targil 1 - determinants.

1. All entries of a 10x10 matrix A belong to the interval [-1,1].
Can it happen that det A > 5770 ?

Solution. We shall use a following lemma:

Lemma. If N = 2°, we can construct a square NxN matrix which consists of
numbers 1 and -1 and its columns are mutually orthogonal.

Historical remark. A matrix of that kind, with mutually orthogonal columns and
made of ones and minus ones, 1s called Hadamard matrix after a famous French
(Jewish) mathematician Hadamard (pronounced [adamAr]).

It is easy that the size of Hadamard matrix, if it is bigger than 2, should be divisible
by 4; Hadamard conjecture is that for any N divisible by 4 there exists an
Hadamard matrix of that size. The first nontrivial examples, of size 12 and 20 were
constructed by Hadamard in 1893; Wikipedia lists several other constructions for
different sizes, the last of those is the construction in 2004 by Hadi Kharaghani and
Behruz Tayfeh-Rezaie of size 428; existence for size 668 is still an open.
http://en.wikipedia.org/wiki/Hadamard matrix

Suppose we have proved the lemma; let’s solve our problem in this case.

Determinant of Hadamard matrix is *N"’?, and we may choose the sign: if we

want to change it, we multiply one of the rows by -1. Indeed, determinant is an
oriented volume of a parallelepiped (172°2p7) spanned by the vectors of the

columns; our parallelepiped is a cube, sides are of length JN . So the volume, up
two a sign is a product of sides.

1
So the determinant of Hadamard 2x2 matrix ( J 1s 2, and the determinant of

Hadamard 2x2 matrix is 8* = 2'* > 4000 and if we put those two matrixes as blocks
along the diagonal we get a 10x10 matrix with det > 8000 > 5770.
Now it remains to prove the lemma.



Proof of lemma. In our case, orthogonality means that each two columns match in
precisely half of the places (and mismatch in the other half). We shall construct a
matrix of zeroes and ones with the same combinatorial properties; to turn it into
Hadamard matrix, it will be enough to replace zeroes by -1.

Since N = 2k, the rows, as well as the columns, will be numbered by a different
vectors of k-dimensional space over the field of two elements {0, 1}.

The number in the column that corresponds to vector v and row that corresponds to
vector u will be the scalar product of v and u.

Consider two different columns corresponding to binary vectors v and w. The
numbers in these columns in row corresponding to vector u match, iff (if and only
if) u 1s orthogonal to v — w. Orthogonality to v — w is a condition, that specifies a
hyperplane in the linear space over the field of two elements. Every hyperplane in
that space contains precisely Y2 of its vectors; adding any vector outside the
hyperplane is a bijection (731 ¥"nin Apnyi) between the hyperplane and its
complement. QED.

Remark. Another way to do this construction is by induction.
A shorter, but also a less elementary way, for those who know tensor product, is to
take n’th tensor power of the 2x2 Hadamard matrix,

2. Matrix B has zeroes on the main diagonal and ones at all other places.
a. Prove that B is non-degenerate.
b. Compute det B.

Solution. a. Sum of all columns divided by something is a vector of ones.
Difference between that and some column is an element of the standard basis.

So, any element of a standard basis can be spanned by the columns of our matrix;
hence the whole space is spanned by the columns of our matrix.

b. If I add a unit matrix to B, I get a matrix of rank 1, therefore —1 is an eigenvalue
of multiplicity n — 1 at least. If I subtract n — 1 times unit matrix, I get the
following matrix: 1 —n on the diagonal, and 1 elsewhere. Sum of all columns is a
zero vector, hence the matrix is degenerate. Hence n — 1 is also an eigenvalue.

We have found n eigenvalues (n — 1 times —1, and once n — 1); that’s the complete
list of eigenvalues; the determinant = product of all eigenvalues = (-1)"~'(n — 1).



3. a. Compute u = det 32 42 52
33 43 53
I 1 1
2 3 4 o
b. Prove that v=det| , _, ., _, |isdivisible by u.
2" 3 5
27 3 4§

3. a. We shall compute the more general determinant:
I 1 1 1

_d a b ¢ d
u=det a b ¢ d’
a b o 4
(sometimes a more general question is easier than a special case).
The determinant is 0 when b = a, so it is divisible by b — a.
For similar reasons, it is also divisibly by c —a, by d —a, ..
So, we have a polynomial in a, b, ¢, d, which is divisible by
(b —a)(c—a)d—a)(c—b)d-Db)d-c)
The last determinant, as well as u, is a polynomial of degree 6 (in each
permutation, we have something of degree 1 times something of degree 2 times
something of degree 3). Hence
u=Kb-a)c-a)d-a)c—-b)d-Db)d-rc)
where K is a constant. The only thing that we have to do yet is to guess a constant.
When we compute u by a sum of permutation, we have only one way to get highest
(third) power of d, and second power of ¢, and first power of b; by the diagonal
permutation. When we open brackets in the product, the only way to get this
(highest powers of the latest variables) is to take all plusses out of brackets.
In both cases, we get 1 as the coefficient, hence K = 1.
u=®b-a)c-a)d-a)c—-b)d-Db)d-rc)
In our case, we getu=1-1-1223 = 12.



Remark. The same thing that was done for the 4x4 matrix can be done for NxN
matrix in the same way. If the k£’th row from matrix k contains powers of x;, from 0

power = 1 to the N — 1* power, the determinant is H(x i~ xl.) .

i<j
The proof is precisely the same: notice that it is divisible by x; —x;, compare

degrees (which are equal), and find the coefficients.
This nice determinant is called Vandermonde.

1 1 1 1
a b c

at bt 4
a b ¢ d
hence it is divisible by the product u = (b — a)(c — a)(d — a)(c — b)(d — b)(d — ¢).
The ratio is a symmetric polynomial in a, b, c, d.

b. By similar reasons, v =det is divisible by (b — a), (c — a), etc.

Well, actually in the above proof we have used here some non-obvious facts,
which I told this yom revii in the classroom (when we talked of resultants).

I shall not prove them now in a detailed way, but I shall split it into a sequence of
very easy (but not completely obvious) lemmas:

Lemma 1. Consider a polynomial of one variable over an infinite field. Suppose its
value at every point is zero. Then it’s the zero polynomial (all coefficients are 0).
Lemma 2. Consider a polynomial of several variable over an infinite field.
Suppose its value at every point is zero. Then it’s the zero polynomial.

Lemma 3. Suppose a polynomial of several variables xi, x,, ..., x, has zero values
at all points of a hyperplane { x; =0 }. Then the polynomial is divisible by x; (it
can be written as x; times another polynomial).

Lemma 4. Suppose a polynomial of several variables xi, x», ..., x, has zero values
at all points of a hyperplane { I(x;, x5, ..., x,) =0 }, where [ is a linear function.
Then the polynomial is divisible /.

Lemma 5. Suppose a polynomial of several variables xi, x,, ..., x,, with integer
coefficients has zero values at all points of a hyperplane { I(x, x,, ..., x,) =0 },
where [ is a linear function with integer coefficients, and coefficient of x; is 1. Then
the polynomial is / as a polynomial with integer coefficients.



4*, The inverse and the determinant of the following matrix:

Bl= W= = -
U~ K= W= =
Al Gl s wl-
Q= = vf= A=

Solution. Once again, consider a more general problem NxN matrix, in column i

row j we have the number . OurcaseisN=4,a,=i,b;=j—-1.

a,+b,
Unfortunately, the entries of the matrix and its determinant art not polynomials. To
make everything polynomial, we should multiply each column by all denominators
there, thus making a matrix terrifying, but polynomial. The determinant will be

N N
multiplied by the common denominator Hn(ai + bj) which is a polynomial of

i=l j=l1
degree N °. The determinant originally was a rational function of degree —N , so
now it is a polynomial of degree N-(N — 1).
The determinant is O when a; = g;, and when b; = b;, hence it is divisible by

H(a ;4 )(bj - b, ) The degrees coincide, so that is an answer up to a constant

i<j

factor. So the original determinant is up to coefficient.

To compute the coefficient, let us take a special case: a, =i,b, =€ —1i, where € 1s

a very small positive number. All entries of the matrix outside the main diagonal

. . 1 )
are decent bounded numbers, while on main diagonal we have —. The determinant

£
1 N 1 N-2
1s a very big number: (—j + 0[(—) ] Now estimate the second expression:
£ £
H aj_ai)(bj_bi) H(J_l)(l_]) H(]_l) 1
i<j _i<j [

Hl_]—vl(aierj) | l]—vI(8+j—i)~8NX1;[(j—i)_8N



: : 1 ..
So, both expressions are of asymptotically = —- therefore the coefficient between

E(aj—ai)(bj—bi)
ﬁﬁ(“i"‘bz‘)

=1 j=1

them is 1. Hence the determinant is

The matrix made from

is called Cauchy matrix (after a famous French

ai+bj

mathematician). The special case of is called Hilbert matrix (after a

i+j-1
famous German mathematician). In our special case of 4x4 matrix of size 4 we get:
2
1-1-1-2-2-3
det = (2 3 4 3 )2
1-2°.3°.4".5°.6"-7
Now about inverse matrix. There 1s a formula for that: the element row k, column /

of inverse matrix is
_ k+[det[%k
Yer = (=1)
detA
where A, (aka minor) is a matrix without row /, and column k.

But minors of a Cauchy matrix are again Cauchy matrix:

[1(e;=a)[T(6:-5) 1
ke det A et < ] i< : l;lg(ai "'bj)
Ter = (_1) — = (_1) 2 -/ . J —

det A ﬁﬁ(ai+bj) H(aj—ai)(bj—bi)

=1 j=l
i#l jrk

H(ai +b, )I—NI(al +bj)

_ il j=1
H(al_ai) (bk_bj)
i#l Jj#k

TTG+0]T0+)

il j=1

[1C-D]J(k-j)

il j#k

Specifically for Hilbert matrix we get r, , =



5°*, Consider an anti-symmetric (A = — A") matrix with integer coefficients.
Show that the determinant is a perfect square.

Remark. det A = det A" = (-1)" det A, so it is nonzero (and non-obvious) only for
even dimension.

First solution. Determinant is integer, so it is enough to prove the it is a square of
rational number, then we shall know it is a square of integer. If we apply a certain
permutation on rows and the same permutation on columns, matrix will remain
anti-symmetric and will keep the same determinant.

So we may assume that unless the matrix consists of zeroes only, then cells near
the left-top corner (1,2) and (2,1) are non-zero: one is a, another is —a. Then by
adding linear combinations of first and second rows to all other rows, we can
eliminate all numbers in the first and second columns after the second row. These
Gauss method operations are equivalent to multiplying the matrix from the left by
an invertible matrix.

If A is anti-symmetric, then it is easy to see that BAB' is also anti-symmetric. Let
B be the matrix that is doing Gauss method operation to eliminate the first two
columns under the top-left 2x2 block. Then B' does the same operations on the
columns. Obviously, both B and B" are rational, so determinant is multiplied by a
square of rational number. That number is nonzero, since B is invertible.

But now we get a block matrix, that consists of 2 anti-symmetric blocks, so the
statement follows by induction over dimensions.

Second proof. It is known, that over anti-symmetric multi-linear forms the wedge
product is defined, that makes a k+m-form out of k-form and m-form.

1

(KAL) (V593509 ) = Mﬂ; sgn(o) K(va(l),va(z),...,vg(k)) : ,u(va(mﬂ),vg(m+2),...,v6(m+k))

(here we divide by k!m! to kill ambiguity — no need to sum equivalent summands
several time, so this formula is actually integer).

This product is super-commutative and associative.



Any anti-symmetric 2-form can be represented in a general form as Za. X AX;,

1] 1
i<j

where x; are basic linear functionals corresponding to “taking i’th coordinate”, or,
when suitable basis is chosen, in a canonic form:
O=kx Ax,tkx, Ax, +kx; Ax,+..+kx, (AX, .

Actually, that was what we have proven in the first solution.

But since the definition of the wedge product doesn’t use coordinates, as well as
some definitions of determinant, if we prove certain equality between those in the
canonical basis, we shall know it for any basis.

DOADN...AND

Consider the product : , where @ is multiplied by itself n times.
n!

When we open brackets, all products with similar factors cancel out. So we get n!
equivalent products, so after dividing by n! we get an expression which is integer
and not fractional in the coefficients, and that is (kk,k;...k, ) x, A X, A Xy Al A X,

product of all coefficients time standard volume form.

The determinant of the anti-symmetric matrix is k'k;k: -...-k_ . It is the square of

.. OANDNAN...ND ..
the coefficient before the volume form of . So 1t will be not

n!

necessarily in the canonical basis.

Example. Consider n = 4. Matrix A=

is represented by a
—a; —ay; 0 ay

—a, —a, —a3 0

form @=a,,x, Ax, +a;, %, A X, + 0% AX,+AyX) AX,FApXy AXy+ Ay Xy A X,

Then AL

= (a12a34 = Q30,40 ) X ANXy NXZ AN Xy

(When computing this things, just multiply each couple of terms once and don’t
divide by 2).



2
So detA = (a12a34 —apay, t al4a23) .

Outline of third solution (Ofir Gorodetzky)

We know (either by guessing or from previous solution) the formula for the
expression whose square is the determinant: it is a sum over all ways to decompose
the set of all indices into pairs, of product of cells corresponding to that pairs (one
index is of row, another of column), signs are chosen by the sign of a permutation
which is formed when we write down all those pairs in a row, pair after pair.

So, we can prove combinatorially, that the square of that expression is the
determinant. The determinant is a sum of all products over all permutations (or
maximal rook arrangements). Some of those permutations contain odd cycles,
others only even cycles. We can show that any permutation containing at least one
odd cycle will cancel out with another permutation because the matrix is anti-
symmetric (by transposing only that specific cycle).

So, we remain with permutations having even cycles only. Sides of even circle
might be colored into black and white. That splits the permutation into two perfect
matchings. Each of those perfect matchings can be considered as a summand in the
polynomial we described, so the determinant is what we get after multiplying that
expression by itself (since each time we unite 2 pair decompositions, we get a
permutation with even cycles). Working out the signs is left as an exercise ©.



Targil 2.

(Questions about existence of weird analytical objects)

1. A {a,} is a decreasing sequence of positive numbers, Zan 1s a divergent series

n=l1

(77201 MN). Consider the sequence {b, = min(a,, 1/n)}.

Can we claim that an diverges?

n=l1
2.* Is it possible to construct f :[O, 1] — R which is continuous, monotone non-
decreasing and satisfies the following two equations for every xe [0, 1] :

f(x/3)=f(x)/2
phetribieat

3.* Derivative of a continuous function f:R — R at all rational points exists and

equals zero. Is f necessarily a constant?

4. {a,} is a sequence of positive numbers, Zan =1. Prove that it is possible to

n=1
insert into the open interval (0,1) a countable set of closed mutually disjoint
intervals, indexed by positive integers, so that a closed interval number n is of
length a,.

5. f: R - R such that for any positive real x, y the sequence f (x+ny) , for n€N,
tends to infinity.

a. Can we claim that that f(x) — o ?

X—>o0

b.** Can we claim that f(x) — o, if it is given that f is continuous?

X—>00



Targil 2.

(Questions about existence of weird analytical objects)

1. A {a,} is a decreasing sequence of positive numbers, Zan 1s a divergent series

n=l1

(77201 MN). Consider the sequence {b, = min(a,, 1/n)}.

Can we claim that an diverges?

n=1
Answer. Yes.
Solution. If we have finite number of b, = 1/n then except for the finite number of

elements b, = a, and an behaves the same way as Zan :

n=l1 n=1
It remains to consider the case when for infinite number of indexes b, = 1/n.
Take the increasing sequence of all such indexes. Choose an infinite subsequence,
n,,n,,n,,... such that n,,, >2n, .

The series an might be divided into sub-segments Z b, . We shall show that

n=l1 n=n;_;+1

the sum in each sub-segment is at least Y2, and that will imply an =00,

n=l1

Indeed, for any n between n;_; and n;, we have
b, =min(a,,1/n)> min(ank JA/n, ) =1/n, .

Hence D b,2(n —nk_l)i>%. QED
n=n;_;+1 k
2.* Is it possible to construct f :[O, 1] — R which is continuous, monotone non-
decreasing and satisfies the following two equations for every xe [0, 1] :
f(x/3)=f(x)/2
f(x)+f<1—x)=1

Answer: yes.
Solution. The idea comes from Cantor set. Cantor set is made as follows:



Take [0,1] interval. Exclude the open interval (1/3 , 2/3) in the middle, now you get
two intervals. Then exclude an open interval of length 1/9 in the middle of each
closed interval, you get 4 intervals. Repeat this operation infinite number of times
(excluding open interval in which is thrice shorter and located in the middle of
each remaining closed interval). What remains after infinite number of steps, is by
definition the Cantor set.

Another way to define Cantor set: take all numbers between 0 and 1, that can be
written by ternary fraction (base 3, unlike standard decimal or well-known to
computer programmers binary system) using only digits O and 2 (not using digit 1).
For instance 1 = 0.22222... base 3, 4 =0.0202020202.... base 3, etc.

Cantor set has many counter-intuitive properties. It is big in the sense of cardinality
(as big as the set of all real numbers) but small in the sense of “length” (set of
measure 0).

By the same idea we construct Cantor function, aka Cantor’s ladder. First we take
f(0)=0,f(1)=1.0n the interval [1/3, 2/3] we take f (x) = Y.

On each step of construction of Cantor set, we exclude an open interval in the
middle of a closed interval; by that moment, we have already defined values a and
b at the ends of that interval; the values on the closure of the open interval which is
being excluded will be (a + b)/2. This way we shall define the function at all points
of the Cantor set and at some points in it; the values at the rest of the points of the
Cantor set, such as % , is defined by monotonicity.

Another way to define this function is as follows: for every x take the ternary
fraction representing x, which is 0.x;x,x3... (when representing 1, write 0.222...
and not 1.000...). Find the first appearance of digit 1 in the fraction (if it exists)
and erase both that digit and all digits coming after it. After that replace all the
digit 2 by digit 1 at all places; that will be the binary fraction of f (x).

After the example is constructed, it is not hard to verify that it satisfies the
condition; we leave it as an exercise to the reader.

3.* Derivative of a continuous function f:R — R at all rational points exists and

equals zero. Is f necessarily a constant?



Answer. No.
Solution. First, it is enough to do it for a closed interval. Indeed, we smoothly map
a real line into a closed interval, while rational numbers will go to rational
numbers, for instance as follows:

qg:R— [—1, 1]

1

q(x ) - 1+ x>

If we build a function g on [—1,1] satisfying all conditions, then function

fx) =g(g(x)

will satisfy all our conditions.

The set of rational numbers is countable. Therefore, we can assign a natural index
to each rational number.

We shall build some kind of Cantor’s ladder, but irregular (unlike the previous
Cantor’s ladder where we used precisely the middle 1/3 of each interval).

First define g(-1)=-1,g(1)=1.

Each time, when we have a closed interval, we shall choose on it a rational number
with the smallest index inside it; for that rational number we shall take an open
neighborhood inside that interval, with irrational ends. On the closure of this
neighborhood, the functions will be given a constant values, equal to the average of
the values at the ends of the closed interval. The missing values after infinite
number of steps are completed by monotonicity.

The Cantor function constructed in that way, for each rational number it is a
constant in a neighborhood, so it has a zero derivative at each rational number.
However, it isn’t constant.

4. {a,} 1s a sequence of positive numbers, Zan =1. Prove that it is possible to

n=1
insert into the open interval (0,1) a countable set of closed mutually disjoint
intervals, indexed by positive integers, so that a closed interval number n is of
length a,.

Solution. We shall insert the intervals iteratively. First of all, we shall insert
interval of length a, all the other intervals with odd indexes will be assigned to the
subinterval before a,, and all the intervals with even indexes will be assigned to the



subintervals after a;. The location of a, interval will be chosen so that the length of
the before interval is equal to sum of lengths of all odd indexes > 1, and the length
of the after interval will be equal to sum of the lengths of all even indexes.

We shall continue the process inductively. On each stage, we have several open
intervals, to each an infinite set of closed intervals is assigned. From the closed
intervals assigned to each open interval, we take one the interval with the smallest
index, and separate the rest of them into two infinite subsets. The first subset is
assigned to the “before subinterval”, the second subset is assigned to the “after
subinterval”, the location of the chosen closed interval is chosen so that the lengths
if the before and the after subinterval will be precisely sufficient to cover the
intervals assigned to them.

At stage n, the interval of index n is already inserted, and all closed intervals are
disjoint; therefore this process will insert all intervals, and all will be disjoint.

5. f: R — R such that for any positive real x, y the sequence f (x+ny), for neN,
tends to infinity.

a. Can we claim that that f(x) — o ?

X—>o0

b.** Can we claim that f (x) — oo, if it is given that f is continuous?

X—>00

Answer. a. No. b. Yes

Solution. a. Let a > 1 be a transcendent number, and consider the following
function: f{la") = 0 for every natural n, and f(x) = x> for all other points.

Any arithmetic progression can have no more than two common points with the
sequence a”, since if it would have 3 common points, a would be a root of a
polynomial with rational coefficients. Hence any sequence f(x+ny) tends to
infinity, and f (x) doesn’t.

b. Suppose it doesn’t. Then for some M there is a sequence x;, converging to
infinity, such that f (x;) < M. Then, since f is continuous, for lx — x| < g, we have
f(x) <2M = N, where g, are small numbers, chosen separately for different &. So,



to get the contradiction we need to do one thing: build an arithmetic sequence
which intersects infinite subset of these small intervals.

Assume we have built a sequence {ny} which intersects K intervals:
nye (xmk —&, %, +&, ) , for some indices ny , my for k <K.

We can move the y in certain interval so that the conditions

nye (xmk —&,.%, &, ) still hold for the same ny , m; , because intersection of

my, ?

open intervals is still an open interval, if it is nonempty.

We shall find such y that satisfies this condition for as large K as we want by
induction over K. For K =1 it is obvious.

Assume that n, ye (xmk —&,.%, TE&, ) , for given ny. , my for k <K, in the interval
ye(aY,Y), where a < 1.

Possible values of ny will cover the interval between ny and (n+1)y if

: 1 +1 1
(n+)a¥ <n¥ ie l+—="""<— orn> :
n n -

So, all numbers above YL1 will be covered by possible values of ny.
a j—

But x; tends to infinity, so we can choose x,, such that it can be equal to ny for a
certain value of y in the interval. This completes the induction.

By this inductive procedure we shall build an infinite set of indices m; and a nested
system of intervals (,Y,.Y,) such that if we choose y in interval number K then

{ny} intersects intervals (xmk —£,.%, €&, ) for k < K, the intersection of all those
intervals has at least on point y, and for that y sequence {ny} intersects infinite

number of intervals. Hence f (ny) doesn’t tend to infinity, contradiction, QED.



Targil 3.

Reminder: a set is convex, if for any two points inside the set, it contains the
interval connecting these two points.

1. Consider a subset in RX. At each step, we add to our subset all the interior points

of all intervals having both ends in that subset. The process is stopped when the set
1s already convex. What is the maximal possible number of steps in this process?

2. A family of N convex sets in R is given, N > K. Each K + 1 sets of the family

have a common point. Prove that all sets have a common point.

3. Matrix S is square and has the following 3 properties:
(a) All entries are nonnegative.
(b) Sum of numbers in any row is 1.
(c) Sum of numbers in any column is 1.
Prove that this matrix is a weighted average of permutation matrixes.

4. Given k balls of radius 1 in R’ a point on the boundary of a ball is called

"1solated" if it doesn't see any other ball (the balls are not transparent).
What is the area of the set of isolated points?

5. Consider a bounded convex shape of area S in plane with smooth boundary of
length /. Find the area of R-neighborhood given R, S and /. (By R-neighborhood we
mean the set of all points that have distance at most R from the original shape.)

6. We are given N > 2 circles of radius 1. Every straight line meets less than 3
circles. Their centers are O;, O,, ... Oy. Prove that

| nx
a. —<—
i; 00, 4

b Z 1 (n-1)z

<
~00, 4




Targil 3.

Reminder: a set is convex, if for any two points inside the set, it contains the
interval connecting these two points.

1. Consider a subset in RX. At each step, we add to our subset all the interior points

of all intervals having both ends in that subset. The process is stopped when the set
1s already convex. What is the maximal possible number of steps in this process?

Answer. (log2 (K + 1)—|, where (x—| denote ceiling of x, which is the least integer

number not smaller than x.

Solution.

Definition. For vectors vy, v,, ..., v, a convex combination is a sort of linear
combination, a,v; + a,v, + ... + a,v, with two additional conditions: the
coefficients are nonnegative and sum of coefficients is 1.

The physical meaning of convex combination is the mass center with some masses.

Definition. The minimal convex set containing the original set is called a convex
hull (in Hebrew =p) of the original set.

So, first of all, we had some original set A. Take all (finite) convex combinations
of elements of A.

Lemma 1. All convex combinations form a convex set.

Lemma 2. WLOG any convex combination is of no more than K+1 points. If there
are more points, we can write the same point as a convex combination of fewer
points from A.

Now denote A, union of all intervals with endpoints at A. Similarly A,,,; union of
all intervals with endpoints at A,,.

Lemma 3. A, is a set of all convex combinations of no more than 2" points.



From the lemmas we get our claim in one direction. That is if m = (log2 (K + 1)—| :

in other words m is the smallest integer such that 2" > K + 1, then by lemmas 2 and
3, A,, contains all convex combinations of points from A. That is a convex set by
lemma 1, so the process will stop.

For any K we can construct many examples in which the process won’t stop
earlier. Indeed, assume the original set A was K + 1 points vy, vy, ..., vk in general
position. That is, they were not on a hyperplane.

The center of mass (vo+ vi+ ...+ vk)/ (K + 1) 1is a convex combination of K + 1
points but not of K points, otherwise a point of A would belong to the hyperplane
spanned by the other points. Therefore A,,.; doesn’t contain it, since it contains
only convex combinations of at most 2" points, and by definition m is the
smallest integer such as ... .

It remains to prove the lemmas. All of them are based on the expression from
analytic geometry to the interval connecting points P and Q. The interval PQ is

described as {aP+,BQ ‘ a+p=1, OS(Z,,B}.

That formula is an exercise to the reader. Direct application of this formula makes
lemmas 1 and 3 obvious,

Proof of lemma 2. Consider convex combination of N vectors, N> K + 1.
C= a\vy+ay + ... +ayvy
We want to prove that we can get C as a convex combination of fewer points.

Construct vectors w,, In RX*!: first K coordinates of w,, coincide with those of v,,,

and the last coordinate of w,, is 1. Now we have N vectors in R**!, hence they are

linearly dependent. Hence there is a nontrivial zero linear combination of those
N
which is mewm =0. This condition can be written as two conditions: when you

m=1

N
look at the last coordinate, you see that me =0, and when you look at the first K

m=1

N
coordinates, you get Zb v =0. We have both positive and negative coefficients,

m’m
m=l1



since the combination is non-trivial, and sum of coefficients is zero. Let iy, i,, i3, ..
be the indexes of positive coefficients, ji, j», j3, ... be the indexes of negative
coefficients, and c¢,, = 1b,,l, Then after moving negative coefficients to the RHS

(right hand side), we get ch.k v, = Zc .V, » and here all the coefficients are

positive. Take ¢ = max (a,/c.). WLOG, we may assume that the maximal value
Cp#

was achieved on the RHS (otherwise we shall revert the inequality).
We shall take the original convex combination a;v; + a;v; + ... + ayvy and add to it

the expression ¢ - (Zcik v, — chk v, ) . Sum of coefficients will remain the same

(i.e. 1), one coefficient will cancel out, the others will remain positive. So we get a
convex combination with fewer points. QED.

2. A family of N convex sets in R is given, N > K. Each K + 1 sets of the family

have a common point. Prove that all sets have a common point.

Proof. The proof goes by induction. Assume we have proven that each M sets have
a common point, M > K + 1. It remains to prove that each M + 1 sets, for instance
Ap, Ay, ..., Ay, have a common point.

Consider sets B,=A. 1 A,, fori=1,2, ..., M. Itis easy to see that these sets are

convex, since an intersection of two convex set is obviously convex.

Any M — 1 of sets B; have a common point (since their intersection is actually an
intersection of M sets A;). So, intersection of any K + 1 among sets B; is non-
empty, and by induction assumption the intersection of M of them is non-empty.
Therefore B,(1B,(...NB,, =A, N A NA,N..MNA, is nonempty.

It remains to build a base for this induction. It has to be based on a different idea.
Because, for example, intersection of any two sides of triangle is nonempty, but
intersection of all 3 is empty.

During the proof of lemma 2 in the solution of the previous problem we have
noticed the following fact: for more than K + 1 points vy, ..., vy in K — dimensional
space, we can choose some two subsets of indexes and positive coefficients ¢,

such that ch.kvl.k = Zc v, and ch.k = Zc ;. - I we divide all coefficients by

§= ch.k = Zc ;, wearrive to the following conclusion: there is a point which is a



convex combination of any of the two disjoint subsets of given points (assuming
the number of points is at least K+2).

The base of induction, that we have to prove, is the following: if any K+1 sets
intersect, then any K+2 sets intersect. Take K+2 sets Ay, A,, ..., Axso. Intersection
of all those sets except A,, contains at least one point P,,.

Now we have K+2 points. We can choose two disjoint subsets of indexes iy, iy, ...
and ji, j», ... such that a certain point P in space is a convex combination both of
Bl ,P ... and of le,sz ,.... We shall prove that the point P belongs to any A,

b
therefore it belongs to their intersection and hence it is nonempty.
Indeed, assume that m is not one of iy, i», i3, .... Then A,, contains Bl ,Bz,... and
because it is convex, it contains all their convex combinations, and P in particular.
If is not one of iy, i», i3, ..., then it is not one of the ji, j,, ..., then A,, contains

le , sz ,... and all their convex combinations, hence it contains P.

Remarks. I think problem 2 was also called Haley theorem, but I can’t find it in
google. In order to solve such a problem, a good approach is to solve 2- or 3-
dimensional case first (worked for me), even if when you write it down you find
out you don’t use

3. Matrix S is square and has the following 3 properties:
(a) All entries are nonnegative.
(b) Sum of numbers in any row is 1.
(c) Sum of numbers in any column is 1.
Prove that this matrix is a weighted average of permutation matrixes.

Remark. The matrixes described in the question are called bistochastic or doubly
stochastic. Stochastic is a scientific word for probabilistic. Nonnegative numbers
with sum 1 can mean probabilities; bistochastic means both rows and columns can
be probabilities.

Solution. The cells of the matrix which are zeroes or ones will be called good
cells. The other cells will be called bad cells.

Lemma. If we have a matrix which has some bad cells, it is a convex combination
(weighted averaged) of matrixes with fewer bad cells.



Proof of lemma. Choose a bad cell and mark it with black. There is another bad
cell in the same row, mark it with white and move to that cell. There is another bad
cell in the same column, mark it with black and move to that cell and so on. At
some moment, we shall be able to move to the cell which was already marked with
the opposite color.

In that way we shall create a closed loop of even length, all even steps are vertical
from a black cell to a white cell, and all odd steps are horizontal from a white cell
to the left cell. If we add ¢ to all white cells of that loop, and subtract € from all
white cells of that loop, then the sum in every row and column remains the same.
So, when ¢is close to 0, the matrix remains bistochastic, when it is far enough for
0, the matrix stops being bistochastic, because some numbers in the matrix become
negative. When we substitute different values of € we get a line in the linear space
of all matrixes. When ¢ is 0, we get the original matrix A. When ¢ is minimal
possible/maximal possible so that matrix is still bi-stochastic, we get matrixes Ay
and A; which have fewer bad cells than A, and A is on the interval connecting A,
to A;.

So, we can replace each matrix by a convex combination of matrixes with less bad
cells; those can be replaced by convex combinations of matrixes with even smaller
number of bad cells etc. With each step in our convex combination maximal
number of bad cells in a matrix will be reduced, and after n* steps at most we get
the same matrix as convex combination of matrixes with no bad cells.

Matrixes which have only zeroes and ones and sum in each column and in each
row is 1 are precisely the permutation matrixes.

Remark. There’s a more general statement called Krein-Milman theorem. In finite
dimensional case, it states that a compact convex set is a convex hull of its extreme
points (where extreme points are such points of the set that are not interior points
of the intervals joining points of that set). In the infinite dimensional case, convex
hull is replaced by the closure of convex hull.

4. Given k balls of radius 1 in R’ a point on the boundary of a ball is called

"isolated" if it doesn't see any other ball (the balls are not transparent).
What is the area of the set of isolated points?

Answer. The area of the unit sphere, that is 4.



Solution. For every isolated point of any sphere, consider a unit normal vector to
its sphere, looking outside the sphere.

That defines a map from the set of isolated points to the unit sphere (since a unit
vector always belongs to the unit sphere). We shall prove that this map, up to a set
of measure zero, is bijective (231 ¥"nn).

Injectivity (¥"nm): at any isolated point its sphere has a tangent plane. By definition
of isolated point, all the other points of all the spheres are on one side of that plane.
Therefore, scalar product of corresponding normal vector with the given isolated
point is greater than for any other point. Hence it is unique.

Surjectivity (7¥) up to measure 0: consider any unit vector v, and consider of all
points on given spheres point p which has highest scalar product with v.

It might happen that we have two or more points of that kind, from different
spheres, but probability of it is 0. It would mean that scalar product of v with two
centers of different spheres is 0, and that means that v belongs to one of the finite
number of arcs, defined by orthogonality to interval connecting two centers of
spheres. There is a finite number of those intervals.

Outside those cases with probability 0, we get just one point with highest scalar
product, and that is the isolated point with given normal. QED.

5. Consider a bounded convex shape of area S in plane with smooth boundary of
length /. Find the area of R-neighborhood given R, S and /. (By R-neighborhood we
mean the set of all points that have distance at most R from the original shape.)

Solution. Consider a convex polygon, that is inscribed into the shape and
approximates it (it can be done by walking around along the boundary in small
steps). The R neighbourhood of the polygon consists of:

a. Rectangles of height R and bases = sides of the polygon.

b. Sectors of disc of radius R (angles are 180° — internal angle of polygons).

The rectangles can be glued together into a rectangle of area R X perimeter.
The sectors can be glued together into a disc of radius R and are ©R”.
In addition, we have the internal area of the polygon.

When the polygon is close to the shape, the R-neighborhood of the polygon is close
to (but slightly smaller than) R-neighborhood of the original shape.
So the limit area is TR>+ IR + S.



Remark. Of course, similar thing happens in higher dimensions (for almost the
same reason): the answer is a polynomial in R of degree = dimension, the first
coefficient = volume of the unit ball, linear coefficient = area of surface (n-1
dimensional) and the free coefficient is the volume. Other coefficients are more
complicated.

6. We are given N > 2 circles of radius 1. Every straight line meets less than 3
circles. Their centers are O;, O,, ... Oy. Prove that

i<j

1 niw
a. —_—<—
= Oin 4
1 (n-1)7z
b.* <

Solution. a. Consider angles of view of all circles other than number j from the
point O;. By condition, those angles don’t intersect. Even if we add to each angle
the opposite angle, the angles still don’t intersect (otherwise there would be a line
through O; cutting circle j and two more circles). So their sum is less than 2.
Denote by ¢, ; half the angle of view of circle number i from point O;.

1 :
We actually proved that Za'l., j <§ for any j. But 00 =sing, ; <, ;.

i#] i
Therefore ZL <z for any j. Summing over j gives Zn“z# < nz
0 00; 2 iz 00, 2

J
Hence ZZ% < % .
J

i<j Y

b. Consider angle O;0,0;. The distance from O, to the line O;0; 1s at least 2.

Therefore 0.0, - sin (O jOkOi) > 2. Hence the angle sin(O jOkOi) 2 %
ik

1

Hence both the angle 0,0,0; and 180° — O;0,0; are greater than (or than

i~k

for the same reason).
a3



Let n be the total number of points. For given k, consider lines via O, and all other
O, this line split plane into n — 1 pairs of symmetric angles. Angle bounded (from

the clockwise direction) by O,0; is greater than . There are two symmetric
ik
2

angles of that kind, so for each k we get 22 <2r.

JEk ik

Summing these things will lead to the same conclusion once again, so we need yet
another 1dea. The idea is: consider the convex hull of all O,. Not all O; are the
vertexes of the convex hull, just m of them.

Sum of all angles of the convex hull is not mz but (m—2)7.

Fix vertex of the convex hull O, and denote the angle of the convex hull atit ¢, .

Then rays O,0; split the angle ¢, into n — 2 parts. The part 0,00, is greater than
2

and ——

by both :
0,0, 0.0,

Summing inequalities of that kind we can write Z <, . In this sum ——
J#ELk Y Yk ik

is omitted. We can omit any we choose, so we shall omit the longest 0.0, .

Thereforez 2 Sn_lz 2 <n_10(k.
j#k 0]0k n— 2 J#ik O]Ok n— 2

Sum it over all vertexes of the convex hull:

Sy 2oyl oty g o2 )z <(m-1)z

O,chull j+k OjOk Opehull 0 — 2 n-2 O, hull n-2

Hence the sum over all vertexes

ZZ%@: 3 ZO%+ 3 ZO?Ok <(m=1)z+(n-m)z=(n-1)7

k j#k Oyehull j#k Oy #hull j#k

. : : 2
Each pair here appears twice. Therefore sum over pairs 22— <(n-1)z.QED.
i<j i



Targil 4.

(Taking the extreme).

1. On a plane, there are 2n points in general position (no 3 are on the same line).
Half of them are blue, others are red. Prove that it is possible to divide them into
pairs, each pair consisting of one blue point and one red point in each pair, so that
the straight intervals connecting these pairs won’t intersect.

2.* Inside a regular N-gon N points are marked. Consider N pairs: in each pair
there is one side of the N-gon and one marked points. Each marked point and each
side of the triangle is used in one pair precisely. From each pair, a triangle is
formed (as a convex hull of the side and the point of that pair).

Show that the pairing can be chosen in such a way, that the triangles won’t overlap.

3. Prove that 1+%+%+l+ +l isn’t integer.

n

4.* A finite number of points are chosen on a plane. A line through any two of the
chosen points contains at least 3 chosen points. Prove that all points are collinear.

5. Consider a connected graph. At some vertexes, real numbers are written. Prove
that you can write real numbers at all the other vertexes, so that every number
written by you will be equal to the average of its neighbors.

6.* A billiard table is convex and has a smooth boundary. Prove that there an
infinite number of different closed trajectories of the billiard ball (in other words,
infinite number of closed broken lines inside the given table, such that at every
vertex is on the boundary, and the sides at this vertex are symmetric w.r.t. the
normal).



Targil 4.

Taking the extreme.
The general idea is to consider the extreme object/case/state.
The question that remains is: extreme in what sense?

1. On a plane, there are 2n points in general position (no 3 are on the same line).
Half of them are blue, others are red. Prove that it is possible to divide them into
pairs, each pair consisting of one blue point and one red point in each pair, so that
the straight intervals connecting these pairs won’t intersect.

Solution. Consider all possible red-blue pairings. There is finite number of those.
For each pairing, consider the total sum of lengths of all its intervals. We take the
pairing, in which the sum of lengths is minimal.

Let us prove it satisfies the condition. Suppose not: intervals R;B; and R;B,
intersect. If we would connect R, to B,, and R; to B;, we would get smaller sum of
lengths (due to the triangular inequality, sum of two diagonals in the convex
quadrilateral is greater than the sum of two opposite sides). Hence our pairing
doesn’t give the minimal sum of all intervals, contradiction.

2.* Inside a regular N-gon N points are marked. Consider N pairs: in each pair
there is one side of the N-gon and one marked points. Each marked point and each
side of the triangle is used in one pair precisely. From each pair, a triangle is
formed (as a convex hull of the side and the point of that pair).

Show that the pairing can be chosen in such a way, that the triangles won’t overlap.

Solution. Choose the pairing, for which the product of all areas of triangles is
minimal. We shall prove that this pairing has no overlaps. Assume two triangles
overlap. One is formed by side s; of the polygon and inner point A;, another by side
s¢ and inner point A,. What happens if we flip them, assign the polygon side to the
inner point of the second and vice versa?

There are two cases. If s; is parallel to s, then the distances from both sides to
corresponding vertexes decrease, and both areas decrease.

Now consider the case when s; and s, intersect at point O. For each point P, denote
by d(P) distance from line P to line s;.



Consider the angle with vertex at O formed by the continuations of sides s; and ;.
Inside this angle, the level sets of a function f (X) = d(X)/di(X) are the rays starting
at O. Value of f goes monotonically from O to plus infinity as the ray rotates from
s; to si. Therefore, f(A;) > f(A;) (otherwise the triangles would be in disjoint angles
and wouldn’t overlap) in other words di(Ay) / di(Ay) > di(A;) | di(A;) or

di(Ax) d(A;) > di(A;) d(Ar)
If we multiply that by s;s, /4, we see that the product of areas will be greater after
the flip. That is a contradiction, since we have chosen a pairing with the greatest
product of areas. Hence our pairing is non-overlapping.

3. Prove that 1+%+%+l+ +l isn’t integer.
n

First solution. Let p be the greatest prime < n. By Chebyshev theorem, there is a
prime number between n and n/2, hence p > n/2. So between 1, 2, ..., n there is no
number divisible by p except p. Hence if we multiply our number by all numbers
between 1 and n except p, all terms except one will be integer. Hence the number
1s not integer.

Remark. Many people might not accept this solution, since they don’t know
Chebyshev theorem. But there is also another solution.

Second solution. Take the greatest 2 < n. The first number which is divisible by 2*
other than itself is 2*' and it is > n. Hence if we multiply the original number by
2! and by the product of all odd numbers < n, and we get it.

4.* A finite number of points are chosen on a plane. A line through any two of the
chosen points contains at least 3 chosen points. Prove that all points are collinear.
Remark. This problem is called Sylvester problem, after famous 19" century
Jewish (English) mathematician James Joseph Sylvester.

Solution. Suppose not. Take a triangle with minimal altitude (77213) the altitude
from A to BC in a triangle ABC is minimal. There is one more chosen point D on
BC. So the altitude A to the line BCD is minimal. WLOG, C is between B and D.
Either angle ACD or angle ACB is non-acute. WLOG, ACB is non-acute. So in the
triangle ABC the minimal Altitude is from C and not from B.



5. Consider a connected graph. At some vertexes, real numbers are written. Prove
that you can write real numbers at all the other vertexes, so that every number
written by you will be equal to the average of its neighbors.

First solution. The conditions are a linear system of equations. The matrix is
quadratic: number of equations = number of unknowns. If for one set of given
values in given points there is a unique solution, then matrix is non-degenerate and
for any set of given values there’s a unique solution.

So, it is enough to show existence and uniqueness of solutions in the case when all
given values are 0. One obvious solution exists in that case: write O in every vertex.
It remains to show there is no other solution.

Assume there is a solution where at least one number is positive. Take the maximal
number in the graph. It is average of the neighbors, so its neighbors are also
maximal numbers in the graph. Same for neighbors of neighbors, etc. but since
graph is connected all numbers in it should be positive. Contradiction, so there are
no positive numbers in the graph.

For similar reasons there are no negative numbers.

Hence the only solution is of zeroes, QED.

Second solution. Take the minimum of sum over all edges of squares of
differences at between the values at the ends of the edge.

Well, first one could ask why the minimum exists.

The minimum in any compact set, for instance when absolute values of all
numbers are not greater than 1000000, exists. Outside that compact set the values
are large enough, so we shouldn’t look there (to be precise, if M is the maximal
absolute value among given numbers, and N is number of vertexes in the graph,
and E number of edges, then we can assume that all numbers are less than 2EMN ,
otherwise we have an edge with absolute value of difference at least 2EM, and the
square of that is greater than the whole sum if we would write zeroes at all empty
vertexes).

In the minimal situation, the derivative of the “energy” by every number we wrote
is O (since we are at the minimal point. That gives precisely the condition we
wanted.

Remark. This is a discrete version of Dirichlet principle (invented by Riemann).
http://en.wikipedia.org/wiki/Dirichlet's principle In our “finite” situation, there
are no difficulties with justification of minimum existence.




6.* A billiard table is convex and has a smooth boundary. Prove that there an
infinite number of different closed trajectories of the billiard ball (in other words,
infinite number of closed broken lines inside the given table, such that at every
vertex is on the boundary, and the sides at this vertex are symmetric w.r.t. the
normal).

Solution. For every N, take the longest closed line AjA,As;... Ay, such that all A;
are on the boundary. Small perturbations of any single vertex along the boundary
are not enlarging the sum of distances. So the derivative there is 0, which gives the
billiard law of the equality of angles.

Of course, all these polygons are different (the larger the N, the longer the line) and
each is a billiard trajectory.

Gal found a mistake in the above. It may happen (and can really happen, for
instance for the circle) that the longest trajectory of N = KM vertexes is actually the
longest trajectory of M vertexes repeated K times. Of course, if N is prime, it
cannot happen, and there is an infinite number of prime numbers, so we still get an
infinite number of different trajectories.

Another, but similar way to solve this problem is to consider the convex polygon
of greatest perimeter with N vertexes inscribed in the billiard table. In this case,
when perimeter is greatest, vertexes won’t coincide (otherwise we would disregard
one of the vertexes and add another vertex that would enlarge perimeter, because
of triangle inequality).



Targil S.

(Integrals — everybody loves them)

2 2 .
x“sinx
1. Compute J—2dx.
o, 1+cos™x

2. A center of the disc of radius R is on distance d from the axis a, which is parallel
to in the plane of the disc. The disc rotates around its center with angular velocity 2
and simultaneously around revolves around axis o with angular velocity 3.

A red point on the boundary of the disc goes along a closed trajectory.

Compute the length of that trajectory.

3.#* A smooth function f:R" — R will be called “nice of order m”, if

£(0,0,...,0)=0 and for any positive integer k <m, for any iy, iy, ..., iy we have
0 o d
0,0,...,0)=0.
dx, dx,  ox, a )

Consider a function f which is smooth and nice of order m. Prove that there are n

continuous functions f, f,,..., f, :R" = R , smooth and nice of order m — 1, such

that f(x,,X,,.e X, ) = Zxkfk (X5 Xy5ees X, ) -
k=1

4.%* Let n be a positive integer, and f : [0,1] — R a continuous function such that
1

kaf(x)dle

0

1
for every ke {0,1,...,n—1} . Prove that J(f(x))zdxz n’.
0

S.Let f,g: [a,b] — ( 0,c>o) be continuous, non-decreasing functions, such that for

every xe€ [a,b] we have ji\/mdt < jf\/mdt

a a

and [J7 @ = [ e
Prove that j1/1+f(t)dt2jﬂ/1+g(t)dt.



Targil S.

2w 2 .
x“sinx
1. Compute J—z dx .
o, 1+cos™x
Solution.
2r 2 - T 27 T2 . 2 .
X sSmx X" sinx X+7T) sinx
J—zdx=J...dx+J...dx=J 5 —( ) 5 dx =
1+ cos” x 0 - O1+cos X 14+cos” x
27[x T’ smx 72 4
—'[ dx = J Ldx+ '[ .dx
1+cos® x 7 o

In the second part, take y=7—x.

2r 2 - T 27 T 2 . 2 .
X “sSmx X" sinx X+7T) sinx
J—zdx=J...dx+J...dx=J 5 —( ) 5 dx =
o 1+cos™x o 1 +cos” x 1+cos” x

/2

x—J dx+'[ .dx

_T(—Zﬂx—f[z)sinx
0

1+cos® x 72
”(_zﬂ'x—jzz)sinx _7:/2 ”/z(_zﬂ(ﬂ-—y)—frz)siny _
~([ ool s dx = j dx + }[ 1+coszy dy =

( 2ax -7’ smx w2 27[x 3x’ )sinx
dx + J dx =

1+cos® x 1+cos*x

dx = ~“—dx=

1+cos’ x 7 1+cos’x

2

!

J/. (-27x—7* +27x-37")sinx (47 )sinx
0

0 2
47 0
=J >du =47’ arc:tanu‘1 =4r’ '(——j:ﬂ'?’
1

2. A center of the disc of radius R is on distance d from the axis a, which is parallel
to in the plane of the disc. The disc rotates around its center with angular velocity 2
and simultaneously revolves around axis a with angular velocity 3.

A red point on the boundary of the disc goes along a closed trajectory.

Compute the length of that trajectory.



Solution. Consider rotating plane with internal coordinates (x, y) in which a point
goes by a circle with center (d, 0) and radius R and angular velocity 2. The
parametric description of point’s trajectory is (d + R cos(21), R sin(21)).

Now consider our red point. It is easy to see that in time 2n/3 the circle rotating
with angular velocity 3 will return to the original position. The red point within the
plane of the circle rotates with period n (and only one moment of each period it is
at the maximal distance from the axis a). So, the trajectory becomes closed after
the period of time which is the least common multiple of 2n/3 and &, which is 2.
So, the time interval for the limit is [0, 2x]. But what is in the integral?

The length of the curve can be computed as an integral of the length of velocity
vector times dt. To make the life easier, we won’t go to the Cartesian coordinates,
but rather decompose the velocity vector v into sum of two: v; is inside the plane of
the circle, and it comes from the rotation of disc in its plane around its center, and
v, which is orthogonal to the plane of the disc, and comes from the revolution

_ 2 2
V=l + v -

‘vl‘ is constant and equals 2R. ‘vz‘ is not constant, and equals 3r, where r is the

around axis a. Since v, and v, are orthogonal,

distance between the axis a and the red point, which is |d + R cos(21)l.

2z
Totally, we get L= I \/4R2 +(d + Rcos(2t))2dt. Same as
0

L= ZT\/4R2 +(d +Rcos(2t))2dt
0

Substitute x = 2¢:

L= _7'5\/4R2 +(d+ Rcos(x))zdx

Denote a = d / 2R.

L= 2RJ\/1 +(a +%cos(x))2dx = 2RJ\/1 +a’+acosx++cos® (x)dx
0 0

Well, this integral is not elementary. Even for a = 0 we get an elliptic integral.
(Of course, if I would know it at the beginning I wouldn’t suggest the problem.
Bu I thought it would be something short and simple.)



3.#* A smooth function f:R" — R will be called “nice of order m”, if

£(0,0,...,0)=0 and for any positive integer k <m, for any iy, iy, ..., iy we have
0 o d
0,0,...,0)=0.
dx, dx,  ox, a )

Consider a function f which is smooth and nice of order m. Prove that there are n

continuous functions f, f,,..., f, :R" = R , smooth and nice of order m — 1, such

that f(x,,X,,.. X, ) = Zxkfk (X5 Xy5ees X, ) -
k=1

Solution.
of d
f (%% x,) = J‘(Ef(txl,txz,...,txn))dt =
0
1 n a n 1 a
= x,— flex,tx,,...tx ) |dt =) x, || — f (tx,,1x,,....tx, ) |dt
[PRCTS) T e r—s)

1
Denote f(k)= if Ix,,tx,,...,tx, ) |dt ; it is easy to see that it has the
a 1 2 n
X

0
necessary properties.

4.%* Let n be a positive integer, and f : [O,l] — R a continuous function such that
1
ka f(x)dx=1

0
1
for every ke {0,1,...,n—1} . Prove that J(f(x))zdxz n’.
0

First solution. First idea: projection to the space of polynomial of low degree.

Let p(x) be a polynomial of degree less than n, satisfying the conditions of f.
1 1

Define g = f — p. Then ~"x"g(x)dxzo, moreover jq(x)g(x)dsz for ¢
0 0

polynomial of degree less than n.
1

jf2dxzj(g+p)2dx=jg2dx+2jg,pdx_i_j‘pzdx:j‘gzdx_i_j‘pzdxzj‘pzdx
0 0 0 0 0 f )

0



Therefore, if such p exists then it is the function that minimizes j fldx.
0
Of course, it exists, since the 1, x, x°, ... , X" are linearly independent and the

1
scalar product (f,g)= J f(x)g(x)dx is non-degenerate on polynomials (since if

the scalar square of a polynomial is zero, then the polynomial itself is zero),
therefore the polynomial exists and is unique.

n—l1
Let p(x Za x' be the polynomial satisfying the conditions.
i=0
1 n—1 n—1
Then J( ( dx jp Zalxdx Zajp xdx=Zai.
0 i=0 i=0
n—1
So we have to prove that Y a, =n".
i=0

Our scalar product, if we write it as a matrix in the basis 1, x, xz, e X" is the

Hilbert matrix: at row i, column j you have " (that is the scalar product of x’
i+ j—

and x').

The conditions of p: scalar products of p with 1, x, X%, ..., x"" are ones.

So we actually get a problem of linear algebra when we attempt to compute its
coefficients a;:

n—1

>y A4 k=1,2,..,n
o k+i

Actually, we don’t have to compute a;, only their sum.

n—l

a,
This is done by a trick. Consider the function r( ’

sz

This function has nroots 1, 2, ..., n
So if we make a common denominator, the numerator will be a polynomial of
degree not higher than n, we shall have precisely these roots in the numerator.

i _1_q(x)—x(x+1)(x+2)-...-(x+n—1)

r(x)=2—

Sx+i x(x+D)(x+2)-.-(x+n-1)




It is easy to see that g(x) is a polynomial of degree n — 1 and its highest coefficient
n—1

1s Zai (which we want to compute so much).
i=0

So, the numerator is the polynomial of degree n, highest coefficient —1 and we
know its roots, so it 1S
g(x)=x(x+1)(x+2)c-(x+n-1)=—(x-1)(x=2)-...-(x—n)
Hence
g(x)=x(x+1)(x+2) ..-(x+n-1)=(x=1)(x=2)-...-(x—n)

It remains to compute the coefficient of x"' in both products to finish it.

We get nf:a,. =(1+2+..+(n-1))=(-(1+2+...+n))=n" , QED.

i=0

Second solution. Like in the first solution, we start with the orthogonal projection

n—1
to the space of polynomials of degree less than n. Let p(x)zZaixi be the

i=0
polynomial satisfying the conditions.

n—

) jpzdx=jp<x)-@a,.xf]mga,.[jxfp(x)dx}za,. ~p(1)

1
i=0

Define the following sequence of polynomials.

Do (x) = p(x)

Pin= in (t)dt
0

1

Claim. [x*p,(t)dt=0 for0<i<n-—k.
0

Proof of the claim. By induction.

Base of induction:



Step of induction:
1

1
0= [t p,(t)dt =" p,, (1) | — [ p,,, (1) ar
0 0
1
1
tkpi+1 (t) ‘0 = Pin (1) = in (Z)dt =0

0
1
Itk_lpi+1 (t)dt =0
0
QED of claim.

Reminder: Leibnitz formula. Leibnitz formula allows to open brackets in the
derivative of the product.

In the simplest form (base of induction) it is i( fg)= (ij g+f (d_gj
dx dx dx

In the general form it is (%)n (fg)= ;(Zj{(%)k f}{(%)” g].

The general form is proven by induction, and the simplest form is the base of that
induction.

By definition, p,(0)=0. Also, p,(1)=0 for i <n (by the claim).

n—1

It follows that p, is divisible by x" (x—1)
Since deg(p,)<n, deg(p,)<2n.

n—1

Hence p, =ax"(x—1)"" where a is constant. We shall compute o.

P :(ir o :(i)n_l(ax” (x=1)"")=q(x)(x=1)+(n—1)1x"

dx dx
(the last equality follows from Leibnitz formula)



Substitute 1 :

1=p1(1)=(n—1)!0(

x”(x—l)rh1
(n—l)!

By (*) all we need to prove is p(1)>n’.

p {%T p,=q(x)(x=1)+n- d(d’:) .(a(%jnl (x—1)“)

p(1)=(n-nx"_1 ~1) =n’

x=1

Hence p, (x)=

Outline of third solution. As in solution 1, we arrive to the linear algebra
problem. We have to solve Ax = b, where A is the Hilbert matrix, and b is a vector
of ones. The Hilbert matrix is a special cases of the Cauchy matrix: the matrix in

which at row i column j we have .
S.+1.
i J

All the minors of Hilbert matrix are Cauchy matrixes.
If you know how to compute the determinant of Cauchy matrix (and if you don’t,

read the solution of targil 1 problem 4) you can invert the Hilbert matrix by
Leibnitz-Cramer formula. With some patience and luck, you can finish it.

Fourth proof (Shahar Papini). Handling scalar product in some weird basis (such
as 1, x, x%, x°, ...) 1s messy and unpleasant. Better to switch to an orthogonal basis.
1
For our scalar product (f,g)= J f(x)g(x)dx, there is a well known polynomial
0

orthogonal basis called shifted Legendre polynomials:
1(dY n
P(x)=—| — ( X’ —x ) .
2 (%) n!(dxj ( )

1
(usual Legendre polynomials are an orthogonal for scalar product j f(x)g(x)dx,
-1

and are related to the shifted by the substitution of 2x — 1 instead x.)

It is not orthonormal, but orthogonal: <Pn,Pn> = ,and m#n for <Pn,Pm> =0.

2n+1
(Both facts can be obtained using integration by parts.)



Another nice factis P, (1)=1. This can be proven by Leibnitz formula (which was
mentioned in the second solution).

The polynomial p(x) of degree less than n and having unit scalar products with
1, x, xz, ey %" can be described as follows.

For any polynomial g(x)=b,+bx+b,x*+..+b,_x"" of degree less than n,
(p.q)=b,+b+b,+..+b,_ =4q(1)
This allows to compute expansion of p in the shifted Legendre basis:
(p.B)=F(1)=1

-1

n—l1
Therefore p=>(2k +1)P,.

k=0

—_

n—1 n—
Hence (p,p)=> (2k+1)"(P,,P)=> (2k+1)=n".

k=0 k

Il
o

S.Let f,g: [a,b] — ( 0,c>o) be continuous, non-decreasing functions, such that for

X X

every xe [a,b] we have det < j@dt

a a

and [J7 (Wt = [ s
Prove that j)‘w/1+f(t)dt2'i‘ﬂ/1+g(t)dt.

Solution. Take F(x)= Imdt , G(x)= f@dt .

Graph of F lies below graph of G on [a , b] but they coincide at the ends of an
interval. Also, both graphs are convex, because derivatives are non-decreasing.

b 2 b 2
We actually need to prove J 1+ (Z—Fj dt 2 J 1+ (cji—Gj dr.
t t

b b
In other words, J\/ dt* + dF* > J\/dtz +dG* .

These are the expressions for the lengths of graphs of F and G.



Consider a tangent line to G at point (¢, G(c)) where ce [a,b]. This line cuts the

curve of graoh of F in both direction. If we replace in graph of F the part of the
curve by the interval of this line, we shall still get a graph which is below the graph
of G and shorter (because we replace a curve by a line). We shall do these
replacements many times at different points. As all the interval between points
decrease, both the graph of F gets shorter and shorter and converges to the graph of
G (together with derivative), and the length converges to the length of G.

Remark. This can be generalized as follows: if a convex body A is inside another
convex body B, than the surface area of A is smaller than the surface area of B.



Targil 6.
This targil is inspired by SEEMOUS 2010.

1. a.* Question from the last SEEMOUS: given a real 2x2 matrix A, prove that
there are two 2x2 real matrixes B and C such that A = B® + C? (this was the nicest
problem in the competition).

b.** The natural generalization: for real matrixes nxn, is it possible to represent
each matrix as a sum of squares, and if yes, how many squares are required?

2. a. Prove that a real matrix which is sufficiently close to the unit matrix is a
square of real matrix.

b.* Let D be a diagonal matrix with positive numbers at the diagonal. Prove that a
matrix which is sufficiently close to D is a square of real matrix. (If you don’t
know what is “sufficiently close” stop complaining and invent a definition.)

3. Is it true that every complex nxn matrix is a square of a complex matrix?

4. A determinant of a 2x2 real matrix is positive. Is it true that this matrix is a
square of a real matrix?

-1 0 O
S.Is| 0 -1 O | asum of two squares of real matrixes?
0 0 -1



Targil 6.
This targil is inspired by SEEMOUS 2010.

1. a.* Question from the last SEEMOUS: given a real 2x2 matrix A, prove that
there are two 2x2 real matrixes B and C such that A = B® + C? (this was the nicest
problem in the competition).

Solution. The nicest solution was invented by Ohad Livne (under the influence of
Minkowski) during the competition. Any matrix has the following decomposition:

a b k m
A= +
-b a 0 I
Where k and [ are positive. The first matrix correspond to a complex numbers

when you consider it as a linear transformation of R*. Complex number has a root
as a complex number, so that matrix is a square of a 2x2 matrix.

Jkoox
0 I

The second matrix is a square of [ ] where X is easily computed:

0o Ji)lo I l

So it is enough to take x = QED.

m
NN
b.** The natural generalization: for real matrixes nxn, is it possible to represent
each matrix as a sum of squares, and if yes, how many squares are required?

The answer is the following:

For n = 1 it doesn’t work (there are negative numbers which are not sums of
squares).

For other odd n: three squares are required.

For even n: two squares are required.

The solution will be explained in the end.



2. a. Prove that a real matrix which is sufficiently close to the unit matrix is a
square of real matrix.

Solution. Use Newton’s binomial formula:

(1+x)“=fa(x)=i[“jx"

n=0 n
: 1. :
The radius of convergence for o = 5 is 1. Therefore, for a matrix of norm < 1 the

series converge. The identity ( fl/z(x))2 =1+ x can be verified directly, and it is

true for linear transformation whenever the series converge (since the powers of
the same matrix commute).

b.* Let D be a diagonal matrix with positive numbers at the diagonal. Prove that a
matrix which is sufficiently close to D is a square of real matrix. (If you don’t
know what is “sufficiently close” stop complaining and invent a definition.)

Solution. By VD we shall denote the diagonal matrix, which has square roots of
D matrix elements at the respective diagonal cells.

Consider the transformation X > X in the neighborhood of JD. By the inverse
function theorem, the transformation is invertible in the neighborhood if the
differential is non-degenerate. Which means it is enough to verify that the

#0 foreach A#0.

=0

e T d 2
derivation in every direction is nonzero: d—(\/D + 8A)
£

2
The computation yields: di(\/ﬁ + SA) =JD-A+A-D.
£

In both terms of this sum, entries of A are multiplied by positive numbers (in one

the rows are multiplied by respective diagonal entries of JD, in another the
columns). So if A isn’t zero, the directional derivative isn’t 0. QED.



3. Is it true that every complex nxn matrix is a square of a complex matrix?

0 1
Solution. No. The matrix (0 OJ 1s not a square. It is nilpotent of order 2, so the

“square root” would be nilpotent of order > 2 (which is impossible for matrixes
2%2).

4. A determinant of a 2x2 real matrix is positive. Is it true that this matrix is a
square of a real matrix?

Answer. No.

Solution. Assume that A =( 0

2) = B*(clearly, A has a positive determinant).

Then the complex eigenvalues of B are & =+1, =12 so they are not conjugate to

each other hence the characteristic polynomial of B is not a polynomial with real
coefficients.

-1 0 O
S.Is| 0 —=1 O |asum of two squares of real matrixes?
0 0 -1
Answer. No.
-1 0 O
Solution. Assume C=| 0 -1 0 |=A*+ B*. The matrix C is scalar, so it has
0 0 -1

the same form in any basis. We shall choose (a complex) basis in which A is upper
triangular (for example Jordan) than also A” is upper triangular and B = C — A” is
upper triangular. The diagonal elements of A, B* are their eigenvalues, and they
are squares of eigenvalues of A, B. Denote a;, a,, a; eigenvalues of A, by, by, b3
eigenvalues of B. There are 3 equations:

al +b’ =-1

a; +b; =—1

2 2
a, +b; =-1



One of eigenvalues of both A and B is real, so it must be in pair with imaginary
eigenvalue of the other matrix, so that sum of the squares will be -1. But imaginary
values come in pairs, so both A and B have two imaginary values. So one of these
equations is a sum of squares of two imaginary values.

WLOG, let us assume that a,, b, are real and others are imaginary.

Hence b =b; <-1, and a’ =a; <-1, hence a; +b; <-2, which is impossible.

And, finally:
Solution for 1b.
For even case. Let m be the maximum of absolute values of the entries of A.
In e-neighborhood of 1, square root is defined (see problem 2).
Take a huge number M such that Lz < £.
M™ m
Write A=D + (- le), where 1 is the unit matrix.
Then D=M*1+A/M?.But1+A/M?isin e-neighborhood of 1, so it has
square root, hence D has square root.
The second summand, — M*1is a square also, because in even dimensions —1 is a
square (for n = 2 it is rotation by 90°, for greater dimension it can be constructed

from blocks). So, we have constructed decomposition into sum of two squares.

Not every matrix is a square; indeed, every negative-determinant matrix is not a
square. So 2 is the minimal number.

For odd case. We shall prove that the sum of two squares can’t give —1, therefore
in some cases at least 3 squares are needed, and construct decomposition into 3
squares for every matrix.

The construction of decomposition is similar to the even case. Let V be the
diagonal matrix such that right bottom corner is 1 and all other elements are —9.
Let U be the diagonal matrix s. t. top left corner is 1 and all other elements are —9.
These matrixes obviously have square root (take square root of —1 in dimension
less by 1, multiply it by 3, and add 1-block).



Every matrix A can be written as A = MV + MU + W, for any huge positive
number M. But if M is sufficiently huge, W/M is very close to a specific diagonal
matrix with positive numbers at the ends (8 in both corners and 18 elsewhere)
hence it will have square root by problem 2.

It remains to prove that sum of two squares can’t be —1. Assume A* + B* = -1,
where A, B are real matrixes. Choose a basis over complex numbers, in which A
would be upper triangular. In that basis, A’ and B> = A” — 1 are upper triangular.
On the diagonals we have squares of eigenvalues of A and B. That yields a system

of equations: a; +b =-1.
At least one eigenvalue of A and at least one eigenvalue of B is real (polynomial of
odd degree has a real root), others are either real or complex conjugate.

Assume q; 1s real, a,f >0.So b,f < -1, therefore b, is imaginary. Hence it has a
conjugate, b;. Hence ajz. 20 and g; 1s real.

Therefore, if we fix pairing between conjugate imaginary roots of characteristic
polynomial of B, we get a pairing between real roots of A. But it is impossible,
because polynomial of odd degree has odd number of real roots (considered with
multiplicity). Contradiction, QED.



Targil 7.
Polynomials and Vieta.

1. Prove that for every polynomial p(x), the polynomial p(x + p(x)) is divisible by
p(x).

2. Prove that a polynomial p(p(p(x))) — x is divisible by p(x) — x.

3. Six real numbers satisfy:
X1 <X <X3
Y1<Y2<Yy3
X1+Xo+X3=YyY1+y+ V3
2 2 2 2 2 2
X1 +Xp +X3 =y +y, +y3
X1 >y
Prove that x; > ys.

4. Three rational nonzero numbers a, b, ¢ are such that 4, b + & and £4+54 b

c a c b a
are integers. Prove that ‘a‘ = ‘b‘ = ‘c‘ .
5. The complex roots of polynomial p(x) of degree n are a;, ay, ... , a,, the complex
roots of its derivative are B, b, ..., fn1-
(a) Prove that the mass center of a;, as, ... , a, coincides with the mass center
of B, P2, ..., 1.

(b) Prove that S, p,, ..., f..1 are in the convex hull of a4, ay, ... , a,.



Targil 7.

Polynomials and Vieta.

Generic idea. There are two ways to look at the polynomial: either look at the
coefficients or look at the roots. People often look from the coefficient viewpoint,
and think that the problem is difficult, but sometimes the trick is to look from the
root viewpoint.

1. Prove that for every polynomial p(x), the polynomial p(x + p(x)) is divisible by
p(x).

First solution. The idea is that the roots of p(x) are also the roots of p(x + p(x)),
hence the second polynomial is divisible by the first. Of course, to do it carefully,
we must take multiplicity into account.

If x is a root of multiplicity n of p, then p(x+h)= O(h" )

Then p((x+h) + p(x+h)) = p(x+h+0(h”)) = p(x+0(h)) = O(h") .

Therefore, x is also a root of the second polynomial of degree n at least.

Second solution. Substitute z=x+ p(x) into p(z Zak

After opening brackets, some terms will contain p(x) and hence will be divisible
by p(x). Other terms will contain only powers of x with coefficients, but sum of

those other terms will be precisely p(x).

2. Prove that a polynomial p(p(p(x))) — x is divisible by p(x) — x.

Solution. Same idea as in the first solution of the first problem. If p(x)=x then

p(p(p(x))):P(P(X))=p(x)=x.

So the roots of p(x) — x are also roots of p(p(p(x))) — x.



But to make it precise we need to count multiplicities.

Which can be done the same way: root x of degree n means p(x+h)=x+ O(h” )

Then p(p(p(x+h)))=p(p(x+0(h”)))=p(x+0(h"2))=x+0(h”3) SO x iS a

root of multiplicity at least n’ of polynomial p(p(p(x))) — x which. So the

polynomial has the same roots with the same or bigger multiplicities.

3. Six real numbers satisfy:
X1 <Xy < X3
Y1<y2<)3
X1+X+X3=y1+ Y2+ )3
2 2 2 2 2 2
X +X +x3 =y +ys
X1 >y
Prove that x; > ys.

Consider polynomials:

p(x)=(x=x)(x=x)(x=x) and g(x)=(x =y )(x=3)(x= ;).
According to the conditions (and Viete) all coefficients except the free coefficient
coincide. Therefore p(x)=gq(x)+C.

The derivative of p(x) has precisely two roots A < B (of degree 2, Rolle theorem).
Hence p(x) is monotone increasing on ( —o0, A], monotone decreasing on [A,B]

monotone increasing on [B,oo) . Hence, if C >0, we have x; >y, , X, <y, , X3 >3,

and if C <0 we have x; <y;, x, > y,, x3 < y3. The last condition that was given
shows it is the first case.

) a b c¢ a ¢ b
4. Three rational nonzero numbers a, b, ¢ are such that —+—+— and —+—+—

c a c b a
are integers. Prove that ‘a‘ = ‘b‘ = ‘c‘ :
Solution. Consider the polynomial

) R Gy e S )
X—— || x——||x——|=x"—| —+—+— |[x"+| —+—+— |- L.
b c a b ¢ a c b a

It is a polynomial with integer coefficients and rational roots. There is a generic
way to find all rational roots of a polynomial with integer coefficients:



Theorem. If a polynomial a x" +a,_ x"" +...+a,x” + a,x+a, has integer

coefficients and a rational root E, where p and g are coprime integers, then q 1s
q

divisible by p, and a, is divisible by g.

Since there are finite number of divisors for any integer number, the search for
rational roots is now reduced to only a finite number of verifications.

Corollary. When the leading coefficient of the polynomial is 1 (and all other are
still integer), then any rational root has to be integer.

In our specific case, when both leading coefficient and free coefficient are ones,
the only possible rational roots are £1. And roots 4 g,—_,— are rational, which
completes the solution. The theorem is well-known and might be used without

proof, but we’ll still prove it.

Proof of the theorem. Substitute the root and multiply the expression by ¢, :
2 _n-2

a,p"+a,,p" 'q+.. +a,p q" " +apqg” +aoq =0
All terms in the sum except a,g" are divisible by p. Therefore a,q" is also
divisible by p. But p and g are co-prime, hence q is divisible by p.
On the other hand all the terms in the sum except a, p" are divisible by g. So a,p”
is also divisible by g. But p and ¢ are co-prime, hence a,, is divisible by g.

5. The complex roots of polynomial p(x) of degree n are a;, ay, ... , a,, the complex
roots of its derivative are £y, £, ..., bu-1.

(a) Prove that the mass center of a;, ay, ..., a, coincides with the mass center

of f1, o, ..., Pt

(b) Prove that 5, s, ..., f..1 are in the convex hull of a;, ay, ... , a,.

Solution. (@) Assume that the polynomial is ¢, x" +¢, ,x"" +.... By Vieta’s

. C ) . C,_
theorem, the sum of the roots is ——2= and their mass center of the roots is ——2=,
c nc

n n

(n=1)c,,

nc

n

The derivative is nc,x"" +(n—1)c, X" +..., sum of its roots is — and

) i C. C
their mass center is ——2=L which is the same as before.
nc

n



(b) Let us start with some generic remarks about derivatives of complex function.

A function C — C can be considered as a function R?> — R?. One can consider a
2x2 matrix of partial derivatives (Jacobian). However, for a polynomial (or any

-b

other complex analytic function) the form of this matrix (
a

j, where a + bi 1s

the value of complex derivative at the same point.

This gives two non-trivial relations between the partial derivatives of real and
imaginary part of any complex analytic function (called Cauchy-Riemann
equations), and to some geometric conclusion: complex analytic function is
corresponds to a conformal mapping (i. e. preserves angles) when derivative is
non-zero, and to a mapping with zero partial derivatives in all direction when
complex derivative is zero. We shall use only the last part.

Another thing which is useful for this problem is the following simple fact: a
compact convex set can be separated by a straight line from any point Z outside it.
Indeed, take a point X in that set which is closest to Z. The perpendicular bisector
to XZ is such a line (otherwise X wouldn’t be the closest to Z). It is easy to replace
the word “compact” by the word “closed” in that statement, and it is also possible
to generalize it to infinite dimensions (then it will be called Hahn-Banach
theorem), but in our case we have a polygon anyway.

So, let z be a root of p', which is outside the convex hull of the roots of

polynomial p. The partial derivatives of p at z in all directions are zeroes.
The partial derivatives of Ipl in all directions are also zeroes at point z.

The polynomial can be written as a product over roots: p(x)=a] [(x—x,).
k=1

Therefore ‘ p(x)‘ = ‘a‘ - ﬁ‘x— xk‘. Partial derivative in some direction of Euclidean
k=1

distance ‘x — xk‘ 1s positive, if scalar product of that vector with a vector from x; to

x 1s positive. If we consider point z, there’s a line separating z from all x;. A normal
vector v to that line, pointing to the z half-plane, will have positive scalar products
with all vectors pointing from x; to z. Hence the partial derivative in direction v at

point z of ‘ p( z)‘z‘a‘-H‘z—xk‘ is strictly positive. This contradicts our former
k=1
conclusion (that all partial derivatives there are zeros).



Targil 8.

This targil is about 3d geometry, but mostly about cubes, as you could
have guessed by its number.

1. What is the radius of the largest planar disc inside the unit cube?

22Abox {0<x<1,0<y<1,0<z<A}, where A is a positive real, is
intersected by a family planes {x + y + z = n + a}, where a is a real number, and n
are all possible integer numbers. The intersections of this family of planes and the
box gives a family of planar polygons.

a. Prove that sum of areas of these polygons does not depend on a.

b. Prove that mass center of all these polygons is the center of the box.

3. What is the greatest possible area of the orthogonal projection of the unit cube?
(among all possible directions)

4. a. What is the greatest triangular planar section of a tetrahedron (not necessarily
regular)?
b*. What is the greatest possible planar section of a tetrahedron?

5. a**. What is the greatest possible area of a planar section of a unit cube?
b**. Same question for the box axbxc.



Targil 8.

1. What is the radius of the largest planar disc inside the unit cube?

Answer. —3
2

Solution. Unless the plane is parallel to one of the faces, the intersection might be
defined as follows. Each pair planes of parallel faces define a strip on that plane — a
part of plane between two parallel lines. The planar section is the intersection of 3
such strips. Each strip has its width, and the diameter of the disc is bounded by that
width. If normal vector to the plane is a unit vector (a, b, c), then the width of

: 1 1 :
parallel strips are ‘—,;—‘ (easy exercise to the reader). The largest among
a c
| : : :
‘a ,|b|,|c| must be at least —=, since sum of their squares is 1. Therefore the

N

thinnest of the three strips is of width V3 at most, and the radius is bounded by
v3 anywa
> yway.

The equality can be achieved: when the plane is the perpendicular bisector of
cube’s diagonal, the section is a regular hexagon, and the disc is tangent to all its
sides, hence its diameter equals the width of all three strips. But in this case

‘a‘ = ‘b‘ = ‘c‘ = L , therefore the diameter is \/5 .

J3

22Abox {0<x<1,0<y<1,0<z<A}, where A is a positive real, is
intersected by a family planes {x + y + z = n + a}, where a is a real number, and n
are all possible integer numbers. The intersections of this family of planes and the
box gives a family of planar polygons.

a. Prove that sum of areas of these polygons does not depend on a.

b. Prove that mass center of all these polygons is the center of the box.

Solution. By shifting the polygons in x direction by integer numbers let us move
all of them to the plane x + y + z = a.



We shall get the intersection of plane x + y + z = a and infinite box
{0<y<1,0<z<A} Theintersection is a parallelogram.

Its area obviously doesn’t depend on a, and its mass center is the same as its center
of symmetry. Therefore, its mass center has y =%, z = A/2.

The same can be said about the original system of polygons, because we moved
everything in x direction, so y and z of the mass center are unchanged.

But the original system is symmetric w. r. t. the plane x =y, so the center of mass
also has x =%2. So it is in the center of the box, regardless of a.

3. What is the greatest possible area of the orthogonal projection of the unit cube?
(among all possible directions)

Solution. We shall prove a nice lemma.
Lemma. Area of the orthogonal projection of the unit cube to a plane equals length
of orthogonal projection of that cube to the line, which is orthogonal to the plane.

From this lemma it directly follows that the greatest projection is to the plane,
which is orthogonal to cubes diagonal, and its area is equal to the length of the

diagonal, which is 3.

Proof of lemma. Projection of each face is a parallelogram. These parallelograms
are congruent. One of projected parllelograms is ABCD (we may assume it is non-
degenerate), another is KLMN (shifting by vector AK moves A to K, B to L, C to
M, D to N). M

We may assume WLOG that when vector AK is expressed as a L
linear combination of vectors AB and AD, the coefficients are N
nonnegative. In this case, the projection is a hexagon ABLMND

(this hexagon is convex though in some cases, it degenerates into D
rectangle).

The intervals AL, LN, NA cut parallelograms BAKL, KLMN, DAKN into pairs of
equal triangles; hence the area of triangle LAN is half the area of the entire
hexagon.

B

A

If we have a planar polygon P in space, and an interval I which is orthogonal to the
plane of that polygon, then the area of projection from P to the plane is orthogonal



to the length of projection of I to the line orthogonal to that plane, because both the
length and the area are multiplied by cosine of the same angle.

Hence in our case, we see that the area of projection of the cube is twice the area of
projection of a triangle, which is proportional to the length of projection of the
diagonal of the cube to the orthogonal line. This diagonal is formed by two
opposite vertexes, both of which are projected inside the hexagon, so one of them
is the upmost, and another downmost with respect to the plane of projection.
Therefore, projection of diagonal to the orthogonal line coincides with the
projection of the cube to the same line.

So, the length of the projection of the cube to the line is proportional to the area of
its projection to the orthogonal plane. It only remains to compute the
proportionality coefficient. This is easy — just consider a plane which is parallel to
a face of the cube.

4. a. What is the greatest triangular planar section of a tetrahedron (not necessarily
regular)?
b*. What is the greatest possible planar section of a tetrahedron?

Answer. The greatest face.

Solution. a. Take some triangular section: its vertexes are 3 points A, B, C on three
different edges. While keeping A and B stable, move C along its edge.

The basis AB of the triangle ABC is stable; so the only thing that influences the
area is the distance from line AB to C. Since distance from a line to a point is a
convex function of the point, the maximum will be achieved in one of the
endpoints, which is a vertex of the tetrahedron.

Therefore, in the greatest triangular section C will be a vertex; similarly, A and B
will be vertexes. So it will be a face. QED.

b. In the previous section, we saw that the greatest triangular section is a face.
However, there are also quadrilateral sections. So, now we shall consider
quadrilateral section KLMN of a tetrahedron ABCD. The cutting plane splits
between two non-adjacent edges: WLOG, those are AB and CD, so we shall
assume that Ki1son AC, Lis on CB, M 1s on BD, N is on DA.

Lemma. (three-dimensional version of Menelaus theorem)
AK'CL.BM.DN_1

KC LB MD NA




Proof of lemma. Let / be a line, orthogonal to the plane KLMN.
We shall take the orthogonal projection of the whole picture to the line /.
The points A, B, C, D will be projected to A", B',C',D", the point K, L, M, N will
all be projected to the same point O.

AK A'O CL C'O BM B'O DN D'O

KC OC'’ LB OB' ' MD OD' NA OA
Multiplication of these 4 fractions gives the result.

Now, we shall prove that the quadrilateral section is smaller than one of the faces.
Project orthogonally the tetrahedron to the plane KLMN: the vertexes A, B, C, D of
will go to the points Ay, By, Cy, D; on the plane. We shall prove that the area of
KLMN is not greater than projection of one of the faces, so before the projection it
was greater that face was greater.

Assume that we know the ratios in which K, L, M N divide the sides:

AK AK a« CL CL_ B BM _BM _y DN DN _§
KC, KC l-a’ LB LB, 1-8° MD MD, 1-y NA NA 1-6
Denote § = SBICIA]D1 S, = SclAlD1 » Se = SBICIAI , Sp = ‘S'quDl  Sp = SBIDIAI .

The maximum between Sy, S, Sc, Sp will be denoted S,,;,, the maximum S,,«.

Of course, S=S,+S8,=S.+S,=8,,, +5,..-

We want to prove Sk < Smax- TO compute Sk;y, We shall compute the rest of the
area inside S:

Swia, =A(1=0)S, , Sy, = B(1=@)Sc . Sy =¥(1=B) Sy > Sy, =6(1- ) S,
Hence
S—Sumw=0(1-98)S,+B(1-a)S.+y(1-B)S, +o(1-x)S, 2

258, (a(1-8)+B(1-a)+y(1- B)+5(1-a))
By the lemma, we have the condition: afyd =(1-a)(1-)(1-y)(1-9).
Therefore,

O=l-a—-fB-y-o0+af+pBy+ay+ad+ Lo+ y0—afy—ayd—offd — [0 .
a(1-0)+p(l-a)+y(1-B)+6(1-a)=1+ay+ 6 —afy— ayd — afid — B0

We shall prove that the last expression is at least 1. From this we get directly:
S_SKLMN 2Smln(0{(1_5)+ﬂ(]‘_af)+ 7(1_ﬂ)+5(1_a)) 2Smin
S 28 QED.

KLMN >

So it remains to prove: 1+ ay+ B0 —affy —ayd —afo — Byd >1.
In other words, ay+ 0 > affy +ayd + afd + B0 .



Recall that O< &, B,7,0 <1.

So the required result is: L+L>l+l l 1

ay a By

In other words, (l—lj l—1 + l— (l—IJZZ
o y B o

o34 1) -5

1
We already know af3y0 =(1-a)(1-8)(1-y)(1-9), if we divide both sides of
this condition by 50 we get: UV = 1.

4 >\UV =1.

Hence by AMGM (Cauchy inequality) we get U+
That means U +V >2, QED.

5. a**. What is the greatest possible area of a planar section of a unit cube?
b**. Same question for the box axbxc.

Answer. a. \/5

b.Ifa < b,citis \b*+c*

Anyway, the greatest section is “diagonal” rectangle.

Solution. Let us start with easy steps:

Lemma 1. We may assume that the greatest section passes through the center.
Lemma 2. The section through center is a central-symmetric polygon:
quadrilateral or hexagon.

Lemma 3. The greatest quadrilateral section is the diagonal.

Proof of lemma 1. Let P be a section which doesn’t go through the center. Let Q
be another section, symmetric to P w.r.t. the center of the box (Q is symmetric, and
hence congruent to P). Consider a family of straight parallel lines in the plane of P,
that intersect P. The extreme two lines in this family will be denoted /;, L.

Line k,, k; are symmetric to [;, [, respectively with respect to the center of the box.
Consider the family F of parallel planes, among which are the plane through /; and
k,, the plane through [, and k;, and all the planes between them.



Let M be the planar section of the same box, is parallel to both P and Q which and
passes through the center of the box.

Consider intersection of any plane from F with P, Q, and M. All three intersections
are intervals; intervals of intersection with P and Q form a trapezoid, which is
entirely contained in the box (since the box is convex) so the mid-segment of the
trapezoid is entirely contained in M. So, length intersection of the plane with M is
greater or equal to the average of intersections with P and Q. Since area of each
section can be computed as integral of intersection lengths with all planes, parallel
to a certain direction, we see that are of section M is greater or equal than the area
average area of P and Q which is equal to the area of P. So, if instead of P we
consider parallel section through the center, it will have greater or equal area.

Proof of lemma 2. Each face of a box defines a half-space, and the box itself is
intersection of these half-spaces. In every plane, this half-spaces define half-planes
(though sometimes they give an empty set or the entire plane). So, we have a
polygon with no more than 6 sides (because we start with no more than 6 half-
spaces). The plane and the box are symmetric w. r. t. the center of the box, hence
the polygon is also symmetric w. r. t. the same center. Hence number of sides is
even (there are pairs of opposite sides). Therefore number of sides is 4 or 6 (2 is
impossible).

Proof of lemma 3. If we have quadrilateral, it doesn’t intersect a pair of opposite
faces. WLOG these are horizontal faces (if not, rotate the box). Therefore it can be
projected orthogonally onto each of those two faces. Hence the area of the section
1s the area of the face divided by the cosine of the slope. We want that cosine to be
minimal.

Unless the cutting plane is horizontal (but then the cosine is maximal), let us walk
along the steepest descent direction along the cutting plane, until we reach the
plane of the horizontal face. We shall cover y = half the height of the box
vertically, and distance x horizontally. The tangent of the slope angle will be y/x:
we want it to be maximal, then the slope would be maximal, the cosine minimal,
and the area maximal. So, we want x to be minimal. It 1s the distance in horizontal
projection to a point which is in the plane of the horizontal face but not inside the
face itself. The closest point in that set is obviously the center of the longest edge.
But in this case we have the “diagonal” section, QED.



Now it remains to study the hexagonal case, and to prove it cannot be of greater
area than the “diagonal” rectangle.

Lemma 4. Consider a polytope. For each face, consider an outside normal vector
of this face which is of length equal to the area of that face. Then sum of those
vectors is a zero vector.

Lemma 5. Let consider the closed broken line A A,...A,,, each interval of which
intersects certain plane: A,,A; intersects that plane at By, A,A; at B,, A,A; at B; etc.

Then AZnBl . A1B2 . AZBB — A2n—lB2n =1.
BlAl BZAZ B3A3 BZnAZn

Lemma 5 is very similar to the lemma from the solution of problem 4, so we shall
leave the proof as an exercise to the reader.

Lemma 4 has and extremely beautiful physical proof, though some of you might
not accept it as a proof, hence we shall give two proofs.

First proof of lemma 4. Consider a large part of space of air (or water) standing
still with no wind (no current). Consider inside a smaller part of space in the form
of that polytope. It doesn’t move. Hence the sum of forces applied to it is zero.
Forces applied to it are forces of air pressure (1" Y1) — they are proportional to
the areas of the faces and directed into the faces. Reverse the signs, QED.

Second proof of lemma 4 (which is just a translation of the first proof to a
rigorous language). We shall prove that z coordinate of the sum of normal vectors
1s zero, it is the same for x and y coordinates. The z coordinate of normal vector
equals to the oriented area of projection of that face to xy plane: it is considered
positive, it the original face was facing up, negative if down. So, the z coordinate is
sum of areas of xy-projections facing up minus sum of xy-projections facing down.
Since above each point there’s the same number of both kinds, they cancel out.



So, back to our problem. We cut the box through the
center in two halves by a hexagon. This hexagon cuts
6 edges into 12 sub-intervals of lengths:
u,a—u,v,b—-v,w,c—w,u,a—u,v,b—v,w,c—w
(recall that lengths of edges are a, b, ¢, and last six

repeat first six because of the symmetry).
1% w u 1% w

. . . :1‘
a—-u b-v c—w a-u b—v c—w

By lemma 5 we get

L LA
a-u b-v c—w
We shall find the expression for the area using lemma 4. Consider one of the
halves of the box as a polytope with 7 faces. Sum of normal vectors is zero.

Take the two vertical vectors. One corresponds to axb rectangle with right-angled

triangle (with legs a — u and v) cut out, another is a triange with opposite

Or simply

orientation with legs a — u and v.

The contribution of these two sides together is the same as we would get from axb
rectangle if rectangle (a — u)xv would be cut out. So, total of these two vectors is
of length and looking down ab — (a — u)v.

Similar things can be said about other pairs of parallel faces. So the total of six

i(ab—(a—u)v)
vectors (all of them except the hexagon) is | £(bc—(b—v)w) |.
i(ca — (c - w)u)

The total of all seven vectors is zero, so the vector that corresponds to the hexagon
can be described by the same expression with opposite sign in each coordinate.

For the case of cube, finding the hexagonal section of greatest are is reformulated

V w . .
=1, find the maximum of

as follows: given the condition :
I-u 1-v 1—-w
(1—(1—1,1)1/)2 +(1—(1—v)w)2 +(1—(1—w)u)2.

For the case of generic box, if we denote C =ab, A =bc, B =ca (areas of the faces)

and change u, v, w by au, bv, cw, the condition will be the same as for the cube, but



the function to minimize will be
2

C*(1-(1=u)v) + A (1= (1=v)w) + B> (1-(1-w)u)".
This inequality is not easy, because we have to take the condition into account.
The condition reminds of

Ceva theorem. Consider triangle KLLM, point P on the side LM, point Q on KL,
KR MP LQ _ |

point R on LK. Assume KP, LQ, MR meet in one point. Then

RM PL QK
We shall give the proof (though it is a standard fact from M
elementary geometry, but that is one of those things that are too R p
elementary for the university and too hard for the high-school, so a:* %E
many people might not have heard of it). K Q L

Proof of Ceva theorem. Put mass k in point K and mass / in point L so that the
mass center of these two points will be at R. Put mass m in point M such that the
mass center of K and M will be at R. Then the mass center G of all three points

would be both on KP and on MR. Also, G will also be on MQ', where Q' is the

mass center of K and M. It is easy to see that KR MP 1Q =E-£-L=1.
RM PL QK k [ m

But since G is intersection of KP and MR, also LQ goes through it, hence Q and

Q' coincide. QED.

1% w

So, we had the condition =1. We can say that what we actually

I-u 1-v I-w
have are Ceva picture with equilateral triangle KLLM, all sides of which are 1, and
(in the notations of Ceva theorem as we formulated it):
KR=w,RM=1-wMP=u,PL=1-u,LQ=v,QK=1-v.

Our problem was that this parametrization was hard to handle: it comes with an
ugly condition. Let us consider reformulating it in terms of masses (like in the
proof of Ceva theorem) the intersection point is a mass center of mass x at point K,
mass y at point L, and mass z at point R. Then, since points P, Q, R are centers of
mass of couples of points we get



Y l-w= a u= £ ,1—u= Y , V= a ,1-V = £

x+y’ x+y’ y+z y+z X+2z y+z

W:

Where x, y, z, are any real numbers. Inequalities about arbitrary real numbers are

usually easier than inequalities about numbers satisfying some fancy condition.
I-(1-wju=1-——1 % _(x+y)y+z)-xz_ y(x+y+z)
X+y y+z (x+y)(y+z) (X+y)(y+z)

Similar for the other two expressions, hence:

Cz(l—(l—u)v)z+A2(1—(1—v)w)2+Bz(1—(1—w)u)2 —

(- x(x+y+2) 2+ y(x+y+2) 2+ t(x+y+z) )
_(A(x+y)(x+z)j (B(x+y)(y+z)J (C(x+y)(y+z)J

And we have to find, for which positive x, y, z will that achieve its maximal value.

Consider yet another geometric picture. Consider triangle ABC, its sides
AB=x+y,BC=y+z,CA =z + x (yes, this creature really exists).

In this context, x, y, z have a geometric meaning: the tangency /X
points of the incircle and triangles sides divide the sides of m

triangle into the intervals of lengths x, y, z.

Denote angles of the triangle BAC = 2a, ABV =2, ACB = 2. ¥ ?
. x(x+y+2) 2
Easy exercise. =(cosa) .
Y (x+y)(x+2) ( )

Hints. (1). Denote p = x + y + z. (2) First prove that § = pr, where r is the radius of
incircle.

So, finding for non-negative x, y, z of the maximum of the function,

x(x+y+2z) i y(x+y+2) i zZ(x+y+2) i
[A(x+y)(x+z)} +[B(x+y)(y+z)] +[C(x+y)(y+z)J

Is the same as for nonnegative «, 3,y such that &+ + ¥ =1 finding the

maximum of the function A*cos* @+ B*cos* f+C*cos” y.

True, we now have the condition again, but not that ugly and also the function is
much nicer.



The last lemma. The maximum of that function will be in one of the vertexes of
the domain (which is triangle). That is &, 8,7 =0, 0, 1 in some order.

This case corresponds in the original problem to degenerate case, when the
hexagon becomes the rectangle. In this case the value of the function (which was
the squared are of the hexagon) is something like A> + B, which is squared area of
the diagonal rectangle.

So, it remains to prove the last lemma.

Proof of the last lemma. (Alexey Gladkich) Our domain is triangle: &, 5,7 >0,
o+ S+ y=1. The maximum can be either in the vertex, or on the side, on in the
interior.

Assume that the maximum is on the side =0, a+ £ =1. The function is
A’cos* @+ B’cos’ f+C* = A’ + B*(1 —t)2 +C?, where t=cos’ ae[0,1].

As a function of ¢, it is convex; so maximum is in one of the endpoints of the
domain, hence at the vertex of the triangle.

It remains to exclude the possibility of the maximum inside the triangle.
Then we can differentiate:

:df(a+8,,8—8,7)|
de

0

2 3 . 2 .
= A’cos’ asina — B® cos’ Bsin 3
e=0

Hence, A®cos’ asina = B> cos’ Bsin . Doing the same for another couple of

coordinates, we get A’ cos’ asina = B” cos’ Bsin 8= C?cos’ ysin y.

Therefore, we can apply some scaling to the coefficients (that won’t shift the
position of the maximum) and assume:



1

A2 == . _
cos’ asin
1
B2 = 3 5 5
cos’ fsin
C? = ;
cos’ ysiny
Hence at the maximal point f (&, ,7)=cot(a)+cot(B)+cot(y).

1 1
3 . + 3 : :
cos’asina  cos’ Bsin

At vertexes we have things like f(0,0,1)=

We shall assume that & < f < ¥, and prove that
1 1
3 - + 3 . ’
cos’asina  cos’ fsin B

cot(&)+cot(B)+cot(y) <

and that will complete the proof.

1 (coszq)+sin2¢)2
cos’ @gsin ¢ ~ cos’ @sin @

First, notice that >cot@+2tan @, at least for

0<¢<x/2.Hence it is enough to prove that

cot (@) + cot(S)+cot(y) <cot(&) +2tan () +cot(S) + 2tan( 5)
cot(y)<2tan(ea)+ 2tan(S)

Let’s denote W:&Z'B' Then cot(y)=tan(a+ f)=tan(2y).

In the relevant domain tan is a convex function (first derivative is 1/cos” and it

tan(a);rtan(,b’) S tan(&zﬁj = tan (/).

grows monotonically). Hence

We are supposed to prove cot(y)<2tan(&)+2tan(f), but it is enough to prove

that tan(2y) < 4tan(y), because 4tan(y) <2(tan(a)+tan(f)).

o+p < o+p+ -7 So tan(l//)si.
2 3 6 V3

<4tan(y) is obvious. QED.

By assumption o< S<¥, hence ¥ =

2tan(y)
Piacr ot

Hence the claim tan(2y) =
—tan” (y)



Targil 9.

This targil is about eigenvalues.

1. Is it true for any real square matrix A that it is similar to A" ?
(in other words, is it true that for any A there’s invertible Q such that AT =QAQ™M).

2. A is real skew-symmetric matrix (meaning A = — AD.
a. Prove that its eigenvalues are imaginary,
b. Can it have non-trivial Jordan cells (of size > 1)?

3. On a circle, n real numbers are written, not all of them are equal. Each second,
all numbers change simultaneously: every number is replaced by the average of
itself and its clockwise neighbor.

a. Prove that all numbers on the circle converge to the average of all numbers.

b. Prove it converges exponentially, in other words, the distance of a value at some
point after k steps from its limit value is O(ock) where 1is a real number in (0, 1).

¢. Compute the value of that o (the minimal value for which that claim will hold
for any starting configuration).

4. Prove: if the minimal polynomial of A is (x— 4 )" (x—4,)" -...-(x—4,)", then
A I nm+ n,+ n+

the minimal polynomial of (0 Aj is (x=4)" 1(x—/lz) ’ 1~...-(x—/1k) )

5. Denote A" =1+ A)'(I1- A).

a. Show that A" = A,
b. Show that A is an orthogonal matrix iff A* is skew-symmetric.



Targil 9.

This targil is about eigenvalues.

1. Is it true for any real square matrix A that it is similar to A" ?
(in other words, is it true that for any A there’s invertible Q such that AT =QAQ™M).

Solution. Let us J = PAP"' be the Jordan form. The transposition of A is similar to
J', by the means of (P")"'. Every Jordan block is similar to its transpose, by the
means of a permutation matrix (ones on the secondary diagonal, zeros elsewhere).
Hence J is similar to J', and A is similar to J, and A" to J".

Therefore A is similar to A”.

2. A is real skew-symmetric matrix (meaning A = — A").
a. Prove that its eigenvalues are imaginary,
b. Can it have non-trivial Jordan cells (of size > 1)?

Solution. a. Assume Av=Av. By = we shall denote the composition of
transposition and complex conjugation. So if v is a column vector, v is a row of
complex conjugates to its coordinates.

Then ﬂ‘v‘z =v=y (Av)= (V*A)V = —(V*A*)V = —(Av)*v = y= —IMZ.

Hence, if v is nonzero vector, A =—A. Hence A is imaginary.

b. No. Matrix iA is Hermitian, hence it can be diagonalized by a unitary matrix.
Matrix A can be diagonalized by the same unitary matrix.

3. On a circle, n real numbers are written, not all of them are equal. Each second,
all numbers change simultaneously: every number is replaced by the average of
itself and its clockwise neighbor.

a. Prove that all numbers on the circle converge to the average of all numbers.

b. Prove it converges exponentially, in other words, the distance of a value at some
point after k steps from its limit value is O(a") where is a real number in (0, 1).

¢. Compute the value of that o (the minimal value for which that claim will hold
for any starting configuration).



Solution. Let C be the matrix of cyclic permutation. It has ones on the diagonal
above the main diagonal, and one in bottom-left corner, and zeros elsewhere.

1
, 1n

Its eigenvalues are roots of x" — 1, and its eigenvectors are multiples of |

other words a geometric progression, with ratio £ which is a root of x" — 1.

We can diagonalize the matrix by choosing the above vectors as a basis (in fact,
switching to this eigenbasis is so often convenient, that it has a special name —
discrete Fourier transform).

So, our operator could be written as A = (1 + C)/2, where 1 is the unit matrix.

In the eigenbasis of C, it becomes diagonal. On the diagonal we have the numbers

1+¢& +¢&

: : . 1 :
— where &£" =1. Since £ is on the unit circle, — are on the circle whose

diameter 1s the interval [0, V2].

Therefore, the eigenvalue of A which corresponds to the constant vector is 1, and
all other eigenvalues are less than one. We shall denote vector (1, 1, .... 1) by v;.
Easy exercise sum of coordinates of any other eigenvector is zeroes.

So, assume we represent a given vector as a linear combination of eigenbasis. The
coefficient of the v, is the average of the coordinates of the original vector (that
follows easily from the above easy exercise). When we multiply it by A many
times, this coefficient of v; remains always the same, and all other coefficients are
reduced in geometric progression.

The two geometric progression that reduce in the slowest rate are those that
correspond to eigenvalues of highest norm, and these are closest to 1, those are

e
I+e »
a, = . The absolute values of these two are
27 _7i 1
k= = ; i
I+e | |e "+e » & AR T
= e "|=|cos| — |-le "|=cos|—|.
‘ 2 ‘ ‘ 2 n n

So, the deviation from the limit is s¢ +tah + geometrical progressions which

n

k
descend more rapidly. Therefore, the convergence is O{Cos (zj ] . The



progressions rotate around the circle with a step of full circle/n, so in each n
consequent steps there is a step when they don’t cancel out.

Of course, for some initial states geometric sequence can converge more rapid:
these correspond to the cases when the coefficients which correspond to these two
eigenvectors are zero, for instance when the sequence has a sub-period.

4. Prove: if the minimal polynomial of A is (x— 4 )" (x=4,)" -...-(x—4,)", then

A I nm+ n,+ n+
the minimal polynomial of(o Aj is (x=A)" (x=A)"" o (x=A )"

Solution.

A IY (A" nA™

o 45 )

This follows by induction: n = 1 is obvious, and

A I (A 1A nA™) (A" (n+1)A”

(0 Aj _(0 AJ[O A" J_[ 0o A J

Therefore for any polynomial, p&A Iﬁz(p(A) p‘(A)}.Hence p has to be
0 A 0 p(A)

such that both p and p' are divisible by (x—4,)" (x—=4,)" -...-(x—4,)" . Therefore
A is aroot of degree n; + 1 at least, and vice versa — if all each A is a root of
degree n; + 1, we get zero. So (x—A4)"" (x=4,)"" -...-(x=4)"" is the minimal
polynomial.

5. Denote A" =T+ A1 - A).
a. Show that A™ = A.
b. Show that A is an orthogonal matrix iff A* is skew-symmetric.

Solution. a. First, notice that A" is defined only if —1 is not an eigenvalue of A.

It doesn't create a problem:
A'=1+A)'T-A)=0+A)'QI-1+A)=20+A)" -1

So, if A*is defined, then A* is invertible matrix minus unit matrix, hence it doesn't

have —1 as an eigenvalue. So, if we can define A* we can also define A™.



This condition can also be rewritten as (I + A*) = 2(I + A)" which is the same as
T+ A"+ A) =21

Which is certainly symmetric, hence A"=A.

b. We shall use the equation (I + AHT + A) = 2L

If A is orthogonal, which means A"A = AAT =1, let us transpose the previous
equation:

T+ AHT+ A =21

If product of two matrixes is I, then they commute (since they are mutually
inverse). Hence if their product is 2I, they commute anyway. Therefore:

T+ AT+ A =21
Multiply both sides by A from the right:
T+ A"™A +1)=2A
Sum it with the original equation, (I + AT + A) = 2L We get:
QI+ A"+ AT+ A) =20+ A)

We live under assumption that -1 is not an eigenvalue of A, that is, I + A is
invertible. Hence 21 + A* + A" = 2I. That is, A" + A" = 0, QED.

The other direction: assume A + A" = 0.
IT+AA" =1-A (¥
Transpose :
ATI+AH=1-A"
ATTI-A)=1+A

We knew that I + A is invertible, but now we see that I — A is invertible (they are
invertible anyway, since eigenvalues of A are imaginary as we saw in problem 2a
above). Multiply the last equality by (*) from the left



T+ AAATI-A) =1-A)T +A)

Obviously I + A and I — A commute, and we saw they are invertible, hence we can
cancel them out, and we get A'AFT =1

QED.

Remark. This transformation is called Cayley transform. For complex numbers,

Cayley transform is a special Mobius transformation, which is TF—Z which moves
-z

imaginary axis to the unit circle (and vice versa), thus transforming a circle to a
halfplane. It is not surprising that the same transformation for matrices
interchanges orthogonal matrixes (whose eigenvalues live on the unit circle) with
anti-symmetric (whose eigenvalues live on the imaginary axis).



Targil 10.

This targil is about ... well, I bet you’ll guess.

1. Prove that for any 0 < p < 1, and integers m, n > 1,
A-pH"+A-A-p"'>1.

2. The floor is tiled by /x/ squares (so it looks like a lattice). You throw a needle of
length n on the floor. What is the chance that when it falls, it won’t cut the lines,
but will be entirely within one of the squares?

3. For any natural numbers k, m, n compute the integral

j‘(lf v (1-x— y)n dx]dy :

(VAN

4.* a. Four aliens land on the surface of a spherical planet, randomly and
independently (a chance for every alien to land inside a country is proportional to
the area of this country). What is the probability that they all landed on the same
hemisphere? In other words, what’s the probability that there exists a plane through
the planets center, such that all landing points are on the same side of that plane?

b. Ten aliens land on the planet (independently, proportional to surface area). What
1s the probability that they are on the same hemisphere?

5.%* A unit cube is orthogonally projected on a random plane (the normal vector to
the plane is distributed uniformly over the unit sphere).
What is the expectation of projection area?



Targil 10.

This targil is about probability.

1. Prove that for any 0 < p < 1, and integers m, n > 1,
A=pY" + (1= (1=pyy' > 1.
Solution. Consider a mxn table — it has n rows, m columns.

In every cell, we write 1 with probability p, and O with probability 1 — p.

So, a probability that a given column row doesn't consists of ones is 1 — p” (or, in
other words, given column has zero). The probability that every column has zero is
(1 -p"". Similarly, the probability that every row has one is (1 — (1 — p)™)".

It is not possible that neither of this two events take place: it'd mean we have both a
column of zeroes, and a row of ones, and then in the intersection of these two
would be a contradiction. This gives a non-strict inequality.

It is easy to find a table where both events take place simultaneously; hence the
inequality is strict.

2. The floor is tiled by /x/ squares (so it looks like a lattice). You throw a needle of
length n on the floor. What is the chance that when it falls, it won’t cut the lines,
but will be entirely within one of the squares?

Solution. Let us start with one-dimensional case: a needle of length n is thrown on
the real line, which is tiled by intervals of length . The probability of hitting a joint
islifn>/landisn/liftn <.

Now we drop a needle on the two-dimensional floor. It is rotated by angle a, which
1s random (and uniformly distributed). Given a, we can split the needle into two
projection: it has length In cos al in x direction, and In sin al in y direction.

ncosa

The probability of hitting vertical lines is p, =max[ ,lj, and of hitting

,lj.

nsin @

horizontal lines is p, = max(

There are 3 cases of different nature.



a. n =12, then the probability of hitting the grid is 1, and nothing to compute.

b. [\2 >n>1, then at some angles probability is 1, at other angles probability is
analytic expression.

¢. [ >n, then for each angle probability can be computed as a fraction (without
maximum).

We shall start with case c.
The needle doesn’t hit the grid if it doesn’t hit neither vertical nor horizontal lines,

which is (1— %cosa‘)(l— &sin 0{‘). This probability must be averaged along the
circle:
1 2 4 /2
Y (1—% cosa‘)(l—% sina‘)dazg I (I-2cosa)(1-2sinar)da =
0 0
277 . » 2 : 2
= J (1—%-231n0(+;7sm(20{))d0(=1+;(%-2cosa—5’7cos(20{))0 =
0
2 2 2 2 2
=1+ (- 2-3)) =1 (- 42)

Hence the probability of hitting a line is 2 %(2 — ?j :
T

Now for the case b. There’s a range of angles, which are close to the integer
multiples of %, which give 1 as probability for hitting.

These probability one situations should be of length no more than ¢ from either

vertical or horizontal direction, where ¢=arccos(l/n). So, if slope is between 0

and % (it is something we can assume because of symmetry), then the probability

of having angle that implies hitting is 2—¢2 = za.rccos(l /n).
/2 &

To compute the rest of the probability in this case, we have to compute integral

similar to the previous case, from ¢ to bl Q.



ﬁ_¢ £_¢

2° 2° >

ol (-n 1—2sing)da== [ (1-2-2sina+Zsin(2a))d
_ ;[ (I-2cosar)(1-4sinr)de _ £ (1-2-2sina+2sin(2a) ) dax
=2(£—2aj+2(%-2cosa—§cos(20{))g_¢

T\ 2 T ¢

Hence the complete probability of hitting is

2 2 79
p =1+;(%-2cosa—2”7cos(20{))¢

[\

1425 2inge o (20)- 2o+ s (29) -

NN

=1+—(%-2Sin¢+’l’—fcos(2¢) —%2cos¢)

3

2 2
Now recall that cosgbzi , sing=,[1-— , cos2¢=2——1.
n n n

2 . n2 n =
p =1+;(7-2sm¢+1—2C05(2¢) _72COS¢) -

2 2 2
—1+2 E-2,/1—l—z+”—2 21—2—1 ~2|=
|l n [ n

21 2t =1 n?
V.4 [ [

In such messy computations, it is recommended to verify extreme cases.

For instance, when %= \/5 , the result should be 1; for n = [ the result should be

the same as in the case c.

Remark. Anyway, if the length of the needle < the diagonal of the tile, we get an
experimental method of measuring 7.

3. For any natural numbers k, m, n compute the integral

j[lf Y (l-x—y) dx}dy :

Remark. Actually, this is an analogue of beta-function (of dimension +1).



I-y
Beta function is the integral J x" (1—x)"dx which is classical Euler’s example of
0

for integration by parts (and the answer is almost the reciprocal of binomial
coefficient, as in our problem the answer is almost the reciprocal of trinomial
coefficient), and of course, this exercise follows from it. However, both ideas
below can be applied to the beta function.

First solution. We can conclude this integral from another famous Euler’s integral,

oo

Ix”e"‘dx =n! (a. k. a. gamma function, up to shift by one). The proof of that is a
0

simple exercise in induction and integration by parts.
No consider three-dimensional integral:

00 00 0 00 00 00

k'nlm!= ”Jxke_" -y"e™ - "¢ dxdydz = j”xkymzne_(”y”)dxdydz
000 000

Now switch to another variablest =x+y +z,u=x/t,v=ylt,
u=xt,v=yt, z=(1-x-y)t.

o | [P0
The Jacobi matrix is | =~ 2 2=l o ¢ y
ou Jdv ot .
ou dv ot
t 0 x
Adding first two rows to the last brings us to the matrix [0 ¢t y |, so the
0 0 1

determinant is *. Hence the integral that we computed was

k'n'm'-J” ut (ve)" (t(1—u— v))nefttzdudvdtz

0 u,v=0
u+v<1

_ J‘J‘ o (1—u—v) dudy- Jt"*’”*””du_X-(k+m+n+2)!

u,v=0
u+v<1

Where X denotes the integral we wanted to know from the beginning.



k'n!'m!

Therefore, X = .
(k+m+n+2)!

Remark. In the definition of both beta function and gamma function the exponents
are always n — 1 and not n. I think the aesthetic reason for that definition was that
L (m)T(n)

and not m + n + 1 below.
F(m+n)

people prefer to get the formula B(m,n)=

There are also some ideological reasons for this (they say it is Mellin transform,
which is version of Fourier for multiplicative group of positive numbers, but these
reasons appeared much later. The next solution is even nicer than the previous, but
works only for integer number (while the previous is easily generalizable for
complex numbers).

Second solution. We put on the [0,1] interval, randomly (with uniform probability
measure) and independently, N + 2 dots: two red and N blue dots.

The first red dot is located at x, the second at 1 — y, on distance y from the right
end; the distance between them is 1 — y — x. The distribution of x and y is uniform
on the triangle {x, y>0,x + y <1}, so the probability measure is 2dxdy supported
on that triangle (the two red dots are distributed uniformly over the square, and
then we impose the condition that first is before the second, we fold the square).
Now, when the red dots divided the segment into 3 sub-segments, So, let us
compute the probability that m first blue points are in the left sub-segment, n next
blue points in the middle sub-segment, and k last blue points are in the right sub-
segment (here k + m+n=N).

If the red points are already placed, the probability is y*x” (1-x- y)" .
1/ 1=y
So if red points are not yet placed, we get ZJL j Yo' (l-x—y) de dy .
0\ O
Now let us compute the same probability in another way.
Each point-placing experiment gives us a random order of points, and each order

has the same probability: . Out of this orders some are considered good

1
(N+2)!

we have m points to place on m first places, other n points for n places, k more



points for k places, and 2 more red points for 2 splitting places, so 2!k!m!n! orders

e k'm!n!2
are good, and the probability is (K )1 . Therefore:
+m+n+2)!
1/ 1=y
n k!m!n!2
2 “X"(1—=x—y) dx |dy=
'([['([y ( 2 jy (k+m+n+2)!

Ly (P
J‘(J ykxm(l_x_y)ndedy: k!'m!n!
1% (

k+m+n+2)!

4.* a. Four aliens land on the surface of a spherical planet, randomly and
independently (a chance for every alien to land inside a country is proportional to
the area of this country). What is the probability that they all landed on the same
hemisphere? In other words, what’s the probability that there exists a plane through
the planets center, such that all landing points are on the same side of that plane?

b. Ten aliens land on the planet (independently, proportional to surface area). What
1s the probability that they are on the same hemisphere?

Solution. For simplicity, we assume that the radius is 1. Also, we shall talk about
open hemispheres — the chance of landing on the edge of a hemisphere is 0.

We can choose n random points of the sphere with the following procedure: first
choose n random diameters of the sphere, then we shall choose one end of each
diameter. If we would choose a given hemisphere, the chance that all points are in
it would be 1/2", for almost any choice of diameters.

There is a natural one-to-one correspondence between hemispheres and points of

the sphere — in spherical geometry, hemisphere is a disc of radius %, and hence it

1s specified by its center. Another way to say the same thing — hemisphere is a set
of vectors on sphere, which have positive scalar product with a given vector; and
that vector corresponds to the hemisphere.

So, assume we have n diameters. To each diameter we draw a perpendicular
bisector. This gives us n planes; each of this planes cuts the sphere along a big
circle. The big circles cut the sphere into K parts, we shall compute K later. If we
choose a center of hemisphere in one of these parts, probability that all will land in



it will be 1/2". Events of landing on the given hemisphere are the same if centers
are in the same part, and disjoint if they are in different parts. Therefore the
probability of being in the same hemisphere is K/2".
Now it is enough to compute K. First big circle cuts the sphere in two. When we
have already m circles, any new circle cuts other circles in 2m different points
(with probability 1), so we add 2m new arcs, each splitting existing region into two
new regions; therefore number of regions is increased by 2.
Therefore, if there are 4 points, number of regions is 2 + 2 + 4 + 6 = 14, and the
probability is 14 / 2* = 7/8.

0+18

For 10 points, number of regions is 2+2+4+...+18=2+ -10=24+90=92,

and the probability is 92 / 2'° = 23/ 256.

5.%* A unit cube is orthogonally projected on a random plane (the normal vector to
the plane is distributed uniformly over the unit sphere).
What is the expectation of projection area?

Answer. 3/2.

Solution. Because the cube is a convex polytope, area of its projection to any plane
is half sum of areas of projections of all faces. So, the expectation of the area is 3
times the expectation of projection area of a unit square.

The area of projection of a planar shape to another plane is the original area before
the projection times the absolute value of the cosine. In our case, the original area
is 1, so we have only the cosine.

Since the area of spherical hat is proportional to its height, we get that expectation
of the area of a unit square projection is V2.

Therefore the expectation of area of cube projection is .



Targil 11.

This targil is about identities. It is much harder to find a nice non-trivial
identity than a nice non-trivial inequality; still there are some.

(tr(A))2 —tr(A?)
2

nxn matrixes det(A) can be expressed as a polynomial in tr(A),tr(Az),...,tr(A") :

1. Prove that for 2x2 matrixes det(A)= and, more generally, for

2.#* Prove that for arbitrary 2n matrixes Ay, Ay, ..., Ay, Of size nxn,
sgn(o .
6;( 1) A Ao Ao+ Aoy =0

(Here S5, 1s a group of permutations of 2n numbers).

x" 0, form=0,1,....n—2
1, form=n-1 '

3. Prove: ZH(X — )

J#EI

4.* We are given an orthogonal matrix nxn; let d; be the determinant of its kxk
upper left corner, and d, be the determinant of its of its (n — k)x(n — k) right bottom
corner. Prove that |d,| = |d,|.

k=1

5.% Prove: (l—x)(l X )( ) i [ 33—k x3k2+k]

6.%* Prove pi(:j(p _kq)k—l (r+kq)n—k _ (p N r)".

k=0



Targil 11.

This targil is about identities.

(tr(A))2 —tr(Az)
2

nxn matrixes det(A) can be expressed as a polynomial in tr(A),tr(Az),...,tr(A") :

1. Prove that for 2x2 matrixes det(A)= and, more generally, for

Solution. Assume we brought our matrix A to diagonal, or at least triangular form.
The guys on the diagonal ¢,...,c, are the eigenvalues. The trace, the determinant

and all other coefficients of the characteristic polynomial can be easily expressed

as elementary symmetric polynomials of ¢,...,, .

On the diagonal of A* we have o ey O

n

So, for instance for 2x2 we get:
detA =,
tr(A)=a,+a,
w(A)=of +a;
(tr(A))2 —tr(A?) (o + a,) —(of +a3)

Hence = =qQ,.
2 2

The proof for general case follows directly from the known theorem: if we have
any symmetric polynomial of x;, x,, ... , x, we can (uniquely) write it as a
polynomial in 0,,0,,...,0,, and as a polynomial in s,,s,,...,s, . Here o, is a sum of
all products of k different x’s (a. k. a. elementary symmetric polynomials), and

5, = le." . Actually, what we need is to show that one of elementary symmetric

]

polynomial is a polynomial in sums of powers.
Indeed, in the story about matrixes, if xi, x,, ... , x, are the eigenvalues of A, then

s s, =tr(A"), and o, are, up to a sign, coefficients of the characteristic

polynomial of A.



There are several proves of this claim. My favorite (and the most fitting for this
targil) is based on Newton’s identities. From Newton’s identities we see
immediately that o, is a polynomial in 0,,0,,...,0,_,,S,,...,S, , 5O the claim follows
by induction. Newton identities look as follows.

o,—s5,=0

20,—0,5,+s5,=0

30,— 0,5, +0,5,+5,=0

no,—o, s +.+os s =0

os -0, +.+tos ts . =0

Their proof of the identities is an exercise to the reader — it is nice, and not
complicated, so nobody would like it if I would write it downs right away.

2.#* Prove that for arbitrary 2n matrixes Ay, As, ..., A,, of size nxn,
sgn(o) _
GZS: (_1) AG(I)AO'(Z)AO'(3) et AO'(Zn) =0.

(Here S,, 1s a group of permutations of 2n numbers).

Remark. This is called Amitsur-Levitzky identity; it is named after two
mathematicians from the Hebrew university of Jerusalem who found it.

Solution. We shall show the solution based on the trick of linearization.

That is a procedure, given a polynomial, to obtain linear combinations of its values
can give us a linear polynomial in several matrixes.

Simple example: if a polynomial is p(x) = x> we can take

p(A +B)—-p(A)—p(B)=AB + BA, which is a linear polynomial in A and B.

If p(x) is a polynomial of degree n, we consider:
n|s|
L(AvAnA)= Y (-1) p[zA,}
ScP(I,) icS
Here I, = {1, 2, ..., n} and P(l,) is a set of its subsets, so we sum over all subsets of
indexes. Consider the monomial A, A; A, ...A, in this L,



If there are less than n different indexes among iy, ..., iy, then there’s an index j
which is different from i, ..., i;. Subsets that produce this monomial can be
divided into pairs — two subsets of the same pair differ only by containing j / not
containing j. The monomial A; A; A, ...A, will be produced by the subsets of the

same pair with the same coefficient, but of opposite signs (because of the sets in
the same pair cardinalities are of different parity), so they cancel out.

Therefore, all terms of degree less than n will die, and from x" only

Z Ao-(l)Aa(Z)AO'(3)"‘A0'(n) will remain.

ocS,

The same thing can be done for more general polynomials, for instance
polynomials with matrix coefficients or polynomial in matrix coefficients, but the
idea 1s the same.

Now, consider Hamilton-Cayley identity: A" —(tr A)A"™" +...£detA=0.
After that, in the same way as in problem 1, we shall rewrite all the coefficients as

polynomials in tr(A),tr(Az),...,tr(A”). We shall get and identity of equality to

zero of polynomial in A,tr(A),tr(Az),...,tr(A” ) Now we shall linearize it.

We shall get an expression in n matrixes: X, Xy, ..., X,.

A" will turn into X;...X, and all other terms will contain traces of products of X’s.
Then we shall substitute X; = AjA,, X5 = AzA4, ..., X, = As,1A0,.

If we take the sum of linearized identities with permuted A, ..., A,, multiplied by
sign of permutation. The leading term A" will turn into Amitzur-Levitzky
expression; all other terms will vanish.

Indeed, all other terms contain traces of even products of A\’s. Rotating every
even product inside trace (for instance replacing tr(KLMN) by tr(LMNK)) keeps
the value unchanged; however, an even cycle is always an odd permutation, so this
terms will come with opposite signs, and thus cancel out. QED.

Remark. It is obvious that in Amitzur-Levitzky we can replace 2n by any greater
number; however we cannot replace it by a smaller number, so this inequality is
tight. Indeed, imagine we write this expression for 2n — 1 matrixes; now take Ay
to be a matrix that has 1 at place (k,k) and zeroes elsewhere, and A, has 1 at place



(k+1, k) and zeroes elsewhere. Out of products of Ay, ... , Ay,_; only one will be a
nonzero matrix, therefore Amitzur-Levitzky expression with 2n — 1 matrixes can

be nonzero.
1 " 0, form=0,1,....n—2
3. Prove: Z#: m " )
P H(xl.—xj) 1, form=n-1

J#El
Remark. These are called Jacobi identities.

First proof. Let us write the following matrix: first n — 1 rows are the same as in
Vandermonde (first row consists of ones, second row is xi, xp, ... , X, third row is
x% %%, ..., x,” etc.) and the last row is x;"™, x,™, ..., x,"

Then if m < n — 1 this matrix is degenerate, because two rows coincide; and if m is

n — 1 this matrix 1s the Vandermonde, and its determinant is H(x i~ xl.).

i<j
Now compute the determinant by expansion along the last line. All minors are
Vandermondes of order n — 1. Divide it by the big Vandermonde, and you get
QED.

Second solution. Integrate along a very big circle in complex plane.

Z"dz
'[l;l(z - x;)

If m < n -1, integral will be quite close to zero on the large circle; if m =n — 1,
the integral will be quite close to J% =27i.
Z

Now compute the same integral by counting residues; poles are at x;, and residues
are precisely the summands in the LHS of the identity.
(Details are easy exercise. Really.)

4.* We are given an orthogonal matrix nxn; let d; be the determinant of its kxk
upper left corner, and d, be the determinant of its of its (n — k)x(n — k) right bottom
corner. Prove that |d,| = |d>|.



Solution. The original orthogonal matrix will be called A. When we replace its last
n — k columns by the corresponding columns of unit matrix, we get matrix B.
Obviously det B = d;.

Consider matrix A'B. It is easy to see that its first k columns are equal to
corresponding columns of the unit matrix, and it last n — k columns are equal to
corresponding columns of A'. Therefore its determinant is det A'B = d».

Hence d, = det A"B = det A” det B = (det A) d,.

But A is orthogonal, hence det A = £1, hence d, = +d, QED.

oo 3k -k 3K% +k
5.% Prove: (l—x)(l—xz)(l—x3)-...=1+Z(—1)k[x > 4x 2 J
k=1

Remark. This is Euler’s identity. Which in this case is hardly an identifier — too
many things are called Euler’s formula or Euler’s identity ©.

Solution. We open brackets on the left hand side. Monomial + x" appears, each
time we have a partition of 7 into sum of different natural numbers: n = kj+ ...+ k,,,
where k| < ... < k,. When m is even, we get this monomial with sign plus, when m
1s odd, we get it with sign minus. The claim is that almost everything cancels out;
that is, we can almost build a bijective correspondence between partitions into odd
number of summands and partitions into even number of summands.

To describe the correspondence, we shall represent the partitions by Ferre
diagrams. Each number is a row of points, in our case each row will be shorter than
the previous (there are also equivalent Young diagrams, that are almost the same,
but Young diagrams consist of squares while Ferret diagrams consist of points).

* 9 % & @ V . * & & @

* 9 & & B

*— P

We shall denote the length of the last (and shortest) row by p, and by g length of
right diagonal, which consist of right point of the upper row, and of all points
which can be reached from that point by a single move of chess bishop (v7).

So, if p < g, the lower line is distributed between first p rows, one point to each
row. But if p > ¢, the right diagonal is taken out and forms a new row below.



It is easy to see that this operation is inverse to itself, and it changes the parity of
number of rows; however, in two cases this operation is not well defined.

In the case p > g, we usually can put the right diagonal under the right row,
because it is smaller, unless p = g + 1, and by taking out the right diagonal we
reduce the last line. So here a problem can happen when the last row intersects
with right diagonal, and they are almost the same size.

In the case when we try to do the opposite, the last row is distributed between the
first and largest rows, and there’s sufficient number of those because p < ¢, unless
one of these rows is decomposed in the process, and p = g.

So, there are precisely two types of diagrams for which our correspondence is not
defined: in both cases we have trapezoid (the right diagonal intersects the lowest
row), and p equals either g or ¢ + 1. The number of points in these cases will be

3¢°—q 3¢°+q
2 or 2

partition into sum of ¢ numbers which doesn’t cancel out.

So, when we open brackets in Euler’s identity and cancel things, we shall get
zeroes usually, and only for these powers we shall have coefficient of plus or
minus 1, where signs are given by the parity of g.

either

. Therefore, precisely for these numbers there is precisely one

6.%* Prove pZn:[Zj(p —kq)ki1 (r+kq)"7k =(p+r)".

k=0
Remark. This is called Abel identity; I first heard of this type of things on 2009’s
SEEMOUS; one of our students on that SEEMOUS (Lior Yanovski) rediscovered
a particular case of this identity by combinatorial counting of some trees.
Solution. We shall use two ideas, both of each might be useful olympiad tips.
First idea — if you have some natural number in your problem (it can be
recognized because it might be denoted by n, it might be dimension of the linear
space, number of the points, etc.) then induction might solve the problem.
Second idea — use derivative.

So, derive both sides of this identity by r. We get

pg[@(p —kq) " (n—k)(r+kg)" " =n(p+r)"



pg(”;lj(p _kq)kfl (r +kq)n717k _ (p + r)nfl

So, derivative is of Abel’s identity of degree n is Abel’s identity of degree n —1.
To make a proof of it, it remains to check Abel’s identity for one specific value of
r, and to prove it for n = 0 (base of induction).

So, let us finish the step of induction first. Take r = — p. Then it becomes

pZ( j p—kq) " (-p+kq) =0
pZ( j p—kq)" (-1)"" =0

Consider the following operator “discreet derivative™: function f(x) is turned into
Af (x)= f(x+1)— f(x). Itis really easy to see that if f is a polynomial, then Af

is a polynomial of lower degree. Applying this operator n times results it

n

A"f (x)=>(=1)" f(x+k). Therefore if f is a polynomial of degree less then n

k=0
then A" f is constant zero. Now apply itto f(x)=(p+xq)" and we get what we

need in order to finish the step of induction.
It remains to do the base of induction (well, if I’d write it for the jury I would write
everything in the reversed order): when n =0,

pg(gj(p —kq) " (r+kq) " =(p+r)
p[°j<p—o)°‘l(r+o>°=(p+r)“

0

sl
p

QED.



First stage of Israeli students competition, 2011.

14/1/2011
Duration: 4 hours

(Inx)

A
1. Find all possible values of lim x "' for real A.

2. Is it possible to draw a pentagon with integer coordinates of vertices and equal
sides?

2 1 I 2
———+....

r,rz,r,
78 9 10 11 12

3.C0mputel+l——+l+l—%+ —
2 3 4 5 6
4. Michal and Ohad play a game in which Michal marks points and arcs in the
plane, and Ohad assigns colors to the points. Michal makes the first move. In each
of her moves, Michal marks one point, and she can also join it by arcs to some of
the existing points, provided that the arcs do not intersect (except possibly in
endpoints). Ohad, in turn, paints the last marked point in some color, which must
be different than colors of endpoints connected to this point by an arc. Michal
wins, if Ohad will use more than 5771 colors. Does Michal have a winning

strategy?

5. An infinite sequence of positive real numbers satisfies:

1 a. 0 a’

1 1
2
2 \/5 aiy ., 2C‘:i+1
2
2 iy \/g “d, 24,
2
1 0 a. a

i+3 i+3
Prove that it is periodic.

det

Good luck!



First stage of Israeli students competition, 2011.

A
1. Find all possible values of li_r>r01o ™ for real 4.
nxﬂ . nx nx/1 . nx Al im (Inx lim yA*
Solution. Tim x™ = Jim ™) = Jim ™) = plmne) - _ ’
X—>0 X—>0 X—>0

where y = In x. The power Jim, y**!can be:

0if A+1<0,

1if A+1=0,

+oo if A+1>0.

Therefore, the original limit can be either 1, e, or +o0.

2. Is it possible to draw a pentagon with integer coordinates of vertices and equal
sides?

Answer: no.

Solution. Consider the pentagon of that kind with minimal side. It is defined if
such pentagons exist, because the distance between integer points is a root of an
integer number (and each non-empty subset of nonnegative integers has minimal
element). The number under the root is even if the endpoints are of the same color,
and odd if they are of opposite color (here we use the standard chess coloring,
point are black if the sum of its coordinates is even, and white if the sum of its
coordinates is odd). So, if the length of each side is a square root of an odd number
then each two adjacent vertices have different chess colors, which is not possible
since 5 is odd. Therefore the length of each side must be even, and all the vertexes
must have the same chess color. So, if we rotate the picture around one of the
vertices by 45° and reduce it +/2 times, we shall get another polygon with integer
vertexes and equal sides, but this time the sides are shorter. This contradicts the
assumption.

1 2 1 12 1 1 2 1 1 2
3. Compute 1+ ———+—+———+—-+———+—+———+..
2 3 45 6 7 8 9 10 11 12



First solution: Denote S, —1+l—z+l+l—z + ! + ! —l. It 1s

2 3 45 6 3n-2 3n-1 3n
enough to compute %1_1)1010 S, (and to prove that it exists). Indeed, S, is 3n'th partial

sum, and the 3n+1" and 3n+2" partial sums are close to it (the distance is less than
1/n).

S = 1+l+l+...+i -3 l+l+m+i —
2 3 3n 3 6 3n
11 1 1 1 1 1 1
= l+—+=+..+— || l+=+..+—|= + b=
( 2 3 3”] ( 2 n] (n+1 n+2 3nj

- bkt | = 3@—ln)c‘3—ln3
o (n+1)/n (n+2)/n (n+3)/n 3 Riamamn 3 x0T

sum

Second solution. Consider logarithmic Taylor series: —In(1-x)=x+

1+lf

X X X

— T+ +..
2 3 4

¢ .<

2 3 4
Substitute & =e*° = (it satisfies &’ =1). The series §+% +... will

Ry

converge by Dirichlet criterion (since &+&°+&° +...+&" is bounded by 2, and 150
n

monotonically). For x| < 1 the series converge to —In(l1-x). The series and the

complex continuation of -In(I-x) are both continuous in the domain of

555
4

n|z| . Therefore

convergence of the series, therefore —In(1-¢)=¢&+2-

In the complex continuation of In, we have Re(ln(z))

2 2 2 324 25 6+
Multiplying the right hand side by -2 will give us the series we want to compute.
So, it is equal to the left hand side times -2, which is

20nfl-&/=In|l-& =1n((1—§)-@)=1n((1—§)-(1—§))=1n(1—§—§+1)=1n3.



4. Michal and Ohad play a game in which Michal marks points and arcs in the
plane, and Ohad assigns colors to the points. Michal makes the first move. In each
of her moves, Michal marks one point, and she can also join it by arcs to some of
the existing points, provided that the arcs do not intersect (except possibly in
endpoints). Ohad, in turn, paints the last marked point in some color, which must
be different than colors of endpoints connected to this point by an arc. Michal
wins, if Ohad will use more than 5771 colors. Does Michal have a winning
strategy?

Answer: Yes.

Solution. We consider the painting as a graph, where the vertices are the points,
and the edges between the vertices are the arcs connecting them. Recall that a
graph is called a forest if it contains no cycles, and the connected components of a
forest are called trees.

Basic Lemma: Suppose the painting so far is a forest. Then any two points can be
connected by a new arc legally. Why? Because the arcs do not form cycles, they
cannot split the plane into several parts, meaning that the plane with the arcs
removed is still one connected face. In particular any two points on it can be
connected by an arc not intersecting those previously marked.

Corollary: Suppose the painting so far is a forest. Then after marking a new point,
Michal can always choose one point from each tree in the painting, and connect all
those points to the new point marked: Indeed, she may simply draw these arcs one
after the other, as every arc only joins together two connected components, and
does not form cycles — meaning the graph remains a forest after every step, and
thus she can draw the next arc by the basic lemma.

Claim: For any k, Michal can construct a forest F, with Ny vertices (where Ny is
some finite number) which Ohad will be forced to paint with at least k different
colors. Michal then wins the game by building a copy of Fs7,.

Proof: By induction: Basis is k=1, where we may simply mark a new point, and it
will be colored in one color and be a forest (so Ni=1). Next we assume that it is
true for all numbers up to k, and prove it for k+1: To construct Fy,;, Michal should



first build a copy of Fy, F,, ., Fi. In Fy, there is at least one color used: Denote
such one as ¢y, and let v be some point in F; with that color. In F, at least two
colors are used, so there must be at least one used other than c;, denote it ¢,, and v,
1s some point in F, with that color. Continue in this fashion: For all values of m up
to k, at least m colors are used in F,,, so in particular there must appear a color c,,
which is different from c;,...,c,,.1, and a vertex v,, with that color. Now, as all
vertices v; are in different trees (as they are in disjoint forests), by the corollary
above, Michal can mark a new point and connect it to all vertices v;. Ohad must
then paint the new point in a color different from all colors cy,...,c;, and it is thus
clear that with the new point there will be at least k+1 different colors in the graph.
Furthermore, the new graph is also clearly a forest, so it is an example of Fy,;, with
a clearly bounded number of vertices.

Remarks. It can be seen that the above construction actually yields a tree, not a
forest. It is easy to verify that the above construction gives N\=2"". It is possible
not to demand necessarily that Fy are forests, but to demand that on each step in the
construction, the new point marked is accessible from the unbounded component
of the plane, and stop as soon as you get the new color wanted.

S. An infinite sequence of positive real numbers satisfies:

1 a, 0 al.2

det 2 \/g "aig a; 2a§+1 ~0
2 ai+2 \/g ) ai+2 2ai+2
1 0 a. a’

i+3 i+3

Prove that it is periodic.

Solution. Let us rewrite the determinant as follows:

1 a. 0 a’

ai+1 ai +1

1

2
1 J3 )
2 i+2 7 ) ai+2

det




This actually means that the following four points

[.XI} _(al] | (xz] ) gaprl | [.XS) ) %aiJrz | (X4j _(O ]
Vi 0 , A %am , V3 gaﬂz , V4 a3
belong to one curve which is described by an equation of the following type:

k +Ix+my+ n(x2 + y2) =0. Such equations can describe either a circle (if 7 is

nonzero) or a line (if » is zero).

The length of the above four vectors are a;, and each one is 30° counter-clockwise
with respect to the previous. Therefore, if we define a sequence of vectors, such
that the vector number i has argument 30° and length is a;.

Each 4 consequent points will be either on one circle or one straight line. Each
three non-collinear points define a unique circle, therefore all points in a sequence
will be either on one line or one circle.

If we will have a line, or a circle which doesn't contain the origin, then one of the
first seven rays won't even intersect it. If the line or the circle goes through the
origin, one of a; will have to be zero, and it is given that they are positive.
Therefore, the points in the sequence are intersections of the rays with some circle,
which goes around the origin. This defines each point uniquely. Rays number i and
i +12 coincide, therefore, a; = a;+12- So the sequence is periodic (and the period
divides 12).



Second stage of Israeli students' competition, 2011.

Duration: 4 hours
1. In each vertex of a connected simple graph a number is written. The following
action is repeated infinitely many times: all numbers are replaced simultaneously
by the average of their neighbors. Consider the sequence of numbers which appear
at a specific vertex of the graph. Assume that one of those sequences does not
converge. Prove that the graph is bipartite (which means that its vertices can be
painted in black and white so that neighbors are always of opposite colors).

2. Is it possible to find a planar strictly convex equilateral pentagon, all vertices of
which are in Z* (integer three-dimensional points)?

Remark. A polygon is called equilateral if all its sides are of the same length. It is
possible for a polygon to be equilateral but not regular.

3. There is an urn with 5 balls: 2 blue and 3 white. Every minute, a random ball is
chosen from the urn and returned with another ball of the same color. What is the
limit of the probability that less than a half of the balls are blue, as the time goes to
infinity?

4. We have a hyperbola and two distinct points A and B on it. For any additional
point X on the same hyperbola, we define 3 numbers:

a = the distance from X to the straight line which is tangent to the hyperbola at A.
p = the distance from X to the straight line which is tangent to the hyperbola at B.
y = the distance from X to the straight line AB

afp

2

/4

Prove that doesn’t depend on the choice of X.

1
5. Compute de .

o 1+x

Good luck!



Second stage of Israeli students competition, 2011.

1. In each vertex of a connected simple graph a number is written. The following
action is repeated infinitely many times: all numbers are replaced simultaneously
by the average of their neighbors. Consider the sequence of numbers which appear
at a specific vertex of the graph. Assume that one of those sequences does not
converge. Prove that the graph is bipartite (which means that its vertices can be
painted in black and white so that neighbors are always of opposite colors).

Solution. Let N be a number of vertexes. Choose some numbering for the set of
vertexes. Then any set of numbers written by the vertexes corresponds to a vector
in R". "Averaging" is a linear operator. It consists of subsequent application of
two linear operators: first summing of neighbors, then dividing by degrees. In
terms of matrixes we get: A = DG, where A is the matrix of averaging, D is the
diagonal matrix of reciprocal degrees, and G is the matrix of zeroes and ones in
which one appears in square (i, j) iff vertexes i and j are connected in the graph,
a.k.a. "the graph matrix". We shall also consider matrix R which is "a square root"
of D: it is also a diagonal matrix, but the numbers on diagonal are square roots of
respective numbers of D. Obviously, R* = D, and R is an invertible matrix.
Applying the averaging procedure k times is multiplying by A* = DGDG... DG.
This matrix is conjugated to RGDG...GR = Bk, where B = RGR, so A* and B* have
the same eigenvalues with the same geometric and algebraic multiplicities. It is
easier to analyze eigenvalues of B, since both B and B* are symmetric matrixes.
Therefore, the eigenvalues are real, and geometric multiplicities are equal to
algebraic multiplicities, so B has diagonal form with real numbers 4,4,,4,,....,4, on

the diagonal, and B* also has a diagonal form with 1*, 2%, ..., 4% on the diagonal,

with the same eigenbasis. Notice that since eigenvalues are real, the eigenbasis can
also be chosen to be real. So, A also has a diagonal form with 4%, 4%, 4,... 4% on
the diagonal, and real eigenbasis.

Choose a real eigenbasis for A: it will consist of vectors ay, ay, ... , ay. It is also an
eigenbasis of A*. Now we shall show that ‘/Ij‘ <1 for every j. Otherwise, if we start

with a;, then after k averagings we get A‘a,=A'a;, and absolute values at all

nonzero coordinates keep growing with every step, but that is impossible: maximal
absolute value cannot grow during averaging.



Therefore, —-1< 4, 4,,4,,....4, <1. Then we ask whether -1 is an eigenvalue of A.

Consider both possible answers:

Then we can easily prove that for any initial vector v, the vectors A"y will
converge. Indeed, if v=3va,, then A'v=3(alv j)a ;. Coefficient which

J J

correspond to eigenvalues equal to 1 remain the same, all other coefficients
converge to zero. Therefore A*v converges, and all its coordinates converge.

Then consider a nonzero eigenvector. Each number is minus average of its
neighbors. Assume that a number m has maximal absolute value. WLOG it is
positive (otherwise, multiply all numbers by -1). Then all its neighbors are at least
—m, and to get m as minus their average they have to be exactly —m. F or the same
reason all neighbors of —m are m. Since graph is connected, then by induction with
this argument we conclude that all numbers in a graph are either m or —m, and
neighbors are always of opposite signs, so there is "a chess coloring" for the graph.

To conclude: if averagings don't converge, then we have are in the "yes" case
(there is a -1 eigenvalue), then there is a chess coloring.

2. Is it possible to find a planar strictly convex equilateral pentagon, all vertices of
which are in Z* (integer three-dimensional points)?

Remark. A polygon is called equilateral if all its sides are of the same length. It is
possible for a polygon to be equilateral but not regular.

Solution. Consider a plane x + y + z = 0. Within
this plane, we have a triangular lattice (spanned by
integer linear combinations of the vectors formed
by sides of an equilateral triangle).

On that lattice, we build an equilateral pentagon

(see the picture). It is based on the fact that
triangle with sides 3, 5, 7 has an angle of 120°
(that happens because 3 +3-5+5° = 7%).

3. There is an urn with 5 balls: 2 blue and 3 white. Every minute, a random ball is
chosen from the urn and returned with another ball of the same color. What is the



limit of the probability that more than a half of the balls are blue, as the time goes
to infinity?

Solution. Denote that at any time i, there are m; blue balls and n; white balls inside
the urn. We will compute the probability that at time ¢ there are exactly my, n, blue
and white balls in the urn, given that there were my and ny time O (in our case,
my=2 and ny=3). Denote also m’ = m-mg, n’ = n-ny,.

For this to happen, we must draw exactly m’ blue balls and n’ white balls in the
first ¢ steps. Denote by I the set of steps up to # on which a blue ball was drawn. It
is clear that / may be any subset of {0,...,t-1} of size m’, and that for each such set,
the probability that it is represents the sequence of draws is exactly

P=1] ™ I 7 , as the probability of drawing a blue ball at a single step i is

il M+ 0 m+n,

m.
i and so on.
m[ + nl.

We observe that the numerator in the left product comprise all integer numbers
sequentially from my to m-1, as the number of blue balls increases by exactly one
between two blue draws, and similarly the numerators on the right product are all
integers from ng to n-1. Furthermore, all the denominators together are simply the
integers my+ng to my+ne-1, as m;+n; = my+ny+i. Thus after rearrangement, we obtain

b (m=1)! (n,—1)!/(m,+n,—1)!

" (my=1)! (n,=1)!/ (my,+n,—1)!

In particular, this probability is independent of /, and thus to obtain the total
probability of reaching m; and n; we need only multiply by the number of choices

' Y
for I, which is ["””j (m+n')

=-~———". With more rearrangement, we get

m' m''n'!

m —1\(n -1
(m'+n')!P_ (m,—l)! (n,—l)! (m'+n')!(m0+n0—1)!_[mo—lj(no—lj

P
m,.n, m''n'! 1 m'!(mo_l)! n'!(no—l)! (m,+n,—1)! [mt—i_nt_lj

my +n,—1



This probability can now be considered in a new way: consider an ordered set of
size S = m¢+n,-1, for example {1, 2, ..., m+n-1}. From this set, we choose
uniformly a random subset of size my+ny-1. We will denote the subset’s elements

by {xl,xz,...,x,wn[rl}, and assume that the sequence of x’s is increasing. Consider the

element x, . It can be immediately computed that the probability of x, =m, is

exactly the same expression as (¥), i.e. the same as P, , . We are interested in the

my,n,

probability that ™ < l, which is therefore equal to the probability that
m, + n,
xl‘ﬂ[) 1
m +n, 2

As t goes to infinity, the limit of the last distribution can be easily computed: it is
similar to choosing m, +n,—1 points uniformly distributed on the interval [0,1],

sorting them as {x,,x,.....x, ., |, and then considering only x, . It is easy to see that

> mgy +ny —1
my—1 =1
x" (1 - x)

, Where
B(mo,no)

the probability density of the random variable x, is

1) 1!
B(my.n,)= ("(l‘) ?(n‘) 1)1') is the Beta function.
m, +n,—1)!

Finally, we are interested in the probability that x, < %, which is simply:

1 12 . - ] m ) 41 12 L
B(mo,no) 0 X (l—x) dx=B(2’3) '([x(l—x) dx=ﬁ'([(x—2x +x )dx=

_p(l Ll L1 1T 1) 1
16

4. We have a hyperbola and two distinct points A and B on it. For any point X on
the same hyperbola, we define 3 numbers:

a = the distance from X to the straight line which is tangent to the hyperbola at A.
p = the distance from X to the straight line which is tangent to the hyperbola at B.

y = the distance from X to the straight line AB

aff

2

/4

Prove that doesn’t depend on the choice of X.



Solution. The solution works for any conic (ellipse, parabola, or hyperbola) so
from now on we shall talk of conics. We shall denote the tangents to the hyperbola
A and B by 1, and ¢, respectively. The distance from point (x, y) to z, can be written
as Il,(x, y)l where [,(x, y) is a linear function: kx + my + n. Linear function [, is
chosen similarly for the line #,. The third linear function / is such that l/(x, y)| =
distance from the line AB to the point (x, y).
Equations of curves of order at most two form a six-dimensional linear space
Q={qgx,y)=ax’* +bxy+cy* +dx+ey+f=0}
Inside that space, the equations of curves that pass through A form a sub-space Qy;
it is strictly smaller (since some curves of order 2 don’t pass through A), and is
defined by one linear condition — substituting coordinates of A to g(x, y) specifies
one linear condition on the coefficients; therefore, equations of order 2 of curves
containing A form a five-dimensional space. For similar reasons, since some
curves of order 2 contain A but not B, equations of second degree satisfied by A
and B form a linear space Q, of dimension four.
Inside Q,, consider such equations, that when we reduce them to ¢, we get multiple
root at A. In other words, if K is a non-zero vector parallel to ¢,, we substitute the
coordinates of A + sK to the polynomial q(X, y), we get a polynomial g,(s) of
second degree in #; for all polynomials in Q,, this polynomial has a root at zero
(since the curve goes through A); and we define a subspace Q3 in Q, by the
condition that g,(¢) should have a multiple root at zero; thus it should be of form
qu(s) = hs’.
Finally, consider the subspace Q4 in Q3 of curves which, when reduced to ¢,, have
double root at B (similarly to the previous condition, but with B instead of A).
It is easy to find examples of curves of degree two in Q, but not in Q5 (for example
the product of two linear equations, one of line AB and another of a line parallel to
AB, so it has two distinct roots on the line #,) so dim Q3 = 3. It is also easy to find
an example of something in Qs but not in Q: for instance I(x, y) - L,(x, y).
Therefore dim Q4 = 2.
Now we shall show three examples of equations in Q.
The first example is the equation of the original conic. The other two obvious
examples of curves are [y(x, y) - [,(x, y) = 0 and (I(x, y))2 =0.
But dim Q4 = 2, and all three examples define different curves, so neither two of
them are linearly dependent. Therefore the equation of the conic can be expressed
as a linear combination of the other two. That means it can be written as:
2 L, ) Iye, y) + - (Ux, )" =0
Where A, u are some fixed real numbers. Therefore, for any X on the conic we get
+laf+ uy® =0. Since X doesn’t coincide with A or B we are allowed to divide:
ap_ ﬁ‘

v




The right hand side obviously doesn’t depend on the choice of X.

5. Compute j +3) dx .

1+ x7

Solution. Perform change of variables: arctan x =y, then =dy

1 /4 .
TR0 e T (15 an )y = Il (wjdy:
1+x° 0 cos

/4 /4

= .[ In(sin y+cos y)dy - .[ In(cos y)dy

0 0

Recall that sin y+cos y =+/2 (cos% sin y + sin%cos y} =+/2sin (% + y} . Therefore

tin(1+x) 7 i3
.[ 2 dx = Iln sin y+cos y)dy — '[ln(cosy)dy:

0 0

/4 7[/4 /4
= .[ In/2dy + .[ ln[sin(£+yjjdy— '[ In(cos y)dy =

0

(here z=%—y)

7[/2 /4

= .[ lnfdy+.[ln sin ( '[ln(cosy)dy:
7[/4 0
/4 /4

_ .[ 1nfdy+jln cos ( dz— '[ ln(cosy)dy:%m\/i

0



Targil 1.

Linear algebra

1. Denote by { f,, } the Fibonacci sequence: fo=0, fi =1, fo =fi +fu1-
Prove that f,, f._,—fi=1fZ.

(What is the sign in this formula?)

2. Every entry of an NxN matrix is 1. What is the maximal possible determinant
of this matrix
a. for N =4?
b. for N = 8?

3. Find the maximal volume of a simplex which is contained in a unit cube of
dimension N for

a.N=3.

b.N=7.

Remark. A simplex is a higher-dimensional generalization of a two-dimensional
triangle and a three-dimensional tetrahedron; in other words, it is a convex hull of
N+1 points which are not in one hyperplane (which happens to be a minimal
number of points which might be not in one hyperplane).

4. We are given nonzero nxn matrices Ay, A,, ..., Ay.

a. Over an infinite field, prove that it is possible to find a matrix B such that the
matrix A;BA,B ...BAy is nonzero.

b. Is this true for a finite field?

5. A linear transformation f:Q" — Q" satisfies f ( f ( f (v))) =2v for any vector v.

Describe all the possible values of n.
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IMC 2012 Team Preselection Exam

Duration: 4 hours

Janurary 6, 2012

Questionl (10 points)
Calculate the indefinite integral:

72

dx

(cosz + zsinx)?

Question2 (10 points)
Let P(n) be a polynomial of degree 5772, with positive integer coefficients. Prove that

1



there is some integer n such that the decimal representation of P(n) includes the digit 7
appearing 2011 times in a row.

Solution:

Note that if we take n and multiply it by a very large power of 10, then if we let P(n) =
Y a;n?, then the decimal representations of each monomial a;n’ are separated by a large
number of zeroes. Hence it is sufficient to prove the question for any one monomial
P(n) = a;n’. Specifically, it is sufficient to prove this for the top coefficient, as77an®""2,
since as77o # 0.

Now replace n with n 4+ 1. Then according to the same argument, it is sufficient to prove
the statement for the linear coefficient, P(n) = 5772as779n. Let b = 5772a5772. Then we
must only consider P(n) = bn with b # 0. Now we choose powers of 2 and 5 such that
2%5Yb = 10%c, where c is disjoint with 10. Then we substitute n — 2*5Yn and since nothing
changes if we divide P(n) by a power of 10, we are reduced to the case P(n) = cn, where
c and 10 are disjoint.

Then c is invertible modulu any power of 10, specifically, 102°*'. Therefore, we are left
with P(n) = n, which is trivial.

Question3 (10 points)
Calculate the limit:

. 1 1 i 1 1 4 1
im (n — — e
n—s00 2n+1 2n+2 2n+3 2n+4 4n

Solution:

Note that the expression in the limit is equal to:

m=2n—1 1 m=n—1 1
" mz:: Cm+l@Em+2) mz::O @m + 2n + 1)(2m + 2n + 2)
m=n—1 1 1

1

. ( )
(7 =
4(.’1}m+1)2 m+1 m

m=0

Where x,,, = m/n. Thus, by the definition of the integral:
11

- = dr=-=

-~ /0 1@+12 78

Question4 (10 points)
For any m points P, ... Py, € R™, let A = (a;;) be the matrix defined by a;; = || P;P;j||?. For
a given n, what is the largest possible value of m for which A is invertible?
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Solution:

We calim that the answer is m = n + 2. We do this by showing that the rank of A is no
more than m + 2, and then showing that this rank is achieveable.

Indeed, let @ = (1,...,1), @ = (P2,...,P2) and for all 1 <i < n, % = ((P)i,... (Pn)i),
——

m
where (Py); is the i-th component of P;. Then we will show that @, @ and @; span the rows
of A. Indeed, since a;; = Pi2+Pj2 —2P; P; then the k-th row of A is: P,?ﬁ—l—u'f—Q Z(Pk)iﬁ’i,

1
which is a linear combination of the above vectors. Thus the rank of A is no more than
n —+ 2.

To show that this is indeed achieveable, let P; for 1 < ¢ < n+1 be the vertices of the regular
simplex in n dimensions, and P, its center. We want to calculate A for this configuration,
so we will give an explicit construction for this. Add another dimension, so that we are in
R™*!. Then consider the n+ 1 unit vectors together with the vector (n+r1, ce n+r1) Then
they are all on one hyperplane (defined by the equation x +y + z + --- = 1), and form
the vertices and center of the regular simplex in that hyperplane (which has dimension n).

Hence we can consider them to be vectors in R”.

Thus, it is easy to see that the distance between any two vertices of the simplex is v/2,
and that the distance to its center is | /;%5. Thus A is:

0o 2 -2
n
2 0 2 T
A= : : 2, : :
2 2 - 0
n_ o n_ ., N 0

n+1 n+1 n+1

And it is trivial to see that this matrix has maximal rank. Indeed, take the sum of the
top n + 1 rows, and substract an appropriate multiple of the last row, to give us the
vector (0,...0,1). Thus it is sufficient to show that the rows of the following matrix are

independent:
0 2 --- 2
20 --- 2
2 2 0

Which is a well known fact.

Question5 (10 points)
A word w is called square-free iff it has no subword repeating twice in a row. Can you
compose a square-free word using the 22 letters of the hebrew alpha-bet such that for any
letter that we add on the left, the resulting word will no longer be square-free? If so, what
is the minimal length of such a series?

Solution:

The answer is yes. In general, suppose that we have an alpha-bet of n letters a1, ..., a,.
Define wi; = a1, and w; = w;—1a;w;—1. Then by induction, it is easy to see that w; is
square-free (if there is a subword repeating twice then it cannot contain a;, thus w; is not
square-free) and also that for all i, a;w; contains a square. Thus, w, is square-free, and
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IMC 2012 Team Selection Exam

Duration: 4 hours

June 6, 2012

Question 1 (10 points)

Prove that the matrix is positive definite.

e e
N NN
W W N
=W N =

Solution:

We substract the first row from the others, and do the same with the first column. This

gives:
1111 11 11 1 0 00
1 2 2 2 o 0111 . 0111
1 2 3 3 01 2 2 01 2 2
1 2 3 4 01 2 3 01 2 3

Repeating the process for the smaller matrix, we are done.

Question 2 (10 points)
A graph of a continuous function f : [0, 1] — [0, 1] is a broken line consisting of 10 intervals.
The graph of the function f(f(z)) is a broken line consisting of n intervals.
1. What is the maximal possible value of n?

2. What is the minimal possible value of n?

Solution:

1. The maximal value of n is 100. This can be easily seen by constructing a zigzag
line that goes up and down many times, each time covering the entire domain:

(@) = 2| (102 — [102)) _% .




1.0

0.8

0.6 -

04+

02

0.2 0.4 0.6 0.8 1.0

In this case, f(x) covers its entire domain 10 times, and for each such time there
are 10 intervals. Therefore, f(f(x)) is composed of a total of 100 intervals.

2. The minimal value of n is 1. Indeed, it is possible to construct such a function f
which is its own inverse, meaning that f(f(z)) = = has one interval. How do we
construct such a function? Being its own inverse is equivalent to being symmetric

around the line y = x. So take any 11 points symmetric with respect to that line,
for example Z,, = (cos %, sin %), 0 <n <10, and the line f composed of the

intervals between two such subsequent points is a funtion, inverse to itself.

Question 3 (10 points)
Let p(x) be a non-constant polynomial with integer coefficients. Prove that there exists
natural number n, such that p(n) has at least 5772 distinct prime divisors.

Solution:

Suppose that there was such a polynomial P. We call a prime ¢ good if P(z) = 0
(mod ¢) has a solution modulo gq. Now, suppose that there were 5772 good primes.
By the Chinese Remainder theorem, there is a single value of = such that P(z) = 0
(mod ¢q) for each one of the 5772 good primes. In particular, P(z) is divisible by at
least 5772 distinct prime numbers, so we are done. As a result, there are no more than
5771 good primes.

However, note that by the definition of good primes, P(z) is never divisible by a bad

prime. Thus, we see that P(x) € {¢}" - - - ¢z577' }, where ¢1, . . ., gs5771 are the good primes.
We will show that the set A = {¢}" ---¢5277'} is spread way too thinly for this to be
possible.

Indeed, the number of elements in A smaller than N is significantly less than:
log,, N ---log, . N = O(log(N)>7™).

But, this means that the average distance between such consecutive elements is at least:
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However, for values x < M, we have that P(x) = O(M?), where d is the degree of P,
and the distance between consecutive values of P is P(z + 1) — P(x) < O(M%1). But

eventually, O(M4~1) < O (%), so the distances grow too large for P to skip in

one go, a contradiction - as we wanted to show.

Question 4 (10 points)
Let K C R? be a convex shape, symmetric with respect to the origin. Suppose that
[y dist(Z, 0K) d*T > 2, where dist(Z, 0K) is the distance from Z to the boundary of K.
Prove that K contains at least 3 integer points.

Solution:

Suppose that [, dist(#, 0K) d*% > 2. Now, if dist(0, 0K) > 1, then K would contain a
circle of radius more than one around the origin, and such a circle has at least 5 integer
points in it, so we win. So, suppose that dist(0,0K) < 1.

We note two more facts: first of all, because K is symmetric, the function f(¥) =
dist(Z, 0K) is also symmetric: f(—Z) = f(&). In addition, f is a convex function in K
because K is convex (this can be very easily seen). In particular, the maximum of f in
K is obtained at 0.

Now, consider the level curves of f, that is: L, = {Z € K|f(Z) = z}. Then Ly = 0K,
and the curves are convex shapes contained in one another. In particular, if we denote
by ¢(L.) the length of the curve L., then ¢(L) is a monotonically decreasing function
of z.

The last thing we note is that:

//Kyd%:/olaLz)dz,

1
/ / dist(z, 0K) d*% = / 20(L,) dz.
K 0

[y dist(Z,0K) 2% [ 2(L.) dz
Jll-d2d ) ds

Hence, the right hand side is a weighted average of a quantity ranging from 0 to 1, with
a weight which is monotonically decreasing. Thus, it is no more than % As a result,

So, we see that:

we have:

[ [ dist(Z,0K) d*z
JIg1- &2z

sz// 1-d29?22// dist(Z, 0K) 4?7 > 4.
K K

Therefore, by Minkowski’s theorem, we are done.

1
<77
-2

meaning that:

Question 5 (10 points)
Consider words consisting of zeroes and ones. Several words of length 30 are considered
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obscene. Can it happen that there exists an infinite periodic word, which contains no

obscene subwords, and that all such infinite words are periodic, and their period is greater
than 10°?

Solution:
It is impossible.

Consider the following directed graph D: its vertices are all words of length 30, and two
words u,v have a directed edge u — v iff there is some word w of length 29 and two
letters a, b such that u = aw, v = wb. Thus, D is a directed graph such that each vertex
has two ingoing and two outgoing edges. With this terminology, an infinite word is just
an infinite path in this graph, and a word has an obscene subword iff it goes through a
vertex corresponding to an obscene word.

We call a vertex essentially obscene iff all paths starting there must pass through an
obscene word. The information given in the question means that this graph, with all
essentially obscene words removed, is a single directed cycle of length at least 10°. But
the size of D is just 230, which is barely bigger than 10°. So somehow, we removed
almost no vertices from a graph with quite a lot of edges, and we are left with a cycle.
There are many easy ways to show that this is impossible.

For example, for each essentially obscene vertex we remove, the number of edges de-
creases by no more than 4. Initially, there were 23! edges. At the end, the graph is a
cycle, so it has no more than 23 edges. So at least 228 vertices were removed. So there
are no more than 239 — 228 — % -230 vertices left. But there are at least 109 vertices left.
Therefore, % - 230 > 10%, which is plainly false.

Question 6 (10 points)
Let A, B be matrices with integer entries, such that det A = 1.

1. Can we claim that B~!AB has integer entries?

2. Can we claim that there is a number n, such that (B~1AB)" has integer entries?

Solution:

1. The answer is no. For example, if we let:

then we have: /
_1 (0 —1/2
B AB = <2 0 .

2. The answer is yes. Let us prove this. We will use the following two lemmas to
reduce the question to one simple case, which we then easily solve.
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Lemma 1. If the theorem is true for all values of A and some specific value
B = B, and also true for all values of A and some specific value B = By, then
it is also true for all values of A and B = B1Bs.

Proof. By our assumption, there is some n; such that (B] 1ABl)"l has integer
entries. But (B;'ABp)™ has determinant 1 as well, so there is some ng such that
(By Y(B{'AB)™ By)™ = (By ' B[ ' ABy B2)™™ has integer entries. O

Lemma 2. If det B = +1, then the theorem holds.

Proof. In fact, B~ = de%B Adj B, where Adj B is the adjoint matrix to B which

has integer entries, so B~! has integer entries, meaning that the same applies to
B~1AB. O

Our proof will be by induction on det B. If det B = +1, we have proven this
above. Otherwise, there is some p such that p|det B. Note that since we have
seen that the statement is multiplicative on B, we can perform row operations
with determinant +1 freely.

So, since p|det B, let B, be the reduction of B modulo p (so it is a matrix over
the field Z,). Then, det B, = 0. Hence, there is some linear combination of the
rows of B, such that at least one of the rows (say, the first row) has coefficient 1,
and the sum is equal to zero.

Going back to the original matrix B, this means that there is some linear com-
bination of the rows of B such that at least one of the rows (say, the first row)
has coefficient 1, and the sum is a vector whose entries are divisible by p. So,
using row operations with determinant +1 (we add all other rows with the above
coefficients to the first row), we bring B to a from where its first row is divisible
by p. In that form,

p 0 ... O
01 ... 0

B = e . B,a
00 ... 1

where B’ has integer entries, and a smaller determinant. So by the induction
hypothesis, it is sufficient to consider the case where

p 0 ... 0
01 ... 0
B=1. . | )
00 ... 1

Let us prove this case. We will show that there is some n such that all off-diagonal
entries of A" are divisible by p, which easily implies that

n 1 An 1 An
I A AT

(B~'AB)" = B~'A"B = i
N ~ | pAy A Al

has integer entries.
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In fact, we will show that when A is reduced modulo p to A, then there is some
n such that A} = 1. However, that is actually trivial - since det A = 1 (this is
the only place where we actually use this), then A, is invertible modulo p. But
the group GL(m,Z,) of m x m invertible matrices over Z, has a finite order, so
taking n = # GL(m, Z,) is good enough. Note that this actually shows that it is
sufficient to assume that det A and det B are coprime.

Good Luck!
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First stage of Israeli students competition, 2012.

Duration — 4 hours.

1. Find the determinants of the following matrixes (the answer might depend on a)
1+a° a 0 0 0 0

. L . 0 0 0 l+a*+a* a+a’ a’ 0 0
a. 0 . L . 0 0 b. a+a’ l+a*+a* a+a’ a’ 0
) a’ a+a’ l+a*+a’ a+a’ a’
0 0 a I+a a ) 0 0 a’ a+a’ l+a*+a* a+a’
g g g :)l I+a 1a ) 0 0 a’ a+a’ l+a*+a'
a +a

2. A function f has the following property j f(x)x"dx=0 forn=0, 1, ..., 5771.

Prove that f has at least 5772 roots in the interval [-1,1].

3. ABC is a triangle. Consider all intervals PQ, such that P is on AB, Q is on BC,
and PQ divides ABC into two parts of equal area. The union of all intervals PQ
Area (U )

will be denoted by U. Compute ——————.
Area(ABC)

4. A sequence {a,} is such that a, >0,vn and a, - 0, however, > a, =c.

n—»o
n=1

Denote s, = Zak . Prove that za—g always converges.

k=1 k=1 S

5. Prove that there is an infinite quantity of natural numbers n such that n appears
in the end of the decimal representation of 2" (for example: 2% ends with 36).



Second stage of Israeli students competition, 2012.

Duration — 4 hours.

1. Prove that the matrix is positive definite.

—_ = =
[\C RN R S
W W N =
AW N =

2. A graph of a continuous function f :[0,1] - [0,1] is a broken line consisting of 10
intervals. The graph of the function f(f(x)) is a broken line consisting of n

intervals.
(a) What is the maximal possible value of n?
(b) What is the minimal possible value of n?

3. Let p(x) be a non-constant polynomial with integer coefficients. Prove that
there exists a natural number n, such that p(n) has at least 5772 distinct prime

divisors.

4. Let K R’ be a convex shape, symmetric with respect to the origin. Suppose
that j j dist(},aK )dz} > 2, where dist(},aK ) is the distance from x to the boundary of
K

K . Prove that K contains at least 3 integer points.

S. Consider words consisting of zeroes and ones. Several words of length exactly
30 are considered obscene. A word is called patient if it is of infinite length and
does not contain obscene subwords. Can it happen that a patient word exists, and
every patient word is periodic of period greater than 10°?

6. Let A, B be invertible matrices with integer entries, such that detA=1.
(a) Can we claim that B'AB has integer entries?

(b) Can we claim that there is a number #n, such that (B*‘AB)" has integer entries?

Good luck!



IMC 2013 Team Preselection Exam

Duration: 4 hours

January 23, 2013

Question 1 (10 points)
Let A be an n X n matrix with real entries and non-zero determinant such that for each
v € R”, the vectors Av and v are orthogonal. Prove that for each v € R™, the vectors A%v
and v do not form an acute angle.

Question 2 (10 points)
Compute arctan®1?(0). (Reminder: £ means f derived n times.)

Question 3 (10 points)
An n x n table consists initially of zeroes. At each step, it is allowed to choose a 2 x 2
subs-quare and revert all numbers in it: all zeroes are replaced by ones, and all ones are
replaced by zeroes. How many possible tables can be created this way?



Solution:

We note that the order at which we invert the sub-squares does not matter, and that
inverting the same sub-square twice does nothing. So, for each of the (n — 1)? different
sub-squares, we need to decide whether to invert it or not, giving us 2(n—1)? possibilites.
Let us show that all of these possibilities are distinct.

Indeed, suppose that we inverted some set S7 of sub-squares, and then inverted some set
Sy of sub-squares, and obtained the same result, with S7 # Ss. So, obviously this means
that inverting S; and then inverting Sy brings the table back to zero (because every cell
is inverted either an even number of times in both of them, or an odd number of times
in both of them). However, according to the above, this is the same as inverting all 2 x 2
sub-squares in (S7 U S2) — (S1 N S2), which is not empty because S # So.

So, we have inverted some non-empty set S of sub-squares and returned to a board of 0-s.
But, let us look at the sub-squares in S whose top edge is highest (there may be more than
one). Among those, look at the one whose left edge is leftmost. In that sub-square, look
at the top-left corner. But that corner is contained in exactly one sub-square (because all
other sub-squares are either below it or to its right). So it was inverted only once, and
hence has the value 1. A contradiction!

Question 4 (10 points)
A regular tetrahedron has only integer vertices. Show that its edge length divided by v/2
is an integer number.

Solution:
Let the length of the side of the tetrahedron be ¢. Let 0,u,v,w be the vertices of the
tetrahedron. Then |u| = |v| = ¢, and becuase the angle between v and v (as vectors) is

60°, we see that
2

5= |ul - Jv| - cos(60°) = u-v € Z,
since u,v € Z2.
However, it is well known that the volume V of the tetrahedron is equal to V = %. In

addition, it is also known that the volume of the tetrahedron is % of the the volume of the
paralelipiped spanned by u, v, w:

3
Thus, we have ﬁi € %Z, or £3/\/2 € Z. So,

L _ B3

o ep

2
But this means that (\%) = (2/2 € 7, with \/Li € Q, which is well known to imply that

J4
TieZ.

Question 5 (10 points)
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Let A be an infinite subset of N. Prove that there exists a number o > 100 such that
B = {|a"]| | n € N} satisfies: AN B is an infinite set.
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University Students Olympiad, Stage 2
Duration - 4 hours

1. At the beginning of the game, on each cells of the lower half of the
chessboard 8x8 is there is a white piece; on each cell of the upper half
there 1s a black piece. On each move, the player is allowed to exchange
two pieces on the cells that have a common side. In what minimal number
of moves will he be able to move all black pieces to the lower half of the
chessboard?

2. Numbers a,b,c,d are integer and each two of them are coprime.

Consider two intervals in the plane: interval I whose endpoints are(0,0) ,

(a,b) and interval J whose endpoints are (0,0),(c,d ) Two points are

called similar, if both coordinates of vector connecting them are integer.
Let n be the number of pairs of points (P,Q) which are similar, and are

internal points of I and J respectively. Compute n in terms of a,b,c,d .
/2
3. Compute the integral I ln<4 —sin’ x)dx :

0
a’+ax+x> a+ay+y a+ar+7
4. a. Compute the determinant || p*> + bx+x° b*+by+y° b +bz+7°
CHex+xt CHey+y e+
b. Formulate and prove similar claim for nxn matrices instead of 3x 3.
5. ABCDE is a non-planar pentagon in three-dimensional Euclidean
space. All sides of ABCDE are of the same length. The angles A, B, C, D

of the pentagon are right. Find the angle E (all possible values).
6. Denote by R, the set of all nonnegative reals. We are given a sequence

of functions f, :R” - R _, satisfying the following properties:

(a) Symmetry: f (xl,...,x ): £, (xa(l),...,xa(m)) for any permutation o .

(b) Monotonicity: f,, (X,%,,....x,)> fo (¥, %,,...,x, ) if x>y.
(¢) Homogeneous of degree 1: f, (Ax,,...Ax, )= Af, (x,....x,), VAeR,.
(d) Forany k <m:
fm(xl,...,xk,xk+l,...,xm) = fm(fk (xl,...,xk),...,fk (xl,...,xk),xk+l,...,xm).
) £,(0,1)=1.
Prove that f, (X, %,,....X,, ) =% (x, +...+ x,, ) for each m.
Good luck!



University Students Olympiad, Stage 2

Duration - 4 hours
1. At the beginning of the game, on each cells of the lower half of the
chessboard 8x8 is there is a white piece; on each cell of the upper half
there is a black piece. On each move, the player is allowed to exchange
two pieces on the cells that have a common side. In what minimal number
of moves will he be able to move all black pieces to the lower half of the
chessboard?

Solution. Let us invent the following "energy" function: let's number all
lines from below, 1 to 8, and sum all line numbers of white pieces. The

energy at the beginning is (1+2+3+4)-8 and it is lowest possible value.
The energy in the end is (5+6+7+8)-8 and it is highest possible.

The difference is (4+4+4+4)-8=4-4.8=2"""=27 =128,

By each move the energy either remains the same, or changes by 1. It is
increased if the move is vertical and white goes up. Therefore the total
number of moves is at least 128, and it in each move one white piece goes
up it will be precise.

The strategy is, therefore, to perform only vertical moves in which white
goes up and black goes down. In this case, we can promise that at each
moment, there are precisely 4 pieces of each color in each column (since
pieces never move to another column). So, unless in each column white
pieces are the top 4, we shall be able to find a white piece below the black
piece and to improve the situation by 1.

2. Numbers a,b,c,d are integer and each two of them are coprime.
Consider two intervals in the plane: interval I whose endpoints are(0,0),
(a,b) and interval J whose endpoints are (0,0),(c,d). Two points are

called similar, if both coordinates of vector connecting them are integer.
Let n be the number of pairs of points (P,Q) which are similar, and are
internal points of I and J respectively. Compute n in terms of a,b,c,d .

Solution 1. Actually, n is the number of integer points in Minkowski
difference I — J which are not on the boundary.



I — J is a parallelogram, its sides don't contain integer points; its vertices
. . 4 D
are integer. By Pick formula n+§—1 =S which is the area of the

parallelogram. On the other hand, we know it is the absolute value of the

determinant ‘ad - bc‘. Hence n+1= ‘ad - bc‘ the answer follows.

3. Compute the integral ”j} In (4 —sin’ x) dx .

Solution. We shall use thoe method of parametric differentiation.

Let us consider /(z) = ”j}ln(t2 —sin’ x)dx . We have to compute (2).
071'/2 2

Let us compute ﬂ =% I ln(t2 —sin® x)dx = j

2t
dt 2

—.zdx.
=S x

0
Differentiation inside the integral is allowed for 7 > 1, because the
function under the integral is bounded. So, if we take tanx =y then

2
sin2x=wn—§ and
1+tan” x
. 2 .2
dyzdtanxzd(smszcos X3 X = (14 tan” x) dx
cos X COs” X
SO, dy =dx and
1+y
/2 o
2t d
a1 5 el I -
—sin’ x 0 42 y 1+y 1P+ ytt -
1+y°
I I 2t 2% 1
'([t +y%? - '([t2+y2(t2—1) t;[1+y2(1—t12)
> 2 4 T
arctan Wl=-%) =—F— %=
l. ’ ( )() t2_1 2 t2_1
So—= il




Therefore I I dt.If t=chs then df =shs-ds and

—

shs ) e +e
dt=j ds =s+const. Since t =

2s

—2te’ +1

so O=e

1
I\/tz—l

therefore ¢' =1 ++/t*> —1 and szln(t+ t* —1).

SoI I

dt=7Z'1n(t+ t2—1)+c0nst.

—

To find the constant, let us look at large ?.

I(f)—”ln(f+\/t2 —1)=Tln(r2 —sinzx)dx—fcln(t+\/t2 —1):
0

t* —sin? x dx— 1n(t2)+7rlnt—7rln(t+ t2—1)=

r++tr =1

72
J in
0
J/‘(ln t —sin x) 1nf2)-dx—7z1n—:
i
Jmn
0

t
SlIl X 2
( ] de—rin(1+ 1=+ )—— [ Inl-dx—7In(2) =

0

=—xIn2
Since the difference is constant,

Mo=zm&+Jﬁfﬂ—zm2=zmtii§EEj
B

Now, we substitute 7 =2 and get the answer 1(2)= zln(l =

A+ax+x* d+ay+y’ ad+az+7’
4. a. Compute the determinant | p> + bx+x*> b’ +by+y’> b’ +bz+7°
Hex+x’ cz+cy+y2 c2+cz+z2

b. Formulate and prove similar claim for nXn matrices instead of 3x3.

Solution. Notice that:



a’+ax+x’ a2+ay+y2 a’*+az+z7°
b>+bx+x> b +by+y’ b +bz+7 |=
Hex+x c2+cy+y2 cz+cz+z2

a’ a 1
= o (1 1 D+[b|(x ¥y 2)+1[(x* ¥y 2°)
c’ c 1
1 a a B

If we multiply from the leftby |1 b5 b* | , and from the right by

2

I ¢ ¢
11 1Y
x 'y z | ,wegetthe matrix
x2 y2 Z2
0 0 1
e e/ +e ey +e el =0 1 0].
1 00

Therefore, our matrix is product of 3 matrices: two Vandermonde
matrices and one permutation matrix. The determinants of Vandermonde

are known to be (c—a)(c—b)(b—a) and (z—y)(z—x)(y—x). The

permutation is negative. Hence the answer:
~(c-a)(c-b)(b-a)(z-y)(z=2)(y ).

b. The natural generalization is matrix depending on two sequences

a,,...,a, and x,...,x, whose elements are (xl."_1 +xl."_2aj +...+a;.’_1).

The proof is the same as in 3-dimensional case.
oo (—1)2
The answer is: (1) [ (x, —x)[J(a, ~a,).
i<k j<t
If we take polynomials (xl’" + x;"_laj +..+ af) ,and m<n-1, then the
determinant is zero, since the matrix is a sum of m —1 matrixes of rank 1

(by the same argument as above), and the rank is m —1 at most. If we
take m = n, I don't know the answer.



5. ABCDE is a non-planar pentagon in three-dimensional Euclidean
space. All sides of ABCDE are of the same length. The angles A, B, C, D
of the pentagon are right. Find the angle E (all possible values).

Answer. Either 60° or arccos ().
Solution. WLOG, length of each side is 1 (if not, apply homothety).
The intervals EB, EC are \/E . Therefore, the triangle BEC is given.

One option is that ABCD is a square, and ADE is a regular triangle, such
that plane ABCD is orthogonal to the plane ADE. In this case, angle E is

() . . . . .
60", or £ radians. In this case, we can choose Cartesian coordinates in

0 0 | 1 <
space,s.t. A=|1|,B=|0|,C=|0,D=|1]|,E=|1
0 0 0 0 e

2

In any other case, we can still assume that coordinates of B,C,E are the
same (since the triangle BCE is unique up to symmetry), and ask whether
there are other possible options for A, D. On one hand, A should be in
distance 1 from both B and E. This condition specifies intersection of two
unit spheres with centers at B and E, or a circle in the plane of orthogonal
bisector of BE. If A belongs to this circle, the condition of right angle at
A is automatically satisfied, since the sides of triangle ABE are 1, 1, and
V2, hence Pythagoras theorem holds.

Still, there is another condition on A: the angle ABC should be right. This
condition specifies a plane through B, orthogonal to BC. Hence A should
be on intersection of plane with a circle which lies in another (non-
parallel) plane. This can happen only in two places A, which is the same
as the A we guessed and A, which 1s symmetric to it with respect to the
plane BCE.

Similar things can be said about the location of D: there is D, that we
have guessed and there 1s D, symmetric with respect to BCE. It is easy to

check, that at these points all conditions are satisfied. Therefore, there are
only 4 possible pentagons, and they are symmetric in pairs. Pentagon

ABCD,E we have discussed already, it leads to 60°, its symmetric image

A,BCD,E gives the same answer. It remains to discuss A,BCDE (or



ABCD,E ; they are symmetric so it is enough to discuss one of them).

0 1 <
The equation of plane through B=|0|, C=|0|, E=|1 can be
0 0 B

written as p(x,y,z)zﬁ(\/g- y—2-z)=0.

0
Its unit normal vector is N = % _Then p(A)=N-A=-2/7.
—2
\/7
0 0 0
The symmetric point A, =A —2(N-A )N =|1 —2£ B 1
y P =4 1)V = Nz 7 |
0 _2 | (4B
7 7
—1
2
The angle A,ED, is between the vector ED, =| 0 | the vector
B
2
0) (3 [+
EA,=| 1+ |=|1 |=|-2%|. Both are unit vectors; hence the cosine of
43 NEY A3
7 2 14
. 1 3 10 5
each angle is the scalar product: cos¢ =—+—=—=—_. Therefore the
4 28 28 14

result is arccos ().

6. Denote by R, the set of all nonnegative reals. We are given a sequence

of functions f, :R" — R, satisfying the following properties:
(a) Symmetry: f, (x,....x, )= f,, (xa(l),...,xa(m)) for any permutation o .
(b) Monotonicity: f, (x,X,,...,%,,)> fo (¥, X500 X, ) if x> y.

(c) Homogeneous of degree 1: f, (Ax,,....Ax, )=Af, (x,...x,), VA€ R,.
(d) For any k<m:

Lo (Bsees X X oeees X, ) = o (e (e X )seees f (Bseees X )s X X, ) -
e) /,(0,1)=1.



Prove that f, (x,,%,,.... %, ) =1(x, +...+x,).

Sketch of solution. The problem is hard, and it would take much time to
reduce everything to the axioms. Therefore we shall skip the trivial steps.
Denote R, = f,, (1 .,1,0,...,0). Then it follows from axioms that

%,_J

ktmus m—k times
f (1 ..1,0,...,0) = f (R pseees R,y 50,...,0) =
%,—/

k times mk*™ times

=Ry, f,, (L.l ,0... L0)=(R, )f(l .1 ,0,...,0)=

m-k3 times m>k* 2 times

=(R..) £, AL..D=(R.)
) 1 2”1
In particular, f,, (1,0,...,0) = o and f,, (1 .1,0,...0) = by similar
2
argument. Ifin f (1,...,1,0,...,0) we shall reduce the number of ones and

increase the number of zeroes (maybe changing the n) the result will be
reduced; if we increase the number of ones and reduce the number of
zeroes, then the result will be increased; these follow easily from
monotonicity.

Therefore if k* >2”,m* <2?, then R, <2"™.
Similarly if k* <2”,m’>27, then R, >2" ",
Let us logarithm the last two statements:

P—4q

If slog,k > p, slog,m<gq,then logR, , <

' '

P—q

If slog,k<p', slog,m>gq', then logR, ,, >

Obviously, if p:|_s10g2kJ p':(slogzk—| q':leogsz,q:(slogzml

p- P—4q
Y

then the difference between the two bounds of <logR,, <

) 4 e . 2
is no greater than —, and both are within distance at most — from
S Ry

log, k —log, m=log, (£). Therefore R, , =%.



First stage of Israeli students competition, 2013.

Duration: 4 hours

1. Let A be an nxn matrix with real entries and nonzero determinant,
such that for each veR", vectors Av, v are orthogonal. Prove, that for
each veR", vectors A%y, v don't form an acute angle.

2. Compute arctan(2013)(0). (Reminder: f ") means: f derived n times).

3. A table nxn consists initially of zeroes. At each steps, it is allowed to
choose a sub-square 2x2 and revert all numbers in it: all zeroes are
replaces by ones, and all ones are replaced by zeroes. How many possible
tables can be created in that way?

4. A regular tetrahedron has only integer vertices. Show that its edge
length divided by +/2 is an integer number.

5. Let A be an infinite subset of N . Prove that there exists a number

a >100, such that B= {La” J ‘ neN } satisfies: A(\B is an infinite set.

Good luck!



First stage of Israeli students competition, 2014.

Duration: 4 hours
1. A real number ais given. Find the greatest possible number of
elements in the following sets:

a. {sinx | sin3x=a}. b. {sinx | sin4x=a}.
1 2 35
21 5 3
2. Compute det
351 2
5 3 2 1

3. A grasshopper lives on a unit interval. Each second, a grasshopper
chooses one of the endpoints of the unit interval (by flipping a coin) and
jumps two-thirds of the way towards that endpoint (so the distance from
him to one of the endpoints becomes precisely three times smaller).

130 spiders, each of the size 0.0005, can choose any positions on the
interval simultaneously and stay there. Is it possible for them to catch the
grasshopper?

4. For any ¢ >0, consider the locus of points, satisfying the inequalities
2 2 2
x +y +z7 <1
{‘x2+y2—z2 <g
The volume of that locus will be denoted V.

.V .
Does the hrrol—'g exist?
&> (9

5. For any polynomial p with real coefficients, let
S(p):{xe]R ‘ p(x)eZ}.
Prove that if p,q are two polynomials, such that § ( p) =S (q) , then

either p+ ¢ or p—gq is a constant.

6. On a bookshelf, there are N tomes of the Encyclopedia in random
order. Each hour, a librarian takes a tome which stands not on its place,
and puts it in its place. Show that the process will stop.

Good luck!



Second Stage of Israeli Olympiad for University Students.

1. On a plane N lines in general position are chosen. General position
means, that no two lines are parallel, no three lines are concurrent, and
neither three intersection points belong to the same unchosen line.

An additional line will be called good, if it doesn't pass through any
intersection points of chosen lines. Additional lines will be considered
equivalent, if one can be obtained from the other by continuous motion,
such that all intermediate lines are good as well. Find the number of
equivalence classes of good lines.

dx

2. Evaluate the integral T(e_zx - e_x)
) x

3.Let a,b,c,d,ve R’. Show that

<[a,b],v>-<[c,d],v>—<[a,c],v>-<[b,d],v>+<[a,d],v>~<[b,c],v> =0.

Here <,> 1s scalar product and [,] 1s vector product.

4. Let >0 be an irrational number, fSe (0,1). Denote:

Q(m)=min{na}

1<n<m

R(m)=min{f - na}

1<n<m
(where n runs over integer numbers between 1 and m).
Prove that there is infinite number of values m, such that Q(m)> R(m).

S. What is the maximal possible area of an ellipse, which is contained in
the upper half of a unit circle?

6. Let p be an odd prime, and let GLz(IF‘p) be the set of all invertible

2x?2 matrices over the field with p elements. A partition of GLz(]Fp)

will be called nice if every two matrices belonging to the same set
commute. Determine the minimal number of sets in the nice partition.

Good luck!



Second Stage of Israeli Olympiad for University Students.

1. On a plane N lines in general position are chosen. General position
means, that no two lines are parallel, no three lines are concurrent, and
neither three intersection points belong to the same unchosen line.

An additional line will be called good, if it doesn't pass through any
intersection points of chosen lines. Additional lines will be considered
equivalent, if one can be obtained from the other by continuous motion,
such that all intermediate lines are good as well. Find the number of
equivalence classes of good lines.

n'+2n’ -21n" +10n+8
8

Answer.

Solution. We shall use projective duality. Consider central projection of
the plane P where all the lines lift to sphere S. Each line will be projected
to a big circle, i.e. circle of maximal radius. To each big circle one can
associate a point - like pole associated to equator. If we glue together
pairs of opposite points on sphere we get a projective plane.

Concurrent lines correspond to collinear points and vice versa. Using
duality, we transform the problem to following one:

n points in general position on projective plane are given. General
position means that no 3 of them are collinear (and not any two of them
are collinear together with the point, corresponding to infinite line
(which has no projection on the plane P)), but we don't use this condition.
Consider lines joining pairs of these points. Suppose no 3 of them are
concurrent apart to the given points. In how many ways one can add one
extra point non-collinear with any two others, if two positions are
equivalent if one can be obtained to another by continuous motion such
that in all intermediate positions no 3 points are collinear?

This problem can be reformulated yet again in the following way:

n points in general position on projective plane are given. General
position means that no 3 of them are collinear. Consider lines joining
pairs of these points. Suppose no 3 of them are concurrent apart from the
given points. On how many regions they divide projective plane?



Let us count. We have m =

lines joining these points. If they are

m(m+1)
2

n(n-1)
2

in general position, they will divide ordinary plane on

m(m-3)
2

+1 part,

2m of them are infinite, +1 are finite. On the projective plane

m(m—3)

opposite infinite parts are glued, and we get m infinite and +1

m(m—1)
2

finite parts, +1 parts in total.

However, our lines are not generic. Via each given point n—1 given lines
are passing. If we slightly move them to a general position we get

—1)(n—4
division of plane by n—1 lines with uz(n)+l bounded parts

which will collapse when we return these lines to their initial place.

(n—l)(n—4)
2

Hence in each of n points we lose
n[—(n—l)(n—4) +1).
2
So the number of parts M is equal
M — m(m—l) +1_n£(n—l)(n—4) +1):

2 2

i "("2_1) .(n(nz—l) _1) ~ n(n—l)(l’l_4) _(n_l) —
2

+1 parts, totally

- (n*(n—1)-2n+4n(n-4)-8)=

=3 l(n3 —n’=2n+4n’ —1611—8)2”T_1(n3 +3n° —18n—8)
It is easy to see that the second term is indecomposable over QQ

,x)@.

2. Evaluate the integral _[(e’z" —e
x
0



Solution. Let's consider the more general problem,

I(a)= (e_“x —e_x)d—;.

By differentiating we get

The integral in the right hand side is absolutely convergent; therefore it
can be integrated to obtain the original expression, hence differentiating
inside the integral was justified.

¢l _o-Loo.
a

a ¢ _.
Ez_([—e dx =

0

It is clear even to a hedgehog that 7(1)=0. Hence

<dl “da
1 =|—-da=—|—=-1
()=} L da n(a)

1 a
(we omit | | here, since for a <0 the integral is not defined anyway).

dx _

ence 0(6 e ) .

1(2)=-In2.

3. Let a,b,c,d,ve R*. Show that

<[a,b],v>-<[c,d],v>—<[a,c],v>-<[b,d],v>+<[a,d],v>~<[b,c],v> =0.

Here <,> is scalar product and [,] is vector product.
Solution. Denote the expression in the left-hand side by f(a,b,c,d).

We claim, that f is anti-symmetric, which means that

f(vl,vz,v3,v4) =sgno - f(va(l),va(z),va(3),va(4)).

for each permutation o of 4 indexes. Each anti-symmetric multi-linear

expressions in 4 vectors in R’ is identically zero. Indeed, we could
decompose each vector as a linear combination of vectors of the standard



basis, and represent f(v,,v,,v,,v,) as a sum of f(ea,eﬂ,ey,eg) with

coefficients (where e,e,,e, is the standard basis and «,f,7,0 are

indexes) and in each summands at least one index is repeated among
a, B,y,0 . If two among the vectors substituted in the form coincide and
the form is anti-symmetric, the value is zero.

It is clear that our f is multi-linear, since both vector and scalar products
are multi-linear. So, it remains to show it is anti-symmetric. Each
permutation can be composed of just three transpositions (1,2), (1,3) and
(1,4) (in some order, maybe some of the transpositions are used more

than once or not used at all). Therefore it is enough to verify the formula
for only these 3 transpositions:

f(b,a,c,d) :<[b,a],v>~<[c,d],v>—<[b,c],v>~<[a,d],v>+
+<[b,d],v>-<[a,c],v> =—<[b,a],v>-<[c,d],v>+
+<[b,d],v>-<[a,c],v>—<[b,c],v>-<[a,d],v> =—f(a,b,c,d)

This completes the verification.

4. Let >0 be an irrational number, Se (0,1). Denote:

Q(m) = min{na}

1<n<m

R(m)=min{f —na}

1<n<m
(where n runs over integer numbers between 1 and m).

Prove that there is infinite number of values m, such that Q(m)> R(m).



Solution. We have to prove that for any natural N there is n > N such
that Q >R . The case when R =0 for some n is obvious, so we

suppose that R >0 for all n, i.e. B#{ka} Vke N. Because the set
{na}” is dense, there exist ne N such that { #—na} <min(S,R)).

Among such n we shall choose minimal »,. Then

{f—no} <min(B,R,)<{f—na}, Vne [l,no —1].

Note that n, > N . Otherwise by the definition of R, we would have an
inequality R, <{f—na}.In that case if R <Q, then taking n,=n we

get just what we need.

Now we can suppose that R, >0, ={ma} for some me [1,n,]. Then

R,..<{f—{n+ma}=R -0, (1
This holds because of equality
{B-(n,+m)a}={{B-na}~{ma}}={R -0 }=R -0,
We also have Q, | =0, ={ma}.

Indeed. Suppose the contrary, i.e. {ka} <Q, forsome ke [n, +1,n,+m].
Then 0<n, + m—k <n, and
{,b’ (n,+m—k) } {,6’ (n, +m) }+{k0{} =R -0, +{ka} < R,

This contradicts to the choice of n, .
Now let n, =n,+m.

If R, <Q, we can put n+n, and we are done. Otherwise if R, 20, we

can replace n, by n, in the equations (1) and (2) and proceed. Then put

n,=n+m=n,+2m etc.

Finally for some k we get R, <Q, —Q, becauseif R _>Q forany k
then using (1) and (2) (n, substituted instead of n,) we get

Q"O - Q"<l+"1 = Qll()+2m == QIu,-ka S R”“ - kQ”()



But for sufficiently large k we have R, —k-Q, . This provides final

contradiction.

5. What is the maximal possible area of an ellipse, which is contained in
the upper half of a unit circle?

In the space of ellipses (center, orientation, and lengths of the axes) the
set of admissible ellipses is compact; therefore a maximal ellipse exists.

First, it is obvious that the maximal ellipse should touch the boundary of
the semicircle in at some points, such that their convex hull would
contain the center of the ellipse. Otherwise, the ellipse can be moved to a
certain direction and then homothetically expanded.

Let us prove that the maximal ellipse touches the diameter which is the
boundary of the semicircle in the center. If not, we can move the ellipse a
little bit towards the center, so that it will be no longer tangent to the
circle but still won't contain the center. Then the ellipse can be expanded
once again, so that it still won't contain the center and won't touch the
circle. Of course, the ellipse can protrude outside the given semicircle,
but it is still contained in some semicircle, since by convexity some line
through the center of the circle doesn't intersect the ellipse. Now we can
rotate the expanded ellipse back into the semicircle.

Now, there is a tangency point on the left and on the right half of the arc.
Assume the points are different; we'll denote them A and B.

Denote by ¢ the equation of the line AB and by ¢,/ the equation of
tangents at A and B. It is easy to see that all quadrics, passing through
A, B and tangent to the circle there, are of the form A-¢, - ¢, + u- /%, and

hence both the circle and the ellipse are symmetric with respect to the
perpendicular bisector of AB.

Since the ellipse passes through the center of the circle, then AB is
horizontal. Choose the natural coordinate system (the origin in the center

of the circle, y upwards). Then the tangency points are (cost,sinz).

We shall compute the area of the ellipse as a function of .



Consider the affine transformation 7 : (x,y) > (@x,y) that will turn this

ellipse into a circle. Before the transformation, the ellipse is inscribed in
the triangle whose vertices are (—=L-,0), (2,0), (0,t), and the points

cost ? cost ? % sint

of tangency are (tcosz,sint) and (0,0).

After the action of T the ellipse becomes the incircle of the triangle, and
the computation is easy.

But we have to find «. The tangents from (cosz,sint) to the ellipse

cost 2

should become equal, therefore the distances from ( “« O) to both

(arcost,sint) and (0,0) should become equal. Hence

2

cost

2
a(cost—-L)) +sin’t =
(a(cos )) +sin —er

and therefore by a standard computation,

,  sin’t
o

" 1+sin’t
Now, the radius of the incircle can be obtained from the formula S = pr,
where S is the area of the triangle, p is one-half its perimeter, and r is

the radius of the incircle. From here, the area of the incircle is given by
zr®, and the area of the original ellipse becomes 7r’/a. We compute:

1 1 2o o o a’ 1
S=——- = — and p= + —t+—.
2 sint cost cost-sint cost \cos't sin't

This gives the area of the original ellipse is as follows:

xS’ sint
(t)="==.=7

= =.. — 3/
p'a (1+sin2t)é
Deriving and finding the maximum gives

1—sin?
f'(t)zfr-%t,where Z>0.



where Z is positive. This gives =45, and f (¢) _ 27

NoTE

Note that we have neglected the case where the ellipse is tangent to the
circle only in one point, at (0,1). In that case we may thicken the ellipse

sideways until it is double tangent at that point, and hence this becomes a
limit case of f () where ¢ — 1, which not the maximum of f .

6. Let p be an odd prime, and let GLZ(IFP) be the set of all invertible

2x?2 matrices over the field with p elements. A partition of GLz(]Fp)

will be called nice if every two matrices belonging to the same set
commute. Determine the minimal number of sets in the nice partition.

Answer. p’ + p+1

First solution. Let o€ F, a non-square, and set

NENTNY

Their centralizers are easy to compute:

B 0
B::ZGLZ(FP)(b):{[Ig ;j ‘,Be F,ye ]Fp}

_ B
C"ZGW(C)‘{(W A

This can be verified by an explicit computation, but also can be deduced

B.ye ]F:}

B.yeF,, (B, 7)7&(0,0)}

from linear algebra: when a linear operator L is represented as a block
matrix with smallest possible blocks, and all blocks are essentially
different, then centralizer consists of matrixes with the same blocks, and
in each block of size k we have a polynomial of degree k —1 at most in a
relevant block of L.



Subgroups A,B,C are commutative (since they consist of linear

expressions in respectively a,b,c). Let

A ::{gag‘l‘ge GLz(]Fp )}
B: {gbg“‘ge GLz(]Fp)}
C:

- {gcg‘l‘g e GL, (]FI)}
X=AUBUC

As the centralizer of each element of X is commutative, the commuting
relation on X is an equivalence relation.

We claim that every element of GLz(IFp) commutes with at least one

element of X. It is known from linear algebra that every 2X2 matrix can
be transformed by conjugation to one of the following three canonical

o (50115 ) 5
orms: . ’ .
0 y)\0 B)\ay B

As the centralizer of each element of X is commutative, this proves that
the minimal size of a nice partition of GLz(]Fp) and of X is the same.
Indeed, we can extend every nice partition of X to a nice partition of
GL, (]Fp) by adding each element ye GL, (]Fp ) \ X to a set in the partition

which contains some xe X which commutes with y.

It remains to determine the number of sets needed for a nice partition of
X. As the commuting relation is an equivalence on X, this is the same as
determining the number of equivalence classes in X modulo the
commuting relation.

We claim that no element in A commutes with an element of B, no
element in A commutes with an element of C and no element in C
commutes with an element of B.

Indeed, every element which commutes with some gag™ is
diagonalizable over F,, while non-scalar matrices commuting with some
gbg™ are not diagonalizable and non-scalar matrices commuting with

gcg™' are diagonalizable over I, but not over I .
p p



Therefore it's enough to count the equivalence classes in A, B, C
separately.

Lemma 1. The number of equivalence classes in A is

(r*-1)(r’-pr) _p(p+1)
2(p—1)2 2

2 0
Proof. The only conjugate of a in A is (O J, since A 1s diagonal

matrices, and diagonal elements are eigenvalues which are uniquely
defined up to order. By symmetry, the size of each equivalence class in

1\ p* =

A is 2. So |A|=|GL.(F,)/A|= or. ‘A‘ E)_(r ( )(}17)2 P) The last
-

number should be divided by 2.

Lemma 2. The number of equivalence classes in B is

(r"-1)(p’-p)
p(p-1)

=p+1.

I x
Proof. The only conjugates of b in B are (0 J, where xe F, since

every conjugate of b has eigenvalue 1 with multiplicity 2. By symmetry,
the size of each equivalence classin B is p—1. As

‘GL

_(p-1)(r*-p)
p(p-1)

B|=|GL,(F,)/B|=
To complete the proof, we divide ‘B‘ by the size of equivalence classes,
whichis p—1.

Lemma 3. The number of equivalence classes in C is

(P’-1)(r’-r) _p-p
2(p*-1) 2




1
Proof. The only conjugates of b in B are [ Oj‘ This is because the

ta

eigenvalues of a matrix ( ;j are S+t ;/\/E and this equals o iff

ay

B =0 and y==1. By symmetry, the size of each equivalence class in C

GL (F * )\ —
oL (E,)_ (- 1)(r p),which should

[

is 2. So |C|=|GL,(F,)/c|=

be divided by 2.

To summarize, the minimal size of a nice partition is

2 2
p+p+(p+1)+p p

=p’+p+l.
) p Tp

Second solution. As we have seen in the beginning of the first solutions,
centralizer of non-scalar 2X?2 matrix A consists of all possible (non-
singular) matrices of the form Al + @A.

Notice that gl (Fp ) / I is a 3-dimensional linear space, having a non-

singular matrix in every line through the origin. Hence we need a separate
class of partition for each point of a projective plane over F , therefore

we need precisely p®+ p+1 classes.



First stage of Israeli students competition, 2015.
Duration: 4 hours
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1. Compute lim

n—o0

2. Compute det

3. Let A, B, C, D be points in 3-dimensional Euclidean space not in the same plane,
such that the plane ACB is orthogonal to the plane ACD, and the plane ABD is

cos(<ACB) ~ cos(<«CBD)
cos(«ADB) cos(«CAD)’

4. A finite number of polyhedrons of positive volume in 3-dimensional Euclidean
space is given. Prove that one can mark a finite number of points in the same
Euclidean space, so that strictly inside any two of given polyhedrons of equal
volume, there will be the same number of marked points, and every given
polyhedron will contain at least one point.

5. Prove that sum of digits of 27" s greater than 1000000.

6. M cars move from left to right on a narrow road (they can't overtake each other,
and cannot go backwards, all cars start at the left end and arrive to the right end).
In k places, the road is split in parallel routes: first in n, parallel branches which
are merged again, then in n, parallel branches, etc. Each branch is long enough to

contain any amount of cars. For which M is it possible to reorder the cars in any
possible way by the time they arrive to the right end of the road?

orthogonal to the plane CBD. Prove that

branches
n, branches " n, branches

Good luck!



Solutions: first stage of Israeli students competition, 2015.

1. Compute lim Jn :
nﬁool 1 1 1

+$+%+...+$

Answer. 1
2

First solution. By Stolz—Cesaro criterion criterion (similar to the more familiar

N
1
N

I'Hoépital's rule but for sequences), if lim

n—o0

exists, then it also gives an

answer to the original question. But

yn-vn-1 \/_ (\/H—F\/E)(\/H—M) . 1 1 1

lim lim 1 oo [n—1 1+1 2
—_— n++n-1)—"= o=
= (e e
Second solution. Denote L =lim T \/ﬁ T Then
Tl
2B Jn
1—I|m ( 1,1 ij—liml L + 1 + 1 + +i =
n—>oo_\/_ ﬁ \/_ \/_ n—wo N % \/% % 1
1
:jﬂzz\&l:z
0 X 0

Hence L

Il
N~

2. Compute det

w NN
W wWw NN
A W w PN
A A W W


http://en.wikipedia.org/wiki/Stolz%E2%80%93Ces%C3%A0ro_theorem
http://en.wikipedia.org/wiki/L%27H%C3%B4pital%27s_rule

First solution. We may subtract row 3 from row 4, and row 1 from row 2 without
changing the determinant. We get

1 2 2 3 1 2 2 3

2 2 3 3 1 010
det =det

2 3 3 4 2 3 3 4

3 3 4 4 1 010

Now two of the rows (the second and the last) are the same, so det = 0.

Second solution. Notice that sum of two numbers in the middle is the same as the
1

sum of two numbers at the ends of each row, so . is in the kernel, so

1
determinant is zero.

3. Let A, B, C, D be points in 3-dimensional Euclidean space not in the same plane,
such that the plane ACB is orthogonal to the plane ACD, and the plane ABD is
cos(«ACB) cos(«CBD)

cos(«ADB) cos(«<CAD)’

orthogonal to the plane CBD. Prove that

Solution. Consider projection from AD to BC (each point X on AD is sent to the
foot of perpendicular from X to BC). Length of each interval on AD is reduced by

this projection by the same coefficient, which is cos<(ﬁ,ﬁf).

This projection can be performed in two steps: first project point X on AD to point
Y on AC (so that XY L AC, and then project point Y on AC to point Z on BC, so
that YZ 1. CD. Indeed, planes ACB, ACD are given to be orthogonal, so Y is the
projection of X to plane ACB, but XY is orthogonal to plane ACB, and to the line
BC, therefore X and Y lie in the same plane, orthogonal to BC, hence projections of
X and of Y to the line BC are in the same place. But now each projection is
performed from a line to a line within the same plane, and each reduces distances
by a coefficient which is cosine of an angle between two intersecting lines, so



cos<(ﬁ,ﬁf) — cos<CAD - cos<cACB.

Now doing the same for the projection from CD to AB, using BD as intermediate
line and the fact the plane ABD is orthogonal to the plane CBD, we conclude:

cos<(@,ﬁ) — cos<cADB - cos <CBD..

Therefore cos<cCAD - cos<xACB = cos<ADB -cos<CBD.
Q.E.D.

4. A finite number of polyhedrons of positive volume in 3-dimensional Euclidean
space is given. Prove that one can mark a finite number of points in the same
Euclidean space, so that strictly inside any two of given polyhedrons of equal
volume, there will be the same number of marked points, and every given
polyhedron will contain at least one point.

Solution. The number of marked points in each region (intersection of some
polyhedrons and of complements to the other polyhedrons) can be denoted by a
letter. Totally, there will be at most 2" letters (some regions might be empty),
where N is the number of polyhedrons, and each pair of polyhedrons of equal
volume gives a linear equation. The equations are linear, and have integer
coefficients, hence the solutions of the equations is linear subspace, spanned by
rational vectors (which can be found by Gauss procedure). The equations have a
positive solution: when to each region corresponds the volume of the region. It can
be expressed as a linear combination of the rational basis vectors of the subspace,
with possibly real coefficients. If the coefficients can be replaced by sufficiently
close rational coefficients, we shall get a rational vector, which also has positive
coordinates. Multiplying the vector by common denominator of the coordinates we
get a vector with positive integer coordinates, which satisfies all the equations.

We can mark number of points in each region, according to the respective
coordinates of the vector, and all conditions will be satisfied.

5. Prove that sum of digits of 2% is greater than 1000000.



Solution. The last (units) digit is nonzero. It is not possible to have 3 consequent
zeroes before the last digit, because the number consisting of 4 last digits has to be
divisible by 16, but the last digit isn't divisible by 16. Let u be the number
consisting of the last k digits. It is not possible to have 3k consequent zeroes before
u. Otherwise u is divisible by 2* = 16“> u # 0. So the number has at least log, d

nonzero digits, where d is the total number of digits. The number of digits is
|og (2 41000001) N 41000001 . I Og 2 > 41000001 . 0 3 > 41000000
10 - 10 = = ' '

Remark. Then number 2 in this problem might be replaced by any even number
which is not divisible by 5, or any odd number which is divisible by 5.

6. M cars move from left to right on a narrow road (they can't overtake each other,
and cannot go backwards, all cars start at the left end and arrive to the right end).
In k places, the road is split in parallel routes: first in n, parallel branches which

are merged again, then in n, parallel branches, etc.

Each branch is long enough to contain any amount of cars.
For which M is it possible to reorder the cars in any possible way by the time they
arrive to the right end of the road?

branches
n, branches " n, branches

Answer. When M <n, -n,-...-n,.

Solution. The trajectory of each car is completely determined by the choice of
branches, which has N =n,-n,-...-n,_ possibilities. If M > N, then by pigeonhole

principle two of the cars have the same trajectory, hence they will be in the same
order in the end as in the beginning.



Now we shall show that for M < N, any rearrangement is possible. We shall give
each car a k-digit number. The last (least signifcant) digit of a number may be
anything between 1 and n,, the second least significant digit may be anything

between 1 and n,, and so on, the leading digit may be anything between 1 and n, .
If n. >10 we shall invent new digits.

The total number of possible numbers is N, so if M <N we can assign each car a
different number; we shall do it in such a way, that a car with a smaller number
will be a car that should arrive earlier.

For each possible order of arrivals, such numbering is possible.

The driving will be according to the following three rules:

(@) All cars should arrive to the i'th split road and take its place on one of n,
parallel branches, before any car is allowed to continue to the next split road.

(b) The first to live i'th split road are the cars on the first parallel branch, the
second are the cars of second parallel branch, the third are the cars of third
parallel branch and so on.

(c) The decision for each car of which branch to take on the i'th split road is
based on i'th least significant digit of its number (1 means first branch, 2
means second branch, and so on).

It is easy to see, that the less is the most significant digit of a number, the sooner
the car will arrive, and given that first several digits of numbers of some two cars
are the same, the car will arrive sooner if its next digit is less. Which means that
the cars will arrive in order according to their numbers. Since numbers can be
given in any possible order, the cars can arrive in any possible order.



Second stage of Israeli students competition, 2015.

Duration: 4 hours

1+Int 1+Int *

1. Find such x> 0. for which jtdt :jtdt
0 X

2. N people must travel from one end of the road to another. The length of the road
is L. They have K bicycles (K < N). The velocity of walking man is v,, and the

velocity of a bicycle is v, (obviously, v, <v,). How much time is required?

3. A unit cube in 4-dimensional Euclidean space contains a 3-dimensional
Euclidean ball of radius R. What is the greatest possible value of R?

4. The sequence {a,} is defined by recurrent formula an+1:an+»,/1+ a’, and

n

a, =1. Compute Iim2—.

n—o0 a
n

5. Polynomials P(x) and Q(x) of odd degree are such that for each integer x
there is an integer y such that P(x)=Q(y). Prove that there exists a polynomial
R, such that P(x)=Q(R(x)) for each x.

6. For given 2x2 matrices A,B there is only finite number n of 2x2 matrices

X such that X? + AX + B =0. Find the maximal possible value of n. (All matrices
in this questions have complex entries.)

Good luck!



Solutions: second stage of Israeli students competition, 2015.
dt ‘T dt

1+Int

1. Find such x>0, for which -[t
0

tl+|nt '

Answer. x=1.
First solution. We shall start with general remarks on convergence. When t —0

we have Int<-2, so <t, so integral is well-defined at 0. As t —» oo, Int>2,

t1+lnt

1 1 :
SO o < X so the integral converges at .

Notice, that the integrated function is positive, so as xis increasing, the left hand
side increasing, and right hand side is decreasing. So there can be only one answer.
Since the integral is well-defined at both ends, the LHS is sufficiently small when
X is close to zero, and RHS is sufficiently small when xis large, so by continuity
an answer exists.

Consider a substitution s=1$. Then Int=—Ins, and dt :_d_zs’ but we can skip the
S

minus sign if we revert the endpoints of the integral (which is a logical thing to do,
since the substitution reverses the order. So we get

0 1/x
[ _1-Ins ds [ al-Ins ds
s =|s "=
y S . S
1x 0
0 1/x
[ _1-Ins dS [ al-Ins dS
ST ZT)S =
y S . S
1Ux 0
0 1/x
[ _1-Ins dS [ al-Ins dS
ST ZT)S =
y S . S
1Ux 0
]‘3 ds ¥ ds
1+lns — 1+Ins
1Ux S 0 S

o : N 1
So, if xis an answer then + is also an answer. But the answer is unique, so X =—,
X
hence x=1.

Second solution. We will apply the substitution Int =y, which means t =e”. Then

dt:ﬂ,and the new condition is T dyy :T dxy.
v L) ()




Irj'xeyzdy = T e Vdy

In x

The integral _fe‘yzdy Is famous (especially in probability theory) , but it is not an

elementary function. The function e’ is even, positive and quickly decreasing, so
it is obvious that the only point which cuts the integral in half is 0.
Hence Inx=0, and x=1.

2. N people must travel from one end of the road to another. The length of the road
is L. They have K bicycles (K < N). The velocity of walking man is v, and the

velocity of a bicycle is v, (obviously, v, <v,). How much time is required?

LK N-K
Answer. —| — +
NV, v,

Solution. We shall introduce natural coordinates on the road: the first end is zero,
and the target end is L. The total displacement of the bicycles is KL at most, and
that happens only if all bicycles make all the way from 0 to the target (if someone
fancies riding a bicycle in the opposite direction for some reason, it is regarded as
negative displacement). So, one of the people who was the least advanced by the

bicycles, made % at most by the bicycle, and the rest of the way, L—% at

least, by foot, so he spent no less than KI‘/v2 +(L —KLJ/V1 _LIK + N-K :
N N NV, A

The hard part is to prove that this number can be achieved. It is easy to guess from
the first part of the proof, that in order to transport all people in this amount of

time, all of them must constantly move forward, and do precisely % of the way by

bicycle. We shall build a table of height 1 5
K and length L, and we shall pack it 2 3 4

with blocks of height 1 and Iength%.

In the picture there is an example for K =3,N =5. The first block is in the first
line but it doesn’t take the whole line; each block starts in the same place, where



the previous block stops, but if it is too long, then part of the block for which there
IS not enough place in the current line, is chopped away and moved to the
beginning of the next line. So, all blocks have the same length, even if some are
divided.

This table we've built is a schedule of bicycle usage (a term schedule usually
means time-table, but in our case it is distance-table). Blocks correspond to people,
lines of the table correspond to bicycles; the horizontal direction to the locations on
the road. So, on this table we see which bicycle on which part of the road can be
used by which person.

If someone arrives to a spot, where he (according to our schedule) has to take a
bicycle, the previous owner of the bicycle enjoyed more bicycle-time than he, so
he is more advanced along the road, so he has already left him a bicycle in
precisely this spot. So this schedule can be implemented. Hence each person can

do precisely % of the way by bicycle, and then they all can arrive in the time we

computed.

3. A unit cube in 4-dimensional Euclidean space contains a 3-dimensional
Euclidean ball of radius R. What is the greatest possible value of R?

Answer.i.

N

Solution. Coordinates in R* will be denoted x,X,,X,,X,, and we can assume the

unit cube is [-4,4]*. Consider a hyperplane a, -, +a, - X, + 8, - X, +8,-X, =S.

4
Without loss of generality, we can assume that Zaf =1. In short, we can describe
i=1

& X
. a, Xa
the hyperplane by the equation (n,x) =5, where n= 2 |’ X = at
3
a, X,



a
a

Consider also a vector v=| * |, such that (v,,n)=0.

a,
b4
It means in coordinates that 0=a/ + a2 +a’ +a,b, =1-a’ +a,b, =0, so
21 1
b4:a4 =a,——
a, a,
Therefore V" =a? + a2 + a2 +b? :1—aj+a§—2+i2:i2—1.
a; a;

We can find a three vectors vl,vz,v which are of unit length, and orthogonal to

each other and to n, such that v, = | | Since v,,v, are orthogonal to both vand n,
v
a 0
a — 0
they are orthogonal both to VAR _| % and to v-n_ , (Where tz—i) SO
2 a, 2 0 a,
0 t

they have zero last coordinate. Any vector parallel to the hyperplane can be
expressed as a,V, +a,V, +a,V,, and the length of the vector is & + o +a? but its
projection to the x,-axis is ¢, times the last coordinate of v,. The diameter of the
3-dimensional ball of radius R in the hyperplane, which has the longest projection

on the x, -axis, is parallel to the vector 2Rv, —2R , and its last coordinate is

2R (a2 1)
ZRM \/7 (e =-2R\1-a’

To have the ball inside the unit cube, we should have 2R./1—a} <1, therefore

Jl—aj < le ,

2
>da,.




- : 1
But similar argument holds for each coordinate, hence 1— e <a?, so

4—Ri<a1 +aZ+a’+a’ =1, hence 3< 1 , SO R<—

B

Just to be sure, let us verify, that a 3-dimensional ball of radius L can be

NG
inserted into the 4-dimensional unit cube. It is easy to guess the hyperplane; that is
the case when all inequalities we wrote turn to the equalities. So, take the

hyperplane x + X, + X, + X, =0, and in it take a ball of radius i. We have to

J3
verify that
X, X, + X +X%X,=0

2 2 2 2
X+ Xy + X5+ X, <=

implies —1 <x <% for each i, but by symmetry it is enough to verify for i =4 by
symmetry, also, it is possible to revert sign of all x. simultaneously, and so it is
enough to show that x, <.

Obviously (% —%,)" +(% —%) +(% —x) >0, hence
2()(12 + X5+ x32) > 2(X,%, + XX, + X, X;)

3()(12+x22+x§)2xf+x§+x§+2(x1x2+x1x3+x2x3):(x1+x2+x3)2
2
xf+x22+x§2%-(x1+x2+x3)2:%-(—x4)zzx—4

1 4x;
§2ﬁ+@+@+ﬁ27$

Z 2 X4 .
Q.E.D.
Remark. We could argue that in our example all inequalities in the first discussion
turn into equalities, and skip some algebra, but it is good to verify an argument in

independent way and so to make sure that we didn't have an arithmetic mistake.



4. The sequence {a,} is defined by recurrent formula a,,=a,+1+a2, and

2" A
a, =1. Compute Ilma—
Answer. E.

. 7[_ . . >an+l
First solution. The formula becomes clear, if you look at its
geometric meaning. Construct a right-angled triangle, the short a
sides of which are 1 and a,, and the long side is, by Pythagoras "
>

theorem, 4/1+ a’ . The iteration of the process is prolonging the 1
a, side by the same length as the hypotenuse. This means, we append an isosceles

triangle to our right-angle triangle. So, by an almost obvious angle computation,
the angle opposite to the side of length 1 becomes half of what it was with each

step. Since we start with 45" = Z at stepl, the angle at step n i

T
AR S B L=
lim—=lim2"tan —=lim—- =—.
noeg N 2 n—o g7 T T
2n+1
tan
Slnce——>1
X x=0

Second solution. Denote ¢, =arctana, , then tane, =a,. Then

tan(an+1)=tanan+m:tanan+ 1 _sing, +1 cosf]

coSa,  COSa, Si

_an)

@)

-

N\h\

2cos’ (2 -1a,) _ cos(%—
2cos(——§a) ( %a) sin(z —

(04
a:)) =tan(Z+1q,)

3
MN
DNTE FNYTEN

Therefore o,,, =2+ 3
It is easier to con5|der take a,=%—p..
Then £ -4, =5+5~}

AS an+1 = %ﬂn

h-*



. T
Since o =arctana, =arctanl=Z%, and £ =% as well, hence g =

2n+1 '

So a, =tana, =cot S, = cot—— . We finish as in the first solution.
2n+1

5. Polynomials P(x) and Q(x) of odd degree are such that for each integer x
there is integer y such that P(x)=Q(y). Prove that there exists a polynomial R,
such that P(x)=Q(R(x)) for each x.

Remark. The condition of having odd degree is artificial. It makes problem
technically much simpler and more suitable for a competition with limited time,
but ideologically the same. We shall further comment regarding how to remove
this restriction.

Solution. For |x||arge enough, both polynomial are monotone. We may assume
WLOG that both P and Q have positive leading coefficient; indeed, if P has
negative leading coefficient, we can replace P and Q by —P and -Q, and if Q
has negative leading coefficient, we can replace Q(x) by Q(—x).

It is enough to prove the equality for large x, since it is equality of polynomials.
For large x, both P and Q are monotonically increasing, therefore the function
F=Q'oP in well-defined. It is an algebraic function, which receives integer
values at integer points. By algebraic function we mean a function, Satisfying an
equation of the form a,(x)F"+a, ,(X)F"" +...+38,(x)=0, where a(x) are
polynomials.

To separate the ideology of solution from technical details, we shall formulate
several lemmas.

U(x)
v(x)

We shall say that U (x) <V (x) if for sufficiently large x, <const .

Lemma 1. F(x)<Cx™", where m=degP, (=degQ.

m
—=s

Lemma 2. F(S)(x)< NG



Define discrete derivative: Af (x)=f(x+1)— f(x). Discrete derivative can be

applied several times, to obtain A*F = f (x+2)—2f (x+1)+ f(x), and so on; we
will get formulas with alternating signs and binomial coefficients.

Lemma 3. For every n, there exists universal constant c_, such that for every
function f which has n continuous derivatives, and for each real x, it is possible

to choose y e[x,x+n] such that A" f (x)=c,f"(y).

Lemma 4. If for some n, A(”)f(x):o for all integer xwhich is large enough,
then f is a polynomial at sufficiently large integers (of degree less than n).

: : : m
Using these lemmas, we can solve the problem easily. Indeed, choosing s >?+1,

we will have that F(S)(x) — 0. Therefore, A(S)F(x) — 0, by lemma 3. However,

X—»0 X—»o0

F and hence A'F are integer for sufficiently large integers, hence it is zero for
sufficiently large integers, so by lemma 4, F is a polynomial for sufficiently large

integers. Hence there is a polynomial R such that P(x):Q(R(x)) at infinite

number of points, hence it is true at all points (since nonzero polynomial cannot
have infinite number of roots).

Now it remains to prove the lemmas, but first we shall hint about what problems
can appear when we remove the condition of odd degree, and how to treat them.

The point is, that when we define F =Q™ o P for sufficiently large x, sometimes
we shall use values of Q at points far from zero, but not necessarily from the same
side. It is better to define F, and F,, one them will be integer for any sufficiently

large integer x, but one tends to +oo and another to —o. This defines a way to
paint sufficiently large integers in two colors. By Van der Waerden theorem, it is
possible to choose an arbitrarily long monochromatic arithmetic sequences, and
then the argument can be concluded in a similar way. We shall not explain the
details of the general case here.

So, to formally complete the proof, we need to prove lemmas 1-4.



Proof of lemma 1. We shall write f ~ g, if there exist positive number c,C su ch

that c < f

—| < C for sufficiently large x.
g

Then x" ~ P(x)=Q(F(x))~ (F(x))f, hence x™* ~ F(x).
Proof or lemma 2. The proof is by induction on s. The case s=0is lemma 1.
For the inductive step, differentiate s times the relation Q(F(x)) =P(x).
We get a slightly terrifying expression of the form
S A QU(F(X) FOX)-F(X)-.... F%(x) =P (x)
where A.universal constants. In each summand, t +t, +...+t, =s.

The only term that contains F* is Q'(F(x))- F®(x).

Notice that by induction F" < x*™* forall t<s.

kMg

Hence F® (x)- F®(x)-...- F®(x) < X" = x

Q" is a polynomial of degree ¢—k, so QY (F(x))~F™~ )

Hence each term

ek

A QU (F (X)) FY(x)- F@(x)-...- FU(x) < T s
Also, P®) ~ x™.

If in the identity we move all terms except Q'(F(x))-F®(x) to the right hand
side, we get

Q'(F(x))-FP(x)=<x"".



(¢ *1)7

But Q' is a polynomial of degree s—1,s0 Q'(F)~F"™ ~x

Ve pe (x)=<x™*

m m
m—s—m-+— —=s

X(H)Y'F(S)(X)<X f=x’ .QED.

So

Proof of lemma 3. It is possible to choose such polynomial p(x) of degree at
most n, which has precisely the same values as f at points

X, X+1,..,X+n.

The function f —p has n+1 root in [x,x+n], so by iteration of Rolle theorem,

(f- p)(”) has at least one root y in [x,x+n]. Then p(”)(y): f(”)(y).

Then p(“) IS a constant. It easy to see that A of a polynomial is a polynomial of
degree 1 less. So A" p is a constants, which depends linearly on the coefficient of
x", as well as p". Hence p(”)(y): f(”)(y) is a universal constant times
A(”)p(x):A(”)f (x).

Exercise to the reader. Compute this universal constant as a function of n ©.

Proof of lemma 4. One shows inductively, that is Ap is polynomial of degree n
for natural x, then p is a polynomial of degree n+1 for natural x. If you survived
so far, you probably prefer to prove it yourself.

6. For given 2x2 matrices A,B there is only finite number n of 2x2 matrices

X such that X? + AX + B =0. Find the maximal possible value of n. (All matrices
in this questions have complex entries.)

a b
Solution. We shall denote Az(a1 Zj , Bz(b1 2].
a a, b3 b4

Let v be an eigenvector of X, Xv=Av.



Then X%+ AXv+Bv=0, hence 1°v+ A1Av+Bv=0,so v is in the kernel of
linear operator P(4) =A%+ 1A+ B. Therefore
A A ail+b
2 ransB=|t TAATE BAth,
al+bh,  A"+a,d+Db,

should be a degenerate matrix. Hence A should be a root of the polynomial

2

p(2)=det(P(2))=det(22 + 1A+ B)=det| * TAAT BATD
al+b,  A“+ad+b,

=(2*+ad+h)(2° +ad+b,)—(ad+b,)(aA+h;)

In the solution, we shall use a derivative of this polynomial, so we shall compute it
now.

p'(4)=

=(24+a)(A* +a,d+b,)—a,(a;A+b,)+(A* +ad+b )(24+a,) -3, (a,d +b,)
We can open the brackets, but we won't.

If P(4,) is a zero matrix, it means all entries of P(4) are divisible by 1 -4, so
the p(4) is divisible by (/1—2@)2. So, in this case A, has to be a multiple root of
p(A). Hence, if 4 is a root of multiplicity 1 of p, then P(1) is not a zero matrix,
hence the kernel of P(A) is one-dimensional.

Also, the eigenvector v of X has to be in the kernel of 2>+ AA+B.Soif 1 isa
root of multiplicity 1 of p, an A is an eigenvalue of X, then the direction of

eigenvector v is defined uniquely.

(1) Assume that p(4) has no multiple roots. There are two cases: X can have
distinct eigenvalues, or multiple eigenvalues. If X has distinct eigenvalues, they

4
can be chosen in (Zj ways among the roots of p(/l). Once we have chosen

eigenvalues of X, the directions of eigenvectors are defined uniquely, and if
eigenvectors are chosen, then X is defined uniquely in its eigenbasis. Hence each
choice of two distinct eigenvalues of X among the roots of p(A) defines a

unigue matrix X , so there are 6 such matrices.



Now assume, that X has only one eigenvalue A (of algebraic multiplicity 2). It
also has to be a root of p. In this case X =41+ N, where N is a nilpotent matrix:

N®=0. Then
0=X*+AX+B=(1+ N)2 +A(A+N)+B=P(4)+(24+A)N
P(/l) IS not a zero matrix, but it is degenerate, so it has one-dimensional kernel,
which will be denoted K.
N also has a nontrivial kernel, and (24 + A)N has at least the same kernel, so N

has to have the same kernel K. Being nilpotent, N specifies a mapping to its

kernel, which is uniquely defined by specifying for a given vector outside K its

image in K. So N is defined up to scaling, N =sN,, where N, is a specific

nilpotent matrix and s is a number. The condition that we have to satisfy is

0=P(A)+(24+ AN =P(1)+(24+ A)sN,

Is a linear condition in s. It either has an infinite number of solutions, or at most

one solution. Let us multiply the last equation by the adjoint matrix of 24+ A.
O=adj(24+ A)-P(A)+det(24+ A)N

The second summand has trace zero. So the first also should have trace zero.

It is a necessary condition for existence of N . In coordinates

? 24 a
P(4)= AT +ald+h 2a2/1+b2 i+ A- +a, . )
al+b,  A"+a,d+b, a, 21 +a,

. 2
adj(zmA)-P(z):(Z“a“ a, ][/1 +ad+b  ad+b, ]_

-a, 2i+a )l aid+b, A*+ad+h,
) (24+3,)(A* +ad+b)-a,(a,d+b,) *
* (22+a1)(/12+a4/1+b4)—a3(a2/1+b2)

We have computed only diagonal elements, since we aim to compute trace. So
0=tr(adj(24+A)-P(1))=(24+a,)(A* +ad+b)-a,(aA+b;)+
+(24+a)(A* +a,A+b,)—a,(a,A+b,)=p'(4)
But in our case, when p has no roots with multiplicity greater than one, there are

no common roots for p and p', so there are no such solutions.
So, in this case, we have only 6 possible values for X .



(2) Assume that p has a root of multiplicity greater than 1. In this case, p has at
most 3 distinct roots. We shall distinguish two cases, depending on whether there
exists A such that P(4) is a zero matrix.

(2.0) If there exists A,, such that P(/lo) IS a zero matrix. Assume there is also
A, # A, such that p(4,)=0. There is a nonzero vector v;, such that P(4,)-v, =0.

For any vector v, we have P(4;)-v,=0. If we choose arbitrary v,, which is not
multiple of v,, then there is a unique matrix X such that Xv, =A,v, and Xv, = A4Vv,,
and since there is infinite number of ways to choose the direction of v,, the are
infinite number of ways to construct such X . In all cases, P(X) is zero on v, and

v;, and hence it is a zero matrix. So there are infinite number of solutions, which is

forbidden.
Now assume that all four roots of p are equal to the same value 4,. In this case all

eigenvalues of X are A4,. Then X =4,+ N, where N is nilpotent. So
P(X)z(ﬂo+N)2+A(;io+N)+B=P(/10)+(2/10+A)N =(24,+A)N =0.

If we have at least one option for N which is not a zero matrix, then for each

number u, also N works. Hence there is either infinite number of solutions

(which is forbidden) or there is just one solution in this case.

(2.1) Now we assume that p has a multiple root, but P(/I) IS never a zero matrix.
Than we have at most 3 different roots, so we can choose two distinct roots 4, # 4,
in at most 3 ways. Matrices P(4,) and P(4,) are degenerate but non-zero, so a

non-zero vectors v, e ker P(4,) , v, e ker P(4,) are defined uniquely up to scaling,
Therefore a matrix X such that Xv, = Av. for i =12 is unique. So there are only 3

solutions with distinct eigenvalues.

Assume that X has just one eigenvalue (of algebraic multiplicity 2). This

eigenvalue A can be chosen in 3 possible ways. Assume we have chosen A, then

X =24+ N, where N isa nilpotent matrix, and therefore
0=P(X)=P(A+N)=P(1)+(24+A)N.



Now P(/l) Is a degenerate but nonzero matrix, so as in part (1), N has the same
kernel as P(A), and hence N =sN,, so where N, is a specific nilpotent matrix

and s is a number. The equation is linear in s, so it has either infinite number of
solutions (which is forbidden), or at most one solution.

So, in this case (with multiplicities) we get at most 3 solutions with distinct
eigenvalues, and at most 3 solutions with double eigenvalues, so in total at most 6
solutions.

Remark. In this case, the estimate can be improved, but there's no need to.

. . _ . (0 10 10
An example for having precisely 6 solutions: P(X)=X*+ L o X + 0 4)

A+1 104
A A*+4
="' =522 +4=(2"-1)(2* -4)=(A1-1)(A+1)(A-2)(21+2)

So for arbitrary choice of 4, = 4, from the set {-2,-1,1,2}, we can find non-zero

}:(,12 +1)(/12 +4)—10,12 = A*+51%+4-101% =

p(ﬁ):det(

vectors v, ekerP(4,) and v, ekerP(4,). It is easy to see that v,,v, are linearly
independent. Indeed, if there is a vector v, in ker P(4,)ker P(4,)then

o (r(a)- ()= -2+ -a) ;|-

=(ﬂl—/12)[ﬂl+zz+£(l) 1§jjvz(ﬂi_lz)[ﬂl;ﬂg 10 j"

L+ 4,
AL +A, 10 B 2 _
ji+22j—(/11+/12) -10=0.

The last possibility doesn't exist, since summing numbers from {—2,—1,1, 2} won't

So either 4, =4,,0r v=0, or det(

produce ++/10. Therefore, we can construct a unique matrix satisfying Xv, = Av.
for i=1,2, so in this case we have precisely 6 solutions (and we don't have more,
because of the discussion of case (1).



First stage of Israeli students competition, 2016.
Please try to write your solutions in English.
Duration: 4 hours

1. Compute det . The empty places are zeroes.

'—\
S =
'_\

2. Let f,:R—RR be acontinuous function. Define a sequence of functions: f, (x) :j f.(t)dt.
0

Compute lim f(1000000).

N—o0

3. Does there exist a regular polygon, such that the set of its vertices V has a subset ScV,
which satisfies the both following conditions:

99
@[5> ]

(b) the union of any 10 rotations of S doesn't cover V ?

4. Let P(x)=2x" -1, and let Q(x)=P(P(P(x))). Let R(x) be a polynomial of degree 8 such
that R(0)=1, and -1<R(x)<1 for each xe[-11]. Prove that Q(x)<R(x) for each
Xe[—%,% :

5. Let ABC be a triangle a Euclidean plane, X a point in the same plane, and M the centroid
(2°11>°ni waon np1) of the triangle. Show that
AX® BX? cx®

+ + >3-MX.
AB-AC BA-BC CA-CB

6. An open unit disc (in a Euclidean plane) is covered by open equilateral triangles
(2290w ow>wn) which are contained in the disc, but may overlap (in other words, each point
inside the disc is inside one of the triangles, and each point inside one of the triangles is inside
the disc). Is it possible for the sum of sides of all triangles to be finite?

Good luck!

(17277 9102 DINN NN NP ILON)



First stage of Israeli students competition, 2016.
5 1

1. Compute det

Answer. —25.

Solution. The determinant can be computed as a sum of products over all
permutations. If "5" in the upper left corner participates in a permutation which
gives a nonzero product, then we can't take any other element in first row or
column, but we must take something both from second row and second column,
which means that the cells (2,3) and (3,2) participate (we number rows and

columns starting with 1), but then we can't take more numbers from second and
third row or column, which leaves only cell (4,5) in fourth row and only (5,4) in

the fourth column. The remaining two cells must be just in the two last rows and
two last columns, so they are (6,7) and (7,6). The numbers in all these cells are 1,
but the permutation is odd (three transpositions), so minus sign should be added, so
the only contribution of permutation containing upper-left corner is —5.

Similarly, the contribution of the only permutation containing lower-right corner is
—6, and it comes from different permutation.

Consider now permutations containing one of the "7" numbers, for instance in the
cell (3,3). It disallows 4 other nonzero cells, so in each of the lines 2, 4 and also

rows 2,4 a unique choice remains: cells (1,2), (2,1), (4,5), (5.4) must all be taken,

and then from two last rows and two last columns we are forced to take the cells
(6,7) and (7,6). So, the contribution is -7 and it comes from just one

permutation, not using any other diagonal elements.
For similar reason, there's just one contribution of —7 from a permutation
containing the cell (5,5) and none of the other diagonal elements.

Now consider permutations not using diagonal elements, which is



det 1 1

This is zero, which is easy to see from chessboard coloring. The cell (i, j) of a
matrix is called "black™ if i+ j is even, and "white" if i + j is odd.

Lemma. Any 7x7 matrix, all nonzero entries of which are white, has zero
determinant.

Using this lemma we can complete the computation: permutations containing
diagonal (black) cells contribute —(5+ 7+7+ 6) =—25, and others contribute zero.

It still remains to prove the lemma.

Proof of the lemma. Each white cell either belongs to one of the three even rows,
or to one of the three even columns. Therefore, the matrix of such type is sum of
two matrices of rank at most 3. Therefore, the rank of the matrix is at most 6.
Hence the matrix is degenerate.

2. Let f.:R— R be acontinuous function. Define a sequence of functions:

f,(x)=[ f,(x)dt. Compute lim f, (1000000).
0

N—o0

Answer. 0.
Solution. We can choose a positive number M such that ‘ f (x)‘ <M for each

x €[0,2000000] (since f is continuous). Then

|f,(x)|< f\ f,(t)|dt < Mx for each x [0,1000000],

0



X 2
|£,(x)| < [M -x-dt <M Z for each x £[0,1000000],
) 2

X 2 3
[£,(x) < [M -X?dt <M % for each x €[0,1000000],
0 .
and so on, and therefore

fa(x)|<M % for each x [0,1000000],

10000001000000
1000000!

. Hence f,(1000000) — 0.

n—o0

Take n>2000000, and denote C=M -

n-1000000

Then |f,(100000)/<C (%)

3. Let V be the set of all vertices of a regular polygon. Might it be possible to find
a subset S <V so that the following two conditions are both satisfied:
99
a) |S|2—-V]|,
@ I8|255-M

(b) union of any 10 rotations of S doesn't cover V ?

Answer. Yes, but a large number of vertices might be required.

First solution. Let us take a 10000™ -gon. Its vertices will be numbered in natural
cyclic order, not with decimal numeration, but in base 10000 (meaning we use
10000 different digits instead of ten), by numbers of length 10.

The set S will consist of all numbers, not having at O or 1 as one of its digits.

S
Then U —( —ﬁ)w > % for instance by Bernoulli inequality:

M

10
(1_Lj >1-10—2 =1- 2 >3- 1
10000 10000 1000 100
A rotation of S is like adding a number to all elements. If digit at position k of the
added number is a, then none of the numbers in the rotated set will have
a+1(mod10000) as a digit at position k. Therefore, if S,S,,...,S,, are ten

rotations of S, we can take some digits d,,...,d,, such that neither element of S,
has d. at i 'th position, so the number d,d,...d,, isnotin S,US,U...US,.



Solution. Consider n-gon. Let set S be chosen randomly. There are n'® ways to
consider n different rotation of S. The probability of having a hole at some

specific place is 0.01° =10%°. The expectation of number of holes in the union of
ten given rotations of S is n-107°.

4. Let P(x)=2x"-1, and let Q(x)= P(P(P(x))). Let R(x) be a polynomial of
degree 8 such that R(0)=1, and —1<R(x)<1 for each xe[-11]. Prove that
Q(x)<R(x) foreach xe[-%,&].

Solution. When x &[0,%], then P(x)e[-1,-0.98], and
P(P(x))e[Z(l—%)z—1,1}:[1—%+ﬁ,1]c[l—%,l]:[0.9,1]

Therefore Q(x)=P(P(P(x)))e[2-0.9°~11]=[2-0.81-11]<[0.6,1].

So, Q(x) is positive on [0,4], and even [—-&,3] since it is even.

While x goes from -1 to 1, P(x) goes monotonically from 1 to —1 and back

again monotonically from —1 to 1. So, P(P(x)) goes from 1 to —1 then to 1 then

to -1 and back to 1 (and monotonic on 4 subintervals). Similarly,

Q(x)= P(P(P(x))) on [-11] travels back and forth 8 times, starting from 1 and

going monotonically once to —1 and back to 1, four times.

Polynomial R(x) on interval [-1,1] produces values in [-11], so the graph of R

Intersects each of 8 monotonic segments in the graph of Q. It may happen that the

graph of R meets two of the segments at their common endpoint. In these case,
both R and Q are tangent to the same horizontal line at that common point. Either

way, R—Q has 8 roots counting with multiplicities (which is maximal allowed
number, since the degree of polynomial is at most 8. Another way to say it that
within the square [—1,1]2, graphs of R and Q intersect at least 8 times, if tangency
Is counted as double intersection.

We are required to prove that Q(x)<R(x) for each xe[-&,%]. Assume the

opposite: Q(X,)>R(X,), where x, €[-11]. X, =0, since R(0)=1.



WLOG, x,>0 (otherwise we could substitute —x instead of x). The graph of
Rhas to intersect the graph of Q at four monotonic segments to the right of x,, at
three leftmost monotonic segments, and it also is tangent to the graph at point
(0,1), so the number of intersections counted with multiplicities is at least 9.
Therefore R—Q has 9 roots counting with multiplicities, but it is a polynomial of
degree 8, so it is identically zero. But Q(X,)>R(X,), which is a contradiction.

5. Let ABC be a triangle a Euclidean plane, X a point in the same plane, and M the
centroid (o°11>°n71 wann n7pa) of the triangle. Show that
AX? BX® CcX?
+ + >
AB-AC BA-BC CA-CB

Solution. Let a,b,c be complex numbers representing points A, B, C in the
complex plane, where coordinated are chosen so that X is 0, the origin.
The following identity is easily verified:

a’(b—c)+b*(c-a)+c’(a—b)=(a+b+c)(a—b)(a—c)(b—c)
We shall leave the computation to the reader. By triangle inequality
[a*(b—c)|+[o°(c—a)|+|c*(a—b)|=|(a+b+c)(a—b)(a—c)(b—c)
af jof f
+ +
la—b|-la-c| |pb-a|-p—c| [c—a|-|c—b

3-MX.

=la+b+c|

a+b+c

This is precisely what we were required to prove, if you recall that
represents M.

6. An open unit disc (in Euclidean plane) is covered by open regular triangles
which are contained in the disc, but may overlap (in other words, each point inside
the disc is inside one of the triangles, and each inside one of the triangles is inside
the disc). Is it possible for the sum of sides of all triangles to be finite?

Answer. No.
Solution. There are two cases: the set of triangles might be countable or
uncountable.



If the set is uncountable the sum of sides is infinite anyway. Indeed, let S, be the
set of triangles whose side is greater than ¢ but not greater than 1 (where k is a
natural number). If at least one among the sets S, is infinite, then sum of the length
even in S, is infinite. If all are finite, their union is countable.

So, it enough to deal with the countable (or finite) case. There is uncountable set of
directions, so we can rotate the picture in such a way, that neither of the triangles
has horizontal side.

Each horizontal chord of the circle is covered by triangles, each triangle cuts an
interval on such horizontal chords. Only countable number of endpoints of
horizontal chords might be corners of triangle, so all horizontal chords except
countable number intersect infinite number of triangles. Therefore almost all
horizontal chords intersect infinite amount of triangles.

Integral of number of intersections of horizontal chords with triangles is precisely
the total length of all projections of the sides of all triangles to the y -axis. We see

that that integral is infinite, so the sum of all sides is infinite.



Second stage of Israeli students competition, 2016.
Please try to write your solutions in English.
Duration: 4 hours

1. Let f:[0,1]—>[e,+) be a monotonically increasing function. Prove that there

exist X,y €(0,1| suchthat f(y)<2f(x)and y—x> :
0] (v)<21(x) ol (T

2. Prove that for every irrational number o €(0,1), there exists a non-decreasing

sequence {a,}  of positive integers, such that o = iﬂ

3. Numbers a,,...,a, are written in this order around a circle. At each move, all
numbers are simultaneously replaced: a, is replaced by |a, —a,_,| (we take a, =a,

since the order is circular). Is it true that after finite number of moves, all numbers
around the circle will become zeroes, assuming that

(a) the numbers are rational?

(b) the numbers are real?

4. Prove that for each a,b,c,d R, the following inequality holds:
\/a2+b2+§ab-\/cz+d2+§cd +\/b2+cz+§bc-\ja2+d2+§ad
2\/a2+c2+%ac-\/b2+d2+§bd.

5. Show that the polynomial X" +x"" +Xx"? +...+x* + x—1 is irreducible over Q.

6. There are N boys and N girls at the school. Each girl is acquainted with
precisely K boys and each boy is acquainted with precisely K girls (the number
K is the same for all boys and girls). For any two girls there are precisely C boys
they are both acquainted with. Prove that for any two boys there are precisely C
girls they are both acquainted with.

7. The set L=RR*x[0,7] <R’ is colored in 4 colors. Prove that there exist two

points in this set which are of the same color, and the distance between them is 1.
Good luck!
(172977 9102 D27°N IONW NP2 ION)



Second stage of Israeli students competition, 2016.
Please try to write your solutions in English.
Duration: 4 hours

1. Let f:[0,1]—[e,+) be a monotonically increasing function. Prove that there

exist X,y e[0,1f suchthat f(y)<2f(x)and y—x> :
0] (v)<21(x) OO

Solution. Assume the contrary. Then for y=x+ ! > (if y<1) we get

10-(In f (x))

f(y)=2f(x).Or, if we define g:[0,1] >[1,+), g(x):=In( f(x)), then for

! >g(x)+In2.
y=x+m we get g(y)=g(x)+In2

Define a sequence: x, =0, X.., =X, + ;2 Then, as long as the sequence
10-(g(x,)

is defined, g(x,)=1+n-In2, and hence

n-1 1 n-1 1 n-1 1 n-1 1

< 5 < > < > <
) =10-(1+k-In2)" iZ(3+3k-In2)" = (3+k-In8)

P
I
A

Il
o
1l
o

S $ 1 1 1)1 1
T3(3+k) S(2+k)(3+k) S((2+k) (3+k)) 2 2+n 2

as long as x, is defined. But that means X is always well defined, since if x, <1

then g(xn) Is also defined, and x_ . is well defined, and we have even proved that

n+1

X, <%.To summarize: we proved existence of x, such that f(x,)>2"f(0)>e-2"

and therefore f(x,)—+w, but f(x,)< f (%) which is a contradiction.

2. Prove that for every irrational number o e(O,l), there exists a non-decreasing

sequence {a,}" of positive integers, such that o = i ) :



Proof. Recall that continued fraction produces for each irrational number « an

infinite sequence of rational approximations &, which is rapidly converging to
. _ =i

a, such that the first element is &:i, and &_M:u, the sequence
G Y O Oka OO

{qi} Is a strictly increasing sequence of positive integers and therefore

. P, Po P P :
a=lim="=Ilim + lim
n—oo qn naw{ qO Z[ qk+1 qk ]j n%w{ qO kzl: qk 1qk J
1 1 1 1 1 1

= +...
1'qo D% %9 99 G;-9, Q4,0

Q.E.D.

3. Numbers a,,...,a, are written in this order around a circle. At each move, all
numbers are simultaneously replaced: a, is replaced by \ai —ai_l\ (we take a, =ay

since the order is circular). Is it true that after finite number of moves, all numbers
around the circle will become zeroes, assuming that

(a) the numbers are rational?

(b) the numbers are real?

Answers. (a) yes, (b) no.

Solution. (a) We can multiply all fractions numbers by their common denominator,
and play similar (but equivalent) game with integer numbers. Starting with the
second move, all numbers are non-negative; so from now on we shall assume all
numbers around the circle are nonnegative.

Let M =maxa,. Then also \a —a \< M (for non-negative numbers). So a, <M

i+1

throughout the game. If there is a common divisor d for all a,, we can divide all

numbers by d and consider an equivalent game with smaller M . We shall prove
that after 16 moves all the numbers in the circle become even. If that is true,



then after 16 moves we can replace M by % Applying this idea several times,

we see that after 16(1+[log, M ]) all numbers are zeroes.

So, to prove that all numbers become even after 16 moves, we consider the process
mod 2. Then the rules are more simple: a, is replaced bya +a,,. Iterating this

i+l "

process, we get that after k moves the number at place i is Z(l}jai_j.
i

Recall that (1165) =0(mod2) for 0< j<16 (if you didn't know it, prove it by using

4 times the identity (1+ x)2 =1+ x*(mod2)). Therefore after precisely 16 moves,

we get that at place i we get a number G?)ai +Gg)ai =a, +3a, =0(mod16),

which completes the proof.

Remark. Here it is important that 16 is a power of 2. Otherwise it is wrong.

(b) Let us write around the circle the geometric sequence: 1,x,x%, x%,...,x™ in this

order (we shall choose x >1 later). Then after one move we get

2

X—1 X2 —X,..., X2 =x* x* -1

or in other words
Z,2X,2x%, ..., XM X -1

where z=x—1 is a positive number. If also x'°-1=z(x*-x), then all the

numbers during this move were simply multiplied by z. So, from now on with
each move all the numbers will be multiplied by z, and will remain nonzero

forever. So, it remains to choose x>1, such that x15—1:(x—1)(x16 —1). Which

means X"+ x° +x” +...+1=x" -1, or that x s a root of the polynomial
X xB x4 20,

The polynomial is positive for x =1 and negative for x =2 so there has to be a root
somewhere in between.



4. Prove that for each a,b,c,d e R, the following inequality holds:
Ja? +b? +2ab - Jc? +d® +2cd +b? +¢ + 2bc - \[a® +d* + 2ad
>,Ja? +c?+2ac - \[b? +d? + 2bd .
Solution. Consider a regular tetrahedron in R®, inscribed in a sphere of unit radius,

with the center at the origin. The vertices of the tetrahedron are represented by
vectors v,,v,,V,,v,. Then v, +v, +v, +v, =0, and hence

o:<izvi,;vj> =Z<VuVj>+z<Vij> =4+12(v,,v,),

i=j i#]

so cosine of the angle between each two different vectors is —%.

Consider 4 points in R*: A=av,, B=bv,,C =cv,,D =dv,. Ptolemy inequality
states that for each 4 points, AB-CD+BC-AD> AC-BD. In our case all the
lengths might be expressed with cosine theorem, for example AB* =a* +b*+2ab.
Substitute all such expressions in Ptolemy inequality, Q. E. D.

5. Show that the polynomial X" +x"" + X" +...+ x* + x—1 is irreducible over Q.

Proof. After reversing the coefficients we reduce to showing that h(x)=x"- f (%)

is irreducible. By the lemma of Gauss it is sufficient to show irreducibility over Z.
Any factorization of h over Z determines a partition of the roots of h into two
sets such that the product of each set is a nonzero integer (the constant term of the
corresponding factor), and hence has norm >1. Thus, each of these sets must
contain an element of norm >1. Therefore, if we show that h has at most one root
of norm >1 then no factorization can exist and we are done. For that it is sufficient
to show that f has at most one root of norm <1. Observe that
f(x)(x=1)=x""—2x+1 so every root of f is a fixed point of the complex
2" +1

mapping T(z)= S

Suppose that f has two distinct roots z,z, of norm <1. If for some i {12} we

have |z,|=1 then



n+1
i

Z

Zin+1 + 1
2

+1
S1+1:1

1=|z|=
2 2

<

so we have equality in the triangle inequality which means that z"* eR which
means that z, =T (z)eR but f(£1)=0. So z,z, are two distinct fixed points of

the map T which maps the open unit disk to itself. By the equality case of the
Schwarz-Pick theorem (or as a consequence of Schwarz lemma) T is a Moebius
transformation which is a contradiction (unless n=1, but in this case irreducibility
Is obvious).

The proof is complete, but for those who don't remember it we shall remind the
proof of Schwarz-Pick. We want to show that if there is a complex analytic
mapping from the open unit disc to itself with two fixed internal points, then it is
identity. By conjugation with some Moebius transformation, we may assume that
one of the fixed points is 0, and another will be denoted by z,.

So, we have a complex analytic function in the open unit disc A:{z| |z|<1},
satisfying f(0)=0, |f(z,)|=|z| for some z,eA, and f(A)cA. Then is

f(2)
possible to define a complex analytic function g(x)=< z
f'(0) z=0

z#0

. . 1
It is easy to see that on a circle |z|=r for each r <1 we get |g|<=. Hence by
r

. . i . 1
maximum principle in the disc |z|<r, we get |g|<=. When r tends to 1 from
r

below, we conclude that |g(z)|<1 for all zeA. But |g(z,)=1. Hence by

maximum principle (non-constant holomorphic function can not have internal
maximum) the function g is constant. From this the lemma follows.

6. There are N boys and N girls at the school. Each girl is acquainted with
precisely K boys and each boy is acquainted with precisely K girls (the number
K is the same for all boys and girls). For any two girls there are precisely C boys



they are both acquainted with. Prove that for any two boys there are precisely C
girls they are both acquainted with.

First solution. We shall number the boys from 1 to N, and number the girls from
1to N. We shall construct and N x N matrix A as follows: the number at row i
column j is 1ifthe i'th girl i is acquainted with the j'th boy and zero otherwise.

As usual, let e,e,,...,e, be the vectors of the standard basis. Then vectors Ae,
represent (by zeroes and ones) the friends of the i'th boy, and the vectors ATej

represent the friends of the j'th girl. All the sentences in the formulation of the
problem can be translated to the language of Linear Algebra (which is shorter):

It is given that <ATei,ATej> is K when i=j, and C when i= j. Itis also given

that <Aei,Aej> is K when i= j, and we must prove it is C when i # j.

Or even shorter: the matrix AA" is given: the entries on the main diagonal are all
equal K, the other entries are all equal C. Show that A"A is the same.

1
Notice that the vector u= 1 is an eigenvector of all matrices we've mentioned:

1

indeed, Au=Ku, and A"u=Ku, so it is also eigenvector of A"A and of AA".

Remark. From here it is easy to see the relation between K and C: on one hand,
AATU=K-Au=K?u, on the other hand, by direct computation
AA'U=(K+(n-1)C)u, so K*-K=(n-1)C. This formula might be also
obtained by elementary counting in two ways of triples "boy and two girls he
knows" (see the third solution). Anyway, we won't use it in this solution.

Let's discuss eigenvalues and eigenvectors of matrix AA'.

Let us start with matrix U, all entries of which are 1. This matrix is a matrix of
rank 1, so O is eigenvalue of U of multiplicity n—1. Another eigenvalue is n, of
multiplicity 1, and the corresponding eigenvector is u. Since matrix is symmetric



the eigenvectors of 0 (a.k.a. the kernel) is n—1-dimensional space, consisting of all
vectors orthogonal to u .

The matrix AA"=C-U+(K-C)-1 has the same set of eigenvectors, but

eigenvalues are different: for u the eigenvalue is K?, and for its orthogonal
complement the eigenvalue is K —C..

Recall that for any real square matrix, AA" is similar to A'A. Indeed, by SVD
decomposition, there are two orthogonal matrices L,R and a diagonal matrix D
such that A=LDR. Then AA" =LDRR'DL" =LD?L", so it is similar to D? and
alsoto AAA=R'D'L'LDR =R'D"°R.

Let us summarize what we know about A"A by now. It is similar to the ATA
which is known precisely. It is also a symmetric matrix, so it has eigenspaces of
maximal allowed dimensions for all eigenvalues, and different eigenspaces are
orthogonal to each other. There are two distinct eigenvalues, same as for AA": one
of multiplicity 1, another of multiplicity n—1. The eigenspace for the first
eigenvalue is spanned by u, so the eigenspace of the other eigenvalue is its
orthogonal complement. So eigenvalues and eigenspaces of A" A are the same as

for AA", and hence the matrices are the same.

Second solution. As before, we reformulate the problem with linear algebra. We

shall use the same notations as in the previous solution. AU =KU, A'U =KU,
where U is matrix of ones.

If K=C, every two girls share all their acquaintances, so each boy knows either
none of them or all of them. In this case, the problem is easy. We shall assume that
from now on that C < K.

.
A -(A—EUJ:L-(ATA—%ATU)z
K-C K K-C

=K—ic-((K—c)| +QU/—)%)<6)=|



So A" is inverse of A—%U , but A'U =KU =(AU )T =UTA", so A" commutes
with U, so A" with A. Therefore ATA= AA".
Third solution. Let us compute the number M of triples

two boys and a girl who knows both.

On one hand, each girl participates in (gj such triples, since among her friends

there are (lgj pairs of boys, so M =N (gj On the other hand, if the average
number of girls that boys iand j both know in common is C, ;, then .
Theref YHEARE e
erefore |5 _Z "
<]

Similarly, if we compute in two ways number of triples

two girls and a boy who knows both,

K N
we get that N-(zj_(zj-c

Now let's compute the number of quadruples:

two boys and two girls who know both.

C
On one hand, any two girls participate in precisely (2} such groups (since we
have to choose 2 boys among their common friends. On the other hand, boys i

C. .
and | participate in precisely ( 2") such groups. So we get another identity

G



We have found two identities on the numbers C, ; . Both identities are satisfied if
C,;=C forall i, j . Butis there any other way to satisfy both identities?

X . . . .
Recall that (2] Is a strictly convex quadratic function. Therefore, by Jensen's

) ) ] Cij . .. ] ]
inequality, given > C, ;, the value of > 2’ will be minimal if and only if all

i<j i<j
C,; are equal to each other. Therefore, C;, =C Vi, j is a unique solution for both
equalities. So for any two boys there are precisely C girls who know both.

7. The set L=R?x[0,7;] (which is a subset of R®) is colored in 4 colors. Prove

that there exist two points in L. which are of the same color, and the distance
between them is 1.

Solution. Consider a circle of radius R>2 in R?. Construct a sequence of points
A, A,,... on the circle such that A does not coincide with A_,, and the length of
AA., is 1. If for some n, the point A, coincides with A, then R will be called

forbidden radius. It is easy to see that when n is large enough, then small
changing of R causes big changing of the location of A, . Therefore, the set of

forbidden radii is a dense subset of (4,0).

It is easy to see, that whenever we get a circle of forbidden radius and its point are
colored in less than 3 colors, then there have to be two points of the same color at
distance 1.

Now take the point Q=(0,0,5;). Let W, be the set of all points W =(x,y,z)
satisfying the following three conditions:

. x2+y2<i

10°
1 1
° <ZI<
200 100

e QW =2y1-R?, where R is a forbidden radius.



Consider the circle C={X | XQ=1=XW |. Since the direction of the interval QW

Is almost vertical, the plane of the circle is almost horizontal, so Cc L. It is easy
to see by Pythagoras theorem that C is of radius R.

Assume there are no points at unit distance of the same color. So the circle C has
points of at least 3 colors. But the colors of points Q and W are different from all
colors of C. So Q and W are of the same color (since there are just 4 colors in

total), for any W e W,.

1 1
2n 2n

Now take a huge natural number n, and take vectors u=|{0 |, u=| 0 |, such that
z ~Z

(2—1”)2 +2°=R?, z>0. Take the sequence of points Q,=Q, and then inductively

W, =Q +u, Q=W +v. All this points have to be of the same color. So Q, and
Q, are of the same color, but the distance between them is 1.



