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MB 1. Two points A and B are chosen on the circle !. C is the midpoint of one of the arcs AB or
BA. D is an arbitrary point on the segment [A;B]. The circle !1 is tangent to the segment
[B;D] (in the point B1) and also to the line segment [C;D] and to the circle ! (in di�erent
points). The circle !2 is tangent to the continuation of [A;B] beyond the point B (in the
point B2), to the circle ! (in the point K) and also to the continuation of [C;D] beyond the
point D. Prove that ∠B1KB2 = �=2.

MB 2. Let (un)n≥1 be an increasing sequence of real numbers such that u1 = 1, u2 = 2 and
umn = umun for all m;n ≥ 1. Prove that uk = k for all k ∈ N.

MB 3. The diagonals of a convex quadrilateral ABCD intersect in the point O. The points K, L,
M , N are the orthogonal projections of O to the edges [A;B], [B;C], [C;D], [D;A] and lie
inside the corresponding sides of the quadrilateral ABCD. Prove that 2SKLMN ≤ SABCD,
where SQ denotes the area of the quadrilateral Q.

MB 4. The sequence (an) is given recursively: a1 = 1, an is the smallest natural number k distinct
from a1; : : : ; an−1 such that a1 + : : : + an−1 + k is divisible by n. Prove that the mapping
n→ an is a bijection N→ N.

MB 5. Let x; y; z be nonnegative real numbers with x+ y + z = 1. Prove that
√

1− 3xy +
√

1− 3xz +
√

1− 3yz ≥
√

6 :

MB 6. A necklace consists of R red and B blue beads. We say that it is good, if for any 1 ≤ k < R+B
and any two substrings of length k the number of red beads in the substrings di�ers by at
most 1. Prove that for all R and B, a good necklace exists and is unique up to rotation.

MB 7. Let F : R× R→ R be a polynomial of total degree n, with a global minimum at (0; 0), and
F (0; 0) = 0. Does there exist a constant " > 0 such that for all −1 ≤ x; y ≤ 1 the following
inequality holds: F (x; y) > "(|x|+ |y|)n?

MB 8. Two players are playing the following game on an in�nite strip of cells. The �rst player marks
two cells with an X, and the second player marks one cell with an O in each move. After
1012 moves the game is over. The �rst player wins if there are 100 consecutive cells marked
with an X, else the second player wins. Is there a winning strategy for the �rst player?

MB 9. Is it possible to divide the plane into squares of pairwise di�erent sizes such that only �nitely
many of these squares meet any bounded part of plane?

MB 10. A square matrix is called doubly stochastic if all its entries are nonnegative and the sum of
the entries in each column and in each row is 1. Prove that any doubly stochastic matrix is
a linear combination of permutation matrices, with nonegative coe�cients. (Matrix is called
permutation if it has just one unit entry in each row and in each column and all other entries
are zeroes.)

MB 11. For which n can we draw the complete graph on n vertices in the plane in such a way that
each arc has at most one inner point in common with another arc, in which case exactly
two arcs are meeting there transversely (i.e, crossing each other), and no 3 arcs has common
point except it is a vertex of all of them?

MB 12. A natural number k is considered good, if for each n the number 1k +2k+ : : :+nk is divisible
by 1 + 2 + : : :+ n. Describe the set of all good numbers.
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MB 1. Let T be a regular tetrahedron. Find a piecewise linear closed curve of minimal length that
has a point in common with every face of T .

MB 2. Can a polynomial with rational coefficients have
√

2 as its minimal value (on R)?

MB 3. An infinitely wise but shortsighted cockroach is trying to find the truth (which is a point of
the Euclidean plane). If its distance from the truth is at most 1, it will reach it with its next
step. After each step (of unit length) it is told whether it got closer to the truth or not. In
the beginning it knows that it is at (integral) distance N > 0 from the truth. Prove that it
can reach the truth in at most N + 10 log2(N) steps.

MB 4. On an infinite and otherwise empty chessboard there is a rectangular array of m× n pieces.
We play the Solitaire game: a move consists in a piece jumping over an adjacent piece into
the cell beyond, which has to be empty; the piece that was jumped over is removed. For
which pairs (m, n) is it possible to remove all pieces but one in this way?

MB 5. Prove that
n∑

k=1

1
3k + 1

is never an integer, for any n ≥ 1.

MB 6. Show that in a group of 50 people there are two that have an even number of common friends
(possibly zero), assuming that friendship is a symmetric relation (and nobody is considered
their own friend).

MB 7. Prove that there is no real-valued function on the open interval ]−1, 1[ that has only a finite
number of discontinuities and such that its graph is invariant under rotation by a right angle
around the origin.

MB 8. Let C be a convex polygon and P a point inside it. Let N denote the number of vertices such
that the line segment connecting P to the vertex divides the angle of C at this vertex into
two acute angles. Denote by n the number of sides of C such that the foot of perpendicular
from P to that side is strictly inside that side. Show that N = n.

MB 9. A grasshopper, starting at the origin, performs an infinite sequence of jumps on the real line.
The length of the nth jump is n2009. For each jump, it can choose the direction (left or right).
Show that the grasshopper can visit all integers.

MB 10. Consider a shape consisting of a finite number of unit square cells. We try to cover a board
of m× n unit square cells by equivalent (i.e., translated, rotated and/or reflected) copies of
that shape, so that each cell of the board is covered equally often.
Prove that this is impossible if and only if we can write a real number in each cell of the
board, in such a way that the sum of all those numbers is strictly negative, while a sum that
can be covered by the given shape is strictly positive (wherever we place it on the board).

MB 11. Let L1, . . . , L4 be four lines and P1, . . . , P4 four points in the plane, such that Pi ∈ Lj if and
only if i = j. Assume that for each subset of three lines, there exists a conic section that is
tangent to these lines at the given points. Show that there is a conic section that is tangent
to all four lines at the given points.

MB 12. In a table there are n columns and m rows, n > m. Some cells are marked by a star, and in
each column there is at least one star. Show that there is a star such that there are fewer
stars in its column than in its row.
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MB 1. Is it possible to cut two disks into a finite number of parts that can be rearranged (rotated
and translated) so as to fill a single disk? The cuts have to be made along line segments and
circle arcs.

MB 2. A function c on the set of natural numbers is defined as follows: c(n) = 0 if the binary
representation of n has an even number of ones, and c(n) = 1 otherwise. We fix a positive
integer k. Let l(N) be the number of integers 0 ≤ n ≤ N such that c(k + n) 6= c(k). Prove
that limn→∞ l(N)/N exists and belongs to [1/3, 2/3].

MB 3. Every pair of vertices of a graph G can be connected by an edge path of length n − 1, and
the shortest length of a cycle in G is at least 2n − 1. Prove that all vertices of G have the
same degree.

MB 4. Find all continuously differentiable functions f : R → R satisfying
f(x + y)− f(x− y) = 2yf ′(x) for all x, y ∈ R.

MB 5. Find all a ∈ R such that there exist non-negative x1, . . . , xn ∈ R satisfying
n∑

i=1

kxk = a ,

n∑
i=1

k3xk = a2 ,

n∑
i=1

k5xk = a3 .

MB 6. Two players play a game on the infinite chess-board. the first player plays with 3 white pieces
called sheep, and the second player plays with 3 black pieces, called wolves. They move in
turn. In his move each player can move only one piece to an adjacent cell (having a common
side with its previous cell). Sheep can be moved only horizontally. If a wolf and a sheep
happen to be in the same cell, the wolf eats the sheep. Is it always possible for the wolves to
catch at least one sheep?

MB 7. An N × M table of real numbers is given. The sum in every sub-square of 3 × 3 cells is
positive, and the sum in any sub-square of 5× 5 cells is negative. For which pairs (N, M) is
this possible?

MB 8. Consider the surface of a cone with cone angle α (the total angle at the vertex). Find the
maximal number of intersection points of a geodesic line on this surface that does not pass
through the vertex of the cone (a line is called geodesic if it projects locally onto a straight
line segment when unrolling the cone onto a flat piece of paper).

MB 9. The diagonals of a convex pentagon M divide it into ten triangles and another convex pen-
tagon M ′. Let ∆(M) be the difference between the sum of the areas of the five triangles
adjacent to the sides of M and the area of M ′.

Prove that ∆(M) > ∆(M ′).

MB 10. Does there exist an integer 0 < x < 4 · 99! such that x(x + 1) is divisible by 100! ?

MB 11. One needs to guess an integer number in [1, 2010]. Only the following tyoe of question is
allowed: “is this number less than n?”. For an answer “Yes” one has to pay 1 Euro, for
an answer “No”, 3 Euros. Find the minimal amount of Euros that is sufficient to find the
number in all cases.

MB 12. Consider the map f : x 7→ 2x (mod 1) on S1 = R/Z. Let I ⊂ S1 be a closed interval, let
I0 := {I} and let I1 be the set containing the two intervals J such that f(J) = I. For n ≥ 1,
let I ′n+1 be the set of all intervals J ⊂ S1 so that f(J) ∈ In and let In+1 be the set I ′n+1

from which one (arbitrary) interval is removed. Finally, let An := S1 \
⋃n

k=0

⋃
J∈Ik

J .

Let Mn be the minimal number of intervals of length 2−n needed to cover An. Show that
there is an 0 < α < 2 so that Mn < αn for all sufficiently large n.
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MB 1. A set S of unit circles is given on the plane such that each pair of circles intersect in two
points. Prove that one can put four nails in the plane so that each circle encloses at least
one nail.

MB 2. Find the 11111-th decimal digit of 10
√

0.999 . . . 999, where there are 1233 digits ‘9’.

MB 3. Two players are playing the following game on the infinite plane. A move of Blue is to color
one point on the plane blue, a move of Red is to color 2011 points red. It is not allowed to
change the color of an already colored point. Can Blue always make sure that at some point
there is a regular hexagon with blue vertices?

MB 4. Does there exist a function f : R→ R such that f(f(f(x))) = cos(x)?

MB 5. Somebody draws a regular triangle and a square on the plane. Prove that at least one of the
12 distances between a vertex of the triangle and a vertex of the square is irrational.

MB 6. A particle is moving on the plane for one second, starting in the origin O and ending in O.
The absolute value of its acceleration is always ≤ 1.

MB 7. There is a finite set L of lamps and a set B of buttons. Each button b ∈ B is connected
to some lamps in L; when b is pressed, each connected lamp is switched on if it was off or
switched off if it was on. For any subset L′ ⊆ L there exists a button connected to an odd
number of lamps from L′. Initially some lamps are switched off, some are switched on. Prove
that all lamps can be switched off.

MB 8. Let a0 and b be positive integers and define a sequence (an) by an+1 = ban . Prove that the
sequence of remainders of an modulo 2011 is eventually constant.

MB 9. What is the smallest number n such that the points of the plane with rational coordinates
can be colored with n colors such that no two points at a distance of 1 get the same color?

MB 10. An infinite sequence of digits from 1 to 9 is given. Prove that either the sequence contains 10
non-overlapping 1000-digit numbers in decreasing order, or else it has a (non-empty) subse-
quence consisting of 100 repetitions of some finite sequence. (Each of the 1000-digit numbers
and the subsequence have to be formed by consecutive digits of the original sequence.)

MB 11. Does there exist a rational number x such that

−2x6 + 4x5 − x4 − 5x3 + 12x2 − 6x− 4

is the square of a rational number?

MB 12. On some island there lives a special species of chameleon. These animals can show 4 044 121
different colors. If a chameleon is tickled, it changes its color, and the new color only depends
on the color it had before. A chameleon can also be tackled, with similar effects. By a suitable
sequence of tickling and tackling, we can get a chameleon to show all its possible different
colors, but this is not possible by only tickling or only tackling it. If a certain sequence S of
ticklings and tacklings, applied to some color, reproduces that color, the same is true of every
color, and the sequence S is called unnecessary. Show that the following is an unneccessary
sequence: tickle 1005 times, tackle 1006 times, tickle 1006 times, tackle 1005 times.
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MB 1. Let P1, . . . , P2012 be 2012 points in the 2011-dimensional unit cube [0, 1]2011 and let S be
their convex hull. What is the largest possible volume of S?

MB 2. Let A ⊂ R be the set consisting of all numbers of the form

a = a1
√
b1 + a2

√
b2 + . . .+ an

√
bn

with integers a1, a2, . . . , an and positive integers b1, b2, . . . , bn.
Find all solutions (x1, x2, . . . , x2012) ∈ A2012 of the equation x21 + x22 + . . .+ x22012 = 1.

MB 3. Is it possible to find uncountably many infinite sets of natural numbers such that any two
of these sets have only finitely many common elements?

MB 4. Let x1, x2, . . . , x2012 be distinct elements of a finite set X. We choose a random permuta-
tion σ of X. Find the probability that x1, x2, . . . , x2012 belong to the same cycle of σ.

MB 5. Does there exist an infinite sequence of symbols a, b, c such that the sequence does not
contain ss as a subsequence for any (non-empty) finite sequence s?

MB 6. We fix n lines in general position in the plane (so that no three lines pass through the same
point, lines are not parallel, and if three intersection points are collinear, they are on one
of the given lines). A further line is good if it does not pass through a point of intersection
of the given lines, and two good lines are equivalent if one can be continuously moved to
the position of the other with only good lines occurring in the process. Find the number
of equivalence classes of good lines!

MB 7. Let F : [0, 1]→ [0, 1] be a continuous function. Assume that there is some x0 ∈ [0, 1] such
that F (x0) 6= x0, but F (F (F (x0))) = x0. Show that there is some y0 ∈ [0, 1] such that
F (y0) 6= y0, but F (F (F (F (y0)))) = y0.

MB 8. Let p > 3 be a prime number. Let S be the set of all natural numbers less than p2 that
are coprime with p. Write ∑

n∈S

1

n
=
k

l

with integers k and l. Prove that k is divisible by p2.

MB 9. Let T be a tetrahedron. Show that one can find two planes α and β such that the ratio of
the areas of the orthogonal projections of T to α and β is at least

√
2.

MB 10. Let ABC be a triangle with ∠CBA = 80◦ and |AB| = |BC|. Let O be an inner point of
the triangle such that ∠OAC = 10◦ and ∠ACO = 30◦. Find ∠OBA.

MB 11. Let S = {±1}n be the set of sequences of length n with entries ±1. If x = (x1, . . . , xn) ∈ S
and y = (y1, . . . , yn) ∈ S, then we write x ∗ y = (x1y1, . . . , xnyn). If T ⊆ S and z ∈ S,
then we set T ∗ z = {t ∗ z | t ∈ T}. Prove that for any subset Z ⊆ S of cardinality k one
can find a sequence s ∈ S such that Z ∩ (Z ∗ s) has at most k22−n elements.

MB 12. Let f be a continuous function such that for all a, b > 0 we have limn→∞ f(an + b) = 0,
where the limit is over natural numbers n ∈ N. Does it follow that limx→+∞ f(x) = 0?



Further problems:

1. Let T be a tetrahedron of unit volume. Let us choose one point on each edge of T . Consider
the set M of all barycenters for all possible such sets of six points. Calculate the volume of M .

2. A natural number k is considered good, if for each n the number 1k + 2k + · · ·+ nk is divisible
by 1 + 2 + · · ·+ n. Describe the set of all good numbers.

3. The street map of IMO City is a square grid with n vertical and n horizontal streets. A tramway
line runs from the south-west corner to the north-east corner. Prove that a pedestrian walking
from the north-west corner to the south-east corner crosses the tramway line in an odd number
of points.
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MB 1. Let a, b, c, d be integers, coprime in pairs. Consider two line segments in the plane R2:
I with endpoints (0, 0), (a, b) and J with endpoints (0, 0), (c, d). Two points (x, y)
and (x′, y′) ∈ R2 are said to be similar if x′ − x and y′ − y are both integers. Let n
be the number of pairs of points (P,Q) which are similar and such that P is an internal
point of I and Q is an internal point of J . Compute n in terms of a, b, c, d.

MB 2. Let C be a convex polygon and P a point in its interior. Let N be the number of vertices V
such that the line joining P to V divides the internal angle of C at V into two acute angles.
Denote by n the number of sides of C such that the foot of the perpendicular from P to
that side is strictly inside that side. Prove that N = n.

MB 3. Denote by R+ the set of nonnegative real numbers. We are given a sequence of functions
fm : Rm+ → R+, satisfying the following properties:

(a) Symmetry: fm(x1, . . . , xm) = fm(xσ(1), . . . , xσ(m)) for any permutation σ.

(b) Monotonicity: fm(x, x2, . . . , xm) > fm(y, x2, . . . , xm) if x > y.

(c) Homogeneity of degree 1: fm(λx1, . . . , λxm) = λfm(x1, . . . , xm) for all λ ∈ R+.

(d) For any k < m:

fm(x1, . . . , xm) = fm
(
fk(x1, . . . , xk), . . . , fk(x1, . . . , xk), xk+1, . . . , xm

)
.

(e) f2(0, 1) = 1
2 .

Prove that fm(x1, . . . , xm) = 1
m (x1 + . . .+ xm).

MB 4. The sequence (xn) is defined by the initial value x0 ∈ [0, 1] and the recursive formula

xn+1 =
1−
√

1− xn
2

. Find limn→∞ 4nxn.

MB 5. Consider a sequence of digits . . . . . . 625, infinite to the left, such that for every n ≥ 1, the
last n digits form an n-digit number xn (possibly with some leading zeros) such that x2n
ends with xn. Prove that the sequence is not eventually periodic.

MB 6. For non-negative a, b, c ∈ R prove that√
a2 + b2 + c2 + 2

√
ab+ bc+ ca ≥

√
a2 + 2bc+

√
b2 + 2ca+

√
c2 + 2ab.

MB 7. Let A be an infinite set of natural numbers. Prove that there exists a real number z > 2013
such that A ∩ {[zn] : n ∈ N} is infinite.

MB 8. For x ∈ R let s(x) denote the distance from x to the nearest integer. For q ∈ R, |q| < 1,
set

fq(x) =

∞∑
n=0

qns(2nx) .

For which values of q does there exist a polynomial p such that fq(x) = p(x) for all
0 ≤ x ≤ 1?

MB 9. Find a closed form for un, where u0 = 1, u1 = 3, u2 = 135 and

un+3 =
u2n+2(36un+2u

4
n+1u

3
n + 21u2n+2u

6
n − 35u8n+1)

18u3n+1u
6
n

.



MB 10. Three bankers sit around a table. The bankers have together n coins, whose values are
1, 2, . . . , n. A legal move consists in passing the most valuable coin a banker has in its
possession to his right neighbor; the value of this coin must be larger than the value of
any coin the right neighbor might already possess. What is the smallest number of legal
moves necessary to transfer all the coins from one banker to his left neighbor?

MB 11. Consider a coin moving on a strip of six squares, numbered from 0 to 5. For each move, a
fair die that carries the numbers 1, 1, 2, 2, 3, 3 is rolled; the coin has to move the number of
squares shown by the die either to the left or to the right. The game ends when the coin
reaches square 0. At which of the squares 1 to 5 should you place the coin to achieve the
smallest expected number of moves, and how large is this expected number?

MB 12. Can the number 27 000 be written as a sum of two squares and the ninth power of an
integer?
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MB 1. Let a1, . . . , an be real numbers such that aj < aj+1 < aj + 1 for all 1 ≤ j < n, and let k < n.
Is it always possible to select indices 1 = j0 < j1 < . . . < jk−1 < jk = n such that

max{ajm+1
− ajm : 0 ≤ m < k} −min{ajm+1

− ajm : 0 ≤ m < k} < 1 ?

MB 2. Determine all functions f : R→ R such that

f(x + y) + f(x− y) = 2f(x) cos y for all x, y ∈ R.

MB 3. Let P1, P2, P3, P4 be four points in the plane, not all on a line. When is it true that the
barycenter B of the four points minimizes the sum of the distances to P1, P2, P3, P4?

MB 4. Describe all maps f : Q→ Q such that

|x− y| = |x− z| =⇒ |f(x)− f(y)| = |f(x)− f(z)| for all x, y, z in Q.

MB 5. Let f : [0, 1] → R be such that f(tx + (1 − t)y) > tf(x) + (1 − t)f(y) for all 0 ≤ x < y ≤ 1
and all 0 < t < 1. Show that there is a constant C > 0 such that for all n ≥ 1, the number
of (x, y) ∈ 1

nZ×
1
nZ with 0 ≤ x ≤ 1 and y = f(x) is bounded by Cn2/3.

MB 6. Define a sequence of integers by a0 = 0, an+1 = a2014n + 2014. Show that there is a sequence
(bn)n≥1 of integers, coprime in pairs, such that for all n > 0, an is the product of the bd,
where d runs through the positive divisors of n.

MB 7. A game is played on an 8 × 8 chessboard. At the beginning of the game, each cell of the
lower half of the chessboard contains a white piece and each cell of the upper half contains
a black piece. A move consists in exchanging two pieces on cells that share a common side.
What is the minimal number of moves necessary to move all black pieces to the lower half of
the chessboard?

MB 8. We play chess on an n × n × n-cube. A rook threatens all fields in the three rows parallel
to the coordinate axes the rook is placed in (i.e., all fields that share at least two of the
coordinates with the rook’s field). What is the minimal number of rooks needed to threaten
every field of the n× n× n-cube?

MB 9. We define an ∈ {1, . . . , 9} to be the leading decimal digit of 2n, for n ≥ 0. Fix k ≥ 1. Show
that there is some m such that every subsequence of (an) consisting of m consecutive terms
contains (a0, a1, . . . , ak) (again as a subsequence of consecutive terms).

MB 10. Determine the maximal number of distinct points Pj in the plane, no three on a line, such
that each line seqment PiPj (for i < j) intersects at most one other line seqment.

MB 11. The quadrilateral ABCD is inscribed in a circle with center O. Its diagonals intersect at
the point K. A circle with center on the segment OK intersect the side AB at points A1,
B1 and the side CD at points C1, D1, such that the points A1, K, C1 are collinear and
|A1K| 6= |KC1|. Prove that the points B1, K, D1 are also collinear.

MB 12. By a ‘convex body’, we mean a convex polyhedron with interior points. Is it possible to place
2014 convex bodies in 3-dimensional space such that any two of them have a common point,
but no common inner point, and no three of them have a common point?

MB 13. (Reserve:) Does every group of order 2014 occur as the group of (orientation-preserving)
symmetries of a figure in 3-dimensional space?
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MB 1. The quadrilateral ABCD is inscribed into a circle with center O. Prove that the centers of
the incribed circles of the triangles OAB, OBC, OCD, ODA lie on a circle if and only if
ABCD has an inscribed circle.

MB 2. Determine the set of all prime numbers p such that the size of the set

Mp =
{

(a, b, c, d)
∣∣ a, b, c, d ∈ Z/pZ, ad 6= bc

}
has at most three distinct prime divisors.

MB 3. A policeman is chasing a gangster in a city which is built like a cross formed by two segments
of length 2 that intersect at right angles in the middle. The policeman can see the gangster
only if he bumps into him, and they both can only move along the cross. The speed of the
policeman is 10 times that of the gangster. Is there some T > 0 such that the policeman will
be able to catch the gangster in time at most T?

MB 4. In a group of n people, subgroups with common interests (football, dancing, philately, . . . )
are formed. The number of distinct subgroups equals 2n−1, and any three (not necessarily
distinct) subgroups have a common member. Prove that in fact all subgroups have a common
member.

MB 5. Let Q = [0, 1]4 ⊂ R4 be the four-dimensional unit cube and let L ⊂ R4 be a two-dimensional
affine plane. What is the maximal area of the intersection Q ∩ L?

MB 6. In Syldavia, there are coins of value 1/2, 1/3, 1/4 and so on. There is a law that forbids every
Syldavian to have more than one coin of any particular value in their possession at midnight.
One day, it is decided that the higher-valued coins should be removed from circulation, and
so it is made illegal to possess coins of value ≥ 1/N on day N after the law is enacted. To
help the citizens comply with the new law, the Syldavian central bank generously offers to
pay a coin of value 1/(n + 1) and a coin of value 1/m where m = n(n + 1)/2 in exchange
for a coin of value 1/n (for any n ≥ 2). Can all Syldavians keep avoiding violating the laws
from now to eternity?

MB 7. Let a, b, c, a′, b′, c′ be positive real numbers such that

a′ + b′ + c′ ≥ a+ b+ c, a′b′ + b′c′ + c′a′ ≥ ab+ bc+ ca, a′b′c′ = abc .

Show that (log a′)2 + (log b′)2 + (log c′)2 ≥ (log a)2 + (log b)2 + (log c)2.

MB 8. Let n ≡ 2 mod 6 be a positive integer and set m = (n2 − n + 1)/3. Show that m2 divides
nn − (n− 1)n−1.

MB 9. For n ≥ 1, the nth Chebyshev polynomial Tn(x) ∈ Q[x] is characterized by the property that
Tn(cos t) = cosnt for all t ∈ R.
Determine the set of positive integers n for which Tn(x) is irreducible in Q[x].

MB 10. In Borduria, the postage you have to pay for sending a rectangular parcel with the Bordurian
Mail is proportional to the sum of its height, width and depth. Can it ever be possible to
save money when sending a parcel by putting it into another rectangular parcel?

MB 11. Determine the 2 500th digit to the right of the decimal point of the number (
√

101 + 10)2015.

MB 12. Let f(x) = x3 + ax2 + bx+ c ∈ Q[x], with roots α, β, γ ∈ C. Assume that there are integers
m,n, k with (m,n) 6= (0, 0) such that mα+ nβ = k. Show that one of α, β, γ is rational.



R 1. Let S1, S2 and S3 be spheres that are tangent to one another externally. Suppose that there
is a plane Π tangent to the spheres S1, S2 and S3 at the points A, B, and C, respectively.
Consider the sphere tangent to S1, S2, S3 externally and tangent to the plane Π at some
point D. Prove that the projections of D onto the lines AB, BC, and CA are the vertices of
an equilateral triangle.

R 2. Let 0 ≤ k, l ≤ n be integers such that n ≤ k + l. Show that

(2n)! (k + l)! k! l!

n! (n− k)! (n− l)! (2k)! (2l)! (k + l − n)!
∈ Z .
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MB 1. (Alexei)
n girls and n boys attend a certain school. Some of the boys and girls are acquainted. Each
girl is acquainted with precisely k boys and each boy is acquainted with precisely k girls. For
any two girls there are precisely m boys they are both acquainted with. Prove that for any
two boys there are precisely m girls they are both acquainted with.

Solution.
Let A = (aij) be the n × n matrix with entry 1 if boy i is acquainted with girl j and 0
otherwise. The assumptions imply that A>A = (k − m)I + mee>, where e is the all-ones
column vector. We have to show that AA> = (k−m)I +mee> as well. The determinant of
A>A is (k+(n−1)m)(k−m)n−1 (since the matrix is circulant, it is easy to find the eigenvalues)
and so is 6= 0 unless k = m. Since Ae = ke = A>e (again from the assumptions), we have
k2e = A>Ae = (k −m)e + mne, and so k = m implies k = n, which is the trivial case that
all boys and girls know one another. So assume now k < n. Then A is invertible, and

AA> = A(A>A)A−1 = A((k −m)I +mee>)A−1

= (k −m)I +m(Ae)(A−>e)> = (k −m)I +mkek−1e> = (k −m)I +mee>

as desired. (Note that A>e = ke implies A−>e = k−1e.)

MB 2. (Alexei)
At one end of a road of length `, there are n people with k < n bicycles. A bicycle can carry
only one person. A walking person has speed v1, and a cycling person has speed v2 > v1.
What is the minimum time required to get everybody to the other end of the road?

Solution.
Since we can scale `, v1 and v2 by a common factor without changing the result, we can
assume that ` = n.

The total distance traveled by the bicycles is (at most) kn, so there must be at least one
person traveling at most distance k on a bicycle. So for this person, the required time is at
least k/v2+(n−k)/v1. On the other hand, this lower bound can be achieved by the following
scheme. Split the n people into k plus n−k; say there are k women and n−k men. Number
the women from 1 to k and the men from 1 to n− k. Then woman number j takes a bicycle
up to point j on the road, leaves it there, walks to point n− k + j and takes a bicycle from
there to the end of the road (if j < k). Man number j first walks to point j, then takes
the waiting bicycle to point k + j, then leaves the bicycle and walks the remaining distance.
Then everybody cycles distance k and walks distance n − k. We only have to check that
there is always a bicycle available when one is required, which is not hard to do.

MB 3. Let P (x) ∈ Z[x] be a polynomial such that P (n) is a square for all n ∈ Z. Is P (x) necessarily
the square of a polynomial in Z[x]?

Solution.
The answer is Yes.

We can clearly assume that P is not the zero polynomial. Observe that we can replace Z by Q:
If P ∈ Z[x] satisfies P = Q2 with Q ∈ Q[x], then Q must have integral coefficients (because Z
is integrally closed). Pick a ∈ Z>0 such that P (x) and P (x+a) have no common factors. The
polynomial P (x)P (x + a) has even degree and its leading coefficient is a square, so we can
write P (x)P (x+ a) = Q(x)2 +R(x) with polynomials Q,R ∈ Q[x] such that degQ = degP ,
Q has positive leading coefficient and degR < degP (by successively completing the square).
Let d be a common denominator of the coefficients of Q. Then we have

d2P (x)P (x+ a) = (dQ(x))2 + d2R(x)



and dQ and d2R have coefficients in Z. Then for b ∈ Z large enough, |d2R(b)| < 2dQ(b)− 1.
For any such b, we have that (dQ(b))2 + d2R(b) = d2P (b)P (b + a) is a square in Z by the
assumption on P . Since (dQ(b) ± 1)2 = (dQ(b))2 ± 2dQ(b) + 1 and |d2R(b)| < 2dQ(b) − 1,
this is only possible when R(b) = 0. So the polynomial R vanishes at infinitely many points;
therefore R = 0 and P (x)P (x + a) = Q(x)2 (and d = 1). Since P (x) and P (x + a) are
coprime, this implies that we can write Q(x) = cQ1(x)Q2(x) such that P (x) = cQ1(x)2 and
P (x+ a) = cQ2(x)2. Setting x equal to some integer that is not a root of P then shows that
c = c21 is a square, hence P (x) = (c1Q1(x))2 as desired.

MB 4. (Henri Cohen)
A and B play the following game: A chooses a real number a0, then B chooses a real
number a1. For n ≥ 2, they compute an = |an−1| − an−2. B wins if a1 000 001 = π, otherwise
A wins. Who can enforce a win?

Solution.
The key observation is that the sequence (an) is always periodic with period 9. This can be
shown by a suitable case distinction. So we have a1 000 001 = a2 = |a1| − a0 ≥ −a0. This
implies that A can prevent B from winning by taking a0 < −π, so A can enforce a win.

MB 5. (Reserve geometry problem from 2015)
Let S1, S2 and S3 be spheres that are tangent to one another externally. Suppose that there
is a plane Π tangent to the spheres S1, S2 and S3 at the points A, B, and C, respectively.
Consider the sphere tangent to S1, S2, S3 externally and tangent to the plane Π at some
point D. Prove that the projections of D onto the lines AB, BC, and CA are the vertices of
an equilateral triangle.

Solution.
This is a ‘brute-force’ solution. We can assume that D is the origin of the plane Π and that
the radius of the fourth sphere is 1. We use the Euclidean inner product on Π. Let a, b,
c be the radii of the first three spheres. An easy argument with the quadrilateral formed
by A, B and the midpoints of the two spheres involved shows that (B − A)2 = 2ab (and
similarly for the other points). An analogous argument shows A2 = 2a etc. This implies
that A · B = a + b − ab etc. Let X, Y , Z be the projections of D onto the lines AB, BC,
CA. We can express X as a convex combination of A and B by solving X · (B − A) = 0,
and similarly for Y and Z. We finally find that (Y −X)2− (Z −Y )2 is a rational expression
in a, b, c whose denominator divides (abc)2 and whose numerator is a multiple of the Gram
determinant ∣∣∣∣∣∣

A2 A ·B A · C
B ·A B2 B · C
C ·A C ·B C2

∣∣∣∣∣∣ =

∣∣∣∣∣∣
2a a+ b− ab a+ c− ac

a+ b− ab 2b b+ c− bc
a+ c− ac b+ c− bc 2c

∣∣∣∣∣∣ ,
which vanishes, since A, B, C span a plane. So |X − Y | = |Y − Z| = |Z −X| (the latter by
symmetry), which is exactly the claim.

MB 6. Let a, b, c be positive integers. Show that a
b+c + b

c+a + c
a+b can never be an odd integer.

Solution.
See http://mathoverflow.net/questions/227713/ .

MB 7. For m ∈ Z>0 define N(m) = {n ∈ Z>0 : n | mn − 1}. For which m is N(m) an infinite set?

Solution.
The answer is that N(m) is infinite exactly when m 6= 2.

First assume that m > 2. Note that m − 1 ∈ N(m). I claim that all powers of m − 1 are

in N(m). This is proved by induction: knowing that (m− 1)k divides m(m−1)k − 1, we have

to show that (m− 1)k+1 divides m(m−1)k+1 − 1. By assumption, m(m−1)k = 1 + A(m− 1)k

for some A ∈ Z. Raising this equality to the (m− 1)st power gives

m(m−1)k+1

=
(
1 +A(m− 1)k

)m−1
= 1 +A(m− 1)k+1 +

m−1∑
j=2

(
m− 1

j

)
Aj(m− 1)jk .



Since jk ≥ k + 1 for k ≥ 1 and j ≥ 2, this is ≡ 1 mod (m − 1)k+1. Since m ≥ 3, we have
m− 1 ≥ 2, and so the powers of m− 1 give infinitely many distinct elements of N(m).

It is clear that N(1) = Z>0. So it remains to show that N(2) is finite. In fact, we have
N(2) = {1}. To see this, assume the contrary and let 1 < n ∈ N(2) be minimal. We have
2n ≡ 1 mod n, but also (by Euler’s theorem) 2ϕ(n) ≡ 1 mod n, where ϕ is the Euler phi
function. This implies 2d ≡ 1 mod n, where d = gcd(n, ϕ(n)). Since d divides n, this also
implies 2d ≡ 1 mod d, so d ∈ N(2). By our choice of n, we must have d = 1. But then
2 = 2d ≡ 1 mod n, so n = 1, a contradiction.

MB 8. (Hendrik W. Lenstra, Jr.; via Henri Cohen)
Let P be a convex polygon with vertices A1, A2, . . . , An in cyclic order, such that all sides
have equal lengths and the internal angles at A2, A3, . . . , An−1 are rational multiples of π.
Show that the remaining two angles are also rational multiples of π.

Solution.
We identify the plane with the complex numbers. Without loss of generality, A1 = 0 and
A2 = 1. Then An is a sum of roots of unity such that |An| = 1. Let n be a multiple of all
the orders of the roots of unity involved and let K = Q(ζ) be the nth cyclotomic field, where
ζ is a primitive nth root of unity, so that An ∈ K. The automorphisms of K are of the form
σk with σk(ζ) = ζk and k ∈ (Z/nZ)×. In particular, σ−1 is complex conjugation (and the
automorphism group is abelian). 1 = |An|2 = σ1(An)σ−1(An) implies that

1 = σk(1) = σk(An)σ−k(An) = |σk(An)|2

for all k. So An is an algebraic integer all of whose conjugates have absolute value 1, therefore
An must be (zero or) a root of unity. So the angle at A1 is a rational multiple of π, which
then implies that the last angle must also be a rational multiple of π.

MB 9. (Otfried Cheong)
Let C = {x+ [0, a]3 : x ∈ R3, a > 0} be the set of all axis-parallel cubes in R3. The union S
of finitely many cubes from C is a (usually non-convex) polyhedron; we write v(S) for the
number of vertices of S. Let, for n ≥ 1,

V (n) = max{v(C1 ∪ . . . ∪ Cn) : C1, . . . , Cn ∈ C} .

Find a real number k such that αnk ≤ V (n) ≤ βnk for all n ≥ 1 with suitable 0 < α < β.

Solution.
The answer is k = 2.

The first step is to solve the corresponding problem in the plane, with k = 1. The lower
bound is clear (use n pairwise disjoint squares, for example). For the upper bound, we
observe that a vertex of the union is either a vertex of one of the original squares (and there
are at most 4n of them), or else it is the point of intersection of sides of two distinct squares.
We associate such a vertex to the smaller of the two squares involved (if they have the same
size, we pick one arbitrarily). Now each side of a given square can give rise to at most two
such vertices from intersections with squares that have at least the same size (since such an
intersecting square will cover the side from the intersection point to one of its ends), which
gives a linear bound (e.g., 8n) for the number of vertices of this kind.

Now for the upper bound in R3. Any vertex of the union will be contained in a side of one
of the cubes, in which case it will be a vertex of the projection of the union to the plane that
contains the side. By the above, the number of such vertices is at most 12n (say), so the
total number is at most 6n · 12n = 72n2 (which is clearly not the best possible bound).

To get a lower bound of the correct size, we assume n = 2m is even. We take m unit cubes
with lower left bottom vertices at (0, jε, jε) for j = 0, 1, . . . ,m− 1, where 0 < ε < 2/n2. The
cross-section perpendicular to the x-axis of their union has as part of its boundary a broken
line from (0, 1) to ((m− 1)ε, 1 + (m− 1)ε) with 2m− 1 vertices. Now we arrange m further
cubes of size mε < 1/(2m) with lower left bottom vertices at (ε + k/m,−ε/2, 1 − ε/2) for
k = 0, 1, . . . ,m− 1. Then two sides of each of the small cubes will each form 2m− 1 vertices
in the corresponding cross-section, which gives a lower bound of 2m(2m−1) = n2−n vertices
in total.



MB 10. (Alexei)
The points of the set L = R2×

[
0, 1

2016

]
are colored in four colors. Prove that there exist two

points at distance 1 in L that have the same color.

Solution.
We have the following lemma:

Lemma. Fix ε > 0. Then there is 0 < δ < ε with the following property. If the points of the
cylinder D × [−δ, δ] (where D is the closed unit disk) are colored in four colors, then there
are two points at distance 1 with the same color, or the points (0, δ) and (0,−δ) have the
same color.

Proof. We have

2 arcsin
1

2
√

1− δ2
=
π

3
+ ϕ(δ)

with a continuous function ϕ such that ϕ(δ)↘ 0 as δ ↘ 0. So we can choose 0 < δ < ε such
that ϕ(δ) = π

3(6n−1) for some n ≥ 1. Consider D as a subset of C and let

S = {
√

1− δ2ωm : m = 0, 1, . . . , 6n− 2} ⊂ D ,

where
ω = e(π/3+ϕ(δ))i = e(2nπi)/(6n−1)

is an (6n − 1)st root of unity. Note that we have chosen δ precisely in such a way that√
1− δ2|ω − 1| = 1. This implies that two successive points (in the cyclic order) in S have

distance 1. Now let Γ be the unit distance graph on the vertex set (S×{0})∪{(0, δ), (0,−δ)}.
Then Γ consists of a cycle of odd length 6n − 1 formed by the points in S × {0}, together
with two further vertices that are each connected to all points in the cycle. Either some pair
of adjacent vertices of Γ has the same color, or Γ is properly 4-colored. In the latter case,
assume that (0, δ) is red (say). Then the points in the cycle must be colored by the three
other colors, and since the cycle has odd length, all three colors must be used. But this forces
(0,−δ) to be also red. �

Now assume the claim is false. Then in the lemma, we are always in the second case. Picking
ε > 0 sufficiently small, the lemma implies that there is δ > 0 such that for any two points
P,Q ∈ L at distance 2δ such that P and Q are not too close to the boundary of L and such
that their projections to R2 are sufficiently close must have the same color. It is then easy to
construct a sequence P1, P2, . . . , Pn of points such that all pairs of successive points satisfy
the conditions above and d(P1, Pn) = 1, which gives the desired contradiction.
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Matematiqeski$i Bo$i: The Mathematical Battle
Problems

MB 1. n girls and n boys attend a certain school. Some of the boys and girls are acquainted. Each
girl is acquainted with precisely k boys and each boy is acquainted with precisely k girls. For
any two girls there are precisely m boys they are both acquainted with. Prove that for any
two boys there are precisely m girls they are both acquainted with.

MB 2. At one end of a road of length `, there are n people with k < n bicycles. A bicycle can carry
only one person. A walking person has speed v1, and a cycling person has speed v2 > v1.
What is the minimum time required to get everybody to the other end of the road?

MB 3. Let P (x) ∈ Z[x] be a polynomial such that P (n) is a square for all n ∈ Z. Is P (x) necessarily
the square of a polynomial in Z[x]?

MB 4. A and B play the following game: A chooses a real number a0, then B chooses a real
number a1. For n ≥ 2, they compute an = |an−1| − an−2. B wins if a1 000 001 = π, otherwise
A wins. Who can enforce a win?

MB 5. Let S1, S2 and S3 be spheres that are tangent to one another externally. Suppose that there
is a plane Π tangent to the spheres S1, S2 and S3 at the points A, B, and C, respectively.
Consider the sphere tangent to S1, S2, S3 externally and tangent to the plane Π at some
point D. Prove that the projections of D onto the lines AB, BC, and CA are the vertices of
an equilateral triangle.

MB 6. Let a, b, c be positive integers. Show that
a

b+ c
+

b

c+ a
+

c

a+ b
can never be an odd integer.

MB 7. For m ∈ Z>0 define N(m) = {n ∈ Z>0 : n | mn − 1}. For which m is N(m) an infinite set?

MB 8. Let P be a convex polygon with vertices A1, A2, . . . , An in cyclic order, such that all sides
have equal lengths and the internal angles at A2, A3, . . . , An−1 are rational multiples of π.
Show that the remaining two angles are also rational multiples of π.

MB 9. Let C = {x+ [0, a]3 : x ∈ R3, a > 0} be the set of all axis-parallel cubes in R3. The union S
of finitely many cubes from C is a (usually non-convex) polyhedron; we write v(S) for the
number of vertices of S. Let, for n ≥ 1,

V (n) = max{v(C1 ∪ . . . ∪ Cn) : C1, . . . , Cn ∈ C} .

Find a real number k such that αnk ≤ V (n) ≤ βnk for all n ≥ 1 with suitable 0 < α < β.

MB 10. The points of the set L = R2×
[
0, 1

2016

]
are colored in four colors. Prove that there exist two

points at distance 1 in L that have the same color.



R 1. For which n > m > 0 is the polynomial Xn +Xm + 2 irreducible in Q[X]?

R 2. Let 0 ≤ k, l ≤ n be integers such that n ≤ k + l. Show that

(2n)! (k + l)! k! l!

n! (n− k)! (n− l)! (2k)! (2l)! (k + l − n)!
∈ Z .

R 3. Determine the set of all prime numbers p such that the size of the set

Mp =
{

(a, b, c, d)
∣∣ a, b, c, d ∈ Z/pZ, ad 6= bc

}
has at most three distinct prime divisors.

R 4. Let R be an integral domain (i.e., R is a commutative ring with 1 such that 1 6= 0 and for
all a, b ∈ R, ab = 0 implies a = 0 or b = 0). Let a, b ∈ R. We say that a divides b if there is
some c ∈ R such that b = ac. Now assume that a2 divides b2. Does it necessarily follow that
a divides b?

R 5. Let p ≡ 1 mod 3 be a prime number. Show that

∑
0<k<p

k≡1 mod 3

1

k
≡ (−3)(p−1)/2 − 1

p
mod p

in the sense that the difference of the two sides, when written as a fraction in lowest terms,
has numerator divisible by p.

R 6. (Recycled from 2005)
Let ABC be a triangle. Consider the family of all triangles that have the same circumcircle
and inscribed circle as ABC. Show that the barycenters of these triangles all lie on a circle.

R 7. (Recycled from 2005)
Let P be a convex n-gon (n ≥ 4) that is subdivided into finitely many triangles. Prove that
two of the triangles have a side in common.

R 8. (Recycled from 2005)
Each point of 3-dimensional space is colored in one of 5 colors, all of which occur. Prove that
there exists a plane that is colored in at least 4 colors.

R 9. A very primitive computer can perform only two operations: add 1 to the natural number in
its only memory cell or double it. A program for this computer consists of a finite sequence
of these operations. When the program starts, the memory cell contains the number zero.
How many different natural numbers can you compute on this machine with a program that
consists of exactly n steps?


