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Abstract
Purpose The full understanding of the effect of mineral waste-based fertilizer in soil is still unrelieved, because of the extreme
complex chemical composition and plethora of their action pathways. The purposes of this paper is to quantify the input of PG
into the soil ecosystem process, considering the direct effects of PG as a whole on soil environment using of a plethora of
chemical, toxicological, and biological tests.
Materials and methods Greenhouse experiment includes different PG doses (0, 1%, 3%, 7.5%, 15%, 25%, and 40%) and
two-time collection points after treatments—7 and 28 days. For each treatment and each time collection point, we measure
(i) soil pH, bioavailable (H20 and NH4COOH-extractable) element content (S, P, K, Na, Mg, Ca, Fe, Zn, Sr, Ba, F); (ii) soil
enzyme activities—dehydrogenase, urease, acid phosphatase, FDA; (iii) soil CO2 respiration activity with and without
glucose addition; (iv) Eisenia fetida, Sinapis alba, and Avena sativa responses. Finally, we combine the ordinary chemical,
toxicology, and biological measuring of soil properties with state-of-the-art mathematical analysis, namely (i) support
vector machines (used for prediction), (ii) mutual information test (variable importance tasks), (iii) t-SNE and LLE
algorithms (used for unsupervised classification).
Results and discussion The results show similarity between the 0%, 1%, and 3% PG treatments in all collection times based
on the toxicological and biological properties. Beyond 7.5% PG, some biological test was significantly inhibited in
response to trace element stress. Among all tested parameters, soil urease activities, soil respiration activities after glucose
addition, S. alba root lengths, and E. fetida survival rates show sensitivity to PG addition. Furthermore, the machine
learning algorithms revealed that only several elements (mobile and water-soluble forms of Ca, Ba, Sr, S, and Na; water-
soluble F) could be responsible to elevated soil toxicity for those indicators. SVR models were able to predict soil
biological and ecotoxicity properties, and increasing numbers of randomly selected training examples from 50 to 90%
of initial experimental data significantly improved model performance.
Conclusions At this study, we demonstrate benefits of unsupervised machine learning methods for investigating toxicity of man-
made substances in soil that can be further applied to risk assessments of various toxins, which are of significant interest to
environmental protection.
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1 Introduction

Waste production is an increasing global concern that is
projected to worsen with the accelerating world’s population
thus making sustainable waste management a pressing issue.
To be adduced just as an example, in the Russian Federation,
more than 31.5 billion tons of waste were accumulated and
identified by 2016 include 140 million tons of phosphogypsum
(PG) with over 100 million tons was landfilled (Russian
National Report 2015). Given the large quantities that are pro-
duced, and keeping in mind that only 14% of PG is used in the
construction industry, it is necessary to dispose the surpluses
(Tayibi et al. 2009). For instance, the land application of PG in
agricultural fields could be an important recycling alternative
aiming to reduce landfilling sites (Saadaoui et al. 2017).

The application of PG as an amendment has generally shown
a positive effect on soil chemical properties, including an increase
in the available sulfur and phosphorus content (Delgado et al.
2002), improvement of soil structure and crop yield (Vyshpolsky
et al. 2010; Carmeis Filho et al. 2017; Kammoun et al. 2017;
Ascari and Mendes 2018). Furthermore, PG amendment is rec-
ommended in ameliorating salinity in damaged soils, providing a
source of Ca to replace the excess Na in cations’ exchange
(Hurtado et al. 2011). However, there are several difficulties in
expanding the use of PG for an agronomy purpose, which is
accounting for its complexity structure.

On the one hand, only a fraction of ecotoxicological studies
have been performed to evaluate the ecological impact of PG
application on soil. PG information is particularly fragmentary
especially regarding their inclusion of trace element pollutants
and other compounds as its specific composition and charac-
teristics change considerably depending on the geographical
origin. This waste typically comprises mainly gypsum and
phosphate, but may also include the potentially hazard ele-
ments, such as fluoride, strontium, and barium. The presence
of the latter at high levels in PG may have hazardous impact
on the soil in general and on humans and plants, in particular.
Pollutants from PG may adversely affect the soil environment
by retarding the plant growth (Al-Hwaiti and Al-Khashman
2015; Ayadi et al. 2015; Elloumi et al. 2015), and enhancing
the soil toxicity (Yakovlev et al. 2013; Hentati et al. 2015).
The effect of PG on terrestrial ecosystem is largely lacking.

On the other hand, the accurate evaluation of soil conditions
in presence of amendments with highly complex chemical com-
position is one of the most significant research objectives now-
adays (Zaman 2014; Liu et al. 2017; Bünemann et al. 2018).
This issue has triggered the general focus on more ecologically
relevant test designs including responses at different levels of
biological organization, and taking into account the chemical,
toxicological, and biological parameters describing the structure
and functioning of soil ecosystems (International Organization
for Standardization ISO:19204 2017). Additionally, as stated by
several authors (Alvarenga et al. 2018;Morgado et al. 2018), soil

biological and toxicity properties may be suited to measure the
impact of PG contamination on the quality of soil. Thus, using
the soil enzyme activity as a screening tool to characterize con-
taminants in a variety of environmental matrices has become a
popular, powerful and reliable tool in the environmental toxicol-
ogy (Burns et al. 2013). Measuring the soil CO2 emission pro-
vides significant data on microbial biomass (Haney and
Franzluebbers 2009). Moreover, the earthworms and plants’ lon-
gevity are generally used for toxicological tests as they are in
direct contact with soil and are important in terrestrial foodwebs,
soil productivity, and fertility (Pereira et al. 2018). Consequently,
estimating the mentioned above parameters coupled with soil
chemistry could provide valuable information of toxicity and
help to reveal the potential risk of PG addition in soil. All these
facts suggest that identifying the adequate and soil environmen-
tal Bfriendly^ dose of PG is in high demand in agrochemistry
and should be revealed with a help of mathematical modeling.

The classification of high-dimensional data, such as char-
acteristic of soil environments remains a difficult task (Bouma
2014; Reinwarth et al. 2017). Unsupervised machine learning
(ML) methods, in particular dimensionality reduction, is the
core research topic in soil science community, is the well-
acknowledged solution for this curse of problem. Starting with
classical methods, such as principal component analysis, mul-
tidimensional scaling offers to reduce the X analysis into k
clusters, and those methods have been successfully used in
soil and environmental sciences for decades.Modern unsuper-
vised ML methods usually use nonlinear projections of the
data into low dimensions to appropriately visualize, rather
than preprocess, complex data sets, and these methods includ-
ing popular algorithms such as locally linear embedding
(LLE), t-distributed stochastic neighbor embedding (t-SNE)
(Bunte et al. 2012). These methods belong to nonlinear di-
mensionality reduction techniques, enabling the correct visu-
alization of data which lie on curved manifolds or which in-
corporate clusters of complex shape, as is often the case for
real-life examples, thus opening the way towards a visual
inspection of nonlinear phenomena in the given data
(Gisbrecht and Hammer 2015). The rationale behind the use
of advanced nonlinear dimensionality reduction techniques in
the analysis of soil data is that they may exploit nonlinear,
higher-order relations between the chemical patterns and bio-
logical responses that are present in the data.

Support vector machine (SVM) is one of the most popular
classifiers in the field of pattern recognition. The use of super-
vised ML methods trained on empirical data could be advanta-
geous to make predictions on the potential toxicity effects of
exogenous substances in soil (Deng et al. 2017; Cipullo et al.
2019), properties of drug-like molecules (Palmer et al. 2015),
and biomonitoring the pesticide toxicity (Zhu et al. 2018; Niell
et al. 2018). ML models are able to learn the relationships
between input variables (e.g., soil amendment, soil type) and
output variables (e.g., changes in soil toxicity, or bioassay
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response) from a training dataset, these relationships can then
be generalized to make informed decisions in new cases. The
interest to ML methods definitely rises, especially when we
deal with soil systems, because the traditional statistical extrap-
olation techniques do not fit well in case of complex environ-
ment (Shatar and McBratney 2004; Jager 2011; Fox 2015).
Overall, we can conclude that the application of ML to envi-
ronmental issues, such as waste recovery and degradation stud-
ies, is the latest cutting edge research trend. This aroused our
strong interest to explore the possibility to use SVM algorithms
for predicting soil environment feedback after PG addition.

In our study, we aim to bridge these gaps and set the fol-
lowing objectives:

& to quantify the input of PG into the soil ecosystem process
in soil, considering the direct effects of PG as a whole on
soil environment by means of a set of chemical, toxico-
logical, and biological tests;

& to provide the effect factors that could be used for subse-
quent calculating of the characterization factors for
assessing terrestrial impacts from PG with a help of ML
techniques.

2 Material and methods

2.1 Soil sampling, soil and PG type description

PG was collected at the Voskresensk fertility plant, Moscow
Region in spring of 2016. PG was taken directly from the stor-
age from the depth 0–30 cm, ten subsamples of 2 kg were taken
within one plot 10 m2 and joined in a single mixed sample.
Mixed sample of PG was dried for 2 days at 60 °C, crashed,
sieved through a 1-mmmesh, and stored in airtight polyethylene
bags to avoid rehydration. The initial element contents in PG
were as follows: CaO 51.3%, SO3 0.21%, P2O5 0.21%, MgO
0.087%, R2O3 1.73%, Fe2O3 0.7%, Al2O3 1.13%, Na2O 0.46%,
K2O 0.28%, F 3.08%, CO2 0.1%, and Cl 0.027%.

We collected the top horizon (0–20 cm) of arable sandy
loam spodosol, Moscow Region, Russian in spring of 2016.
Properties of the tested soil samples were as follows: pHKCl

6.5, TOC, 1.01%; Ntot, 0.11%; Ptot, 0.12%; Ktot, 0.18%;
Mgtot, 1.7%; Catot, 10.5%; Na, 0.89%; total Zn, 23.5 ppm;
total Cd, 0.1 ppm; total Cr, 16.0 ppm; total Pb, 9.0 ppm, total
Ni, 4.3 ppm; and total Sr, 29.8 ppm.

2.2 Experimental design and setup

Greenhouse experiment represented in non-perforated plastic
pots about 500 ml volume. The soil was defaunated before
placing into pots. It was first kept frozen for at least 24 h at a
temperature − 18° and then dried at a room temperature. Then,

it was sieved through a 2-mmmesh to remove stones and large
organic particles as well as to reach a homogeneous texture.

The rates of PG application were calculated based on our
previous research (Yakovlev et al. 2013) and were 0 (NA), 1,
3, 7.5, 15, 25, and 40 w% corresponding to 0, 10, 75,150, 250,
and 400 g of PG per kilogram of dry soil. The necessary amount
of PG was added into each pot and homogenized with soil. The
soil oil in the control pots with B0^ treatment was mixed in the
similar way as ones with the PG amendment but without adding
PG. After mixing, we added the pre-calculated volume of fil-
tered water to achieve the moisture level equal to 70% water
holding capacity and homogenized the resulting mixture again.

The pots were left in normal day/night conditions for
28 days at a temperature of 20 ± 2 °C for further stabilization
in the climatic chamber; after 7 and 28 days, the series of three
samples were collected for further study.

2.3 Soil chemistry

The pH values of the non-amended and amended soils were
measured in 1 M KCL at a ratio of 1:4 (w/v) using WTW pH
340i meter with glass, ion-selective electrode (WTW,
Weilheim, Germany). The bioavailable element content (S, P,
K, Na,Mg, Ca, Fe, Zn, Sr, Ba) in soil were estimated before and
after the experiment through standard methods. We measured
the water-soluble (w) and the NH4COOH-extractable mobile
(m) forms of the selected elements according to McBride
(1989) and Cheng et al. (2011), respectively. The analyses of
the elements were performed using the Inductively Coupled
Plasma Mass Spectroscopy at the Agilent 7500a (USA).

The water-soluble fluoride (Fw) content in soil we deter-
mined according to Saha and Kundu (2003). The soil extracts
were filtered through 0.45-mm membrane filter before analysis
through ion chromatograph DIONEX model ICS 2000 (USA).

In routine analyses, three replicates of each sample were
analyzed and the trace element concentrations were evalu-
ated as mean of two measurements, with less than 10%
repeatability value.

2.4 Soil enzyme activities measuring

Dehydrogenases (DHA) activity was measurement according
to Thalmann (1968) and was expressed as μgTPF× g−1 soil
dwt × 16 h−1. The activities of acid phosphatases (AP) in the
soil samples were assayed as outlined in (Eivazi and Tabatabai
1977) and expressed as μgpNP× g−1 soil dwt × h−1. Urease
activity (URE) was determined according to the method de-
scribed by to Klose and Tabatabai (2000) and expressed as
μgNH4

+ × g−1 soil dwt × 24 h−1. Fluorescein diacetate hydro-
lysis (FDA) was determined by a modification of the proce-
dure of Inbar et al. (1991) and expressed as μgFDA× g−1 soil
dwt × h−1. For all enzyme activities, assays were performed in
triplicate for each soil sample and were corrected for a blank.
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2.5 Soil respiration activity

Carbonmineralization rate wasmeasured in lab conditions using
the substrate-induced and microbial basal respiration CO2 emis-
sion parameters. The substrate-induced respiration (SIR) was
assessed according to ISO (14240-1:1997 with 40 mg glucose
per gram of soil for 4 h. The soil basal respiration rate (SBR),
based on ISO (16072:2002) was measured without adding glu-
cose for 24 h. The equipment operates with a constant temper-
ature of 22 ± 2 °C and CO2 production was determined from
vials with a M-3700 gas chromatography with a thermal con-
ductivity detector (Kristall, Granat Co., Russia). The data were
calculated as the average rate of CO2 emitted by each sample
and expressed as μg CO2 × g

−1 soil dwt × h−1. All measure-
ments were performed in three replicates from each soil sample.

2.6 Bioassay

The plant-bioassay test was performed in accordance with the
Boluda et al. (2011) with mustard (Sinapis alba) and oat (Avena
sativa) seeds. We evaluated the effects of soil samples on the
roots’ elongation. We chose to grow the mustard and oat in the
evaluation of acute phytotoxicity in the soil, because these two
species of higher plans were demonstrated to be a valid tool in
assessing the effect of different amendment application rate on
plant uptake following the recommendation by Nikolaeva and
Terekhova (2017). Petri dishes (Ø = 9 cm) were prepared and
10 g (referred to the dry matter) of samples were placed into the
Petri dishes, a calculated amount of deionized water was added
to obtain aWHC of 70% plus 5 extra milliliters and then a filter
paper was placed on top. Ten seeds of mustard or oat were put
on the filter paper and then the Petri dishes were closed with
parafilm. After the incubation time of 72 h without any light
supply at 25 ± 2 °C, every emerged seedling of the four repli-
cates was washed and the root length was measured.

The earthworm (Eisenia fetida) toxicity test was conducted
according to the procedure described by Organisation for
Economic Co-operation and Development, OECD
(222:2004) with slight modification. Adult worms were ex-
posed to a range of concentrations of the tested substance
mixed into the soil. All the individuals had a weight ranging
from 0.4 to 0.7 g. The worms were fed with 5 g of dried cow
manure at the onset and weekly thereafter. After 7 days and
4 weeks, the mortality of the adult worms was measured.

2.7 Statistical analysis and machine learning

The collected data for gas emission, enzyme activity, and bio-
assay responses were pre-checked for the outliers prior to the
analysis. The normality of residuals and adherence to the final
model assumptions were checked using the Statistica 8.0 soft-
ware residuals tool. No drastic deviations from the normal
distribution of the model were revealed.

There is a huge variety of machine learning supervised
and unsupervised algorithms existing nowadays. In this
study, the following algorithms were used: (i) support vec-
tor machines (used for regression and prediction), (ii) mu-
tual information test (variable importance tasks), and (iii) t-
SNE and LLE algorithms (used for unsupervised classifi-
cation). All the calculations were done using Python,
which is a free object-oriented data analysis language and
software environment for statistical computing. The pack-
ages used while working on this research were from Scikit-
learn Python library (Pedregosa et al. 2011).

2.7.1 Support vector machine

Support vector machine is a supervised machine learning
algorithm based on statistical learning theory (Wu et al.
2004; Li et al. 2014), developed for data classification in
(Vapnik 1995) and later extended to solve regression prob-
lems (Wu et al. 2004). Support vector regression (SVR) is
a learning regression algorithm extended from the SVM
(Vapnik et al. 1997). Mathematical formulation of SVR is
explained in detail by Twarakavi et al. (2009). The strength
of SVR is to model the complex nonlinear relationships in
the multidimensional or hyperdimensional feature space
and estimate the linear dependency of the variables to be
predicted on the predictive covariates by fitting an optimal
approximating hyperplane to the training data.

In this research, the dataset was randomly split into a
t ra in ing and va l ida t ion da tase t s by us ing of a
train_test_split method from Scikit-learn Python library
with different ratios (90% or 116 observations, 70% or
88 observations, and 50% or 63 observations were used
as a training datasets). The training datasets were used for
SVR model calibration and testing datasets (10%, 70%,
and 50% observations, respectively) were used after for
models validation. The input data (all measured chemical,
biological, and ecotoxicity data) were log-transformed pri-
or to model development, biological, and ecotoxicity data
were scaling from 0 to 100 scale in compare with NA
control samples.

We used the training dataset to initially fitting the SVR
model with the linear kernel function through epsilon regres-
sion in the Python and the optimal model’s hyper parameters
were obtained by solving of an optimization (minimization of
the RMSE) problem on a grid of hyper parameters: C and
Gamma. The parameter search space was a priori set to
0.001 ≤C ≤ 1000 at an incremental ratio of 10 and 0 ≤ gam-
ma ≤ 0.3 at steps of 0.001.

After training, the derived SVR models were applied to
the validation datasets to produce the apparent soil biolog-
ical and ecotoxicity properties. We evaluated the perfor-
mance of SVR modeling by the root mean square error
(RMSE) which can shed light on the goodness of fit
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between the prediction and measurement. Mathematically,
the latter can be expressed as:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i¼1 yi−ŷ̂ið Þ2

n

s

where n is the number of training compounds, ŷi and yi are
the estimated and observed responses, respectively.

2.7.2 Mutual information test

The relevance factors investigation was carried out mutual
information test (Kraskov et al. 2004). This method studies
probabilistic dependencies between the target vectors and con-
sidered factors. Thesemeasures complement to each other and
can be useful to analyze the data from different angles of view.
In contrast to correlation analysis, this test allows identifying
nonlinear relations between given factors and target vectors.
Moreover, it gives a degree of dependencies for every pair of
considered factors or between factors and target vector. These
degrees help eliminate the most redundant and the least rele-
vant factors. The elimination can be based on some threshold
number of required factors or the threshold value of mutual
information score. In this study, with a help of mutual infor-
mation test, we practically assessed the load of individual
chemical variables in biological and ecotoxicity responses.
The calculated values are presented in a heatmap, where the
greatest loads are colored in red, and the lowest are in blue.

2.7.3 Unsupervised classification

To visualize the obtained data, we used two nonparametric
approaches—t-SNE algorithm (Maaten and Hinton 2008)
and LLE (Roweis and Saul 2000). These methods are the
useful analytical tools in unsupervised clusterization, where
the data is classified by the algorithm into specified amount
of classes based on internal patterns. Practically, it can be used
to search for the subtypes and subclasses for researched pro-
cess, value, or compound.

In more details, t-SNE algorithm chooses two similarity
measures between pairs of points - one for the high-
dimensional data and one for the two-dimensional embed-
ding. It then attempts to construct a two-dimensional em-
bedding that minimizes the of Kullback-Leib divergence
between the vector of similarities between pairs of points
in the original dataset and the similarities between pairs of
points in the embedding. This is a non-convex optimiza-
tion problem and t-SNE employs gradient descent with
random initialization to compute a reasonable solution to
it. The perplexity in t-SNE was equals to 7, and this value
of perplexity provided the best looking plot.

LLE is an eigenvector methods designed for the problem of
nonlinear dimensionality reduction, and is carried out in three

main steps: select neighbors, compute weight matrix, and
compute the low-dimensional coordinates by using the recon-
struction weights.

3 Results

3.1 PG influence on soil chemical, biological,
and ecotoxicity properties

The water-soluble and mobile-concentrations of S, P, Ca,
Fe, Zn, Sr, Ba, K, Na, Mg, and water-soluble F ratios in the
tested soil with different PG treatments are reported in
Table 1 and Table A in the Electronic Supplementary
Material. According to our results, all soil chemical prop-
erties evaluated were significantly influenced by increas-
ing phosphogypsum rates in the range of 7.5 to 40%.
Significant decrease in the soil pH and increase in Ca, S,
P, Sr, Ba, and F content with PG was expected, while
changes in Zn and Fe contents were surprising. The most
marked changes in soil chemical properties with PG treat-
ments were observed for Ca, S, P, and Sr. For example, the
concentrations of mobile species of Ba and Sr in the stud-
ied soils with PG varied from 9.4 ± 2.6 to 13.3 ± 9.8 g/kg
and from 52.6 ± 6.7 to 784.1 ± 23.11.8 g/kg, respectively.
The higher contents of Ca(m) and S(m) were registered in
40% PG treatments. At the same time, no statistically sig-
nificant differences were observed between the TE’s con-
tents in 0 (NA), 1 and 3% PG.

PG differentiated the biological activities of soil URE, SIR,
and SBR, while the other parameters (AP, FDA, and DHA)
showed negligible difference or light stimulation tendency
with the increased dose of PG (Fig. 1). In particular, URE
activities in soil were markedly different, yet the other en-
zymes parameters comprising AP, FDA, and DHA showed a
negligible difference or light stimulation tendency with the
elevated dose of PG The highest URE activity were recorded
for the NA soil (387.5 ± 64.9 μgNH4

+ × g−1 soil dwt × 24 h−1

and 394.2 ± 96.7 μgNH4
+ × g−1 soil dwt × 24 h−1 in 7-day and

28-day samples, respectively) and the lowest in the soil with
40% PG (150.7 ± 19.9 μgNH4

+ × g−1 soil dwt × 24 h−1 and
126.1 ± 24.6 μgNH4

+ × g−1 soil dwt × 24 h−1in 7-day and
28-day samples, respectively). The difference between FDA,
AP, and DHA in treatments was less visible compared to
URE.Moreover, AP and FDA showed a hormesis trend, clear-
ly indicating at the initial beneficial situation and a subsequent
intoxication after the peak. Carbon dioxide production in the
samples without the glucose additive (SBR) had a trend to
stimulate with low PG content and markedly decreased with
high PG content. Generally, phosphogypsum stimulate CO2

production up to 30% with 1–25% treatments, and no signif-
icant changes in compare with NAwere observed for 40% PG
in soil. Opposite this, the glucose-induced respiration data
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Fig. 1 Biological parameters in soil with varying doses of PG after 7 and 28 days of exposure: a soil urease activity, b soil substrate-induced respiration, c
soil basal respiration, d acid phosphatase activity, e dehydrogenase activity, and f FDA-hydrolysis activity

Table 1 Influence of phosphogypsum on soil chemical properties (mean ± SD, n = 6 and summarized the 7 days and 28 days of samples collection
data)

Phosphogypsum dose (% dry weight soil)

0 1 3 7.5 15 25 40

pHKCl 6.5 ± 0.1 a 4.9 ± 0.2 a 4.4 ± 0.3 ab 4.13 ± 0.32 b 3.7 ± 0.2 bc 3.3 ± 0.4 bc 3.1 ± 0.3 c
Fw, mg/kg 0.1 ± 0.0 a 0.4 ± 0.1 a 0.6 ± 0.1 a 1.6 ± 0.3 ab 2.8 ± 0.2 bc 3.8 ± 0.7 c 6.8 ± 1.3 d
Sw, mg/kg 30.2 ± 29.1 a 2254.0 ± 302.4 b 5485.3 ± 311.9 c 8910.5 ± 1329.6 d 8593.1 ± 277.2 d 9341.4 ± 1638.2 e 9016.1 ± 434.6 de
Pw, mg/kg 2.9 ± 0.16 a 7.9 ± 1.8 b 23.6 ± 5.9 c 39.3 ± 11.2 d 69.0 ± 6.1 e 115.6 ± 12.5 f 189.3 ± 43.2 g
Kw, mg/kg 33.9 ± 6.0 a 34.0 ± 4.5 ab 40.1 ± 3.6 bc 46.5 ± 2.2 c 53.2 ± 2.4 d 55.3 ± 4.5 d 55.0 ± 5.1 d
Naw, mg/kg 0.5 ± 0.5 a 8.8 ± 7.9 b 6.4 ± 1.4 b 17.6 ± 6.8 c 53.7 ± 13.2 d 70.4 ± 23.3 e 88.4 ± 15.1 d
Mgw, mg/kg 24.8 ± 2.5 a 113.8 ± 31.7 b 180.0 ± 33.4 c 151.7 ± 30.3 bc 178.6 ± 32.7 c 169.5 ± 12.0 c 163.7 ± 7.6 c
Caw, mg/kg 69.5 ± 10.4 a 1923.4 ± 346.2 b 4811.5 ± 408.3 c 7497.2 ± 976.7 d 7427.3 ± 327.9 d 7919.9 ± 1346.8 d 7755.6 ± 460.3 d

Few, mg/kg 6.9 ± 2.4 a 16.7 ± 7.2 b 45.5 ± 5.8 c 54.8 ± 11.7 cd 57.2 ± 3.2 d 60.8 ± 6.0 d 60.9 ± 5.2 d
Znw, mg/kg 0.2 ± 0.2 a 0.5 ± 0.3 ab 0.7 ± 0.6 b 2.1 ± 0.9 c 2.7 ± 1.2 cd 3.6 ± 1.5 d 4.1 ± 0.7 d
Srw, mg/kg 0.8 ± 0.3 a 81.1 ± 14.6 b 205.4 ± 19.4 c 315.3 ± 50.4 d 295.5 ± 6.7 d 345.5 ± 130.3 d 333.2 ± 44.8 d
Baw, mg/kg 0.1 ± 0.1 a 3.5 ± 0.5 b 3.8 ± 0.9 bc 2.5 ± 0.3 c 2.0 ± 0.5 cd 1.6 ± 0.1 d 1.4 ± 0.2 e
Sm, mg/kg 0.0 ± 0.0 a 255.9 ± 99.8 b 1107.9 ± 88.8 c 4827.2 ± 1302.9 d 7827.5 ± 989.4 f 12,469.7 ± 1760.0 g 1516.2 ± 834.2 m
Pm, mg/kg 8.2 ± 2.8 a 9.4 ± 6.3 a 16.7 ± 5.6 bc 17.7 ± 6.11 abc 13.1 ± 1.2 c 14.8 ± 7.5 acb 13.3 ± 9.8 acb
Km, mg/kg 33.9 ± 0.6 a 33.0 ± 4.5 a 40.1 ± 3.6 b 46.5 ± 3.2 c 53.2 ± 2.4 d 55.3 ± 4.5 d 55.6 ± 5.1 d
Nam, mg/kg 20.1 ± 2.5 a 47.9 ± 13.9 b 99.5 ± 6.9 c 141.2 ± 18.6 d 228.0 ± 8.5 e 324.8 ± 26.3 f 414.6 ± 41.4 g
Mgm, mg/kg 66.8 ± 20.0 ab 56.5 ± 4.2 b 59.3 ± 4.4 b c 61.5 ± 4.3 c 71.0 ± 25.1 abc 74.7 ± 17.4 abc 62.9 ± 6.1 abc
Cam, mg/kg 776.7 ± 120.5 a 1117.2 ± 129.3 b 2203.4 ± 171.6 c 5459.6 ± 1276.4d 12,120.9 ± 1669.2e 15,006.7 ± 1121.4 ef 18,166.7 ± 663.0 f
Fem, mg/kg 0.7 ± 1.2 a 2.3 ± 1.0 a 12.1 ± 1.3 b 49.1 ± 10.2 c 121.7 ± 15.8 d 138.8 ± 18.3 de 160.4 ± 10.0 e

Znm, mg/kg 3.7 ± 1.4 a 4.0 ± 1.9 a 4.1 ± 1.1 a 5.0 ± 1.7 a 4.5 ± 1.0 a 4.8 ± 1.4 a 4.4 ± 2.2 a
Srm, mg/kg 4.8 ± 1.0 a 52.6 ± 6.7 b 155.9 ± 12.6 c 422.8 ± 73.5 d 668.0 ± 62.0 e 704.1 ± 28.9 f 784.0 ± 23.1 g
Bam, mg/kg 8.2 ± 2.8 ac 9.4 ± 2.6 ac 16.7 ± 5.6 b 17.7 ± 6.1 b 13.1 ± 1.2 c 14.8 ± 7.5 cb 13.3 ± 9.8 cb

w water soluble species of elements, m mobile NH4COOH species of elements. Different letters in the row denote significant differences at the 0.05
confidence level between the samples according to the Tukey test (a = 0.05)
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(SIR) revealed more sensitivity to phosphogypsum in soil, the
inhibitory effect was observed with more than 7.5% PG.

Differences in the sensitivity of the test species to PG in eco-
toxicological studies have been revealed (Fig. 2). The acute tox-
icity to earthworm (more than 50%of earthworm’smortality) was
detected in 40% PG for samples collected after 7 days and in 15,
25, and 40%PG treatments after 28 days of exposure on compare
with NA soil. Lower doses of PG (1 and 3%) had positive influ-
ence to A. sativa and S. alba root lengths; 40% PG decreased root
lengths of both plant species (Fig. 2). Overall, S. alba roots were
more affected by PG influence than A. sativa roots.

3.2 Visualization with t-SNE and LLE algorithms

Figure 3 shows the result of visualization with t-SNE and LLE
algorithms for given data. As can be seen from LLE, samples
were clustered very well according to PG treatments, forming
a total of four well-defined clusters. Furthermore, the samples
from different collections point but with the same PG dose
qualitatively clustered together (Fig. 3a). We indicated that
chemical characterization of the soil after mixing 1 and 3%
PG had specific patterns and could be recognized automati-
cally with similarity to 0 (NA) based on the soil biological
response. In contrast, the points corresponding to the higher
percentages of PG cannot be grouped similar to the previous
case and make up the single cloud of points (Fig. 3b). It means
that chemical description of the soil after mixing with higher
than 3% of PG are not different according to chemistry with
ML algorithms and pointed at a similar chemical pattern.

3.3 Mutual information test results

The most important chemical features for the estimation of the
PG biological and ecotoxicological influence in soil are repre-
sented in Fig. 4 and they were identified by mutual information
algorithm. The heatmap shows that different features from PG
were dominated for each biological and ecotoxicity variables.

For example, the earthworm acute toxicity was mainly
driven by F(w), P(m), and Sr(m). According to the bioassay
data (Fig. 2), we detected an acute toxicity from treated soils to

E. fetida with a 15%, 25%, and 40% of PG for 28-day treated
soil samples. And this applications of PG increased the F(w),
P(m), and Sr(m) contents in soil more than 28, 1.6, and 139
times, respectively, in comparison with NA treatment.

The heatmap also suggests that S. alba root length toxicity
effects from PG were mainly related to S(m), Ca(m), and
Na(m) features. The acute toxicity effects were also observed
for soils with 15% PG and more, and the excess of mentioned
above elements in soil reached 7000 times for S(m), 15 times
for Ca(m), and 11.4 times for Na(m) in comparison with NA
(Table 1).

3.4 SVR modeling

Based on the methodology described above, we trained the
SVR algorithm to predict the soil biological and ecotoxicity
properties in a present of different PG doses. We made two
series of ML performance. The first one included the SVR-1
models, which were studied on 90% observation training set
and the second performance SVR-2 models included only
50% of initial observation for training (64 observations).
Table 2 shows the performance indicators for SVR-1, SVR-
2, and SVR-3 models with varying input size on training
datasets. The RMSE values that ranged from 4.25 to 12.15
for SVR-1 model provide the best accuracy for modeling pa-
rameters than SVR-2 and SVR-3 models. Figure 5 shows
predicted and experimental values for the selected biological
and ecotoxicological parameters (as an example, we choose
the URE, S. alba, and E. fetida) based on the SVR-1. As can
be seen, visual correlation between measured and predicted
values for the random selected samples was satisfactory.

4 Discussion

4.1 PG influence on soil chemical properties

Adding PG may drastically change the soil chemical properties
including acidification process, changes in soil chemical com-
positions. Soil solution pH is one of the major factors

0

20

40

60

80

100

120

140

0 1 3 7,5 15 25 40

PG (%)

A.sativa

0

20

40

60

80

100

120

0 1 3 7,5 15 25 40

PG (%)

S.alba

0

20

40

60

80

100

120

0 1 3 7,5 15 25 40

PG (%)

7 d

28 d
E.fetida

T
I,

%

T
I,

%

T
I,

%

Fig. 2 Effects of the PG on Sinapis alba, Avena sativa roots length and Eisenia fetida mortality after the 7 and 28 days of soil-PG exposure
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controlling soil properties of variable charge components (Pan
et al. 2014). The pH affects the surface charge through the
supply of H+ for adsorption onto the metal oxides and the
dissociation of the functional groups in the soil organic matter.
A decrease in pH can elevate the concentration of trace ele-
ments, taking up a greater proportion of the cation exchange
sites, reducing base saturation, and promoting soil toxicity (Liu
et al. 2018). It is well-known that mineral waste like phospho-
gypsum contain residues of sulfuric and phosphoric acid, which
are easy hydrolysable in soil solution and induced acidification
(International Atomic Energy Agency Report 2013). Our data
are in line with it; we observed marked changes in soil pH, and

theΔpH dropped from 0.50 with 1% PG to 2.27 with the 40%
in compare with control (Table 1).

Addition of 7.5% PG brings the potentially hazard content
of several elements into the soil like Ba, Sr, Zn, and Ca and
also increased the S, P, Ca, and F contents. Our data is con-
firmed by several studies (Konarbaeva 1997; Blum et al.
2013), in which a significant increase in trace elements and
fluoride contents were pointed in soil after PG treatments. For
example, the average F content in natural soil is normally less
than 1 mg × g−1 soil dwt (Pickering 1985), while in our exper-
iment more than 1.6 mg F × g−1 soil dwt with 7.5% PG was
detected. Overall, these levels of soil contamination with
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fluorine induce phytotoxicity effect and could influence on
crop yield (Cui et al. 2011; Telesiński et al. 2012).

4.2 Drivers for changes in soil biological
and ecotoxicity properties

Among the nine measured soil biological and ecotoxicity var-
iables, only URE and SIR soil activities, S. alba root lengths,
and E. fetida survival rate were negatively affected by PG
treatments. Our results further suggest that only a few ele-
ments may be dependent on the exacerbating effects of PG
on mentioned above variables, in particular, F(w), P(m), and
Sr(m) have the greatest load on earthworm’s toxicity; S(m),
Ca(m), and Na(m) influenced on S. alba root lengths toxicity;
Ca(m), Ba(w), and Sr(m) mostly affected on soil URE activ-
ities; finally, F(w), P(w), and P(m) affected in SIR values.
These results were supported by the mutual information scores
(Fig. 4). Previous studies highlighted the key role of the exac-
erbated F, Sr, and P soil content in toxicity to earthworms. In
particular, fluorine and strontium may have led cytotoxicity
effects (Morgan and Morgan 1988; Chae et al. 2018), and
phosphorus addition with fertilizer may also induced earth-
worm’s mortality (Chaudhari 2016). The sulfur, calcium and
sodium phytotoxicity effects may be connected with their pos-
sible accumulation in roots and ion relations effects (Negrão

et al. 2017). Inhibition activities of barium and strontium to
soil URE activities were earlier observed by Tabatabai (1977).

The lack of effect of PG on soil enzyme activities like AP,
FDA, and DHA, looks controversial, yet it provides the evi-
dence in favor of the sensitivity of these enzymes to soil con-
tamination that could be overvalued for soil monitoring pur-
poses. In general, the enzyme activities are considered to be
the first to respond to soil contamination; due to their high
sensitivity to react to environmental changes. Moreover, they
play a fundamental role in the dynamics of C, N, P, and S
(Caldwell 2005). However, our results in general make it pos-
sible to assume that a high amount of fertilizer elements could
interfere the effect of trace elements on hydrolysis enzymes.
As could be seen from the mutual information scores shown in
Fig. 4, the P, K, Na, Mg, and S addition had the highest load in
AP, DHA, and FDA responses among all the other elements.
Thus, we conclude that the chosen machine learning tech-
niques are useful to further studies in the issues in questions
and potentially help elucidate quite Bin-obvious^ relations.

4.3 Limitations of SVR modeling for prediction soil
biological and toxicity properties after PG addition

Models based on biological indicators could become a pow-
erful tool in soil ecotoxicology and could help to reduce the
amount of analysis needed to the adequate monitoring of soil

Fig. 5 Prediction accuracy for the selected soil toxicity data using SVR-1 model

Table 2 Influence of training set
size on SVR models performance
to predict soil biological and
ecotoxicity properties after PG
addition

DHA URE AP FDA SBR SIR E. fetida S. alba A. sativa

SVR-1. Training dataset 116 observations and validation datasets 12 observations

RMSE 8.64 7.04 12.15 8.13 4.25 6.18 9.19 6.01 8.57

SVR-2. Training dataset 88 observations and validation datasets 38 observations

RMSE 9.35 10.37 11.64 11.91 6.13 11.48 12.33 8.10 8.12

SVR-3. Training dataset 63 observations and validation datasets 63 observations

RMSE 13.55 11.94 12.97 11.93 11.16 12.16 12.50 9.84 12.64

J Soils Sediments



systems quality (Cipullo et al. 2019). The results of our SVR
performances revealed that model prediction ability consis-
tently improved with increasing size of training sets. The
SVR model was able to predict the toxicity and biological
properties with adequate accuracy only in case when 90% of
received data was used as a training dataset (Fig. 5), and when
we reduced the training dataset to 70 or 50% of experimental
data, the accuracy of modeling dramatically decreased
(Table 2). Similar influence of varying training set size on
SVM-based prediction previously was published by
Rodríguez-Pérez et al. (2017). Meanwhile, our model is a
priory valid only for the values of the input variables which
are captured by the training dataset. For example, the models
may not accurately predict the toxicity for soils which are
different from tested spodosol.

Yakovlev et al. (2013) and Hentati et al. (2015) have al-
ready investigated phosphogypsum toxicity using the simple
linear probit model. In particular, Hentati et al. (2015) pro-
posed that no observed effect concentration of PG in soil were
determined from 1.24 (F. candida) to 24.61% (E. crypticus),
and no toxic effect was detected for Zea mays and Lactuca
sativa up to 25% PG. According to Yakovlev et al. (2013), the
most sensitive indicator of an ecosystem stress for PG appli-
cation was a microbial respiration activity, and the calculated
no observed effect concentration were 10.8% in artificial soil.

We believe that our approach to identify the PG influence in
soil with advanced ML models looks beneficial in compare
with previous studies, which can be explained by better appli-
cability of received knowledge because we used both qualita-
tive data (biological and ecotoxicological properties) and quan-
titative data (chemical properties of soils with different doses of
PG) for models training. Keeping in mind that the relationship
among pollutants and even the chemical composition of waste
is highly nonlinear and very complex, it was mandatory to use
more accurate analysis tools based on statistical learning such
as the above-mentioned support vector regression.

5 Conclusions

Empirical data from a 2-month greenhouse experiment were
used to assess the ability and performance of unsupervised
and supervised ML methods to differentiate PG treatments
and to predict temporal biological and ecotoxicological
changes in soils after PG addition. We clearly revealed the
multiplicity influence of PG in soil chemical, toxicological,
and biological properties. And these results confirm that the
PG addition capable to induce additive toxicity and might
contribute to severe negative process when it is applied in
wrong dose. Results obtained from the mutual information
test illustrated that among all tested biological and toxicolog-
ical parameters, only several, namely, urease activities, soil
respiration activities after glucose addition, S. alba root

lengths, and E. fetida survival rates, showed as good indica-
tors for early-stage PG risk assessment. Thus, ML methods
could be very helpful to understand complex mixtures fate,
and identify the key variables affecting their behavior and the
environmental risks posed by the various pools of contami-
nants. Finally, we note that size of training datasets signifi-
cantly influenced on the SVR model performance and even a
Bsmall^ data could be enough to training SVMmodels. At the
time when the ecological monitoring programs are declining
in a cost-effective manner and we are not always having a
possibility to receive a BBig Data^ in soil environment, the
usage of ML methods may be a promising candidate tools to
prevent soil degradation and contamination.
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