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Abstract

Filtration is a standard tool for establishing the finite model property of modal logics.
We consider logics and classes of frames that admit filtration, and identify some
operations on them that preserve this property. In particular, the operation of adding
the inverse or the transitive closure of a relation is shown to be safe in this sense.
These results are then used to prove that every regular grammar logic with converse
admits filtration. We present filtration constructions for right-linear and left-linear
grammar logics. We also give a simple example of a grammar modal logic that is
undecidable and hence does not admit filtration.

Keywords: Modal logic, tense logic, finite model property, filtration, transitive
closure, universal modality, grammar modal logic, Horn closure, regular grammar,
propositional dynamic logic.

Introduction

Filtration is a method of collapsing an infinite model into a finite one while
preserving the truth values of a given finite set of formulas. In modal logic, it
is widely used as a tool for establishing the finite model property (FMP) and
decidability. It dates back to the pioneering works of Scott, Lemmon [15] and
Segerberg [18]. This technique was used by Fischer and Ladner who designed
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a filtration for PDL [7], Shehtman who developed a filtration for products of
modal logics (see e.g. [20]), and many others.

Gabbay [9] was perhaps the first who introduced the term “a logic L admits
filtrations”, which means that any model over an L-frame can be “filtrated”
into a finite model again over an L-frame. He summarized that the logics K,
T, B, S4, S5, S4.1 admit filtration, and extended this list with the logics
K + 2p → 2mp, m ≥ 2; the latter are the simplest examples of the so called
regular grammar logics [5].

Our aim here is to investigate modal logics and classes of Kripke frames
that admit filtration (or have the AF property), from the following viewpoint.
We tackle the problem of identifying the cases when it is possible to transfer
the AF property from a modal logic (or a class of frames) to its enrichment
with new kinds of modalities (or accessibility relations).

Specifically, given a class F of frames of the form F = (W, (Re)e∈Σ), we
consider the corresponding class F~ = {F~ | F ∈ F} of their expansions F~ =
(W, (Re)e∈Σ, S), where the relation S ⊆ W×W is obtained by an operation ~
on (the relations in) F . We investigate for which operations ~, the AF property
for F implies that for F~; we call such operations filtration safe.

This question has already been addressed before. In particular, Goranko
and Passy [11] proved that adding the universal relation is filtration safe.
Bezhanishvili and ten Cate [1] proved that taking the hybrid companion of
a logic is filtration safe in [8], the AF property was applied to products of
modal logics.

In general, the AF property is not only a tool for obtaining the FMP, but
also a strong sufficient condition for the decidability of many derived modal
logics, and so we believe it is worthy of studying per se. In particular, when we
prove the AF property for some logic for which the decidability and FMP had
already been established by other methods, this still increases our knowledge,
because it allows us to make conclusions about the derived logics.

In this paper, we identify several frame expanding operations that preserve
the AF property, namely: adding the union Ra ∪Rb, the composition Ra ◦Rb,
the diagonal relation {(x, x) | x ∈ W}, and most interestingly – the inverse
relation R−1

a and the transitive closure relation R+
a . Consequently, if a modal

logic L admits filtration, then so does its tense counterpart Lt, or extension with
the transitive closure modality L� (despite being “extremely dangerous” in
general, cf. [2, p. 373]), provided that the logics obtained are Kripke complete.
The result about Lt seems particularly interesting to us in context of Wolter’s
program of “temporalization” of modal logics [23,24,25,26,27].

We then apply these results to grammar modal logics [5]. We show that, for
a given regular grammar Π, starting from the class of all frames, one can apply
a sequence of operations of the above kind and arrive at the class of all Π-
frames, i.e., frames that satisfy the set of inclusions corresponding to the rules
in Π. This yields a simple proof of the result that every regular grammar logic
(with converse) admits filtration (and hence has the FMP and is decidable).
Note that the FMP for these logics was already known from [5,6].
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Finally, we give two examples of logics that do not admit filtrations. To this
end, we show that the global satisfiability problem is undecidable for the logics
K.2 = K+32p→ 23p and K2+[a]p→[b][a][b]p. The latter corresponds to
the irregular grammar a→ bab. This enables us to build a simple undecidable
context-free grammar logic, which complements Demri’s paper [5].

Section 1 introduces the notion of a logic (or a class of frames) that admits
filtration. In Section 2, we identify some filtration safe operations on frames and
obtain the corresponding transfer results for logics (Section 2.4). In Section 3,
we recall the notion of a grammar logic and give a short proof (using the results
of Section 2) of the fact that every regular grammar logic (with converse)
admits filtration. Section 4 presents explicit filtration constructions for logics
that correspond to some subfamilies of regular grammars. Finally, Section 5
contains the above mentioned undecidability results. The paper concludes with
the discussion of open questions and further directions of research.

1 Preliminaries

We assume the reader to be familiar with syntax and semantics of multi-modal
logic [2,4], so we only briefly recall some notions and fix notation. Let Σ be
a finite alphabet (of indices for modalities). The set Fm(Σ) of modal formulas
over Σ is defined from propositional letters Var = {p0, p1, . . .} using Boolean
connectives and the modalities [e], for e ∈ Σ, according to the syntax:

ϕ ::= ⊥ | pi | ϕ→ ψ | [e]ϕ.
We use standard abbreviations (e.g., >,∧); in particular, 〈e〉ϕ := ¬[e]¬ϕ. For
a set of formulas Γ, by Sub(Γ) we denote the set of all subformulas of formulas
from Γ. We say that Γ is Sub-closed if Sub(Γ) ⊆ Γ.

A (Σ-)frame is a pair F = (W, (Re)e∈Σ), where W 6= ∅ and Re ⊆W×W
for e ∈ Σ. A model based on F is a pair M = (F, V ), where V (p) ⊆W , for all
p ∈ Var. The truth relation M,x |= ϕ is defined in the usual way, e.g.

M,x |=[e]ϕ � for all y ∈W , if xRe y then M,y |= ϕ.

A formula ϕ is valid on F , notation F |= ϕ, if M,x |= ϕ for all M based on F
and all worlds x in F . For a class of frames F , an F-model is a model based
on a frame from F . A formula ϕ is satisfiable in F if it is true in some world
of some F-model; ϕ is globally satisfiable in F if it is true in some F-model.

A (modal) logic (over Σ) is a set of formulas L that contains all classical
tautologies, the axioms [e](p→ q) → ([e]p → [e]q), for each e ∈ Σ, and is
closed under the rules of modus ponens, substitution, and necessitation (from
ϕ, infer[e]ϕ, for each e ∈ Σ). An L-frame is a frame on which L is valid. The
logic of a class of frames F is the set of all formulas that are valid on F . A logic
is Kripke complete if it is the logic of some class of frames. A logic L has the
finite model property (FMP) if it is the logic of some class of finite frames; or
equivalently (see [2, Th. 3.28]) if, for every formula ϕ /∈ L, there is a finite L-
frame F such that F 6|= ϕ. If, additionally, the size of F is at most exponential
in size of ϕ, we say that L has the exponential model property (ExpMP).
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1.1 Filtration

The notion of a filtration we introduce below slightly generalizes the standard
one (cf. [2, Def. 2.36], [4, Sect. 5.3]) in the following aspect: given a finite set
of formulas Γ, we define a filtration as a model obtained by factorizing a given
model w.r.t. an equivalence relation that we allow to be finer than the one
induced by Γ. This modification seems to first appear in [19]; see also [20].

Let M = (W, (Re)e∈Σ, V ) be a model and Γ a finite Sub-closed set of Σ-
formulas. An equivalence relation ∼ on W is of finite index if the quotient set
W/∼ is finite. The equivalence relation induced by Γ is defined as follows:

x ∼Γ y � ∀ϕ ∈ Γ
(
M,x |= ϕ ⇔ M,y |= ϕ

)
.

Clearly, ∼Γ is of finite index. We say that an equivalence relation ∼ respects
Γ if ∼ ⊆ ∼Γ; in other words, if for every ∼-class α ⊆W and every formula
ϕ ∈ Γ, ϕ is either true in all worlds of α or false in all worlds of α.

Definition 1.1 (Filtration) A filtration of a model M that respects a set

of formulas Γ (or a Γ-filtration of M) is any model M̂ = (Ŵ , (R̂e)e∈Σ, V̂ )
satisfying the following conditions:

• Ŵ = W/∼, for some equivalence relation of finite index ∼ on W ;

• the equivalence relation ∼ respects Γ;

• the valuation V̂ is defined on the variables p ∈ Γ canonically: x̂ |= p⇔ x |= p,
for all worlds x ∈W , where x̂ denotes the ∼-class of x;

• Rmin
e ⊆ R̂e ⊆ Γe, for each e ∈ Σ. Here Rmin

e is the e-th minimal filtered

relation on Ŵ , and Γe is the e-th maximal filtered relation 4 on Ŵ induced
by the set of formulas Γ; they are defined in the usual way:

x̂ Rmin
e ŷ � ∃x′ ∼ x ∃y′ ∼ y : x′Re y

′,
x̂ Γe ŷ � for every formula [e]ϕ ∈ Γ

(
M,x |=[e]ϕ ⇒ M,y |= ϕ

)
.

Note that the relations Rmin
e and Γe are well-defined on ∼-classes, and

that Rmin
e ⊆ Γe always holds. The condition Rmin

e ⊆ R̂e is equivalent to that

∀x, y ∈W (xRe y⇒ x̂ R̂e ŷ). A filtration is always a finite model. The following
lemma states the main property of filtrations (cf. [2, Th. 2.39], [4, Th. 5.23]).

Lemma 1.2 (Filtration lemma) Let Γ be a finite Sub-closed set of formulas.

Suppose that M̂ is a Γ-filtration of a model M . Then, for all worlds x ∈W
and all formulas ϕ ∈ Γ, the equivalence holds: M,x |= ϕ ⇔ M̂, x̂ |= ϕ.

Definition 1.3 (AF) We say that a class of frames F admits filtration if, for
every finite Sub-closed set of formulas Γ and every F-model M , there exists a
F-model that is a Γ-filtration of M . A logic L admits filtration if it is Kripke
complete and the class of all L-frames admits filtration.

4 In literature, it is sometimes denoted by (Re)max. In fact, however, it depends not (only)
on the relation Re, but on Γ (and M). Later we use maximal filtered relations induced by
different sets of formulas, so we need a notation that allows us to distinguish between them.
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Example 1.4 ([9,4]). The logics K, T, K4, S4, B, S5, S4.1, K+2p→ 2mp,
for m ≥ 0, the multi-modal K (i.e., Kn) admit filtration. The classes of point-
generated S4.2-frames and point-generated S4.3-frames admit filtration.

Theorem 1.5 (AF implies FMP) If a logic admits filtration then it has the
FMP. If additionally it is finitely axiomatizable, then it is decidable.

Proof. By the standard argument, cf. [4, Corollary 5.26]. 2

A trivial (but important) remark is that any class of finite frames admits
filtration, since any finite model is a filtration of itself. Hence, one cannot say
that L admits filtration if it is the logic of some class of frames that admits
filtration (in the sense of Definition 1.3), otherwise the notions of AF and FMP
would coincide. Indeed, AF implies FMP; conversely, an FMP logic is the logic
of the class of all finite L-frames, which trivially admits filtration.

Below, we need the following lemma on the relationship between some op-
erations on relations (or on frames) and minimal filtered relations.

Lemma 1.6 For any equivalence relation ∼ on W and any relations on W ,

(1) (Id(W ))
min

= Id(Ŵ ) (4) (R−1)
min

= (Rmin)−1

(2) (W×W )
min

= Ŵ×Ŵ (5) (R ◦ S)
min ⊆ Rmin ◦ Smin

(3)
(⋃

i∈I Ri

)
min =

⋃
i∈I Ri

min (6) (R+)min ⊆ (Rmin)+

Here Id(W ) := {(x, x) | x ∈W}, and R+ is the transitive closure of R.

Proof. (1), (2), and (4) are trivial. (3) follows from that ∃ distributes over ∨.
It remains to prove (5), because (3) and (5) together imply (6).

(5) If (x̂, ŷ) ∈ (R ◦ S)
min

then ∃x′ ∼ x ∃y′ ∼ y with x′ (R ◦ S) y′, hence
x′Rz S y′, for some z ∈W . Thus x̂ Rmin ẑ Smin ŷ, so (x̂, ŷ) ∈ (Rmin ◦ Smin). 2

2 Transferring the ‘admits filtration’ property

Here we point out several operations on frames that preserve the AF property,
in the sense that if a class of frames admits filtration, then so does the class of
all frames transformed by this operation.

2.1 Simple operations on frames

Let Σ′ ⊂ Σ. Given a frame F = (W, (Re)e∈Σ), denote by F |Σ′ = (W, (Re)e∈Σ′)
its Σ′-reduct. For a class of frames F , denote F|Σ′ = {F |Σ′ | F ∈ F}. The
reader can easily prove the following lemma.

Lemma 2.1 If F admits filtration, then so does F|Σ′ , for any Σ′ ⊂ Σ.

For a class F of frames of the form 5 F = (W,R), let Fu := {Fu | F ∈ F},
where Fu = (W,R,W×W ) is the frame F enriched by the universal relation.

Lemma 2.2 ([11, Th. 5.9]) If F admits filtration then so does Fu.

5 Althouth we often consider the uni-modal case below, this is for simplicity only; one can
always assume that frames have additional relations, as they do not influence the proof much.
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Although the notion of a logic that admits filtration used in [11] differs
from ours, the same proof works for our case: simply substitute > or ⊥ for all
formulas of the form [∗]ϕ, where [∗] is the universal modality, depending on
whether ϕ is true or false in the given model, and then filtrate the F-model.

Lemma 2.3 If a class F of Σ-frames admits filtration, then so do the following
classes of frames, for any fixed a, b ∈ Σ:

(i) F∪ = { (W, (Re)e∈Σ, Ra ∪Rb) | (W, (Re)e∈Σ) ∈ F },
(ii) F◦ = { (W, (Re)e∈Σ, Ra ◦Rb) | (W, (Re)e∈Σ) ∈ F },
(iii) F= = { (W, (Re)e∈Σ, Id(W )) | (W, (Re)e∈Σ) ∈ F }.

Proof. (i) To prove that F∪ admits filtration, given a finite Sub-closed
set of formulas Γ ⊂ Fm(Σ ∪ {c}), where c /∈ Σ, and an F∪-model M∪ =
(W, (Re)e∈Σ, Rc, V ), withRc = Ra ∪Rb andM = (W, (Re)e∈Σ, V ) an F-model,
let us show how to build an F∪-model that is a Γ-filtration of M∪.

Let us introduce a translation (·)∗ from Fm(Σ∪{c}) to Fm(Σ) that preserves
variables,→, ⊥,[e] for each e ∈ Σ, and satisfies: ([c]ϕ)∗ =[a]ϕ∗∧[b]ϕ∗. One
can easily show that, for any x ∈W and any formula ϕ ∈ Fm(Σ ∪ {c}),

M∪, x |= ϕ ⇐⇒ M,x |= ϕ∗. (∗)

Consider the set of formulas Φ = SubΓ∗ = Sub{ϕ∗ | ϕ ∈ Γ} ⊆ Fm(Σ).

Since F admits filtration, there is an F-model M̂ = (Ŵ , (R̂e)e∈Σ, V̂ ) that is a

Φ-filtration of M . Here Ŵ = W/∼, where ∼ respects Φ, Rmin
e ⊆ R̂e ⊆ Φe for

each e ∈ Σ, and x̂ |= p ⇔ x |= p, for every variable p from Var(Φ) = Var(Γ).

Now extend M̂ to N = (Ŵ , (R̂e)e∈Σ, R̂c, V̂ ) by putting R̂c := R̂a ∪ R̂b.
Clearly, N is an F∪-model. Let us show that N is a Γ-filtration of M∪. From
(∗) it easily follows that ∼ respects Γ. It remains to prove the inclusions:

Rmin
e

(1)

⊆ R̂e

(2)

⊆ Γe for all e ∈ Σ, Rmin
c

(3)

⊆ R̂c

(4)

⊆ Γc.

Here we already have (1); the inclusion (Ra ∪Rb)
min ⊆ Rmin

a ∪ Rmin
b from

Lemma 1.6(3) implies (3); (2) follows from (a) and (4) follow from (b) below.

(a) Φe ⊆ Γe for each e ∈ Σ. (Therefore, R̂e ⊆ Φe ⊆ Γe.)
Assume x̂Φe ŷ. To show x̂Γe ŷ, take any [e]ϕ ∈ Γ. Then [e]ϕ∗ ∈ Φ and so

x |=[e]ϕ ⇐⇒ x |=[e]ϕ∗ =⇒ y |= ϕ∗ ⇐⇒ y |= ϕ.

(b) Φa ∪ Φb ⊆ Γc. (Here we use that F∪ |= [c]p→[a]p ∧[b]p.)
Assume x̂ (Φa ∪ Φb) ŷ. Without loss of generality, x̂Φa ŷ. To prove that
x̂Γc ŷ, take any [c]ϕ ∈ Γ. Then ([c]ϕ)∗ ∈ Φ and so [a]ϕ∗ ∈ Φ, hence:

x |=[c]ϕ ⇐⇒ x |=[c]ϕ∗ =⇒ x |=[a]ϕ∗ =⇒ y |= ϕ∗ ⇐⇒ y |= ϕ.

(ii) Use ([c]ϕ)∗=[a][b]ϕ∗. Now (b) is: Φa ◦ Φb ⊆ Γc by Lemma 1.6(5).

(iii) Use ([c]ϕ)∗ = ϕ∗. Now R̂c := Id(Ŵ ) = Rmin
c ⊆ Γc by Lemma 1.6(1). 2

2.2 Inverse relation

Given a class F of frames of the form F = (W,R), denote F t = {F t | F ∈ F},
where F t = (W,R,R−1) is called the tense expansion of the frame F .
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Theorem 2.4 If F admits filtration then so does F t.

Proof. Given a finite Sub-closed set of formulas Γ ⊂ Fm(2,�) and an F t-
model M t = (W,R,R−1, V ), where 2 refers to R and � to R−1, with M =
(W,R, V ) an F-model, we build an F t-model that is a Γ-filtration of M t.

Let us introduce fresh variables {qϕ | ϕ ∈ Γ} and extend the valuation V to
them by putting: 6 x |= qϕ � x |= ϕ. Thus, ϕ↔ qϕ and hence 2ϕ↔ 2qϕ and
2¬ϕ↔ 2¬qϕ are true in M t, for all ϕ ∈ Γ. Now consider the set of formulas:

Φ := Sub{ 2qϕ, 2¬qϕ | ϕ ∈ Γ } ⊂ Fm(2).

Since the class F admits filtration, there exists an F-model M̂ = (Ŵ , R̂, V̂ ) that

is a Φ-filtration of M . Here Ŵ = W/∼, where ∼ respects Φ, Rmin ⊆ R̂ ⊆ Φ2,

and x̂ |= q ⇔ x |= q, for all variables q from Φ. Let us extend V̂ to the variables
p from Γ by putting x̂ |= p � x̂ |= qp.

We claim that M̂ t := (Ŵ , R̂, (R̂)−1, V̂ ) is an F t-model (this is obvious) and

a Γ-filtration of M t, i.e., that ∼ respects Γ and the inclusions Rmin ⊆ R̂ ⊆ Γ2

and (R−1)min ⊆ R̂−1 ⊆ Γ� hold.

(a) The equivalence relation ∼ respects the set of formulas Γ.
Assume that x ∼ y. Then, since ∼ respects Φ, we have the equivalences:

x |= ϕ ⇐⇒ x |= qϕ ⇐⇒ y |= qϕ ⇐⇒ y |= ϕ.

(b) (R−1)min = (Rmin)−1. (By Lemma 1.6(4).)

(c) Φ2 ⊆ Γ2.
Assume x̂Φ2 ŷ. To show x̂Γ2 ŷ, take any 2ϕ ∈ Γ. Then 2qϕ ∈ Φ and so

x |= 2ϕ ⇐⇒ x |= 2qϕ =⇒ y |= qϕ ⇐⇒ y |= ϕ.

(d) (Φ2)−1 ⊆ Γ�. (The proof of this item contains the main trick.)
Assume x̂Φ2 ŷ. To show ŷ Γ� x̂, take any ϕ := �α ∈ Γ. Then 2¬qϕ ∈ Φ.
We prove the required implication: y |= �α ⇒ x |= α, by contraposition:

x 6|= α
(1)

=⇒ x |= 2¬�α (2)⇐⇒ x |= 2¬qϕ
(3)

=⇒ y |= ¬qϕ
(4)⇐⇒ y 6|= �α

Here (1) follows from that F |= ¬p→ 2¬�p; (2) and (4) hold since ϕ↔ qϕ
and hence �α↔ qϕ are true in M t; (3) holds since 2¬qϕ ∈ Φ and x̂Φ2 ŷ.

Thus, Rmin⊆ R̂ ⊆ Φ2⊆ Γ2 and (R−1)min = (Rmin)−1⊆ R̂−1⊆ (Φ2)−1⊆ Γ�. 2

As a corollary, we obtain the following. Given a frame F = (W, (Re)e∈Σ),
let F	 := (W, (R−1

e )e∈Σ). For a class of frames F , put F	 = {F	 | F ∈ F}.

Theorem 2.5 (Inverting) If F admits filtration, then so does F	.

Proof. First, add inverse relations, using Theorem 2.4. Secongly, drop the
original relations, i.e., take the Σ-reduct, using Lemma 2.1. 2

6 Throughout the proof, we write x |= ϕ instead of M,x |= ϕ or Mt, x |= ϕ. This is un-
ambiguous, since the truth values of 2-formulas in M and Mt coincide, while for formulas
involving �, the shortcut x |= ϕ simply means Mt, x |= ϕ.
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2.3 Transitive closure

Given a class F of frames of the form F = (W,R), denote F⊕ = {F⊕ | F ∈ F},
where F⊕ = (W,R,R+) and R+ =

⋃
n≥1R

n is the transitive closure of R.

Theorem 2.6 If F admits filtration then so does F⊕.

Proof. Given a finite Sub-closed set of formulas Γ ⊂ Fm(2,�) and an F⊕-
model M⊕ = (W,R,R+, V ), where 2 refers to R and � to R+, with M =
(W,R, V ) an F-model, we build an F⊕-model that is a Γ-filtration of M⊕.

Let us introduce fresh variables {qϕ | ϕ ∈ Γ} and extend the valuation V to
them by putting: x |= qϕ � x |= ϕ. Thus, ϕ↔ qϕ and hence 2ϕ↔ 2qϕ are
true in M⊕. Now consider the following set of formulas:

Φ := { qϕ, 2qϕ | ϕ ∈ Γ } ⊂ Fm(2).

Since the class F admits filtration, there exists an F-model M̂ = (Ŵ , R̂, V̂ ) that

is a Φ-filtration of M . Here Ŵ = W/∼, where ∼ respects Φ, Rmin ⊆ R̂ ⊆ Φ2,

and x̂ |= q ⇔ x |= q, for all variables q from Φ. Let us extend V̂ to the variables
p from Γ by putting: x̂ |= p � x̂ |= qp.

We claim that the model M̂⊕ := (Ŵ , R̂, (R̂)+, V̂ ) is an F⊕-model (this is
obvious) and a Γ-filtration of M⊕, i.e., that ∼ respects Γ and the inclusions

Rmin ⊆ R̂ ⊆ Γ2 and (R+)
min ⊆ R̂+ ⊆ Γ� hold.

(a) The equivalence relation ∼ respects the set Γ. (As in Theorem 2.4.)
(b) (R+)min ⊆ (Rmin)+. (By Lemma 1.6(6).)
(c) Φ2 ⊆ Γ2. (As in Theorem 2.4.)
(d) Φ2 ⊆ Γ�. (Here we will use that F⊕ |= �p→ 2p.)

Assume x̂Φ2 ŷ. To prove x̂Γ� ŷ, take any �ϕ ∈ Γ, then 2qϕ ∈ Φ and so:
x |= �ϕ ⇒ x |= 2ϕ ⇔ x |= 2qϕ ⇒ y |= qϕ ⇔ y |= ϕ. Thus x̂Γ� ŷ.

(e) Φ2 ◦ Γ� ⊆ Γ�. (Here we will use that F⊕ |= �p→ 2�p.)
Assume x̂Φ2 ŷ Γ� ẑ. To show x̂Γ� ẑ, take any �ϕ ∈ Γ. Then 2q�ϕ∈Φ, so:
x |= �ϕ ⇒ x |= 2�ϕ ⇔ x |= 2q�ϕ ⇒ y |= q�ϕ ⇔ y |= �ϕ ⇒ z |= ϕ.

(f) (Φ2)+ ⊆ Γ�.
It suffices to prove (Φ2)n ⊆ Γ�, by induction on n ≥ 1. Induction base is
(d); induction step: (Φ2)n+1 = Φ2 ◦ (Φ2)n ⊆ Φ2 ◦ Γ� ⊆ Γ�, by (e).

Thus, Rmin ⊆ R̂ ⊆ Φ2 ⊆ Γ2 and (R+)min ⊆ (Rmin)+ ⊆ R̂+ ⊆ (Φ2)+ ⊆ Γ�. 2

An analogue of Theorem 2.6 holds for the reflexive-transitive closure R∗ =
Id(W ) ∪R+, where additionally one needs to use Lemmas 2.3 and 2.1.

2.4 Operations on logics

Let L be a logic L over Σ. Denote by Lu its extension with the universal
modality[∗]and the axioms, for all e ∈ Σ (the last three are S5-axioms for[∗]):
[∗]p→[e]p, [∗]p→ p, [∗]p→[∗][∗]p, ¬[∗]p→[∗]¬[∗]p.

The tense counterpart Lt of L is the logic over Σ ∪ Σ that extends L with
the following tense axioms, for all e ∈ Σ:

p→[e]〈e〉p, p→[e]〈e〉p.
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Given a logic L over Σ = {2}, denote by L� the extension of L with the
transitive closure modality � and the following axioms:

�p→ 2p, �p→ 2�p, �(p→ 2p)→ (2p→ �p).

It is known that extending a logic even with a seemingly “harmless” univer-
sal modality is not safe: we can lose the FMP [22], decidability [21], and even
Kripke completeness [14, Corollary 9.6.5]. A number of negative results are
also known for the tense extension and the transitive closure extension, see e.g.
[23,24], [2, Theorem 6.34]. However, if the extended logic is Kripke complete,
then we can obtain the desired transfer results for logics.

Theorem 2.7 (Filtration safe operations on logics) Suppose that a logic
L admits filtration.

(i) If the logic Lu is Kripke complete then it admits filtration [11].
(ii) If the logic Lt is Kripke complete then it admits filtration.

(iii) If the logic L� is Kripke complete then it admits filtration.

Proof. Let F be the class of all L-frames. As shown in [11], if Lu is complete
then it is the logic of Fu. Furthermore, it is known (see e.g. [14]) that F |= L iff
F t |= Lt. Similarly, F |= L iff F⊕ |= L�. Now, (i)–(iii) follow from the Kripke
completeness and Lemma 2.2, Theorems 2.4 and 2.6. 2

Corollary 2.8 If a logic L admits filtration and is finitely axiomatizable, and
Lu is Kripke complete, then the global satisfiability problem for L is decidable.

Proof. Let F be the class of all L-frames. Then, for any formula ϕ, we have:
ϕ is globally satisfiable in L iff the formula [∗]ϕ is satisfiable in Lu. 2

The next lemma gives a sufficient condition for the completeness of Lu and Lt.

Lemma 2.9 If a logic L is canonical then Lt and Lu are Kripke complete.

Proof. The axioms for [∗] and the tense axioms are canonical formulas. 2

Wolter [23,24,25,26,27] obtained a lot of general transfer results for Lt.
However, they seem not to cover our Theorem 2.7(ii), so we believe the latter
is new. At the same time, we are not aware of any transfer results for L�, nor
general sufficient conditions for it to be Kripke complete.

3 Grammar logics

Here we show that the above results easily imply that every regular grammar
logic (with converse) admits filtration and hence has the FMP. The result on
FMP is not new, as there is a translation from regular grammar logics (with
converse) into PDL with finite automata as modalities [5] (into the guarded
fragment of the first-order logic with two variables GF2 [6], respectively), there-
fore, the FMP result for regular grammar logics (with converse) follows from
the FMP for PDL and GF2 obtained in [7] and [17], respectively.



10 Filtration Safe Operations on Frames

3.1 Grammars

By a grammar 7 over an alphabet Σ we mean a finite set Π of (production) rules
of the form u→ v, where u, v ∈ Σ∗, u 6= ε (here ε is the empty word). Below,
we only deal with context-free grammars, whose rules have the form e→ v,
where e ∈ Σ, although some definitions are applicable to arbitrary grammars.
We say that a rule u→ v transforms, for any x, y ∈ Σ∗, the word xuy into xvy,
and denote this relation on words by xuy

Π7−→ xvy. Let 8 ΠZ=⇒ be the reflexive-
transitive closure of the relation

Π7−→. The set of all words producible from a
given word u is denoted by Π(u) = {v ∈ Σ∗ | u ΠZ=⇒ v}.

A grammar Π is called regular if, for every e ∈ Σ, the language Π(e) is
regular. Recall that regular languages are obtained from the empty language 9

∅, the singleton languages {ε} and {e}, for all e ∈ Σ, using the operations of
union L1 ∪ L2, composition L1 ◦ L2 and Kleene star L∗ on languages (cf. [13]).

We also consider grammars over the alphabet Σ ∪ Σ, where the symbol e in
Σ is called the inverse of the corresponding symbol e ∈ Σ. In a frame, we have
Re = (Re)

−1. The inverse of a word u = e1 . . . en is defined as u := en . . . e1.

3.2 Grammar modal logics

In the modal language over Σ, we have the modality[e] for each e ∈ Σ. For any
word u = e1 . . . en over Σ, we denote the modal operator [u] := [e1]. . .[en].
To a rule u→ v, we associate the formula [u]p → [v]p. For a grammar Π,
its grammar (modal) logic KΠ is the extension of the minimal normal multi-
modal Σ-logic KΣ, or its tense extension Kt

Σ (see Section 2.4) in case we have a
grammar over Σ ∪ Σ, with the axioms [u]p→[v]p, for all rules (u→ v) ∈ Π.

In a Σ-frame F = (W, (Re)e∈Σ), any word u = e1 . . . en in Σ∗ gives rise to
the relation Ru := Re1

◦ . . . ◦ Ren . It is easily seen that F |= [u]p → [v]p iff
Ru ⊇ Rv (notice the converse inclusion!); in this case we write F |= (u→ v).
We say that F is a Π-frame and write F |= Π if F |= (u→ v), for all rules
(u→ v) ∈ Π. A Π-model is a model based on a Π-frame. Since Ru = (Ru)−1,
we have F |= u→ v iff F |= u→ v, for any frame F over Σ ∪ Σ.

For any grammar Π, even over Σ ∪ Σ, the modal logic KΠ is Kripke com-
plete w.r.t. the class of Π-frames, since axioms of the form [u]p → [v]p are
Sahlqvist formulas, see [2, Th. 4.42]. One of the main problems in this field is
to determine for which grammars Π the logic KΠ is decidable, or even has the
FMP. Below, we show that, for every regular grammar Π, the logic KΠ admits
filtration and hence has the FMP and is decidable.

3.3 Regular grammar logics admit filtration

Let Π be a (context-free) grammar over Σ and F = (W, (Re)e∈Σ) a Σ-frame.
The Π-closure of F is the frame FΠ := (W, (RΠ

e )e∈Σ), where RΠ
e =

⋃
v∈Π(e)Rv.

Since e
ΠZ=⇒ e, we have Re ⊆ RΠ

e .

7 Our definition does not include a start symbol, in which aspect it is closer to a semi-Thue
system; however, we will need a distinction between terminal and non-terminal symbols.
8 In texts on formal language theory, this relation is often denoted by u ⇒∗

Π v.
9 In fact, we do not need ∅ below, since we always have Π(e) 6= ∅ due to that e

ΠZ=⇒ e.



Kikot, Shapirovsky and Zolin 11

Lemma 3.1 (a) The Π-closure of any frame F is a Π-frame: FΠ |= Π.
(b) If F is a Π-frame then FΠ = F .

Proof. (a) For each (e→ u) ∈ Π, let us show that RΠ
e ⊇ RΠ

u . Let u = e1 . . . en.
If xRΠ

u y, i.e., x (RΠ
e1
◦ . . .◦RΠ

en) y, then x (Rv1 ◦ . . .◦Rvn) y, for some vi ∈ Π(ei),
hence x (Rv1...vn) y. Since e

Π7−→ e1 . . . en and ei
ΠZ=⇒ vi, we have e

ΠZ=⇒ v1 . . . vn.
Thus, xRv y for the word v := v1 . . . vn ∈ Π(e). Therefore, xRΠ

e y.
(b) Assume F |= Π. Let us show that FΠ = F , i.e., RΠ

e = Re. Here ‘⊇’ is
trivial. To prove ‘⊆’, note that Ru ⊆ Ra, for all rules (a → u) ∈ Π. Then
Rv ⊆ Ra, for all v ∈ Π(a), by induction on derivation in Π. Thus, RΠ

e ⊆ Re.2

By the above lemma, taking the Π-closure of all frames yields exactly the
class of all Π-frames. Next, we show that in case Π is a regular grammar, the
Π-closure can be obtained by finitely many operations ∪, ◦, ∗.

Let Σ = {e1, . . . , en} and let E = E(e1, . . . , en) be a regular expression
over Σ, i.e., it is built up from ε and ei using ∪, ◦, ∗. Denote by L(E) the (reg-
ular) language represented by E, see [13]. In a frame F = (W,Re1

, . . . , Ren),
we can “substitute” Id(W ) for ε and Rei for ei into the expression E, thus ob-
taining a relation E(Re1

, . . . , Ren) built up from Id(W ) and Rei using ∪, ◦, ∗.

Lemma 3.2 E(Re1
, . . . , Ren) =

⋃
v∈L(E)Rv, for any regular expression E.

Proof. By an easy induction on the complexity of the expression E. 2

Now, if Π is regular, then each language Π(e) is represented by some regular
expression Ee, i.e., Π(e) = L(Ee). Then RΠ

e = Ee(Re1
, . . . , Ren) by Lemma 3.2.

So, FΠ is obtained from F by applying the frame operations ∪, ◦, ∗ (see Sec-
tions 2.1 and 2.3) finitely many times. Thus we obtain the following result.

Theorem 3.3 For every regular grammar Π over Σ ∪ Σ, the class of Π-frames
admits filtration. Consequently, every regular grammar logic (with converse)
admits filtration, has the FMP, and is decidable; moreover, it has the ExpMP.

Proof. Starting from the class of all Σ-frames, first add the inverse relations
Re, for each e ∈ Σ, by applying the tense expansion operation from Section 2.2.
Then apply the operations ∪, ◦, ∗ on frames from Sections 2.1 and 2.3 to obtain
the regular expressions Ee that represent the languages Π(e), for each e ∈ Σ.
Finally, in the resulting frames, drop the initial relations Re and all the relations
built at intermediate steps, using Lemma 2.1, and arrange the final relations
RΠ

e in the same order as the initial relations Re. Thus we obtain the class of all
Π-frames. Since the class of all Σ-frames admits filtration (see Example 1.4)
and the above operations are filtration safe, it follows that the class of all
Π-frames admits filtration as well.

Moreover, at each step, the set of formulas grows linearly: |Φ| ≤ 3|Γ| (see
Lemma 2.3, Theorems 2.4 and 2.6). Hence, starting with a filtration for the
class of all (Σ ∪ Σ)-frames through the set Sub(ϕ) of size O(|ϕ|), after a fixed
number of operations, we arrive at a filtration through a set of formulas of size
O(|ϕ|). Thus we obtain a countermodel of the size exponential in |ϕ|. 2
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4 Filtration for some regular grammar logics

Here we present filtration constructions for some familiar classes of regular
grammar logics (with converse). First, for right-linear grammar logics, we give
two different constructions of filtration. Then we adjust them to cover the
converse modalities for terminal symbols. Next, we adapt the construction to
left-linear grammar logics. Finally, we consider grammar logics with left- and
right-recursive rules.

4.1 On maximal filtered relations

In Definition 1.1, we introduced the minimal Rmin
e and the (Γ-)maximal Γe

filtered relations on Ŵ , for every symbol e ∈ Σ. Consequently, for any word
u = e1 . . . en ∈ Σ∗, the relations Rmin

u = Rmin
e1
◦ . . .◦Rmin

en and Γu = Γe1
◦ . . .◦Γen

are well-defined. Let us also introduce the maximal filtered relation Γ[u] on Ŵ
induced by the set Γ and the “compound” modality [u]=[e1]. . .[en]:

x̂ Γ[u] ŷ � for every formula [u]ϕ ∈ Γ
(
x |=[u]ϕ ⇒ y |= ϕ

)
.

Lemma 4.1 Γ[u] ◦ Γ[v] ⊆ Γ[uv], for all words u, v ∈ Σ∗.

Proof. Assume x̂Γ[u] ŷ Γ[v] ẑ. To prove x̂Γ[uv] ẑ, take any [uv]ϕ ∈ Γ. Since
Γ is Sub-closed, we have [v]ϕ ∈ Γ and ϕ ∈ Γ. Therefore, x |=[u][v]ϕ implies
y |=[v]ϕ, which in turn implies z |= ϕ, as required. 2

If we deal with the modal language over Σ ∪ Σ, the following relations are
useful: Γ]

u := (Γu)−1 and Γ]
[u] := (Γ[u])

−1. Explicitly, for e ∈ Σ, we define:

x̂Γ]
e ŷ � for every formula [e]ϕ ∈ Γ

(
y |=[e]ϕ ⇒ x |= ϕ

)
.

Lemma 4.2 (Minimax) For any words u, v ∈ (Σ ∪ Σ)∗, we have:

(a) Rmin
u ⊆ Γu ⊆ Γ[u],

(b) Rmin
u ⊆ Γ]

u ⊆ Γ]
[u].

Proof. (a) The first inclusion, Rmin
u ⊆ Γu, follows from the trivial inclusion

Rmin
ei ⊆ Γei for all i, by monotonicity of the composition. As for the second

inclusion, we have Γu = Γe1
◦ . . .◦Γen = Γ[e1]◦ . . .◦Γ[en]⊆ Γ[u], where we used

the trivial equality Γei = Γ[ei] and Lemma 4.1.

(b) This follows from (a), once we observe that (Rmin
u )−1 = Rmin

u . 2

4.2 Filtration for right-linear grammar logics

Let Π be a right-linear grammar over 10 Σ = T ∪N , which means that Π
consists of rules of the form a→ uc, where a, c ∈ N and u ∈ T ∗. Given a model
M = (F, V ) based on a Π-frame F = (W, (Re)e∈Σ) and a finite Sub-closed set

of formulas Γ ⊆ Fm(Σ), we will build a Π-model M̂ that is a Γ-filtration of M .
We introduce the following operators on (finite Sub-closed) sets of formulas:

10 We partition the set of symbols Σ into two disjoint sets of the so-called terminal and
non-terminal symbols. In any rule a → u of any grammar, we always assume that a ∈ N .
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N(Ψ) := Sub
{
[c]ϕ | a, c ∈ N, [a]ϕ ∈ Ψ

}
,

Π(Ψ) := Sub
{
[v]ϕ |[a]ϕ ∈ Ψ, (a→ v) ∈ Π

}
.

Now put ∆ := Γ ∪ N(Γ) and Φ := ∆ ∪ Π(∆). We filter the model M
through Φ, i.e., we consider the equivalence relation ∼Φ (see Section 1.1), which

obviously has the finite index and respects the set Γ, and put Ŵ := W/∼Φ.

Lemma 4.3 (Max-frame) ∆a ⊇ Φu ◦ ∆c, for every rule (a→ uc) ∈ Π.

Proof. Assume x̂Φu ŷ∆c ẑ. To show that x̂∆a ẑ, take any [a]ϕ ∈ ∆. Then:

x |=[a]ϕ
(1)

=⇒ x |=[u][c]ϕ
(2)

=⇒ y |=[c]ϕ
(3)

=⇒ z |= ϕ.

Here (1) is due to that F |= (a→ uc), so that M,x |=[a]ϕ→[u][c]ϕ;
(2) holds since [u][c]ϕ ∈ Π(∆) ⊆ Φ and (x̂, ŷ) ∈ Φu ⊆ Φ[u] by the Mini-
max Lemma; finally, (3) holds since ŷ∆c ẑ and [c]ϕ ∈ N(∆) ⊆ ∆. 2

Next, we define the valuation V̂ on the variables p from Var(Φ) = Var(Γ)

canonically: x̂ |= p iff x |= p. In order to obtain the frame F̂ = (Ŵ , (R̂e)e∈Σ)

and the model M̂ = (F̂ , V̂ ), it remains to define the relations R̂e so that F̂ |= Π

and R̂e ⊆ Γe, for each e ∈ Σ. We give two different constructions for this.

4.2.1 Right-linear grammars: Mini-maximal frame

Let R̂e be the minimal (for e ∈ T ) or the ∆-maximal (for e ∈ N) relation:

R̂e :=

{
Rmin

e , if e ∈ T ;
∆e, if e ∈ N.

Lemma 4.4 F̂ |= Π.

Proof. Take any rule (a → uc) ∈ Π, where a, c ∈ N and u ∈ T ∗. Then

the required inclusion R̂a ⊇ R̂u ◦ R̂c follows from Lemma 4.3, since R̂a = ∆a,
R̂c = ∆c, and R̂u = Rmin

u ⊆ Φu, for any u ∈ T ∗, by the Minimax Lemma. 2

Finally, R̂e ⊆ Γe, for each e ∈ Σ. Indeed, for e ∈ T this is obvious, and for
e ∈ N , we have that R̂e = ∆e ⊆ Γe, because Γ ⊆ ∆.

Remark 4.5 The above proof remains valid if, for e ∈ T , we put R̂e := Φe (or
even any relation between Rmin

e and Φe). However, this does not generalize to
the logic with converse terminals, while the relations Rmin

e still work for them.

4.2.2 Right-linear grammars: Π-closure

This time, we put R̂e := Rmin
e for e ∈ T , while for a ∈ N , we define R̂a using the

Π-closure. That is, we define, simultaneously for all a ∈ N , a tower of relations

R
(0)
a ⊆ R(1)

a ⊆ R(2)
a ⊆ . . . by induction:

R
(0)
a := Rmin

a , R
(n+1)
a := R

(n)
a ∪

⋃
(a→uc)∈Π

(
R̂u ◦R(n)

c

)
, R̂a :=

⋃
nR

(n)
a . (∗)

Note that in (∗) we have u ∈ T ∗, so that R̂u is already defined via R̂e, e ∈ T .

Lemma 4.6 F̂ |= Π.
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Proof. Since Ŵ is finite, we can find the stage n at which the sequence in (∗)
stabilizes for all a ∈ N . Now, for any rule (a→ uc) ∈ Π, we have R̂c = R

(n)
c

and R̂a = R
(n+1)
a . Then (∗) implies the required inclusion R̂a ⊇ R̂u ◦ R̂c. 2

Lemma 4.7 R̂a ⊆ ∆a, for every non-terminal a ∈ N .

Proof. It suffices to prove, by induction on n, that, for all a ∈ N , R
(n)
a ⊆ ∆a.

Induction base is trivial: Rmin
a ⊆ ∆a. Induction step: in the expression (∗) for

R
(n+1)
a , all terms are contained in ∆a. Indeed, R

(n)
a ⊆ ∆a by I.H., and for

every rule (a→ uc) ∈ Π, by the Max-frame Lemma,

R̂u ◦ R(n)
c ⊆ Φu ◦ ∆c ⊆ ∆a,

where R̂u ⊆ Φu, by the Minimax Lemma, and R
(n)
c ⊆ ∆c, by I.H. for c ∈ N .2

Thus, R̂e ⊆ Γe for e ∈ T ; and for e ∈ N , we have R̂e ⊆ ∆e ⊆ Γe, as Γ ⊆ ∆.

4.3 Right-linear grammar logics with converse terminals

Let Π be a right-linear grammar with converse terminals, i.e., its rules have the
form a→ uc, where a, c ∈ N and u ∈ (T ∪ T )∗. We adjust the “mini-maximal
frame” construction. (We could adjust the “Π-closure” construction as well.)

In addition to the operators N(Ψ) and Π(Ψ) defined above, we introduce

S(Ψ) := Sub
{
[a]¬[a]ϕ | [a]ϕ ∈ Ψ

}
.

Now, given a set Γ, we put Λ = Γ ∪ S(Γ), ∆ = Λ ∪N(Λ), and Φ = ∆ ∪Π(∆).

Then the proof proceeds as in Section 4.2.1, so we have: (a) Rmin
e ⊆ R̂e,

and (b) R̂e ⊆ Γe, for all e ∈ Σ. However, in presence converse modalities, we

also need to prove: (c) Rmin
e ⊆ R̂e, and (d) R̂e ⊆ Γe, for all e ∈ Σ. Here (c)

follows trivially from (a); while (d) for e ∈ T is trivial, since R̂e = Rmin
e . The

next lemma proves (d) for e ∈ N ; its proof resembles the one for Theorem 2.4.

Lemma 4.8 ∆a ⊆ Γ]
a, for every non-terminal a ∈ N .

Proof. Assume x̂∆a ŷ. To prove that x̂Γ]
a ŷ, we take any formula [a]ϕ ∈ Γ

and show that y |=[a]ϕ implies x |= ϕ. The proof is by contraposition:

x 6|= ϕ
(1)

=⇒ x |=[a]¬[a]ϕ (2)
=⇒ y 6|= ¬[a]ϕ.

Here (1) is due to that F |= ¬p → [a]¬[a]p, while (2) follows from that
x̂∆a ŷ and [a]¬[a]ϕ ∈ S(Γ) ⊆ ∆. 2

4.4 Left-linear grammars (with converse terminals)

For left-linear grammars, the claim follows from the one for the corresponding
right-linear grammars, due to Theorem 2.5. Indeed, inverting all relations in
frames corresponds to replacing each rule a→ w in a grammar with the rule
a→ wR, where wR is the word w written in reverse order, which, in turn, trans-
forms a right-linear grammar into a left-linear one and vice versa. However, let
us sketch an explicit filtration construction for left-linear grammars, since its
ideas will be used later in Section 4.5.
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Assume that Π is a left-linear grammar with converse terminals over Σ ∪ Σ,
where Σ = T ∪N , so it consists of rules of the form a→ cu, where a, c ∈ N
and u ∈ (T ∪ T )∗. To simplify notation, below we interpret (Σ ∪ Σ)-formulas
in Σ-frames and Σ-models in an obvious way.

Given a Π-model M = (W, (Re)e∈Σ, V ) and a finite Sub-closed set of formu-
las Γ over Σ ∪ Σ, we will build a Π-model that is a Γ-filtration of M . For this,
we introduce the operators that are in a sense dual to the operators N,Π, S
defined in Sections 4.2 and 4.3:

N(Ψ) := Sub
{
[c]ϕ | a, c ∈ N, [a]ϕ ∈ Ψ

}
,

Π(Ψ) := Sub
{
[v]ϕ |[a]ϕ ∈ Ψ, (a→ v) ∈ Π

}
,

S(Ψ) := Sub
{
[a]¬[a]ϕ | [a]ϕ ∈ Ψ

}
.

Next we put Λ = Γ ∪ S(Γ), ∆ = Λ ∪N(Λ), and Φ = ∆ ∪Π(∆).

Now we set R̂e to be Rmin
e if e ∈ T , and ∆]

e if e ∈ N . Then we prove an
analogue of the Max-frame lemma: ∆]

a ⊇ ∆]
c ◦Φ]

u, for each rule (a→ cu) ∈ Π.

This allows us to prove that F̂ |= Π, R̂e ⊆ Γ]
e and R̂e ⊆ Γe, for all e ∈ Σ.

4.5 Bi-recursive grammar logics (with converse terminals)

We call a grammar bi-recursive if it consists of rules of two kinds: right-recursive
a→ ua and left-recursive a→ av, for a ∈ N and u, v ∈ T ∗. So these grammars
combine right and left rules, but in every rule, the non-terminal in the body
(ua or av) is always the same as in the head.

Let Π = Πr ∪Π`, where Πr (resp., Π`) consists of rules of the form a→ ua
(resp., a→ av) with a ∈ N and u, v ∈ (T ∪ T )∗. The filtration for Π proceeds
in two stages: first, we build the mini-maximal frame for Π` (as in Section 4.4)
and then take its Πr-closure (as in Section 4.2.2). In order for this construction
to work, the sets of formulas Λ,∆,Φ must be chosen properly.

Given a Π-model M = (W, (Re)e∈Σ, V ) and a finite Sub-closed set of
(Σ ∪ Σ)-formulas Γ, we will build a Π-model that is a Γ-filtration of M . Put

Λ = Γ ∪ S(Γ), ∆ = Λ ∪ S(Λ), Φ = ∆ ∪Πr(∆) ∪Π`(∆).

Again, Ŵ := W/∼Φ and the valuation V̂ is canonical. It remains to build R̂e.

Stage 1. Take F = (Ŵ , (Re)e∈Σ), where Re is Rmin
e if e ∈ T and ∆]

e if e ∈ N .

As in Section 4.4, we show that (F, V̂ ) is a Π`-model and a Λ-filtration of M .

Stage 2. Take F̂ = (Ŵ , (R̂e)e∈Σ) to be the Πr-closure of F.

As in Section 4.2.2, we show that (F̂ , V̂ ) is a Γ-filtration of M . By Lemma

3.1(a), F̂ is a Πr-frame. Finally, F̂ is a Π`-frame. In fact, 11 the Πr-closure of
a Π`-frame is again a Π`-frame. This follows from a simple fact: if a relation R
satisfies R ⊇ R ◦ S, then the relation R′ = Q ◦R satisfies R′ ⊇ R′ ◦ S as well.

Remark 4.9 To any grammar considered above, we can add rules of the form
a→ u, where a ∈ N and u ∈ (T ∪ T )∗. The Π-closure construction also works
for Π consisting of rules a→ (ax)ka, where a ∈ N , x ∈ T ∗, and k ≥ 0.

11 This does not generalize to arbitrary right-linear and left-linear grammars Πr and Π`.
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5 Logics that do not admit filtration

Here we give examples of logics that do not admit filtration. Perhaps, the logic
GL is the simplest example: if a GL-model M = (W,≺, V ) has an infinite
descending chain . . . ≺ x2 ≺ x1 ≺ x0, then any filtration of M has a reflexive
point and hence is not a GL-model. Despite of this, GL has the FMP.

We will prove that the logics K+32p→ 23p and K2 +[a]p→[b][a][b]p
do not admit filtration by showing the undecidability of the global satisfiability
problem. The former logic is known to be decidable and to have FMP, which is
proved by embedding it into K×K and then appealing to the decidability and
FMP for K×K shown in [10]. It is open whether the latter logic is decidable.
Arguing similary, one can prove the same negative results for[b][a]p→[a][b]p
and even for 〈a〉[a]p→[b]p ([16, p. 19]).

A domino system is a triple D = (D,H, V ), where D 6= ∅ is a set of tile
types and H,V ⊆ D×D are horizontal and vertical matching relations. We
say that D tiles N×N if there exists a function t : N × N → D such that, for
all i, j ∈ N, we have (t(i, j), t(i + 1, j)) ∈ H and (t(i, j), t(i, j + 1)) ∈ V . The
following domino tiling problem is known [3] to be undecidable: determine
whether a given domino system D tiles N×N; similarly for N×Z and Z×Z.

Given a domino system D, we define λD = λ0 ∧ λH ∧ λV , where

λ0 = (
∨

d∈D
qd) ∧

∧
d 6=d′
¬(qd ∧ qd′),

λH =
∧

d∈D

(
qd →[h](

∨
d′∈H(d)

qd′)
)
,

λV =
∧

d∈D

(
qd →[v](

∨
d′∈V (d)

qd′)
)
.

Theorem 5.1 The global satisfiability problem for the logic L := K2 +
[h]p→[v][h][v]p is undecidable, and hence L does not admit filtration.

Consider a frame G = (W,Rh, Rv), where W = N× Z and

Rh = {((i, j), (i+ 1, j)) | i ∈ N, j ∈ Z},
Rv = {((i, j), (i, j − (−1)i) | i ∈ N, j ∈ Z}.

Let G′ be the restriction of G to the sector S = {(i, j) | 0 ≤ j < (2i+ 3)/4},
see Figure 1. Denote the formula ξ =〈h〉> ∧〈v〉>.

Lemma 5.2 For any L-frame F , if F, θ |= ξ for some valuation θ on F , then
there is a homomorphism f : G′ → F .

Proof. 1) We set f(0, 0) = c, for an arbitrary point c in F .
2) Suppose that f is already defined on {(i, j) | j < 2i+3

4 ; i ≤ i0} for
some even i0 = 2k0. By ξ, there is a point a0 in F with F |= f(i0, 0)Rha0.
We set f(i0 + 1, 0) = a0. Now suppose that f(i0 + 1, j) is defined for some
j ≤ k0. By ξ, there exists a point aj+1 in F with F |= f(i0, j)Rvaj+1. Set
f(i0 + 1, j + 1) = aj+1. If j < k0, then by F |= Rv ◦ Rh ◦ Rv ⊆ Rh, we have
F |= f(i0, j + 1)Rhaj+1, and so f is still a homomorphism.

Now suppose that f is defined on (i0 + 1, k0 + 1). By ξ, there exists bk0+1

in F such that F |= f(i0 + 1, k0 + 1)Rhbk0+1. We set f(i0 + 2, k0 + 1) = bk0+1.
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. . .

y = x
2 +

3
4 =

2x+3
4

(0, 0) (1, 0) (2, 0)

i0 i0 + 1 i0 + 2

k0

k0 + 1

S

Fig. 1. The snake frame.

Suppose that f(i0 + 2, j + 1) is defined, for some j ≥ 0. Then, by ξ, there is
a point bj in F such that F |= f(i0 + 2, j + 1)Rvbj . We set f(i0 + 2, j) = bj .
Since F |= Rv ◦Rh ◦Rv ⊆ Rh, we have F |= f(i0 + 1, j)Rhbj and so f is still a
homomorphism. After j = 0 we have f defined on {(i, j) | j < 2i+3

4 ; i ≤ i0 +2}.
Iterating 2) yields the required homomorphism f : G′ → F . 2

Proof. (of Theorem 5.1). Take a domino system D. Without loss of generality,
we can assume that

(tc) D tiles N× Z iff D tiles the sector S.

Indeed, recall that the tiling problem is undecidable because it models some
Turing machine T . But after performing each instruction, the head of T can
move to the right by at most one cell. This means that, in order to model T , it
suffices to tile the sector S′ = {(i, j) | i, j ∈ N, j ≤ i}. If, additionally, without
loss of generality, we assume that T idles after each right-move instruction,
then we can model T by tiling the sector S. So, given a Turing machine T , we
can generate a domino system D that satisfies (tc) — we only have to care how
to tile (N×Z) \ S with special blank tiles without affecting the work of T .

Assuming (tc), we can show that ξ ∧ λD is globally L-satisfiable iff D tiles
N× Z. (⇒) If D tiles N× Z, then we can use this tiling to define a model for
ξ ∧ λD based on G. (⇐) Suppose that M |= ξ ∧ λD. Using Lemma 5.2, we
can construct a homomorphism f : G′ →M . Now, from M we can read off a
D-tiling of S, and by (tc) conclude that there is a D-tiling of N×Z. 2

Corollary 5.3 The grammar logic corresponding to the context-free grammar
{h→ vhv, u→ uh, u→ uv} is undecidable.

Proof. For every modal formula ϕ containing only [h] and [v], we have: ϕ
is globally satisfiable in the logic K{h → vhv} iff the formula 〈u〉> ∧[u]ϕ is
(locally) satisfiable in the logic K{h→ vhv, u→ uh, u→ uv}. 2
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p0 p0 p0 p0

p0

p1 p1 p1

p2 p2

Fig. 2. A fragment of a “grid” model.

This gives a simple example of an undecidable context-free grammar logic
without converse. Compare this with the undecidability of PDL enriched with
the language {anban | n ∈ N} shown in [12]. However, their formulas essentially
use the PDL-constructs, and it is not clear if the latter can be eliminated so
that the undecidability proof worked for context-free grammar logics.

Theorem 5.4 The global satisfiability for K + 32p→ 23p is undecidable.

Proof. Let M = (WG, RG, θG) be an infinite Kripke model based on a frame G
(see Figure 2), where WG = N× N, θG(pi) = {(m,n) | n ≡ i (mod 3)}, and

RG = {((m,n), (m+ 1, n)) | m,n ∈ N} ∪ {((m,n), (m,n+ 1)) | m,n ∈ N}.
Let ξ be the conjunction of the following formulas (which capture some prop-
erties of G) for 0 ≤ i 6= j ≤ 2 (subscripts of p’s are understood modulo 3):

(X1) pi ∧ pj → ⊥
(X2) pi → 2(pi ∨ pi+1)
(X3) pi → (3pi ∧3pi+1)
(X4) p0 ∨ p1 ∨ p2

Lemma 5.5 Assume that F |= 32p→ 23p. If F, θF |= ξ for some θF , then
there is a homomorphism f : G→ F in the following sense:

(Homo) if G |= xRy then F |= f(x)Rf(y) and
x ∈ θG(pi) iff f(x) ∈ θF (pi).

Proof. Denote N = (F, θF ). Step 0. From (X3) and (X4) it follows that
there exists a point x in F such that N, x |= p0. We set f(0, 0) = x.

Step n. Suppose that, for some n, f is defined on {(i, j) | i, j ≥ 0; i+j ≤ n}
and satisfies (Homo). We extend f to {(i, j) | i, j ≥ 0; i+j = n+ 1} as follows.
By (X3), there is a point x in F such that F |= f(n, 0)Rx and N, x |= p0.
We set f(n + 1, 0) = x. Similarly, there is y in F such that F |= f(0, n)Ry
and N, y |= pn+1. We set f(0, n + 1) = y. Since F |= 32p → 23p, the
fact that, by I.H., for all i, j such that i+ j = n− 1, F |= f(i, j)Rf(i, j + 1)
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and F |= f(i, j)Rf(i+ 1, j), implies that there exist points zij in F such that
F |= f(i, j + 1)Rzij ∧ f(i + 1, j)Rzij . Now we define f(i + 1, j + 1) = zij .
Then (X2) and I.H. imply that N, zij |= pj . We claim that f is now defined on
{(i, j) | 1 ≤ i+ j ≤ n+ 1} and satisfies (Homo). 2

For a domino system D = (D,H, V ), we define λD = λ0 ∧ λH ∧ λV , where

λ0 = (
∨

d∈D
qd) ∧

∧
d 6=d′
¬(qd ∧ qd′),

λH =
∧

0≤i≤2

∧
d∈D

(
pi ∧ qd → 2(pi →

∨
d′∈H(d)

qd′)
)
,

λV =
∧

0≤i≤2

∧
d∈D

(
pi ∧ qd → 2(pi+1 →

∨
d′∈V (d)

qd′)
)
.

We claim that ξ ∧ λD is globally satisfiable on some frame F validating
32p→ 23p iff D tiles N× N. This gives us the desired reduction. 2

6 Conclusion and further research

In this paper we investigate classes of frames and modal logics that admit
filtration and operations on them that preserve this property (they are called
filtration safe). On the one hand, this notion is useful for obtaining results on
the FMP and the decidability of logics. On the other, it appears robust, for
many interesting operations turn out to be filtration safe (see Section 2).

We used filtration safe operations to show that every regular grammar logic
(with converse) admits filtration and hence is decidable (Theorem 3.3). Note
that all known examples of undecidable grammar logics (see e.g. Corollary 5.3)
correspond to irregular grammars. The following question arises naturally.

Open problem. Are the following claims equivalent, for every grammar Π:

(i) Π is a regular grammar,
(ii) the logic KΠ is decidable,

(iii) the logic KΠ admits filtration,
(iv) the logic KΠ has the finite model property,
(v) the logic KΠ has the exponential model property?

The approach taken in this paper could be developed in various directions.
One can examine other interesting operations on relations for filtration safety.
Note that all operations on classes of frames considered above are in fact in-
duced by operations on frames. It is reasonable to consider more general oper-
ations. For example, the following operation is filtration safe: given a class F
of frames of the form (W,R), build the class {(W,R, S) | (W,R) ∈ F , R ⊆ S}.
One could also seek for general conditions on operations that are sufficient for
filtration safety; Lemma 1.6 gives an idea what such conditions might look like.

A ‘relativized’ notion also makes sense: one can say that a logic L admits
filtration in a class of frames F if L is the logic of F and F admits filtration.
As we mentioned in Example 1.4, the logics S4.2 and S4.3 admit filtration
in the classes of their point-generated frames. Of course, in order to use the
relativized notion for obtaining decidability results, we need to assume that the
subclass of finite frames of the class F is recognizable.
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