# ПРЕДСКАЗАНИЕ ХАРАКТЕРИСТИК ИЗОТОПОВ 102-106 ЭЛЕМЕНТОВ НА ОСНОВЕ МАССОВЫХ СООТНОШЕНИЙ

М.В. Симонов<sup>1</sup>, Е.В. Владимирова<sup>1</sup>, Т.Ю. Третьякова<sup>2</sup>

<sup>1</sup> Московский государственный университет имени М.В. Ломоносова, физический факультет;

<sup>2</sup> Научно-исследовательский институт ядерной физики имени Д.В. Скобельцына, Московский государственный университет имени М.В. Ломоносова E-mail: simonov.mv16@physics.msu.ru

## Введение.

Вторая половина XX века и начало XXI столетия отмечены большими успехами в области синтеза тяжелых ядер: был открыт 21 элемент, в том числе фермий Fm (Z = 100) и следующие за ним сверхтяжелые (Z > 100) изотопы элементов 101-118 [1]. Открытие новых членов цепочек нуклидов, исследование их свойств и продвижение в область еще более тяжелых ядер – задача современной науки.

Большинство сверхтяжелых ядер испытывают  $\alpha$ -распад, поэтому методы регистрация синтезированных изотопов строятся на детектировании продуктов распада. Значит, актуальной задачей является расчет характеристик реакции, в частности периода полураспада и энергии вылетающих  $\alpha$ -частиц.

### Метод расчета.

В настоящей работе для вычисления массы (или энергии связи) ядер феноменологический подход, используется основанный на массовых соотношениях. Метод основан на установлении численных корреляций между массами близколежащих на NZ-диаграмме нуклидов. Точность подобных Гарви-Келсона; экстраполяция Audi, Wapstra) методов (соотношения сопоставима с теоретическими расчетами как в макроскопических, так и в макро-микроскопических моделях (HFBCS, HFB, FRDM и др.) [2].

В работе [3] было предложено использовать массовое соотношение для протон-нейтронного взаимодействия (*pn*-взаимодействие), определяемое через энергию отделения *S* и энергию связи *B*:

$$\Delta_{pn} = S_p(Z, N) - S_n(Z, N-1) = \left[ B(Z, N) - B(Z, N-1) \right] - \left[ B(Z-1, N) - B(Z-1, N-1) \right]$$
(1)

Данная величина при Z > 60 является относительно гладкой и может быть аппроксимирована с введением поправки на оболочечные эффекты [4]:

$$-\delta V_{pn}^{calc}(Z,N) = -\overline{\delta V_{pn}(A)} + \Delta_{sh}(Z,N), \qquad (2)$$

где  $\delta V_{pn}^{calc}(Z,N)$  – вычисляемое значение взаимодействия,  $\delta V_{pn}(A)$  – аппроксимированное на основе экспериментальных данных значение,  $\Delta_{sh}(Z,N)$  – оболочечная поправка. Аппроксимация [4] может быть задана в области Z > 92 следующим выражением:

$$-\overline{\delta V_{pn}(A)} = \begin{cases} 74 \text{ кэВ,} & \text{для нечетных A} \\ 74 + \frac{69861}{A} \text{ кэВ,} & \text{для четных A} \end{cases}$$

Оболочечная поправка вводится так:

 $\Delta_{sh}(Z,N) = a + 2b \cdot |\Omega_N(N_p - \Omega_Z) - \Omega_Z(N_n - \Omega_N)|,$ 

где параметры a и b, равные 44,67 и -0,1697 для четных A и -11,25 и 0,0499 для нечетных A, определяются методом аппроксимации и связаны с заполнением оболочек в ядре, разность под модулем зависит от порядка заполнения подоболочек, от спина ядра. В нашей работе мы отказались от спинового члена поправки с параметром b, поскольку вклад его очень мал (~0,3 кэВ/нуклон) и порядок заполнения для сверхтяжелых элементов точно неизвестен; расчет со спиновым членом хуже сходится с экспериментом, чем без него.

Из формулы 1 следует, что есть 4 способа вычислить энергию связи нуклида, например:

$$B_{pred}(Z,N) = B(Z,N-1) + B(Z-1,N) - B(Z-1,N-1) + \delta V_{pn}^{cal}(Z,N)$$
(3)

Применяя формулу 3, можно шаг за шагом вычислять энергию связи изотопов на NZ-диаграмме и таким образом двигаться вглубь области сверхтяжелых ядер и заполнять пустые ячейки изотопических цепочек, что и было сделано в данной работе для элементов 102-106.

Далее рассчитывалась энергия α-распада, и по формуле Вайолы-Сиборга [5] оценивался период полураспада по α-каналу:

$$lgT_{\alpha} = \frac{(cZ+d)}{\sqrt{Q}} + (fZ+e) + h_{log}, \qquad (4)$$

где c = 1,64062, d = -8,54399, f = -0,19430 и e = -33,9054; значения параметров взяты из работы [6]. Фактор  $h_{log}$  равен 0, 0,8937, 0,5720 и 0,9380 для четно-четных, четно-нечетных (четных по Z), нечетно-четных и нечетно-нечетных ядер соответственно.

Все вычисления производились на основе экспериментальных данных из AME16 (Atomic Mass Evaluation 2016, [7]) по модели [4]; источник для периода полураспада по α-каналу – база данных NNDC BHL [8].

Погрешность метода оценивалась на ядрах с массовыми числами A = 230-258 (Z=94-98, N=146-150) и составляет до 0,8 кэВ/нуклон или 200 кэВ для энергии связи (рис. 1). На рис. 2 демонстрируется поведение формулы при увеличении числа шагов: наибольшее отклонение достигается при 2-3 применениях, затем погрешность остается примерно постоянной.



Рисунок 1. Отклонение расчетной энергии связи от экспериментальных данных

Рисунок 2. Зависимость отклонения расчетной энергии связи от количества применений формулы

#### Результаты.

Для элементов с Z = 102-106 вычислены значения удельных энергий связи. Результаты расчетов приведены в сравнении с экспериментальными данными на рис. 3. Для дочернего и материнского ядра по данным аппроксимации была рассчитана энергия  $\alpha$ -распада и сделана оценка периода полураспада с использованием формулы Вайолы-Сиборга. Результаты расчетов приведены на рис. 4 и 5.



Рисунок 3. Сравнение расчетных значений (линии) удельной энергии связи с экспериментом (точки)



Рисунок 4. Сравнение расчетных значений (пустые точки) энергии α-распада с экспериментом (закрашенные точки)



Рисунок 5. Сравнение расчетных значений (пустые точки) периода полураспада с экспериментом (закрашенные точки)

Как видно из рисунка 3, метод дает хорошие оценки для энергии связи сверхтяжелых нуклидов. Энергия распада (рис. 4) вычисляется с большей ошибкой: используются 2 расчетных значения. На рис. 5 представлены зависимости логарифма периода полураспада от корня из энергии α-распада. Четные и нечетные по N ядра приводятся отдельно, исходя из близости значений фактора  $h_{log}$  для этих ядер в формуле (4); показаны те изотопы, у которых доля α-канала в распаде больше 50%. Период полураспада вычисляется наименее точно, поскольку используется приближенная формула Вайолы-Сиборга. Кроме того, многие сверхтяжелые ядра имеют свойство спонтанно делиться, поэтому сравнение периода полураспада С экспериментальными данными производить трудно.

Таблица 1. В таблице представлены расчеты энергии и периода полураспада по α-каналу. Для сравнения приводятся данные: для энергии распада - из работы [4], FRDM(2012) [9], эксперимент - AME16 [7] (знаком '#' помечены данные аппроксимации); для периода полураспада – экспериментальные данные из базы NNDC [8] (знаком '\*' обозначены ядра, для которых доля распада по α-каналу меньше 50%).

| Изотоп            | Qa, M3B | Qα[4], МэВ | $Q_{\alpha} exp[7]$ | $Q_{\alpha}FRDM[9]$ | T <sub>α</sub> , c | $T_{\alpha} exp[8]$ |
|-------------------|---------|------------|---------------------|---------------------|--------------------|---------------------|
| No <sub>148</sub> | 8,92    | 8,92       | #8,95               | 8,88                | 0,57               | *                   |
| No149             | 8,69    | -          | 8,752               | 8,62                | 2,82               | 0,8                 |
| No <sub>150</sub> | 8,41    | 8,7        | 8,549               | 8,36                | 2,81               | 2,44                |
| No <sub>151</sub> | 8,62    | 8,57       | 8,415               | 8,2                 | 3,54               | 97,2                |

| No <sub>152</sub> | 8,04  | 8,41  | 8,226  | 8,15 | 9,89  | 51                    |
|-------------------|-------|-------|--------|------|-------|-----------------------|
| No153             | 8,55  | 8,24  | 8,428  | 8,49 | 4,43  | *                     |
| No <sub>154</sub> | 8,58  | 8,41  | 8,582  | 8,52 | 1,63  | 2,91                  |
| No155             | 8,43  | 8,59  | 8,477  | 8,33 | 6,34  | 24,5                  |
| No <sub>156</sub> | 8,20  | 8,44  | #8,15  | 8,2  | 5,61  | *                     |
| No <sub>157</sub> | 7,98  | -     | 7,854  | 7,76 | 29,36 | 4500                  |
| Lr <sub>148</sub> | 9,54  | 9,18  | #9,367 | 9,16 | 0,24  | -                     |
| Lr <sub>149</sub> | 9,07  | 9,1   | 9,164  | 8,94 | 1,32  | 0,36                  |
| Lr <sub>150</sub> | 9,08  | 8,89  | 8,918  | 8,67 | 0,92  | 0,57                  |
| Lr <sub>151</sub> | 8,74  | 8,83  | 8,816  | 8,54 | 3,59  | 18,4                  |
| Lr <sub>152</sub> | 8,56  | -     | 8,556  | 8,49 | 4,43  | 31,1                  |
| Lr <sub>153</sub> | 8,76  | -     | #8,811 | 8,8  | 3,38  | 27                    |
| Lr <sub>154</sub> | 9,00  | 9,02  | 9,068  | 8,82 | 1,14  | 4                     |
| Lr <sub>155</sub> | 8,97  | 8,62  | 8,904  | 8,64 | 1,80  | 4,1                   |
| Lr <sub>156</sub> | 8,61  | 9,18  | #8,584 | 8,49 | 3,82  | 6,2                   |
| Lr <sub>157</sub> | 8,24  | -     | #8,396 | 8,08 | 18,08 | 180                   |
| Rf <sub>148</sub> | 9,18  | -     | _      | 9,6  | 0,53  | -                     |
| Rf <sub>149</sub> | 9,73  | 9,3   | #9,35  | 9,39 | 0,29  | *                     |
| Rf <sub>150</sub> | 9,01  | 9,15  | #9,21  | 9,12 | 0,90  | *                     |
| Rf <sub>151</sub> | 9,31  | 9,08  | 9,055  | 8,97 | 0,90  | *                     |
| Rf <sub>152</sub> | 8,90  | 8,98  | 8,926  | 8,96 | 1,26  | *                     |
| Rf <sub>153</sub> | 8,98  | 9,08  | 9,083  | 9,2  | 2,37  | 4,4                   |
| Rf154             | 9,40  | 9,21  | 9,193  | 9,27 | 0,28  | *                     |
| Rf <sub>155</sub> | 9,04  | -     | #9,13  | 9,05 | 2,00  | 2,4                   |
| Rf <sub>156</sub> | 8,86  | -     | #8,9   | 8,87 | 1,39  | *                     |
| Rf <sub>157</sub> | 8,79  | -     | 8,646  | 8,48 | 4,29  | 68                    |
| Db <sub>148</sub> | 9,42  | -     | -      | 9,88 | 0,67  | -                     |
| Db149             | 9,38  | -     | -      | 9,69 | 1,11  | -                     |
| Db <sub>150</sub> | 9,39  | 9,81  | #9,44  | 9,39 | 0,73  | 1,6                   |
| Db151             | 9,35  | 9,76  | 9,336  | 9,28 | 1,18  | 1,6                   |
| Db <sub>152</sub> | 9,37  | 9,51  | 9,207  | 9,26 | 0,78  | 2,3                   |
| Db153             | 9,51  | 9,45  | 9,501  | 9,5  | 0,76  | 4,2                   |
| Db154             | 9,48  | 9,67  | 9,619  | 9,58 | 0,58  | 0,51                  |
| Db155             | 9,55  | 9,14  | #9,501 | 9,33 | 0,68  | 1,52                  |
| Db156             | 9,19  | 9,05  | #9,218 | 9,2  | 1,33  | 1,8                   |
| Db157             | 8,89  | 9,14  | #9,046 | 8,84 | 4,72  | 35                    |
| Sg <sub>149</sub> | 10,07 | -     | -      | 9,98 | 0,22  | -                     |
| Sg <sub>150</sub> | 10,10 | 10,28 | -      | 9,68 | 0,08  | -                     |
| Sg <sub>151</sub> | 9,57  | 10,15 | -      | 9,53 | 0,87  | -                     |
| Sg <sub>152</sub> | 9,33  | 9,74  | #9,62  | 9,56 | 0,69  | *                     |
| Sg <sub>153</sub> | 9,81  | 9,79  | 9,765  | 9,79 | 0,44  | 0,29                  |
| Sg154             | 9,93  | 9,81  | 9,901  | 9,88 | 0,13  | 4,95·10 <sup>-3</sup> |
| Sg <sub>155</sub> | 9,77  | 9,77  | 9,714  | 9,72 | 0,50  | 0,178                 |
| Sg <sub>156</sub> | 9,46  | -     | 9,6    | 9,55 | 0,48  | *                     |
| Sg <sub>157</sub> | 9,66  | 9,75  | 9,403  | 9,18 | 0,67  | 1                     |

В таблице 1 представлены расчеты энергии и периода полураспада по αканалу для 9-10 изотопов 5 сверхтяжелых элементов. Для сравнения приводятся данные эксперимента [7], данные работы [4], где был предложен используемый метод, и результаты расчетов по макро-микроскопической модели FRDM [9]. Стандартное отклонение в МэВ на исследуемом массиве ядер составляет: для полученных результатов – 0,1278, для работы [4] – 0,2093, для модели FRDM – 0,1443, что говорит о хорошей точности метода, об оправданности отказа от спинового члена оболочечной поправки по сравнению с работой [4].

### Вывод.

В нашей работе с помощью метода массовых соотношений были получены оценки для характеристик изотопов сверхтяжелых элементов. Изложенный метод тестировался на новых данных AME16 [7]; сделаны предсказания для неизвестных ядер.

Поскольку метод работает достаточно точно, то оправданно его дальнейшее применение. Способы расчета можно видоизменять, рассматривая другие массовые соотношения, позволяя получать важные для проведения эксперимента и теоретических исследований характеристики нуклидов и ядерных реакций, продвигаться вглубь области сверхтяжелых ядер и других районов карты изотопов.

- 1. Б.С. Ишханов, Т.Ю. Третьякова. Путь к сверхтяжелым элементам // Вестник Московского университета. Серия 3. Физика. Астрономия. 2017. N3.
- 2. D. Lunney, J. M. Pearson, C. Thibault. Recent trends in the determination of nuclear masses // Reviews Of Modern Physics 2003. Vol.75, N3, p. 1021-1082.
- 3. Jänecke, J., and P. J. Masson, 1988, At. Data Nucl. Data Tables 39, 265.
- H. Jiang, G. J. Fu, B. Sun, M. Liu, N. Wang, M. Wang, Y. G. Ma, C. J. Lin, Y. M. Zhao, Y. H. Zhang, Zhongzhou Ren, and A. Arima. Predictions of unknown masses and their applications // Phys. Rev. 2012. C 85, 054303.
- 5. V. E. Viola and G. T. Seaborg, J. Inorg. Nucl. Chem. 28, 741 (1966)
- 6. T. K. Dong and Z. Z. Ren, Eur. Phys. J. A 26, 69 (2005).
- 7. Meng Wang, G. Audi, F.G. Kondev, W.J. Huang, S. Naimi, Xing Xu. The Ame2016 atomic mass evaluation // Chinese Physics 2017. C 41, Sg. 3, 030003.
- 8. https://www.nndc.bnl.gov/chart/
- P.Möller, A.J.Sierka, T.Ichikawa, H.Sagawa. Nuclear ground-state masses and deformations: FRDM(2012) // Atomic Data and Nuclear Data Tables 2016. Vol. 109–110, p. 1-204.

В работе проведена оценка энергии связи сверхтяжелых элементов Z= 102-106 с использованием феноменологического подхода, основанного на разностях масс атомных ядер. В расчетах используется соотношение для протон-нейтронного взаимодействия и его аппроксимация для области сверхтяжелых элементов. Получены характеристики α-распада как основного канала распада изотопов в данной области, по которому производится их идентификация. Расчеты проведены на последнем варианте базы экспериментальных данных AME2016. В работе обсуждается влияние оболочечных эффектов, проводится сравнение с результатами, полученными в других теоретических подходах.