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Abstract
A (2N +1)-equation model to simulate the flow ofN (N ≥ 3) immiscible compressible fluids
separated with interfaces is proposed. The model is based on the single velocity diffuse-
interface method and includes N −1 advection equations for fluid volume fractions. Solving
the advection equations with a non-linear high-order scheme commonly results in the vio-
lation of the non-negativity constraint that any arbitrary partial sum of volume fractions
should be in the interval [0, 1]. First, it is shown that this constraint can be met if the N − 1
advection equations are solved for some rational functions of volume fractions rather than for
volume fractions themselves. The non-linear sub-cell slope reconstruction (MUSCL-type and
THINC) with the proposed rational advection functions is proved to be non-oscillatory and
provide the distribution of volume fractions satisfying the non-negativity constraint. Second,
it is proved that the PV property (preservation of constant-pressure and constant-velocity
equilibrium) is maintained providing that linear functions of volume fractions are used in the
advection equations. We suggest two ways for resolving the contradiction in choosing the
advection functions (functions of volume fractions) in accordance with the non-negativity
constraint and the PV property.We also adopt two numerical methods—the Roe-type scheme
and the HLLC scheme to solve the governing equations. Finally, the proposed numerical
model is tested with several benchmark problems. The results obtained demonstrate robust-
ness and effectiveness of the proposed numerical approach in solving multi-fluid flows with
large interface deformations.
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1 Introduction

Modeling compressible multi-material flowswith sharpmaterial interfaces is of great interest
in a wide range of industrial and technical applications, such as the underwater explosion
problem [34,49,52], gas release from a subsea natural gas pipeline [7,14,16], mixing pro-
cesses [10], bubbly flows [44,45] and so on. In these problems, accurate resolution of the
material interface motion poses quite challenging theoretical and computational tasks. So far,
several models and numerical methods have been proposed to tackle the problem of interface
calculation.

Thematerial interface is typically representedbyvolume fractions, thermodynamicparam-
eters or level-set functions. According to the treatment of material interfaces numerical
methods can be categorized into two groups: interface-capturing methods and interface-
tracking methods. The latter include volume-of-fluid [25], and moment-of-fluid [12,13],
Arbitrary Lagrangian Eulerian (ALE) [6,18,33,35], free Lagrange [4], front tracking
[8,19,20,58], level set/ghost fluid [38,42,43] schemes, and the ghost fluid method [15].
Interface-tracking methods are capable of locating interface between materials with different
equations of statewithout introducing spurious oscillations.However,most interface-tracking
methods suffer from two defects. The first is that the evolution of the interface with time can
lead to serious distortions of the computational grid and deteriorations of the accuracy; sec-
ond, they may not be conservative in the vicinity of the interface, and prone to generate errors
in locating the material interface. Solutions to these problems exist, for example the cut-cell
method on a fixed mesh [39] and the conservative level set method [40,41].

On the contrary, interface-capturingmethods [1,2,9,28,29,36,47,51–54,57,59,60] are con-
servative by allowing the material-related parameters to diffuse near the material interface.
These parameters can be thermodynamic parameters in the equation of state (EOS) or volume
fractions governed by the transport equation. For the interface-capturing method, it is vital
to maintain the sharpness of the material interface. Various interface-sharpening methods
are proposed, among which are the interface compression method [22,23,39,52], the limited
downwind scheme [11,32], the anti-diffusion method based on the flux correction algorithm
[57], the WENO scheme [9,28,50], the THINC scheme [56,62], and the method based on
the solution of the composite Riemann problem (CRP) [36,64]. The THINC scheme is rather
effective and simple in implementation, thus we couple it with the approach developed in the
present work. Moreover, a thermodynamically consistent model for the mixture of materials
should be applied in the diffusion zone near the interface. We apply the equation of state for
the mixture based on the isobaric closure assumption.

One of the most studied interface-capturing models is a five-equation model of Allaire et
al. [2] for two-fluid flows. Although Allaire et al. [2] made a thorough analysis on mathemat-
ical properties of this model for the case of two components, there remains a notable gap in
research on the situation of N (N ≥ 3) components. As noted in [2], one can obtain a gener-
alized model to treat more than two fluids by adding a partial density conservation equation
and a volume fraction advection equation for each fluid. For this generalized model, from the
assumption of a saturatedmixture follows that the volume fractions are non-negative and sum
to one (termed as the “non-negativity constraint” in the following). Once this condition is
violated, spurious oscillations and non-physical solutions arise. When the generalized model
is extended to high order schemes, such as MUSCL, WENO or coupled with the interface-
sharpening technique, such as THINC, the above mentioned conditions may be violated. The
root of the problem is non-linearity of the reconstruction process.

123



Journal of Scientific Computing            (2020) 83:31 Page 3 of 33    31 

Jaouen et al. [27] proposed a numerical method for the transport of an arbitrary number
of components by modifying the numerical flux of the limited downwind scheme [11]. This
method ensures the non-negativity constraint for volume fractions when the Lax–Wendroff
scheme or the limited downwind scheme is used. However, it fails when coupled with the
MUSCL scheme or other interface-sharpening techniques based on sub-cell reconstruction.

Friess and Kokh [17] proposed a (2N +2)-equation model for compressible flows, which
is the extension of the five-equation model to the case of N (N ≥ 3) materials. This model
consists of (2N + 2) equations including N conservation equations for partial densities, the
conservation equation for momentum, the conservation equation for energy, and N advection
equations for volume fractions. The limited downwind scheme for an arbitrary number of
components proposed by Jaouen et al. [27] is utilized to reduce numerical diffusion.

In the present work, we propose a simple and robust method to solve the advection equa-
tions for an arbitrary number of components. Instead of the advection equations for volume
fractions that are used in the work of Allaire et al. [2], Jaouen et al. [27], and Friess et al. [17],
we introduce new advection equations for specially defined functions (termed as “advection
functions” in the following). Theses functions are chosen so that direct solution of the advec-
tion equations with non-linear slope reconstruction (in the following we use “reconstruction”
for simplicity) schemes would naturally maintain constraints on volume fractions.

On the basis of this method, we further propose a (2N +1)-equation model for multi-fluid
compressible flows of N (N ≥ 3) components. For this model, we propose a technique to
maintain non-negative volume fraction constraints and prevent any spurious oscillations in
the vicinity of the material interfaces. We use properly chosen different advection functions
in updating and reconstructing volume fractions, namely:

(1) Updating is fulfilled with linear functions of volume fractions; this ensures the PV
property and maintains the constant-pressure equilibrium.

(2) Reconstructing volume fractions is performedwith the rational advection functions prop-
erly chosen so that the aforementioned constraint conditions for volume fractions can
be satisfied.

After implementing the above algorithm, a weak TVD (total variation diminishing) prop-
erty for cell-averaged volume fractions can be met with a simple correction step.

The model we are developing can be viewed as a multi-fluid extension to the five-equation
model [2]. It can also be derived from a non-equilibrium model of Baer–Nunziato type
[3,26,30] bymeans of performing asymptotic analysis in the limit of zero relaxation time. The
model possesses the following properties: consistency of the closure model, hyperbolicity,
and entropy condition. The consistency property ensures that all primitive variables can
be recovered from the conserved variables and vice versa. This property is proved for the
generalized Van der Waals EOS and the Mie–Gruneisen EOS. As a generalization of the
five-equation model, our model also uses the conservative equations and isobaric closure
relations. To sharpen the material interface, we apply the MUSCL and THINC schemes to
reconstruct advection functions rather than volume fractions; the latter are then recovered
from the reconstructed advection functions.

The paper is organized as follows. In Sect. 2, we introduce and discuss the numerical
method to solve the advection equations for an arbitrary number of components. In Sect. 3,
we formulate the (2N +1)-equation model and proof some relevant mathematical properties.
In Sect. 4, we deal with numerical schemes for discretization and solution of the model. In
Sect. 5, we examine our model and algorithm with some typical 1D and 2D tests. Finally, a
short conclusion is given in Sect. 6.
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2 Advection Equations for an Arbitrary Number of Components

In this section, we deal with the numerical transport of an arbitrary number of components
in a prescribed velocity field. For each component, we introduce a color function zj that
represents the volume fraction of the j-th component. The transport of N components are
governed by the following system of advection equations:

∂z j
∂t

+ u · gradz j = 0, j ∈ Φ = {1, 2, 3, . . . , N }. (1)

The color functions are constrained by the following equation

N∑

j=1

z j = 1. (2)

Thus, only N − 1 equations of (1) are independent. In the following, we consider the last
N − 1 equations, i.e.

∂z j
∂t

+ u · gradz j = 0, j ∈ Ψ = {2, 3, . . . , N }. (3)

As mentioned above, we want the volume fractions to meet the following physical con-
straints:

z j ∈ [0, 1] j ∈ Ψ , (4)
∑

j∈Λ

z j ≤ 1, j ∈ Λ ⊂ Ψ , (5)

where Λ is an arbitrary subset of Ψ .
The condition (5) indicates that an arbitrary partial sum of the volume fractions should

not exceed 1. If the initial conditions are given in such way that the conditions (4) and (5)
are satisfied, the volume fractions in the following time steps should also meet these condi-
tions. The first-order approximate Riemann solvers (Roe-type and HLLC) give reasonable
solutions that satisfy this requirement, however, they introduce strong numerical dissipation
and material interfaces is smearing in the course of time.

To reduce this numerical effect, higher order accurate schemes and interface-sharpening
techniques are employed. However, non-linearity of higher-order schemes and interface-
sharpening techniques results in violation of the conditions (4) and (5) as can be seen below.
To cope with the situation, we propose to solve advection equations for specific functions
of volume fractions instead of the volume fractions themselves. These specific functions are
defined as

f j = f j (z2, z3, . . . , zN ) , j ∈ Ψ . (6)

The corresponding system of advection equations becomes

∂ f j
∂t

+ u · grad f j = 0, j ∈ Ψ . (7)

The functions f j (z2, z3, . . . , zN ) are termed as advection functions henceforth.

123



Journal of Scientific Computing            (2020) 83:31 Page 5 of 33    31 

After obtaining the solution of f j , we recover z j by using Eq. (6). To recover z j from f j ,
the Jacobian should not be zero, i.e.

J =

∣∣∣∣∣∣∣∣∣

∂ f2/∂z2 ∂ f2/∂z3 · · · ∂ f2/∂zN
∂ f3/∂z2 ∂ f3/∂z3 · · · ∂ f3/∂zN

...
...

...
...

∂ fN/∂z2 ∂ fN/∂z3 · · · ∂ fN/∂zN

∣∣∣∣∣∣∣∣∣

�= 0. (8)

We consider the one-dimension advection problem. The FVM (finite volume method)
discretization of Eq. (7) with the upwind scheme on a uniform grid gives

f n+1
j,i = f nj,i − uλ

(
f nj,i+1/2 − f nj,i−1/2

)
, (9)

f nj,i+1/2 = u + |u|
2

f Lj,i+1/2 + u − |u|
2

f Rj,i+1/2, (10)

where u is the advection velocity, the subscript i and the superscript n indicate cell index
and time level, respectively, λ = Δt/Δx , Δt is the time step, Δx is the spatial step, the
superscripts L and R denote the interpolated values on the left and right of the cell faces,
respectively.

Choosing advection functions is important for the scheme because it defines whether
the higher-order extension to the scheme will succeed or fail. When the initial values of
advection functions in the i-th cell f j,i are within [0, 1], the evolved values of f j,i in fol-
lowing time steps are also within [0, 1] because of passive advection. Apart from that, the
numerical scheme should also ensure that the restored volume fractions in the i-th cell
z j,i = z j,i ( f2,i , f3,i , . . . , fN ,i ) also meet conditions (4) and (5).

The conditions (4) and (5) are satisfied for the case of N = 2 components, even if the non-
linear reconstruction schemeMUSCL,WENOor the sharpening techniqueTHINC is applied.
In fact, in this case conditions (4) and (5) are equivalent. However, this is not the case in the
model with N ≥ 3 components. When the non-linear reconstruction schemes are applied
to advection functions, the conditions (4) and (5) may be violated resulting in oscillatory
solutions. In order to keep the conditions (4) and (5), we will require the reconstructed values
on cell faces to meet also these conditions.

We now demonstrate the origin of the problem when the numerical scheme is coupled
with the MINMOD scheme. For the case of N = 3, three sets of advection functions are
considered:

f2 (z2, z3) = z2, f3 (z2, z3) = z3, (11)

f2 (z2, z3) = z2 + z3, f3 (z2, z3) = z3, (12)

f2 (z2, z3) = z2 + z3, f3 (z2, z3) = z3/ (z2 + z3) . (13)

Note that with the advection functions (11), the system of advection equations (7) is the
system of advection equations (3).

With the MINMOD limiter, the reconstructed values at the interface between i-cell and
(i + 1)-cell of a uniform grid are given as:

f j,i+1/2 = f j,i + φ
(
r j

) (
f j,i+1 − f j,i

)

2
, (14a)

r j = f j,i − f j,i−1

f j,i+1 − f j,i
, (14b)
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φ
(
r j

) =
⎧
⎨

⎩

0, r j ≤ 0.
r j , 0 < r j ≤ 1.
1, otherwise.

(14c)

The limiting values f2,i+1/2 and f3,i+1/2 can have 9 combinations depending on the values
of r2, r3. Here, we only consider the situation 0 < r2, r3 ≤ 1 that will be enough to reveal
the problem. We analyze the three sets of advection functions one by one.

(1) The advection functions (11) are used with initial values satisfying f2,i + f3,i < 1, 0 <

f2,i < 1, 0 < f3,i < 1. The sum of the reconstructed values at the interface i + 1/2 is

f2,i+1/2 + f3,i+1/2 =
(
3 f2,i − f2,i−1

) + (
3 f3,i − f3,i−1

)

2
. (15)

The value of ( f2,i+1/2 + f3,i+1/2) can be larger than 1. For example, when f2,i−1 =
0.12, f2,i = 0.40, f2,i+1 = 0.70, f3,i−1 = 0.60, f3,i = 0.58, f3,i+1 = 0.10, the
reconstructed values are f2,i+1/2 = 0.54 and f3,i+1/2 = 0.57, sum of which exceeds the
upper limit and the condition (5) is violated.

(2) The advection functions (12) are used with initial values satisfying 1 > f2,i > f3,i > 0.
The difference between the reconstructed values at the interface i + 1/2 is

z2,i+1/2 = f2,i+1/2 − f3,i+1/2 = 3Δi − Δi−1

2
, Δi = f2,i − f3,i . (16)

The value of z2,i+1/2 can be less than 0. For example, when f2,i−1 = 0.40, f2,i =
0.50, f2,i+1 = 0.90, f3,i−1 = 0.05, f3,i = 0.40, f3,i+1 = 0.80, the reconstructed
values are f2,i+1/2 = 0.55 and f3,i+1/2 = 0.575, which means that the condition (4) is
violated.

(3) The advection functions (13) are used with initial values 0 < f j,i < 1. Since the
MINMOD limiter does not create new extrema, for the reconstructed values the condition
0 < f j,i+1/2 < 1 still holds. Thus, we have

0 < f2,i+1/2 = z2,i+1/2 + z3,i+1/2 < 1, 0 < f3,i+1/2 = z3,i+1/2

z2,i+1/2 + z3,i+1/2
< 1.

(17)

In this case, the conditions (4) and (5) are obviously kept when the non-linear reconstruc-
tion is applied to the advection functions.

One can easily extend Eq. (13) for the N components and choose N − 1 independent
advection functions f2, f3, . . . , fN in the form of rational functions as follows:

f j =
∑N

k= j zk∑N
k= j−1 zk

, j ∈ Ψ . (18)

Remark 1 The advection function f j can be interpreted as the bulk volume fraction of j-th,
( j + 1)-th, . . ., N -th components in the mixture of ( j − 1)-th, j-th, . . ., N -th components.

Remark 2 The rational advection functions (18) may attain singularity if the ( j − 1)-th, . . . ,
N -th components are vanished (i.e.,

∑N
k= j−1 zk = 0). To regularize advection functions

(18) we may allow impurity when assigning initial volume fractions. For example, suppose
that at some spatial point M(M ∈ N

+ and M < N ) components are vanished, we assume
that they exist in a negligible volume fraction z′j > 0 and

∑
j∈Π z′j = χ , where Π is
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the set containing the indexes of the vanished components. All the other volume fractions
decrease by χ/(N − M) so that

∑N
i zi = 1 is maintained. According to our numerical tests,

χ can be taken as small as 10−15, the order of machine zero. In the present paper, we are
interested in the multi-material problems where only gas, liquid and solid explosives are
involved. In these problems, the typical maximum density ratio is 103 − 104. Therefore, the
impurity results in only negligible error in density. In fact, this is an assumption used in the
Baer–Nunziato model [3] and its variants. This is also a common numerical practice in the
multi-fluid flow modeling and justified against various problems [2,9,24,48,51,52,60]. We
will use this method to regularize advection functions (18) in this present work. Methods to
deal with this singularity are to be developed in our future work.

Remark 3 Definition of the volume fractions of the vanished components z′j is important. The
simplest definition is z′j = χ/M , i.e., every component has the same volume fraction. When
dealing with discontinuities in volume fraction, we can define z′j so that the discontinuity in
f j would be minimized.
For example, assume we have the following discontinuity: (z1, z2, z3) = (α1χ, α2χ,

1 − χ) , x < 0; (z1, z2, z3) = (1 − χ, α2χ, α3χ) , x > 0, where α1 + α2 = 1 and

α2 + α3 = 1. Thus, we have ( f2, f3) =
(
1 − (1 − α2)χ,

1−χ
1−(1−α2)χ

)
x < 0; ( f2, f3) =

(
(α2 + α3)χ, α3

α2+α3

)
, x > 0. Since χ → 0, we deduce f3 → 1 for x < 0. To minimize

the discontinuity in f3, we want f3 = α3
α2+α3

→ 1, which can be achieved by defining α2

and α3 such that α2 	 α3.

Volume fractions z j can be recovered from Eq. (18) in the following way:

z j =
{∏ j

k=2 fk − ∏ j+1
k=2 fk, j < N .∏N

k=2 fk, otherwise.
(19)

Proposition 1 If a monotonicity-preserving reconstruction scheme is applied to advection
functions in the form of Eq. (18), then given cell average values of volume fractions satisfying
conditions (4) and (5), the reconstructed volume fractions on cell faces also satisfy conditions
(4) and (5).

Proof Since the cell average values of volume fractions z j,i satisfy conditions (4) and (5),
we deduce that the cell average values of advection functions (18) satisfy

f j,i ∈ [0, 1], (20)

When a monotonicity-preserving reconstruction scheme is applied to these advection
functions, no new extrema will be created, which means

f c fj,i ∈ [0, 1], (21)

where the superscript “c f ” represent the reconstructed values on the cell face.
By using Eq. (18), we further obtain

f c fj,i =
∑N

k= j z
c f
k,i

∑N
k= j−1 z

c f
k,i

∈ [0, 1] , j ∈ Ψ . (22)

From Equation (22) we deduce

0 ≤ zc fN ,i ≤
N∑

k=N−1

zc fk,i ≤ · · · ≤
N∑

k=2

zc fk,i ≤
N∑

k=1

zc fk,i=1. (23)
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The inequality (23) ensures that the reconstructed volume fractions satisfy the conditions
(4) and (5). 
�

Since the advection functions (18) are non-linear combinations of volume fractions,mono-
tonicity of advection functions f j does not ensure monotonicity of volume fractions z j .
However, as shown in the following two propositions, the total variation of volume fractions
T V (z j ) has the upper limit that decreases with time.

Proposition 2 The total variation of the product of two advection functions does not exceed
the sum of total variations of advection functions:

T V ( fm fl) ≤ T V ( fm) + T V ( fl) . (24)

Proof

T V ( fl fm) =
∑

i

|( fl fm)i+1 − ( fl fm)i |

=
∑

i

|( fl)i+1[( fm)i+1 − ( fm)i ] + ( fm)i [( fl)i+1 − ( fl)i ]|

≤
∑

i

|( fl)i+1[( fm)i+1 − ( fm)i ]| +
∑

i

|( fm)i [( fl)i+1 − ( fl)i ]|. (25)

Since 0 ≤ ( fl)i+1, ( fm)i ≤ 1, we deduce

T V ( fl fm) ≤
∑

i

|( fl)i+1[( fm)i+1 − ( fm)i ]| +
∑

i

|( fm)i [( fl)i+1 − ( fl)i ]|

≤
∑

i

|( fm)i+1 − ( fm)i | +
∑

i

|( fl)i+1 − ( fl)i |

= T V ( fl) + T V ( fm). (26)


�
Proposition 3 If a monotonicity-preserving scheme is applied to the advection function (18),
the total variation of the volume fraction z j is constrained by the following condition

T V (z j ) ≤ C j , Cn+1
j ≤ Cn

j . (27)

Proof Since themonotonicity-preserving scheme is applied to advection functions, we obtain

[T V ( f j )]n+1 ≤ [T V ( f j )]n . (28)

By using Proposition 2 and Eq. (28), we obtain
{
T V (z j ) ≤ ∑ j

k=2 T V ( fk) + ∑ j+1
k=2 T V ( fk) = C j , j < N ,

T V (zN ) ≤ ∑N
k=2 T V ( fk) = CN , otherwise.

(29)

Combining Eqs. (28) and (29), we obtain Eq. (27). 
�
In the following, the property of total variation defined by Eq. (27) is referred to as “weak

total variation diminishing (WTVD)”.
Note that the set of advection functions (18) is not the only feasible choice. In Eq. (18)

the volume fractions z j ( j ∈ Ψ ) are chosen as independent variables, while z1 is derived
from Eq. (2). The variable that is derived from Eq. (2) is hereby termed as “derived variable”.
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In fact, any volume fraction from z1 to zN can be selected as the derived variable, different
selections of the derived variable give birth to different advection functions. If the l-indexed
(l > 1) volume fraction is chosen as the derived volume fraction, then the advection functions
take the following form:

f̂ j =
∑N

k= j ẑk∑N
k= j−1 ẑk

, j ∈ Ψ , ẑk =
⎧
⎨

⎩

zl , k = 1,
zk−1, k ≤ l,
zk, k > l.

(30)

Due to non-linearity of the advection functions (30), solving the advection equations (7)
with different advection functions results in different solutions for volume fractions, i.e., our
method is not component order invariant. Suppose we have two different sets of advection

functions
̂
f (1)
j ,

̂
f (2)
j corresponding to l = l1, l = l2. Then on a uniform 1D grid with nc cells

the distance between two solutions is

d(ẑ(1), ẑ(2)) =
nc∑

i=1

N∑

j=1

∣∣∣z(1)j,i − z(2)j,i

∣∣∣ /(nc · N ) > 0. (31)

However, since the advection equations (7) with different advection functions have identical
analytical solutions for volume fractions, d must converge to zero as space step Δx tends to
zero.

Proposition 4 If a numerical scheme with an order of accuracy (Δx)p is used to solve the
advection equations (7) for advection functions (18) or (30), then the order of accuracy for
volume fractions is also (Δx)p.

Proof The order of accuracy for fk is (Δx)p , i.e., fk = f exactk + Υk, Υk = O((Δx)p).
Equation (19) shows, z j is smooth function of fk with

∣∣∂z j/∂ fk
∣∣ ≤ 1. With the aid of Taylor

expansion, we obtain z j ( f2, . . . , fN ) = z j
(
f exact2 , . . . , f exactN

) + ∑N
k=2

(
∂z j/∂ fk

) · Υk +
O ((Δx)p), which means z j = zexactj + O ((Δx)p). 
�
Proposition 5 If a numerical scheme with an order of accuracy (Δx)p is used to solve

the advection equations for two differently ordered advection functions f̂ (1) and f̂ (2), then

d (̂z(1), ẑ(2)) = O ((Δx)p) .

Proof By using Proposition 4, we obtain ẑ(1)j = zexactj + O ((Δx)p) and ẑ(2)j = zexactj +
O ((Δx)p). It is obvious that d(ẑ(1), ẑ(2)) = O ((Δx)p) . 
�

To conclude this section, we remark that by solving the system of advection equations
(7) for f j instead of the system of advection equations for volume fractions (3), we can
limit the interpolated values so that conditions (4) and (5) are satisfied on the cell face.
Proposition 1 says that any monotonicity-preserving scheme (for example, TVD schemes)
can be implemented in the system (7)withmaintaining conditions (4) and (5). By comparison,
we conclude that the method of Jaouen [27] is based on flux modification, while our method
is based on limiting the interpolated values on cell faces. As is shown in Sect. 5, the limited
downwind scheme used by Jaouen [27] can also be coupled with our method. Apart from
that, as our numerical tests demonstrate, our method can be integrated into various interface-
shapening techniques, including the artificial compression method [22,23], the anti-diffusion
method [57] and the THINC method [62]. Moreover, our method is much simpler and more
general than the method of Jaouen [27].
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3 (2N + 1)-EquationModel for Multi-fluid Flows

In this section, we introduce a (2N + 1)-equation model for multi-fluid flows of N (N ≥ 3)
components based on the five-equation model [2]. The numerical method proposed in Sect. 2
is integrated into this model to ensure conditions (4) and (5).

3.1 Definition of the Model

The (2N + 1)-equation model considered is written as follows:

⎧
⎪⎪⎨

⎪⎪⎩

∂ziρi/∂t + div(ziρiu) = 0, i ∈ Φ,

∂ρu/∂t + div(ρu ⊗ u + PId) = 0,
∂ρe/∂t + div(ρHu) = 0,
∂ f j/∂t + u · grad f j = 0, j ∈ Ψ .

(32)

where we define the following mixture variables: density ρ = ∑N
i=1 (ziρi ), specific internal

energy ε = ∑N
i=1 (ziρiεi ) /ρ, specific enthalpy h = ∑N

i=1 (ziρi hi ) /ρ, specific total energy
e = ε + |u|2/2, specific total enthalpy H = e + P/ρ.

The mixture acoustic velocity in this model is defined as:

ζc2 =
N∑

i=1

ρi ziζi c
2
i /ρ, ζi = ∂ρiεi/ ∂Pi |ρi , ζ =

N∑

i=1

ziζi (33)

where c and ci are the sound velocity of the mixture and i-th component, respectively.
There are 2N + 1 equations (in 1D, or 2N + 3 equations in 3D) and 3N variables (in 1D,

or 3N + 2 variables in 3D), which are z2, . . . , zN , ρ1, ρ2, . . . , ρN ,u, ε1, ε2, . . . ,

εN . The model is not closed, and closure relations and the mixture equation of state are to
be determined below.

One can see that the five-equation model of Allaire et al. [2] is a particular case of our
(2N+1)-equationmodelwhen N = 2 and f2(z2) = z2.Ourmodel is not direct generalization
of the five-equation model. The advection functions are not volume functions; rather they are
properly defined functions of volume fractions ensuring existence of stable and physically
admissible solutions.

Remark 4 Themodel (32) is temperature non-equilibrium by allowing N temperatures. Here,
it is assumed that the thermal relaxation occurs too slowly to be relevant on the time scale
of interest. This assumption is admissible for a certain scope of problems when the heat
exchange rate is small with respect to the time scale of the problem solved (see analysis in
[30]).

Remark 5 The essence of this numerical model lies in replacing the advection equations for
volume fractions with those for the proposed advection functions. Therefore, this method
can also be used with more complicated models, such as the reduced five-equation model
[30], six-equation model [48], and the seven-equation model [46] with different physical
processes. Surface tension and viscous effects have already been implemented by the authors
[63]. For the sake of clarity, we only focus on the model (32) in the present work.
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3.2 Equation of State

To describe different material properties, we use the EOS in the form of generalized Van der
Waals equation [2,54], which is written as

Pi (ρi , ρiεi ) =
(

γi − 1

1 − biρi

)
(ρiεi − πi + aiρ

2
i ) − (πi + aiρ

2
i ), (34)

where γ is the ratio of specific heats; a is a constant accounting for the attraction between
molecules; b is a constant accounting for the volume that a real gas molecule has; π is a
pressure-like constant that can be obtained by fitting experimental data.

The Mie–Gruneisen EOS is also widely used for characterizing different materials in
simulations of multi-material flows and is written as

Pi (ρi , ρiεi ) = [γi (ρi ) − 1]ρiεi − γi (ρi )πi (ρi ). (35)

The Mie–Gruneisen EOS (35) is more general than the Van der Waals EOS (34). It can
characterize various gaseous or solid explosives, and solid metals under high pressure. Note
that the generalized Van der Waals EOS can be viewed as a case of the Mie–Gruneisen EOS.

Both the EOSs (34) and (35) can be written in the following unique form:

Pi (ρi , ρiεi ) = Gi (ρi )ρiεi − Hi (ρi ). (36)

Here we assume that Gi (ρi ) > 0 for each component, which is met for most materials
[2,21,54]. Moreover, we assume that the sound velocity of the material defined by EOS (36)
is real, which is ensured by the following relation

(
hi −

(
∂ρiεi

∂ρi

)
|P

)
Gi (ρi ) > 0. (37)

3.3 Consistency

To close the system (32), we use the isobaric closure:

P = P1(ρ1, ρ1ε1) = P2(ρ2, ρ2ε2) = · · · = PN (ρN , ρN εN ). (38)

With the condition for mixture internal energy, Eq. (38) yields the following system of
equations {

P1(ρ1, ρ1ε1) = Pj (ρ j , ρ jε j ) = P, j ∈ Ψ ,

z1ρ1ε1 + z2ρ2ε2 + · · · + zNρN εN = ρε.
(39)

To guarantee that the conserved variables z1ρ1, . . . , zNρN , ρu, ρe, f2, . . . , fN
uniquely define non-conservative variables ρ1, . . . , ρN ,u, ε1, ε2, . . . , εN , z2, . . . , zN , it is
necessary to prove that the system (39) has unique solution (ρ1ε1,

ρ2ε2, . . . , ρ1εN ). This property is referred to as consistency by Allaire et al. [2].

Proposition 6 The isobaric closure Eq. (38) allows to uniquely recover the pressure P of the
model (32) when the EOS in the form of Eq. (36) is used.

Proof The variables ρε, z1ρ1, z2ρ2, . . . , zNρN , f2, f3, . . . , fN can be obtained by solving
the system (32). Moreover, the volume fractions z1, z2, . . . , zN can be uniquely recovered
from f2, f3, . . . , fN . Having obtained z j , one can further calculate ρ j . These variables are
assumed to be known here.
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We define N variables xi : xi = ziρiεi/ρε, i ∈ Φ. By using the definition of xi and
substituting Eq. (36) into the system (39), we can get the following linear system of equations
for x1, x2, . . . , xN :

G1(ρ1)ρε

z1
x1 − G j (ρ j )ρε

z j
x j = Hj (ρ j ) − H1(ρ1), j ∈ Ψ ,

N∑

i

xi = 1. (40)

The corresponding determinant is

D = (ρε)N−1 ∑N
i=1(zi

∏N
k=1,k �=i Gk(ρk))

∏N
i=1 zi

. (41)

Based on the assumption on the EOS (36), we obtain D �= 0, which can lead us to the
conclusion that the system (40) has only one solution (x1, x2, . . . , xN ).

Furthermore, the solution can be expressed as

xi = zi/Gi (ρi )∑N
i=1 zi/Gi (ρi )

∈ (0, 1). (42)

Therefore, the pressure P is uniquely determined. 
�
With the isobaric closure, we obtain the EOS for the mixture,

P(ρ1, ρ2, . . . , ρN , ρε, z1, z2, . . . , zN ) =
[

N∑

i

zi
Gi (ρi )

]−1 [
ρε +

N∑

i

zi Hi (ρi )

Gi (ρi )

]
. (43)

3.4 Evolution of the Constant-Pressure Profile

In order to avoid spurious oscillations in pressure and velocity, the model of (3.1) should
ensure the PV property—keeping constant pressure and velocity distributions. To meet this
property, some restrictions should be imposed on the advection function. We first consider
the situation when only three components exist and then generalize the result to the situation
of N (N > 3) components. We perform analysis of the pure advection problem, where only
the advection functions are varied with the spatial coordinate in the initial data. We consider
Riemann solvers which are accurate on isolated contact discontinuity, such as the Roe solver
and the HLLC solver with the above-mentioned isobaric closure. The exact solution is the
advection of zi profiles with the constant velocity.

Here, we introduce the state vector

QK =
[
ρK
1 ρK

2 ρK
3 uK PK f K2 f K3

]
,

where K = L, R, ∗, which represent the state on the left side of x = 0, on the right side of
x = 0, and the state of the [0,Δx] cell after one time step Δt , respectively, and consider the
pure advection problem with initial data: uL = uR = u > 0, ρL

i = ρR
i = ρi , ε

L
i = εRi =

εi , f Lj �= f Rj , i = 1, 2, 3, j = 2, 3.

Proposition 7 In order to ensure constant pressure profile in the above advection problem,
the advection functions f j (z2, z3) must be linear with respect to z2, z3:

f j (z2, z3) = A j z2 + Bj z3, j = 2, 3, (44)

where A j and B j are constants.
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Proof Since the velocity u > 0, the updated state can be obtained with
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ρ∗
i z

∗
i = uλρL

i z
L
i + (1 − uλ)ρR

i z
R
i , i = 1, 2, 3,

ρ∗u∗ = uλρLuL + (1 − uλ)ρRuR,

ρ∗e∗ = uλρLeL + (1 − uλ)ρReR,

f ∗
j = uλ f Lj + (1 − uλ) f Rj , j = 2, 3.

(45)

According to the proof of Allaire et al. [2], if

z∗2 = uλzL2 + (1 − uλ)zR2 , (46a)

z∗3 = uλzL3 + (1 − uλ)zR3 , (46b)

the constant pressure profile condition is satisfied.
Sufficiency If Eq. (44) is valid, from the last equation of the system of equations (45) and
after some algebraic manipulations we obtain

{
A2

[
z∗2 − uλzL2 − (1 − uλ) zR2

] + B2
[
z∗3 − uλzL3 − (1 − uλ) zR3

] = 0,

A3
[
z∗2 − uλzL2 − (1 − uλ) zR2

] + B3
[
z∗3 − uλzL3 − (1 − uλ) zR3

] = 0.
(47)

If we treat the parts in square brackets as unknowns, and based on Eq. (8), we get the
Eq. (46).
Necessity Let us assume that

f j (z2, z3) = [
A j (z2, z3)

]
z2 + [

Bj (z2, z3)
]
z3, j = 2, 3. (48)

Then the updated value for f j is

f j
(
z∗2, z∗3

) = [
A j

(
z∗2, z∗3

)]
z∗2 + [

Bj
(
z∗2, z∗3

)]
z∗3

= uλ
{[

A j

(
zL2 , zL3

)]
zL2 +

[
Bj

(
zL2 , zL3

)]
zL3

}

+ (1 − uλ)
{[

A j

(
zR2 , zR3

)]
zR2 +

[
Bj

(
zR2 , zR3

)]
zR3

}
. (49)

Subtracting [A j
(
z∗2, z∗3

)× Eq. (46a)+ Bj
(
z∗2, z∗3

)× Eq. (46b)] from Eq. (49), one finds
that
[
A j

(
zL2 , zL3

)
− A j

(
z*2, z

*
3

)]
uλzL2 +

[
A j

(
zR2 , zR3

)
− A j

(
z*2, z

*
3

)]
(1 − uλ) zR2

+
[
Bj

(
zL2 , zL3

)
− Bj

(
z*2, z

*
3

)]
uλzL3 +

[
Bj

(
zR2 , zR3

)
− Bj

(
z*2, z

*
3

)]
(1 − uλ) zR3 = 0.

(50)

Since zL2 , zR2 , zL3 , zR3 are arbitrary in [0, 1], we get
{
A j

(
z*2, z

*
3

) = A j
(
zL2 , zL3

) = A j
(
zR2 , zR3

)
,

Bj
(
z*2, z

*
3

) = Bj
(
zL2 , zL3

) = Bj
(
zR2 , zR3

)
.

(51)

Again from the fact that zL2 , zR2 , zL3 , zR3 can take arbitrary values in [0, 1], we deduce that
A j and Bj must be constants. 
�

The proposition still holds for the situation of N (N > 3) components, which can be
proved analogously.
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According to Proposition 7, for N components, the advection functions for updating are
taken as:

f j =
N∑

k= j

zk, j ∈ Ψ . (52)

Remark 6 The other advection functions in the form of linear combinations of volume frac-
tions are also possible and maintain the PV property.

According toProposition 7, rational functions (30) thatwedefined to ensure non-negativity
do not satisfy the constant pressure condition. Here, we discuss possible schemes that settle
the contradiction in the definition of the advection functions imposed by the non-negativity
and PV properties.

Scheme A Use different advection functions for reconstruction and updating: rational
functions (18) or (30) for reconstruction and linear functions (52) for updating.

Scheme B Instead of Eq. (32), we solve the following system of equations
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂ziρi/∂t + div (ziρiu) = 0, i ∈ Φ,

∂ρu/∂t + div (ρu ⊗ u + PId) = 0,

∂ρe/∂t + div(ρHu) = 0,
∂ f linja /∂t + u · grad f linj = 0, j ∈ Ψ ,

∂ f raj /∂t + u · grad f raj = 0, j ∈ Ψ .

(53)

The solution procedures for the system of Eq. (53) are as follows:
Step 1 With the last two advection equations for the linear advection functions f linj

and the rational ones f raj , we obtain two different sets of volume fractions: zlinj =
z j

(
f lin2 , f lin3 , . . . , f linN

)
and zraj = z j

(
f ra2 , f ra3 , . . . , f raN

)
. Note that when solving the

advection equations for f linj , in order to ensure the non-negativity conditions we adopt the
same strategy as that in Scheme A: perform reconstruction with the rational adevction func-
tions.
Step 2 zlinj is used for calculating the primitive variables (pressure P , velocity u and density
ρi ) for the sake of the PV property.
Step 3 zlinj is corrected to zraj without modifying velocity, pressure and entropy of each phase
as in [60].

Remark 7 The solutions of these two sets of advection equations converge to the same ana-
lytical solutions for volume fractions. According to the results of our numerical tests, in the
case of smooth z j profile the distance between their solutions is of the order of 10−15 (see
Sect. 5.2).

Proposition 8 If TVD schemes are used to solve Eq. (53) following the solution procedures
of Scheme B, then the WTVD property is ensured for the cell-averaged volume fractions.

Proof According to the solution procedures of Scheme B, we conclude that the cell-averaged
volume fractions are totally defined by the cell-averaged rational advection functions. By
using Proposition 3, we obtain Proposition 8. 
�
Remark 8 For SchemeA, the inconsistency between advection functions in the reconstruction
and updating procedures may formally invalidate Proposition 3, nevertheless, our numer-
ical tests demonstrate that Scheme A has a TVD property comparable to Scheme B. In
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fact, this kind of inconsistency is also observed in the conventional FVM for gas dynam-
ics where the conserved variables are used for updating the cell-averaged state while the
primitive/characteristic variables for interpolating.

4 Numerical Method

In this section, we deal with the numerical method for solving the governing equations of the
multi-fluid flowmodel considered above.Wewill apply the FVMto perform the discretization
in space. The interface-sharpening method THINC [56,62] is applied to reduce the numerical
smearing of the material interfaces.

4.1 Numerical Flux

We assume that the computational grid consists of non-overlapping polyhedrons and does
not change in time. The spatial discretization is performed with the FVM and the explicit
time marching scheme is adopted. On the interface σ of a cell i , the following unit vectors
form a local orthonormalized basis in R

3: n—the outward normal to the interface σ ; l, k—
the tangential vectors to the interface σ . In the local coordinate system, one has the local
velocities along each coordinate: un, uk, ul .

The conservative state vector in a Cartesian system of coordinates is

q = [
z1ρ1 z2ρ . . . zNρN ρu1 ρu2 ρu3 ρe

]
,

and the corresponding flux is

F (q) = [
z1ρ1u1 z2ρ2u1 · · · zNρNu1 ρu12 + P ρu1u2 ρu1u3 ρHu1

]
.

The FVM discretization results in the following equation:

qn+1
i = qni − Δt

Vi

∑

σ

Tσ
−1Fσ Sσ , (54)

where Vi is the volume of the i-cell, Sσ is the area of the cell face σ .
The vector Fσ is the locally one-dimensional interface flux in the direction of the outward

normal n which has the following form:

Fσ = F (Tσ · q)

= [
z1ρ1un z2ρ2un · · · zNρNun ρun2 + P ρunul ρunuk (ρe + P) un

]
. (55)

In the above formulas, Tσ is the rotation matrix from the absolute coordinate system to
the local coordinate system related to the cell face.

In the present paper, two approximate Riemann solvers are utilized for flux approximation:
(1) theRoe-type schemeand (2) theHLLCscheme [9,61]. TheRoe-type scheme for ourmodel
is obtained by generalizing the method designed for two components in [2].

4.2 Interface-Sharpening

The THINC method [56,62] is used for the reconstruction of the sub-grid discontinuity of
the advection function at each cell edge. The THINC method uses the hyperbolic tangent
function to reconstruct the distribution of advection functions. This scheme belongs to the
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type of TVD schemes because it creates no new extrema. Hence, advection functions (18)
ensure the conditions (4) and (5) during the reconstruction procedure. After reconstructing
advection functions, we can calculate corresponding new volume fractions. The sharpening
algorithm is applied only to the numerical transition zone of diffuse interfaces which can be
located by the following conditions:

(
f j,i+1 − f j,i

) · (
f j,i − f j,i−1

)
> 0, χ < f j,i < 1 − χ, (56)

where χ is a small threshold (for example, 10−8).

4.3 Algorithm

The algorithm for Scheme B consists of the following steps:

(1) Reconstruct the primitive variables at cell faces of each cell by using the cell averaged

primitive variables Qav,pr =
[
ziρi ,u, P, f raj

]
, i ∈ Φ, j ∈ Ψ at the time level tn with

the standard MUSCL to obtain the primitive variable vector at the cell face Qc f ,pr .
(2) Apply the THINC sharpening scheme to the rational advection functions f raj where the

condition (56) is satisfied and obtain their sharpened values at the cell face f ra,s
j , compute

the sharpened volume fractions zsj at the cell faces from f ra,s
j .

(3) Replace the advection functions f raj in Qc f ,pr with f ra,s
j , obtain the corresponding

conserved variable vector at cell faces Qc f =
[
zsi ρi , ρu, ρe, f lin,s

j , f ra,s
j

]
, where

f lin,s
j = f linj

(
zs2, . . . , z

s
N

)
.

(4) Compute the numerical flux with the Roe-type or HLLC scheme by using cell face state
Qc f .

(5) Integrate cell average values with time to obtain new cell averages [ρi zi , ρu,

ρe, f linj , f raj ] at the time level tn+1, and calculate zlinj and zraj from obtained f linj and

f raj , respectively. The primitive variables ρi ,u, P are recovered by using zlinj .

(6) Qra
av,pr =

[
ρi ,u, P, f linj

(
zra2 , . . . , zraN

)
, f raj

(
zra2 , . . . , zraN

)]
is taken as the updated

state at the time level tn+1.

Scheme A differs from Scheme B in two aspects:
First, the rational advection functions f raj are only used for reconstruction and the advec-

tion equations for f raj are not solved. Thus, f raj are absent in the state vectors.

Second, in Step (6)Qlin
av,pr =

[
ρi ,u, P, f linj

(
zlin2 , zlin3 , . . . , zlinN

)]
is taken as the updated

state at time step tn+1.

Remark 9 The above algorithmmaintains the pressure-velocity consistency condition. In fact,
Step (3) is consistent with the model proposed in [60] where a mathematical regularization
is introduced for interface-sharpening.

Remark 10 For non-interfacial cells where the condition (56) is not satisfied, steps (2)–(3)
are skipped over and the reconstructed values by the MUSCL scheme are kept.

Remark 11 In fact, Scheme B consist of two step: (1) solution with Scheme A, (2) correction
of the volume fraction field. The solution to the additional set of advection equations for
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f raj serves as a post-processing correction to the volume fraction field to ensure the WTVD
property after each time step. This correction does not impact the conservativeness of the
scheme.

5 Numerical Tests

In this section, several one-dimension and two-dimension numerical testswith the generalized
Van der Waals EOS are performed to validate the proposed numerical method. The MUSCL
reconstruction scheme with MINMOD limiter is used for high-order reconstruction and
the THINC method is implemented to prevent material interfaces from smearing. If not
mentioned, for all numerical tests we use the following default settings: (1) the CFL number
is set to be 0.2; (2) the SI unit system is used for all the variables; (3) a uniform regular
grid is utilized; (4) we use advection functions (18) for reconstruction; (5) Scheme A is used
as a default scheme due to its simplicity and the fact that both schemes have very similar
convergence performance, as demonstrated below. The 2D problems are solved with the
HLLC method.

5.1 Transport of SevenMaterials

To check the effectiveness of our method for the transport of an arbitrary number of materials,
we consider the 1D transport problem for seven materials. Here we only solve the advection
equations for volume fractions. For comparison purpose, the problem setup is identical with
Jaouen et al. [27]. The computational domain is [0, 1]. The initial data is given as:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

z1 (x) = Ξ[0,1/2 ] (x)
1+sin(2πx)

10 , z2 (x) = ∣∣x − 1
2

∣∣ ,

z3 (x) = 1.5+sin(0.7+2πx)
14 , z4 (x) = 1

2e
−100(x−1/2 )2 ,

z5 (x) = 1+cos(10πx)
14 , z6 (x) = 1

7Ξ[0.7,1] (x) ,

z7 (x) = 1 − ∑6
k=1 zk (x),

(57)

where

ΞI (x) =
{
1 − 10−8, x ∈ I ,
10−8, x /∈ I .

The distribution of initial data is illustrated in Fig. 1. Periodical boundary conditions are
imposed on both sides of the computational domain. The advection velocity is u = 1.0.
The numerical scheme is given by Eq. (9). The MUSCL scheme with MINMOD limiter and
the limited downwind scheme are tested. With advection functions Eq. (18), we obtain the
numerical results on a grid 1000 cells (Fig. 2) after one revolution (t = 1.0). We evaluate
the convergence of the numerical results with Equation (31). The distance of the numerical
results obtained with the MUSCL scheme to the exact solution is 1.38× 10−3, while that of
the results obtained with the Limited downwind scheme is 6.86× 10−4. The non-negativity
conditions (4) and (5) are well maintained at every time step.

Figure3 displays the numerical results for z1 obtained by directly solving the advection
equations for volume fractions Eq. (3) on a 1000-cell grid. Negative values and spurious
oscillations are observed.
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Fig. 2 Numerical results on a 1000-cell grid after one revolution: a, b obtained with MUSCL scheme; c, d
obtained with the limited downwind scheme. One in every ten points is displayed

5.2 Convergence Test

We investigate the convergence performance of different schemes. Consider the transport
of three components in the computational domain [0, 1] with the following initial volume
fractions:

z2(x) = cos((2x − 1)π) + 1

4
, (58)
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Fig. 3 Numerical results obtained with LD scheme on a 1000-cell grid after one revolution: the solid line—
numerical results obtainedbydirectly solving the advection equations for volume fractions, the dashed line—by
solving the advection equations for rational advection functions

Fig. 4 The convergence
performance of different schemes

-6.50 -6.00 -5.50 -5.00 -4.50 -4.00 -3.50 -3.00

ln(Δ x)

-11.00

-10.00

-9.00

-8.00

-7.00

-6.00

-5.00

-4.00
ln
( e

rr
)

Scheme 1
Scheme 2
Scheme 3
Scheme 4
d(z(1)

2 , z
(3)
2 )

Second order line

z3(x) = sin((8x − 1)π/2) + 1

4
, (59)

z1(x) = 1 − z2(x) − z3(x). (60)

The three components are moving to the right with an advection velocity u = 1.0. Periodical
boundary conditions are imposed on both sides. We test the following schemes:

1. Use advection functions f (1)
2 = z2 + z3, f (1)

3 = z3/(z2 + z3) for reconstruction and
updating;

2. Use advection functions f (2)
2 = z1 + z2, f (2)

3 = z2/(z1 + z2) for reconstruction and
updating;

3. Use advection functions f (3)
2 = z1 + z3, f (3)

3 = z3/(z1 + z3) for reconstruction and
updating;

4. Use advection functions f2 = z1 + z3, f3 = z3/(z1 + z3) for reconstruction, and z2, z3
for updating.

We have performed computations with the above schemes on a series of grids with 32,
64, 128, 256, 512 cells. We use z(l)2 to denote the numerical solution for z2 obtained with the

l-th scheme. The error err (l) is defined as the distance from z(l)2 to the exact solution z(ex)2 in
the L1-space.

The convergence performance of the four schemes at t = 1.0 (after one cycle) is demon-
strated in Fig. 4. Here we also include the L1 distance between z(1)2 and z(3)2 —d(z(1)2 , z(3)2 ).
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The accuracy orders are as follows: err (1) = O(Δx1.818), err (2) = O(Δx1.752), err (3) =
O(Δx1.983), err (4) = O(Δx1.983), d(z(1)2 , z(3)2 ) = O(Δx1.873).

These results verify Propositions 4 and 5.
Scheme 3 and Scheme 4 are in fact Scheme B and Scheme A, respectively. The numerical

results of the two schemes are almost the same with a distance of the order 10−15.

5.3 Composite Riemann Problem

We consider the three-material composite Riemann problem. The problem setup is identical
to that of Friess et al. [17]. Three different materials are separated by two material interfaces
in the 1m long computational domain. From left to right are the perfect gas 1 (γ = 1.60),
perfect gas 2 (γ = 2.40) and perfect gas 3 (γ = 1.40). At the initial moment the gases
are in a stationary state and their densities are ρ1 = 1.000, ρ2 = 0.125 and ρ3 = 0.100,
respectively. The sub-domains [0.0m, 0.4m], [0.4m, 0.6m], and [0.6m, 1.0m] are filled
with the perfect gas 1, 2 and3 , respectively.The initial pressure is 1.0 in [0.0m, 0.4m], and0.1
in other sub-domains. The rational advection used are f1 = z1 + z2 and f2 = z2/ (z1 + z2) .

From the numerical results (Fig. 5) we observe a good agreement between the numerical
results and exact solutions for both schemes. No violation of the non-negativity constraints
happens throughout the simulation.

5.4 Interface-Shock Interaction

In this section, we perform a more delicate test—interface-shock interaction problem. The
test is similar to but more complicated than those in [2]. The materials involved in this test are
two stiffened gas materials and a Van der Waals material. Materials properties are displayed
in Table1.

The length of the computational domain is 1.0 m. From left to right are the Van der
Waals gas, the stiffened gas material 1, stiffened gas material 2. The interfaces between the
materials are initially located at x = 0.4 m and x = 0.5 m, respectively. Constant boundary
conditions are applied on both sides of the computational domain. The stiffened gas material
2 travels from right to left at a speed of 432.69 m/s. The initial pressure is 109 Pa in the
sub-domain [0.5m, 1.0m], and 105 Pa in the other sub-domains. The materials on each side
of the initial pressure discontinuity are described by different EOSs. The initial densities of
each component are taken from Table1. Computations are performed on a coarse grid (500
cells) and a fine grid (50,000 cells). The numerical results at 270µ s are displayed in Fig. 6.
From these results we can see that the interfaces between three materials are well preserved
after long-time evolution.

Furthermore, we compare the numerical results of volume fractions when different vari-
ables are used for the reconstruction process. We perform a numerical test on a 100-cells
grid with three sets of reconstruction advection functions: advection functions (11), (12)
and (13). The results with the Roe-type method after 100 time steps are shown in Fig. 7. As
one can see, ReVars 2 causes spurious oscillations in the profile of z2 and ReVars 1 causes
spurious oscillations in the profile of z1 near the interface between the stiffened gas materials.
For these two selections, computations fail after a few steps because they violate positivity
constraints and result in spurious oscillations in pressure and producing numerical acoustic
disturbances. ReVars 3 ensures non-oscillatory results near the interface since the conditions
(4) and (5) are satisfied.
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Fig. 5 Numerical results of the composite Riemann problem at the instant 120µs on a 500-cell grid

Table 1 Material properties for the interface-shock problem

Material γ a (Pa m6/kg) b (m3/kg) π (Pa) ρi (kg/m3)

Van der Waals gas 1.400 5 10−3 0 1.2

Stiffened gas 1 5.527 0 0 6.146 × 108 1000

Stiffened gas 2 4.400 0 0 6.000 × 108 1230
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Fig. 6 Numerical results of the interface-shock interaction problem. The black solid line—results on a 5000-
cell grid with MUSCL scheme, the green line marked with “◦”—results obtained with the Roe-type method
on a 500-cell grid, the red line marked with “�”—results obtained with the HLLC on a 500-cell grid (Color
figure online)
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Fig. 7 Numerical results of the interface-shock interaction problem when different reconstruction variables
are used. ReVars 1—advection functions (11), ReVars 2—advection functions (12), ReVars 3—advection
functions (13)
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Fig. 8 Numerical results of the pure transport problem obtained after 10 time steps on a 100-cell grid with
different update variables. UpdateVars 1—advection functions (11), UpdateVars 2—advection functions (12),
UpdateVars 3—advection functions (13)

5.5 Pure Transport Problem

We proceed to verify Proposition 7. We reformulate the above problem in Sect. 5.4 as a pure
transport problem and assume that uniform velocity 1000.00 and uniform pressure 1.00×105

are given as initial data in the computational domain. In the exact solution pressure and
velocity should remain constant.Wecompare the results obtainedwith the advection functions
(11), (12) and (13) as the update variables in Fig. 8. Spurious oscillations are observed in the
results obtained with the rational advection functions (13) as update variables. With linear
update variables (11) and (12) both pressure and velocity remain constant.

5.6 Interaction of a ShockWave with a Rectangular Block of SF6

This test is taken from [5]. The computational domain has a rectangular shape (Fig. 9). TheΩ1

domain is filledwith the densegasSF6 (sulphur hexafluoride), and theΩ2 domainwith air. The
gases are in equilibrium at the beginning. A shockwave enters into the computational domain
from the left boundary. On the other boundaries reflective boundary conditions are imposed.
The shock wave travels through the SF6 block, and then reflects on the right boundary. The
leftward reflected shockwave hits the block again and travels through it. Due to the interaction
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Fig. 9 Configuration for the
problem of shock/SF6 block
simulations

with the shock wave, the SF6 block loses its initial rectangular shape and undergoes strong
deformation.

The experiment in [5] only involves two domains and two materials. However, since we
want to test the ability of our method in dealing with three or more components, this problem
is reformulated as a three-material one. Assume that there exists a third domain Ω3 on the
left of the domain Ω2, as illustrated in Fig. 9. The domain Ω3 is filled with a material whose
thermodynamic parameters are identical with air and the state vector is the same as that
assigned at the left boundary LB. This problem statement has no impact on the numerical
results, since the left boundary condition remains unchanged. However, the problem in this
case can be treated as a three-material problem.

Both air and SF6 are characterized as perfect gases with adiabatic coefficients γair = 1.400
and γSF6 = 1.076, respectively. The initial densities of the SF6 gas, the air on the left
boundary and the air in the domainΩ2 are 5.805, 1.667 and 1.153, respectively. At the initial
moment the gases in domainsΩ1, Ω2 are at rest with uniform pressure of 96,856.0 Pa. On the
left boundary the initial pressure and velocity are 16,3256.0 Pa and (133.273m/s, 0.0m/s),
respectively.

Figure10 shows the evolution of the SF6 block with time. The numerical results obtained
on a 450 × 200 mesh are compared with the experimental results shown in the first column.
The results displayed are chosen so as to demonstrate basic stages of this shock interaction
process. Figure10a displays the first interaction of the air shock with the left-hand side of
the SF6 block. Figure10b displays the situation when the air shock passes by the right-hand
side of the SF6 block. Figure10c shows the situation when the shock wave in SF6 reaches
the bottom-right corner of the block. In Fig. 10d, the shock wave has reflected from the right
end of the tube and is reentering into the block. In Fig. 10e, the reflected shock wave leaves
the left-hand side of the block. Figure10f shows the final stage with highly developed large
vortical structures. For detailed analysis of the process see [5].

To check the quantitative correctness of our results, the evolutions of the x-extent and
y-extent of the block computed with our algorithm are compared with the experimental and
numerical results of [5]. The block interior is taken as a region of the domain with SF6 mass
fraction greater than 10%. We can see from Sect. 5.6 that the results of our algorithm are
better than those in [5] in the evolution of the left-hand edge of the block, but worse in the
evolution of the right-hand edge of the block. The evolution of the upper edge of the block
is predicted with good accuracy (Fig. 11).

To check the sharpening effect, we compare the numerical results obtained with and that
without the THINC method in Fig. 12. We observe that the THINC method preserves the
steepness of the material interfaces very well without spurious oscillations.
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Fig. 10 Comparison between experimental images from [5] (left column: laser-sheet frames) and numerically
generated images (second column: density distribution, third column: numerical Schlieren image, right column:
distribution of the color function z2) obtained with the sharpening technique THINC. Times displayed are a
206, b 446, c 926, d 1726, e 2046, f 2846 µs

Fig. 11 SF6 block x/y—extent evolution. The solid line shows present numerical results, the dashed line
shows the numerical results of [5], error bars show extent measured from experimental frames

5.7 Triple Point Problem

In this section we consider the three-material problem known as triple point problem
[17,18,59]. The computational domain is displayed in Fig. 13. This problem is solved as a
two-material problem in [18,59]. In the present paper, we assume that the three sub-domains
Ω1,Ω2,Ω3 are occupied by three different materials which are characterized by the gener-
alized Van der Waals EOS with the parameters listed in Table2.

Initially all the materials are at rest. The initial density and pressure are displayed in
Fig. 13. Reflective boundary conditions are imposed for all the boundaries. A 700 × 300
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Fig. 12 Comparison of numerical results in domain [0.16, 0.34] × [0.00, 0.20] obtained with (top) and with-
out (bottom) the sharpening technique THINC. Left column—distribution of the color function z1, middle
column—distribution of the color function z2, right column—numerical Schlieren (Color figure online)

Fig. 13 Sketch of the triple-point
problem

Table 2 Parameters of the gases
in the triple point problem Domain γ a (Pa m6/kg) b (m3/kg) π (Pa)

Ω1 1.600 1 10−3 0

Ω2 1.400 0 0 0

Ω3 1.500 0 0 0

mesh is used for this computation. At a point on the interface between the sub-domain Ω1

and Ω3 located sufficiently far from the triple point, three waves are formed because of the
breakup of the initial discontinuity, namely, a contact wave, a leftward rarefaction wave and
a rightward shock wave. A similar situation occurs at a point on the interface between the
sub-domain Ω1 and Ω2. The interface between sub domains Ω2 and Ω3 represents a contact
wave. The shock wave in sub-domain Ω3 travels faster than the shock wave in sub-domain
Ω2 because of the difference of acoustic impedance in two fluids. Due to velocity difference,
the Kelvin–Helmholtz instability is developing along the interface between Ω2 and Ω3.
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Fig. 14 Numerical results with (top half) and without (bottom half) the sharpening technique THINC of the
triple point problem at time t = 3.5 (left column) and time t = 5.0 (right column). First row—density
distribution, second row—distribution of the variable Z = ∑3

k=1 kzk , third row—pressure distribution

The numerical results are displayed in Fig. 14. The results show a good agreement with
the results of [17,18,59]. The Kelvin–Helmholtz instability development is clearly seen.
Moreover, our algorithm can also give the distribution of each fluid in the computational
domain. Again, the numerical results obtained with our algorithm coupled with the THINC
schemedemonstratemore sharpness of the advection front of volume fraction than the second-
order MUSCL scheme. No violation of the non-negativity conditions happens throughout
the computation.

5.8 ShallowWater Explosion Near a Free Surface

Here we consider an important application of the proposed model—underwater explosion
(UNDEX). The underwater explosion near a free surface involves three components: the
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Fig. 15 The evolution of the
bubble radius with time

atmosphere air, the water and the explosive gas. Unlike the deep water explosion, in the
shallow water explosion the explosive gas may break through the water surface and come
into contact with the atmosphere air. However, to the authors’ knowledge, almost in all the
published works on shallow water explosion, the air and the explosive gas are regarded as
the same material, and thus this problem is considered as a simplified two-fluid problem.
In our opinion, the main reason for this simplification lies in the difficulty to ensure non-
negativity of volume fractions.When EOSs of eachmaterial are different, the pressure is very
sensitive to volume fractions and any slight violation of the non-negativity conditions leads
to the failure of the computation. With the proposed method for ensuring the non-negativity
conditions for volume fraction in Sect. 2, we will solve the problem as a three-fluid one.

We first verify our model and numerical methods against the most studied and well-
documented two-fluid deep water explosion problem. Consider a spherically symmetric
problem—explosion of 300g TNT at the depth of 94.1m under the free surface. Both water
and explosive gas are characterized with the Mie–Gruneisen EOS—JWL (Jones–Wilkins–
Lee) equation:

Pk = P∞,k (ρk) + ρkΓk (ρk)
[
εk − ε∞,k (ρk)

]
(61a)

P∞,k(ρk) = A1,kexp

(
−ρ0,k R1,k

ρk

)
+ A2,kexp

(
−ρ0,k R2,k

ρk

)
, (61b)

ε∞,k(ρk) = A1,k

ρ0,k R1,k
exp

(
−ρ0,k R1,k

ρk

)
+ A2,k

ρ0,k R2,k
exp

(
−ρ0,k R2,k

ρk

)
, (61c)

whereρ0,k, A1,k, A2,k, R1,k, R2,k, andΓk—theparameters for the k-th component. Forwater,
these parameters are 1.00381 kg/m3, 1.582×1012 Pa,−4.668×109 Pa, 8.94, 1.45, and 1.172,
respectively. For TNT, they are 1.63 kg/m3, 3.712 × 1011 Pa, 3.23 × 109 Pa, 4.15, 0.95, and
0.300, respectively [56].

The initial conditions are given as follows: the radius of the explosive gas bubble
is 3.5287 × 10−2 m, the pressure and density of the explosive gas are 8.38 × 109 Pa
and 1630.00 kg/m3, respectively; the pressure and density of the surrounding water are
1.0 × 106 Pa and 1025 kg/m3, respectively. The computational domain is [0m, 50m] and
discretized with a grid of 25,000 cells. Symmetry and non-reflecting boundary conditions are
imposed on the left and right, respectively. Under the above conditions, we have obtained the
pulsation process as displayed in Fig. 15. The experimental measurement for the maximum
radius of the gas bubble and the pulsation period are 48.10cm and 29.80ms, respectively [56].
According to our numerical results these parameters are 50.01cm and 29.90ms, respectively
and the relative errors are 3.97% and 0.33%, respectively.
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Fig. 16 The configuration of the
axisymmetric three-fluid shallow
water explosion problem

Fig. 17 The evolution of water volume fraction in shallow water explosion problem: first row—explosion at
the depth of 3m, second row—depth 6m

Further, we proceed with the axisymmetric three-fluid shallow water explosion problem.
The geometry configuration is demonstrated in Fig. 16. Unlike the works [35,52,55] where
only half pulsation period (that before the maximum bubble radius is reached) is considered,
we are interested in the long-term evolution of the explosion process including the burstout
of explosive gas into the atmosphere and formation of the so-called “sultan” effect [31] on
the free surface.

The geometry parameters are Lr = 40.00m, Lz = 60.00m, Hw = 20.00m, r = 0.60m.
As in [37], the initial data is given as follows: in atmosphere air, p = 1.01325× 105 Pa, ρ =
1.225 kg/m3; in water, the pressure p is given according to statics and ρ = 1000.000 kg/m3;
inside the explosive gas bubble, p = 7.2700×108 Pa, ρ = 240.472 kg/m3. We consider two
cases H = 17.0m (water depth 3m) and H = 14.0m (water depth 6m). Computation is
performed on a grid of 400 × 700 cells.

The numerical results for the two cases are displayed in Fig. 17. For both cases the effect
of central “sultan” is observed. This effect is also observed experimentally and is described
in [31]. The water surface takes a sultan-like shape due to formation of strong cumulative
jets at the stage of collapsing of the bubble containing explosion products. In the case of
3m depth, due to a strong backward cumulative jet, the gas bubble is split up and pushed
downwards. Due to the cumulative jets, a central “sultan” is formed. In the case of 6m depth,
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Fig. 18 A qualitative comparison between the numerical results (dept 3m) and the experimental results in
[31] (on the right). Time moments displayed are 0.414 s, 0.552 s, 1.578 s, 2.274 s. The gray color—air, the
black color—explosive gas and water

the backward cumulative jet is weaker and the cohesion of the gas bubble is kept. In this case,
the pulsation of the bubble is more evident. A qualitative comparison between the numerical
results and the experimental results in [31] is demonstrated in Fig. 18. It can be seen that
the basic physical effects on the free surface are well captured. Additional details of the
simulation results are shown in the attached animation (Online Resource).

6 Conclusions

We have proposed a (2N + 1)-equation model for the simulation of multi-fluid flow with
N (N ≥ 3) compressible materials. The model is based on the single velocity diffuse inter-
face method and includes N − 1 advection equations for advection functions. We have
proposed specific advection functions for the sub-cell slope reconstruction and updating pro-
cedures. For the interpolation procedure, to ensure the non-negativity constraint that any
arbitrary partial sum of volume fractions is in the interval [0, 1], we have proposed a set of
advection functions in the form of rational functions of volume fractions. With these ratio-
nal advection functions, any monotonicity-preserving non-linear interpolation schemes and
interface-sharpening techniques can be applied without violating the non-negativity con-
straint for volume fractions or introducing spurious oscillations. Not any modification to
these non-linear interpolation schemes are required. Moreover, we proved that the advection
functions must be linear with respect to the volume fractions to maintain the PV property
in the updating procedure. Thus, we have suggested using different advection functions—
rational for reconstruction and linear for updating. Numerical tests demonstrate the efficiency
and accuracy of our model and algorithm.
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