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Abstract—In this paper, we consider a new numerical method for solving the transport equations for a
multicomponent heterogeneous system on fixed Eulerian grids. The system consists of an arbitrary
number of components. Any two components are separated by a boundary (interface). Each compo-
nent is determined by a characteristic function, i.e., a volume fraction that is transported in a specified
velocity field and determines the spatial instantaneous component distribution. A feature of this sys-
tem is that its solution requires two conditions to be met. Firstly, the volume fraction of each compo-
nent should be in the range [0, 1], and, secondly, any partial sum of volume fractions should not
exceed unity. To ensure these conditions, we introduce special characteristic functions instead of vol-
ume fractions and propose solving transport equations with respect to them. It is proved that the ful-
fillment of these conditions is ensured when using this approach. In this case, the method is compat-
ible with various TVD schemes (MINMOD, Van Leer, Van Albada, and Superbee) and interface-
sharpening methods (Limited downwind, THINC, Anti-diffusion, and Artificial compression). The
method is verified by calculating a number of test problems using all of these schemes. The numerical
results show the accuracy and reliability of the proposed method.
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INTRODUCTION

The multimaterial flow is encountered in various applications and applied problems. For example, an
underwater explosion, the outflow of oil products or natural gas from an underwater pipeline, high-speed
impact problems, and dynamic processes in heterogeneous multiphase media. In a multimaterial flow,
there are different materials that are separated by interphase boundaries (interfaces), have various physical
and mechanical properties, and are described by different equations of state. Direct modeling of such
inhomogeneous flows involves calculating the flow parameters in internal homogeneous subdomains and
the position of interphase boundaries at each time instant. Under strong spatial changes in the interphase
boundaries, the subdomains of the homogeneous material and grids associated with them can also
undergo strong deformations, in which the accuracy of the calculation deteriorates, resulting in unphysical
results. For example, such a situation arises when simulating the Richtmeyer-Meshkov instability that
develops at the interphase boundary of two materials during the passage of a shock wave.

To circumvent the difficulties of direct numerical modeling associated with the deformation of the
interphase boundary, there exists an alternative approach that is called the diffuse interface method in the
literature. In this approach a medium of different materials is considered as a homogeneous, effective
medium, the properties of which depend on the characteristic functions that determine the spatial com-
ponent distribution. As a rule, the volume fraction of the component is used as such a function. The inter-
phase boundary in this case is represented by a zone, where the value of the volume fraction varies from
Zero to unity.

Thus, the methods for calculating multimaterial flows can be divided into two groups: interface-track-
ing methods [1—5] and diffuse interface methods [6—9]. In the methods of the first group, the interphase
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boundary is defined in a special way, and its position at each time step is calculated. In the methods of the
second type, a interface-capturing calculation throughout the domain is carried out without the specifi-
cation of a boundary. In this case, the interphase boundary is determined by the subdomain where the vol-
ume fraction is greater than zero and less than unity. The simulation accuracy in the second approach
directly depends on the size of the interface zone. Therefore, an important problem is the development of
computing technique that helps minimize the size of the smeared interface. At present, several such meth-
ods have been developed. They include the LD (Limited Downwind) method [10, 11], THINC method
[12], AntiD (Anti-diffusion) method [13, 14], and ACM (Artificial Compression Method) method [15,
16]. These methods were initially developed for the case of two components. Their direct generalization
to the case of N (N = 3) components is impossible due to the appearance of an additional restriction on
the values of volume fractions, i.e., compatibility conditions; in other words, the volume fraction of each
component should be in the range [0, 1] and any partial sum of volume fractions should be less than unity.
We will show that even the MUSCL scheme does not guarantee the fulfillment of this condition in the
simple advection of three or more components.

The fulfillment of the compatibility condition depends on the numerical method used for solving the
transport equations for the volume fractions of the components. Therefore, in this paper, we consider only
the transport equations in a specified velocity field. The developed methods can be easily extended to the
full system of Euler equations.

To ensure the compatibility condition for volume fractions in the case of N> 3, S. Jaouen [10] modified
the numerical flux in the LD method [11]. In this case, a complex recursive procedure that works exclu-
sively with the LD scheme was proposed.

In this paper, we propose a new approach that, unlike [10], is not associated with a specific numerical
method for solving the transport equation. It is compatible with any of the interface-sharpening methods
noted above. Instead of volume fractions in the transport equation, we propose using special characteristic
functions, which are nonlinear combinations of volume fractions that automatically ensure the compati-
bility conditions, provided that the basic scheme for solving the equation is TVD.

1. PROBLEM STATEMENT

Let us consider the advection in the u velocity field of a heterogeneous system of N components char-
acterized by volume fractions of components z;:

9z, +u-Vz, =0, ie Q={1,23,..,N}. (1)

Due to normalization

o=, 2

only (N — 1) unknowns are independent, and, accordingly, only (N — 1) transport equations need to be
solved. The component not included in the system will be simply determined from (2). Without loss of
generality, we will consider the following system:

dz +u-Vz, =0, ie{23,... N} 3)
The compatibility conditions for volume fractions are represented by the following inequalities:
z € [0,1], 4)
and
szSI, je Ac Q. ()

J

If the initial data that satisfy inequalities (4) and (5) are specified at the initial moment of time, the
solution on subsequent time layers must also satisfy these inequalities. The first-order standard upwind
scheme ensures the fulfillment of the compatibility conditions. However, in this case, due to the large
numerical viscosity, the discontinuities in the volume fractions suffer from strong numerical smearing,
because of which it is difficult to clearly distinguish the interphase boundary. Higher order schemes, such
as van Leer’s MUSCL scheme with the MINMOD derivative limiter, based on the nonlinear interpola-
tion significantly reduce the smear zone but do not ensure the fulfillment of the compatibility conditions.
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Fig. 1. MINMOD interpolation example for a system with three components.

This is because the interpolated values of volume fractions may violate conditions (4) and (5). Let us
explain the root of the problem with the following example.

Figure 1 shows an example of MINMOD interpolation for a three-component system. Interpolation
is performed for volume fractions at boundary i + 1/2 between two cells indexed i/ and i + 1. Although the
values of the volume fractions in the cells satisfy conditions (4) and (5), the interpolated values at boundary
i + 1/2 violate condition (5). The same problem arises when using other interface-sharpening methods.

In the first-order scheme, the compatibility conditions will not be violated since the volume fractions
at the boundary are equal to the average volume fractions of either the left cell or the right cell. Therefore,
the conditions are automatically satisfied at the boundary.

2. NEW CHARACTERISTIC FUNCTIONS

In order to fulfill the compatibility conditions when solving equation (1) with high-order schemes, we
propose introducing special characteristic functions and solving transport equations with respect to them:

d,f+u-Vf, =0, ie{2,3,...,N}, (6)
where
N N
f,-=ﬁ(z,~_1,z,~,---,z/v)=ZZk sz- (7)
k=i k=i—1
In the particular case of N = 3, the characteristic functions have the following form:
+
S = SIS =5+ fi= & .
Z1+Z2+Z3 Z2+z3

Lemma 1. The system of equations (3) and the system of equations (6) are equivalent if
720, i€{23,...,N}.
Proof. We rewrite Eq. (6) as follows:

N

0,22y Tyees 2) + U V(s ZaoennZ) = ZW%Z"“’ZN)@,@ +u-Vz) =0, )
i=2 K

After simple calculations, we find the Jacobian

afz/azz afz/azs afz/azzv
7= af3/aZ2 af3/az3 af3/azN _ 1 )

8fN/aZz af/\//az3 afN/azN g(gqj

Since z; # 0, i € {2,3,..., N}, the Jacobian is not equal to zero. This means that the system of equations
(3) and the system of equations (6) are equivalent. =

If a certain component is absent in the computational cell and its volume fraction is zero, the Jacobian
and characteristic functions acquire a singularity. To avoid such degeneracy, a small value of | (for exam-
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ple, n = 107°), which limits the components from total degeneracy, is introduced. Thus, in the model
under consideration, the absence of a component actually means its presence, albeit, in a negligible
amount. Complete degeneration of the component is not allowed.

Since the system of equations (3) and the system of equations (6) are equivalent, their exact solutions
coincide. Therefore, at the convergence of the numerical scheme, the numerical solutions will be close to
each other and coincide in the limit.

Lemma 2. Let there be values of volume fractions satisfying the compatibility conditions (4) and (5) and an
interpolation scheme that preserves monotonicity during the subcell reconstruction. Then the application of
such a scheme to the values of the characteristic functions (7) determines the interpolated values of the volume
fractions that also satisfy the compatibility conditions (4) and (5).

Proof. Since the averaged values of the volume fractions satisfy conditions (4) and (5), we have for the
averaged values of the characteristic functions

f;‘j € [05 1]3 (10)
where i is the index of the component and j is the index of the cell.
If an interpolation scheme that preserves monotonicity is used, then a new extreme is not produced, i.e.,

£ efo], (11)

where the superscript cf denotes the interpolated values. The interpolated values of the characteristic
functions and volume fractions are related by the following relation:

Zz , ie{23,... N}, (12)
k=i k=i—1
from which we obtain at once that
N N N
0<zy < FAESUES I I A (13)
k=N-1 k=3 k=2

Inequality (13) ensures the fulfillment of conditions (4) and (5). =

Thus, having solved the system of equations (6), numerical solutions of the system (3) that satisfy the
requirements (4) and (5) can be found. For this purpose, the volume fractions must be expressed in terms
of the characteristic functions. Solution (7) gives simple formulas for this transformation:

i+l

z-ka ka, i<N, zy= ka (14)

Ifthe TVD scheme is used to solve the transport equation in the characteristic functions, then their full
variations will decrease in time, i.e.,

[TvOI™ < [TV, (15)
where the full variation is determined by the following formula:
TV (fz) = Z|ﬁ,j+1 - ﬁ,' (16)
j

However, it is not obvious that the TVD of the characteristic functions also ensures the TVD property of
the volume fractions. The monotonicity of the characteristic functions do not necessarily ensure the
monotonicity of the volume fractions. Nevertheless, it can be proved that the total variation in the volume
fraction remains limited. For this purpose, we first need to prove the following lemma.

Lemma 3. The complete variation of the product of two characteristic functions is limited by the following
inequality:

TV /) < TV ) + TV(). (17)
Proof.

TVUifw) = 2N S = i)l = Zl(f),ﬂ ) = U1+ D [0 = U]

J (18
< Zl(f),+1 (F) a1 = (f) |+Z|(fm), (£ = :
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Since 0 < () 41,(f,); <1, we obtain that

Jt+ls

TV(/if,) < Zl(f),ﬂ (B = (), |+Z|(f) ()0 — )]

(19)
< Zl(f )1 — (o) | + Zl(f),ﬂ I TV(f) +TV(f,). =
Lemma 4. The complete variation of the volume fraction z; is limited by the following inequalities:
TV(z)<C,, C' <. (20)
Proof. Using Eq. (14) and Lemma 3, we obtain
i+1
TV(z) = ZTV(fk)+ZTV(fk i<N (1)
and
N N
TV(zy) =TV£kaJ =D TV(£) = Cy. (22)
k=2 =

From inequality (15), it follows that C,""' < C/”, i e {2,3,...,N}. =
Lemma 4 means that, although the complete variation in the volume fraction does not decrease, it is
nevertheless limited by an upper limit decreasing in time.

Comment. The characteristic functions (7) are not the only choice. The following combinations also
ensure the fulfillment of the compatibility conditions (4) and (5):

N N
fi= [z 2y) = Z\I«zk)/ PR {EAR (23)
k=i

k=i—1

k=i-1

N N
fi = G T 2n) = ‘I’[sz/ > Zk\J’ (24)
k=i

where W(x) € [0,1], x € [0, 1], is a monotonic function. For example, W (x) = xB, Be R".

3. DISCRETIZATION
The explicit scheme and the finite volume method are used to discretize the system of Egs. (3) and (6):

n+l

9" =4" - ul(q;'ﬂ/z - 47—1/2), (25)

where A = At/ Ax, At, and Ax are time steps and space steps, respectively, u is the speed, and superscripts
n and n + 1 denote the corresponding time step. Below, superscript # is omitted for simplicity.
We analyze two approaches when g = z; and g = f; are taken as unknown quantities. In both cases, the

characteristic functions (7) are used for subcell interpolation in order to satisfy the compatibility condi-
tions (4) and (5). An upwind scheme is used to calculate the numerical flow, i.e.,

+ —
u—|u|‘]j+1/2,L + u—|M|Qj+I/2,Ra (26)

djvi2 = 7 3

where g, /2.1 and q;,, /2.8 AT€ the interpolated g values on the left and right sides of the boundary between
cellsjandj + 1.

In the next section, we compare the proposed method with the method of S. Jaouen [10] developed
based on the LD scheme [11]. The latter is actually equivalent to the Ultrabee scheme for the linear trans-
port equation. In order to satisfy the compatibility conditions, a rather cumbersome modification of the
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numerical flow LD is proposed in [10]. The transport equations for ¢ = z; are considered, and the numer-
ical flow is determined as follows:

di,j+l/2’ i j+1f2 < di,j+1/2

Zij+if2 = i di,_i+l/2 < Zj j+1f2 < i j+1/2

(27)
Di,j+l/27 Zijif2 > Di,j+l/2'
M jufy = min(zi‘ﬁ Zi,jH)’ Mi,j+l/2 = maX(Zi,j’ Zi,j+1)9
Z; =M Zij — M
bi,j+1/2 = T + Mi,j—l/Zv Bi,j+1/2 = T Tm; i),
Gijvif2 = max(bi,j+l/27mi,j+l/2): Ai,j+l/2 = min(Bi,j+l/2aMi,j+l/2):
N N
dl,j+1/2 = max al,j+1/2’] - ZA/,j+1/2 > Dl,j+1/2 = min Ai,j+1/2al - za/,jﬂ/z ) (28)
=2 =2
i1 N
d; jyyy = MaX| G ;1= Zzl,jﬂ/z - Z Ajup | 1€ 123,...,N -1},
=1 I=i+1
N

i-1
D, .y, = min (Ai,jﬂ/z,l - zzl,j+l/2 - a/,j+1/2], i€q{2,3,.,N~1}.
I=1 1

I=i+

Obviously, the method [10] is much more complicated than the characteristic functions-based
approach proposed in the present work. Furthermore, it is strongly associated with the LD scheme. Our
method does not imply any special interface-sharpening scheme. It is compatible with any of the above
nonlinear interpolation methods without any modifications.

4. NUMERICAL TESTS

In this section, the proposed method of characteristic functions is tested on some one-dimensional
and two-dimensional transport problems. Classical second-order TVD schemes, such as MUSCL with
derivative limiters MINMOD, Van Albada, and Superbee, as well as special interface-sharpening algo-
rithms, including LD, AntiD, THINC, and ACM, are considered and compared. By default, the Courant
number was 0.2 in all the calculations.

4. 1. Three-Component System Advection
The calculated domain is the interval [0,1]. The initial component distributions are as follows:

, 2(x) =[x -1/2

() =1=7(x) = (%), (29)

X X
2,(x) = [0.4,;.6]( )

1, xel,
0, xegl.

Periodic boundary conditions apply on the left and right boundaries. The advection rate is u = 1. In
this example, we do not consider the AntiD, THINC, and ACM schemes that are designed specifically
for interface sharpening, where a sharp transitionz, - 0,z_ — lorz, — 1, z_ — 0 occurs.

Figure 2 shows the initial distribution of the volume fractions of each component and the solution of
the system of equations (3) obtained with the first-order upwind scheme. As can be seen in the figure,
there is a strong distortion of the initial distributions due to the excessive numerical viscosity.

Second-order schemes reduce numerical viscosity. However, if they are applied to the transport equa-
tion for volume fractions, the nonlinear interpolation operator can lead to negative values, as can be seen
in Fig. 3, which shows the numerical results of the solution using the MUSCL-Superbee and LD schemes.

Let us now consider the numerical solutions that are obtained if the proposed characteristic functions
are used in the transport equation. The numerical solutions of the system of equations (6) obtained using

where the function X, (x) = {
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Fig. 2. Initial distribution of volume fractions (left) and numerical results obtained with the first-order upwind scheme

after a single cycle, = 1.0 (right). == 3| -8 3 - Z3.

1.0

0.5

o
o
(93]
—
o

Fig. 3. Numerical results for Superbee (left) and LD (right) scheme after a single cycle, = 1.0. The solution of equations

(3) with respect to volume fractions. =»— <1 =82 =23,

the second-order MUSCL scheme with various derivative limiters (Minmod, Van Leer, Van Albada, and
Superbee) and the LD scheme are shown in Figs. 4, 5, and 6, respectively. The results show that the result-
ing values of the volume fractions satisfy the compatibility conditions in all the tests. Negative volume
fractions do not appear.

Figure 7 shows the results of the calculation of 500 cycles (¢ = 500) with the characteristic functions
and the LD scheme. For comparison, similar results by the method of S. Jaouen [10] are also presented.
The results almost coincide. The total variations are shown in Fig. 8. As can be seen in the Fig. 8, the total
variation barely changes with time in our method and the method [10].

4.2. Interphase Boundary Transfer

This problem models the motion of interphase boundaries. Its formulation is schematically shown in
Fig. 9. The computational domain is a segment [0.0m, 1.0m]. Inside the domain, the intervals [; = [0.0m,
0.2m], I, =[0.2m, 0.4m], I; =[0.4m, 0.6m], and I, = [0.6m, 1.0m], which contain the 1st, 2nd, 3rd, and
1st components of a three-component system at the initial time, are specified. The number of cells is 100.
Periodic boundary conditions are specified on the left and right boundaries.

MATHEMATICAL MODELS AND COMPUTER SIMULATIONS  Vol.11 No.6 2019
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z Z
1.0 - 1.0 -
0.5 0.5
0 0
0 0.5 10 0 0.5 1.0
X X

Fig. 4. Numerical results obtained with the MINMOD (left) and van Leer (right) schemes after a single cycle, = 1.0. The

solution of Egs. (6) with respect to characteristic functions. == <1 =82 =23,

Z <
1.0 1.0 -
0.5 0.5
0 0
0 0.5 1.0 0 0.5 1.0
X X

Fig. 5. Numerical results obtained with the van Albada (left) and Superbee (right) scheme after a single cycle, = 1.0. The

solution of Egs. (6) with respect to characteristic functions. =»—= 3 =83 —#= 3.

z Z
1‘0 _ 1.0 _
0.5 0.5
0 0
0 0.5 1.0 0 0.5 1.0
X X

Fig. 6. Numerical results obtained with the LD scheme with characteristic functions (6) (left) and the S. Jaouen method

[10] (right) after a single cycle, = 1.0. =»= < —8= 2 —»= 23,
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Fig. 7. Comparison of the LD method with characteristic functions and the S. Jaouen method [10]. Calculation of 500
cycles, #=500: (a) zy, (b) zp, and (¢) z3. 3 Our method -= Jaouen method

2.0 o 20 -

1.5+ 1.5+
© S
X 1.0 3 1.0
z -

0.5F 0.5F

0 100 200 300 400 500 0 100 200 300 400 500
Cycle Cycle
— TV(zp) --—-- TV(z3) — TV(z) - TV(z3)

Fig. 8. Total variations of numerical solutions in the LD method with characteristic functions (left) and S. Jaouen method
[10] (right). Calculation of 500 cycles (z = 500).

The initial data is specified as follows:

5(x) =E,0,(%), %) =E,(x), %(x)=E,(x).

1-10°, xer

/(N -=D)x10°, xeI.

In this problem, we test our method with the MINMOD, LD, THINC, AntiD, and ACM schemes.
The numerical results after ten cycles are presented in Fig. 10. It can be seen that, except MINMOD, the
interphase boundaries have a high resolution in 2—3 cells. In this case, the numerical oscillations associ-
ated with the violation of the compatibility conditions are not observed.

where Z,(x) = {
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<1 2 <3 4l

I I I I |
Om 0.2m 0.4m 0.6m 1.0m

Fig. 9. Calculation scheme of the transport problem of the interphase boundary.

4.3. Transfer of Seven Components

Next, we consider a more computationally difficult problem, i.e., transport of a 7-component system.
At the initial moment, each component is determined by the distribution of volume fractions that satisfy
the compatibility conditions (4) and (5):

(%) = Xjoy2/(0) ((1 +sinQ2mx))/10),  25(x) = |x ~1/2
z3(x) = (1.5 +sin(0.7 + 21'cx))/14, z(x) = O.Sexp(—lOO(x - 1/2)2)’ (30)

B

6
2s(x) = (14 cos(10m0)) /14, 2e(x) = (Xip71(0)/7, () =1= D 2.(x).
k=1

The initial distribution is shown in Fig. 11. The calculation is carried out on two grids with 100 and 1000
cells, respectively. The numerical results for the MINMOD and LD schemes are presented in Figs. 12 and
13. As expected, the more dissipative MINMOD scheme produces the greater distortion in the volume
fraction distributions compared to the LD scheme, which shows excellent convergence. As can be seen in
Fig. 13, the resolution of discontinuities in the LD scheme for 1000 cells is only one point. At the same
time, our method of characteristic functions guarantees the compatibility conditions (4) and (5) in the
numerical solutions both in MINMOD and in the LD scheme at various grid resolutions.

4.4. Two-Dimensional Transfer of a 4-Component System

The transport problem of a 4-component system, which is shown in Fig. 14, is considered. The system
at the initial moment is represented by two circles (O;, O,) and one cruciform region (C), which are deter-
mined by the following formulas:

0, = B((1,1),0.5)
0, = B((1,1),0.7)
C =[0.8,1.2]x[0.4,1.6] U [0.4,1.6] x[0.8,1.2].
The initial distribution of the volume fractions of the components has the following form:

ZI(X,y) = EC(X,y), Zz(xay) = EOI/C(xay)7

3
2% ) = Zo,coon(6 1), %Gy =1- D 5(x,y).
k=1

The following statements are considered: (a) the translation of materials along the diagonal with a
speed u = (1,1) and (b) rotation around the point (1,1). Five methods are tested: (1) LD, (2) THINC, (3)
AntiD, (4) ACM, and (5) MUSCL.

Periodic boundary conditions are set at the boundaries. The calculation is carried out on a 400 X
400 grid. The Strang dimensional splitting method is used. The numerical results after two cycles (= 10 s) of
diagonal transfer are shown in Fig. 15a. In the results obtained by the MUSCL scheme, strong smearing
of the interphase boundaries is observed. Other methods for interface sharpening effectively reduce the
smear zone. The best interface resolution is provided by the LD method and the ACM.

In the AntiD scheme, the resolution of the interfaces is slightly worse than that in the other methods.
In this case, the distribution of the volume fractions is distorted as a result of the transfer. It is possible to
reduce the zone of the interphase boundary by repeatedly applying the AntiD scheme. However, this leads
to an even stronger distortion of its shape.

The numerical solutions of the problem in the case of rotation obtained after two cycles (f = 2 s)
according to various schemes are presented in Fig. 15b. As can be seen from the presented results, the
interfaces are most precisely resolved here also by the LD scheme. In the volume fraction distributions
obtained by the THINC scheme, oscillations and a rather strong smearing of the interface are observed.
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Fig. 10. Numerical results of the interface transport problem: (a) MINMOD scheme, (b) LD scheme, (c) THINC

scheme, (d) AntiD scheme, and (¢) ACM scheme. =»= 31 -8 2 —% 13,

Z (a) < (b)
0.6 0.8

0.3

CANNTS

0 0.5 1.0 0 0.5 1.0
23 = 2 i3 -~ 24 X - 5 == Zg <7 X

Fig. 11. Initial distribution of volume fractions in the transport problem of a 7-component system.
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Fig. 12. Numerical results of the 7-component system transport problem obtained with the MINMOD scheme: (a, b)

number of cells is 100, (c, d) number of cells is 1000.
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Fig. 13. Numerical results of the 7-component system transport problem obtained with the LD scheme: (a, b) number of

cells is 100, (c, d) number of cells is 1000.
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Fig. 14. Scheme of the two-dimensional transport problem of a 4-component system: (a) translation and (b) rotation.
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Fig. 15. Contour levels of volume fractions: (a) after two cycles of translation along the diagonal, (b) after two cycles of
rotation.

In the volume fraction distributions obtained by the AntiD and ACM schemes, there are strong distortions
of the material interfaces.

4.5. 4-Component System Transfer in a Vortex Field

In the last test, we consider the transfer of a 4-component system by a vortex velocity field. The initial
distribution of the components is shown in Fig. 16. The length of the square side is 1.0. The center of the
circle (€, + Q,) is (0.50, 0.50) and the radius is 0.15. At the initial moment, there are four different com-
ponents in the computational domain. Volume fractions are determined by the following formulas:

(%, y) = Eq (%)), 2(x,y) =Eq (x,)),

3
5(x,) = Eq,(x,), 2(6,y) =1- z(x.)).
k=1

The velocity field is first determined by the vortex distribution with a clockwise direction,

u= sinz(nx) sin(2my), v = —sinz(ny) sin(2mx).

At the time moment ¢ = 1.0, the direction of the velocity vector instantly changes to the opposite one,
i.e., at r > 1.0, the distribution of the velocity vector becomes

u = —sin’(nx)sin(2my), v = sin’(my)sin(2mx).
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Fig. 16. Scheme of the transport problem in a vortex velocity field.
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Fig. 17. Distributions of volume fractions obtained at various times: t = 0.5, 1.0, 1.5, 2.0: (a) using the LD method and
(b) using the ACM.

Thus, by time 7 = 2.0, the system must return to its initial state. In this test, we test only the LD and
ACM schemes that performed best in the previous problems. The calculations are performed on a 200 X
200 grid. The numerical results are shown, respectively, in Figs. 17a and 17b. The interface resolution
using the LD scheme is almost perfect. The ACM results in the distortion of the material interfaces.

CONCLUSIONS

In this paper, we describe a new method for solving the system of transport equations for volume frac-
tions of a multicomponent heterogeneous system in a specified velocity field on fixed Eulerian grids. The
method ensures the following compatibility conditions for the volume fractions: (1) the volume fraction
of each component should be in the range [0,1], and (2) any partial sum of volume fractions should not
exceed unity. In this case, the method is compatible with various TVD schemes and interface-sharpening
methods. The method is simple and does not require significant changes in the schemes applied. It is
tested on different problems with the MUSCL (with Minmod, van Leer, van Albada, Superbee limiters),
THINC, LD, AntiD, and AMC schemes. The best interface resolution properties were obtained using the
LD scheme. The method can be applied to the interface-capturing calculation (on fixed Eulerian grids)
of incompressible and compressible flows of multiphase media with interfaces, which will be the subject
of our future work.
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