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Abstract—Comparative analysis is performed of magnetotelluric polar diagrams that are helpful for the rec-
ognition of geoelectric structures at the stage of qualitative interpretation of magnetotelluric soundings. The fol-
lowing types of polar diagrams are considered: (i) diagrams of the impedance tensor, (ii) diagrams of the A and
E polarized impedances, and (iii) diagrams of the phase tensor. The properties of the diagrams are studied and
it is shown that shallow structures of a higher resistivity are identified most reliably with the use of E polarized
impedance diagrams, whereas phase diagrams of the impedance tensor and diagrams of the phase tensor pro-
vide the most reliable constraints on deep (lithospheric) conductive structures. Polar diagrams are free from
structural limitations inherent in the standard methods of the separation of local and regional effects. It is impor-
tant to note that diagrams of the impedance tensor and E and H polarized impedance diagrams are also [ree from
frequency limitations. Evidently, combined application of polar diagrams significantly widens the possibilities
for the separate identification of shallow and deep geoelectric structures.

1. INTRODUCTION

The success of interpretation of magnetotelluric
sounding data is largely dependent on the preliminary
qualitative analysis intended to construct an interpretation
model [Berdichevsky and Dmitriev, 2004]. Geological
and geophysical a priori information on the region studied
and analysis of measured values of the impedance tensor
allow one to perform geoelectric regionalization, localize
and identify structures, and determine their dimensions
and orientation. Polar diagrams displaying their of magne-
totelluric response functions on the structural orientation
play an important role at this stage. Modern magnetotellu-
rics provides three types of polar diagrams: (i) diagrams of
the impedance tensor, (ii) diagrams of H and E polarized
impedances, and (iii) diagrams of the phase tensor. The
goal of our study is a combined analysis of these graphic
representations and a comparative analysis of their infor-
mativeness.

2. DIAGRAMS OF THE IMPEDANCE TENSOR

This type of polar diagrams was proposed and
developed in [Berdichevsky, 1968; Nguen Than Van,
1991; Berdichevsky er al., 1993]. Polar diagrams of the
impedance tensor are constructed without structural
and frequency limitations.

As is known, the impedance tensor [Z] has a square
matrix with the diagonal components Z,, and Z, and
the off-diagonal components Z,, and Z,:

Zx.‘c Z.r_v
oz 2.

»r yy

[Z] = (1

The components of the tensor [Z] provide information on
vertical and horizontal variations in the Earth’s electrical
conductivity. The main constraints on vertical variations in
the conductivity are gained from the off-diagonal compo-
nents Z,, and Z,.. The diagonal components Z,,, Z,, char-
acterize the geoelectric asymmetry of the medium.”

If the x and y axes are rotated clockwise through an angle
«, the components of the tensor [Z] change by the law

[Z(e)] = [R(a)I[ZI[R(a)]™, (2)
where
[R(c)] = cosQ sino
_sino cosor|
[R(a)]fl _ |cosa —sind .
sino. coso.

Thus, we have

|Zrt(a)| = |Zg i Z3Si1120‘. + Z4 cos2o

n

|Z ()] = |Z, + Z;cos20 - Z,sin20] (3)
Im(Z, + Z;cos20 - Z,sin2¢)
argZ_ (o) = |arctan — - ,
|argZ,, (0] = |a Re(Z, + Z;cos20.— Z,sin20)
where
Z,ry B Zv,r Zu + Z\\
Z, = I Z, = 7
Zr_\‘ + Zu ZLY <z ¥y
23 = 3 § Z4 = 2
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Fig. 1. Polar diagrams |2, |, |Z,,|. and |dI‘"Z | of the impedance tensor {Z].
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Let IZU(oc)l |Z,(c)l, and |argZ _(c)| be plotted on
the x axis making the angle o with the original x axis.
As @ varies from 0 to 27, the ends of the corrf:tspondmtT
vectors describe closed curves that are polar diagrams
of the impedance tensor. The values |Z,, A
form amplitude diagrams, and the value |argZ, (o)
forms a phase diagram. As seen from (3), the amplitude
and phase diagrams obey the condition of central sym-
metry relative to the origin of coordinates:

Z. (o) = |Z(a+m), |Zy(@)] = |Z(a+m),

largZ, (o) = |argZ, (o + )|

The maximum and minimum radii of polar dia-
grams are determined from the conditions

diZu(o)| _ o diZuo@] _
do. do
4)
dlargZ, (o)
do.
IZVESTIYA, PHYSICS OF THE SOLID EARTH  Vol. 41

Differentiating these relations, we obtain an equation of
degree 4 in tano. . Therefore, the interval 0 < o0 < 27 can
contain four maximums and four minimums of |Z_ ()],
|Z,(e)], and |argZ, (o)]. It is evident that the number of

petals in amplitude or phase diagrams cannot exceed
four.

Examples of polar diagrams of the impedance ten-
sor that are typical of 1-D, 2-D, and 3-D models are pre-
sented in Fig. 1. The shape of these polar diagrams is
essentially dependent on the dimensionality and orien-
tation of geoelectric structures.

In a 1-D model, the diagram |Z| converges (o zero
and vanishes and the diagrams |Z,, | and [argZ,,| are cir-
cles of the radii [Z] and |argZ], where Zis the Tikhonov—
Cagniard 1-D impedance.

Now, we address a 2-D model striking along the

X axis:
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where ZI and Z' are the longitudinal and transverse
impedances (the principal values of the impedance ten-
sor). The necessary conditions of a 2-D model are

Z xx +Z yy

- 7 o= 0, (6)
Z,ry - Zyx

skewg =

,\/ |Im( Zx).z\.,. + Z”ZN)| B
1Z,,-Z,,]
where skewy is the Swift local parameter of asymmetry

and skewy is the Bahr regional parameter of asymmetry
(the line above Z means its complex conjugate).

Substituting (5) into (3), we find the equations of
2-D impedance polar diagrams:

0, (7

skewy =

|Z(a)] = [(Z'- z")sinacosal,
|Z,y(0)] = |Z"cos” o+ Z*sin’ 0], (8)

Im(Z"cos’ o + Z*sin" @)
Re(Z”coslct + leinza)

largZ, ()| = |arctan

The |Z,,| diagram is a symmetric four-petal rose. The
bisectors of the angles between its petals are oriented
along and across the strike of the model. The |Z,| and
largZ.,| diagrams appear as regular ovals with more or
less narrow necks. Their principal diameters are ori-
ented along and across the strike of the model. As can
easily be shown, they are equal to 2|ZV|, 2|Z4| and
2JargZll|, 2]argZY|.

Conditions (6) and (7) are also valid in an axisymmet-
ric 3-D model. In this case, the polar diagrams of the 3-D
impedance have the same shape as the polar diagrams of
the 2-D impedance. The bisectors of the |Z,.| diagrams and
the diameters of the |Z,,| and |argZ, | diagrams are oriented
in the radial and the tangential directions.

In 3-D asymmetric models, polar diagrams are
irregular and can assume peculiar shapes. Quasi-sym-
metric models with skewg = 0 and skewy = 0 should be
considered specially (3Da). In this case, the |Z,| dia-
gram has the shape of a symmetric cross and the |Z_|
and |argZ | diagrams can degenerate into a beveled
oval with a waist or into a figure eight with a “bow.” In
the general case (3Db), when skewg # 0 and skewy # 0,
the |Z,,| diagram can have the shape of a figure eight
with a bow and the |Z, ] and |argZ_ | diagrams can be
transformed into ovals with waists.

3. POLAR DIAGRAMS OF H AND E POLARIZED
IMPEDANCES

This method is based on the decomposition of the
electromagnetic field into conjugate and associate
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directions [Counil et al., 1986]. In this case, the field is
characterized by such quantities as the “induction
intensity” and the “current intensity.” Yee and Paulson
[1987] proposed a simplified interpretation of the
polarization dependences of these quantities.

Note that the terminology used in [Counil er al.,
1986; Yee and Paulson, 1987] is vulnerable to criticism.
The electric current and electromagnetic induction are
interconnected via the Ampere, Faraday, and Ohm
laws. An electric current produces a magnetic field that
in turn induces an electric field generating an electric
current. The intensity of electromagnetic induction
depends on the intensity of the inducing current, and
the intensity of the induced current depends on the
intensity of electromagnetic induction. From the phys-
ical standpoint, the separation of these two phenomena
is scarcely constructive and only complicates their
mathematical description. The formulation of the prob-
lem is significantly simplified if the construction of
polar diagrams characterizing the field polarization
dependence of the scalar indicators used involves the
formal terminology, reflecting the mathematical mean-
ing of the values to be determined.

Following Yee and Paulson [1987], we introduce a
scalar indicator defined as the ratio of the moduli of
electric and magnetic fields with a linear polarization of
the magnetic field:

IETl ET ' E‘E

T

Zy(oy) =

=
=

|Z H +Z H|+|Z,H, + Z,H)
2 2
|H,|"+|H

|Z,; + Z,tan o+ |Z, + Z,, tan o]

(9)

2
1+ tan oy,

2
kytan Oy + katan ol + ks

I
1+tan 0,

v s 7
= Jk151n Oy + ko SINOLLCOS Uy + k4 COS Oy,

where
2 2
ky = |nyl +|Z)’yl g

ky = 2Re(ZyZoy+ ZyZyy), Ky = |Zo) +|Z,".

Here, the modulus |[E|=|E. - E/| = ./|E_r|2 + |E,,[2 of the

electric field EL(E,, E,) is normalized to the modulus

H|= J/H, H, = J|H ] + |H,|" of the magnetic field
H.(H,, H)) linearly polarized at an angle o, to the orig-
inal x axis. The scalar indicator Z, can be naturally
called an H polarized impedance. It is a function of the
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angle oy defining the direction of the magnetic field
polarization axis.
The condition
dz,

=0
day,

determines the directions providing the maximum and
minimum of the A polarized impedance:

tﬂnzan = (10)

ky =k

This equation has two solutions, oy and a; ", differ-
ing by /2.

Similar to the H polarized impedance Z, we intro-
duce a scalar indicator Z; determined as the ratio of the
moduli of magnetic and electric fields with a linear
polarization of the electric field:

|E,| _ |E-E;
ZE(OL) - |Ht| - -H

=

T

-

_ [E +[E]
VB + Yo By + Y B+ Y B

(11)

a 1+ L’.lIIZC(.E
Y.+ vatzmoLE|2 + | Ky thanocglz’

where Y,,, Y., ¥,,, ¥, are the components of the admit-
tance tensor,

Y = Zyy Y. = Zay
T Flgy =Tyl 7 Zgglay =Ly Ly )
Z. Z -
Y = yx ’ Y — XX

* b~y W By~ d ol

Here, the modulus |E,| = JE - E, = |EJ* + |E of

the electric field E(E,, E,) linearly polarized at an
angle oz to the original x axis 1s normalized to the mod-

ulus |H,| = JH,-H, = .J| H H | ? of the magnetic

field H.(H,, H,). The scaldr mdlcator Z is naturally
called an E polarized impedance. It is a function of the
angle o defining the direction of the electric field
polarization axis.

Substituting (12) into (11), we find, after simple cal-
culations,

1+ tanEOL;.-
ZE(‘IE) = [ B ! - [
tan ¢ — Ltanog + :
1 i 2 E 3 (13)
_ 1
[ysin" g — I,8in0pcos 0 + [;C08 O
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where
2
I, = |Z.|" +|Z,,)|
[Zxxzyy - Z-U‘Z}‘II
. 2Be( 22yt ZyZny) I - 1Z, )"+ |2,
) iZnZ.\')‘ - Z-r.\'z.v-r| i ‘ZHZ}')‘ o Z-VJ‘Z.\‘-\'l-
The condition
dZ;
doy

determines the directions providing the maximum and
minimum of the £ polarized impedance:

(14)

This equation has two solutions, of"™ and o, differ-
g by w/2.

No structural or frequency limitations are mvolved\
in the construction of polar diagrams of the A and E\

polarized impedances.

Let Z,(0,;) be laid off on the polarization axis of the
magnetic field. As the angle o, varies from 0 to 2m, the
end of the corresponding vector describes a closed
curve that is the polar diagram of the H polarized
impedance. The polar diagram /,{0,;} is a regular oval
determined by Eq. (9). If the radius Zy(oy) is replaced
by the radius 1/Zy(¢,). the oval is transformed into an
ellipse.

Let Zg(0.p) be laid off on the polarization axis of the
electric field. As the angle o varies from 0 to 2m, the
end of the corresponding vector describes a closed
curve that is the polar diagram of the E polarized
impedance. The polar diagram [ is an ellipse deter-
mined by the equation

2, 2 2 . 2 2
L Zgsin O — 1, Z58in0zCcosOlp + [ Zpcos Oy = 1.

Following Counil et al. [1986], we introduce an
angular skew parameter in accordance with (10)
and (14):

R miLx min X min
SKeWeppy = O —CQy = Oy —0Og
+Z (15)
X yv
= arctanRe——==.
Z_v.r_z.t_v

This parameter characterizes the mutual orientation of
the polar diagrams of the H and E polarized imped-

1ax min max min

ances. Here, the angles o, oy and oy ., o
define the directions of the maximum and minimum
diameters of the polar diagrams. Note that skew ;=0
if skewg = 0; i.e., the diagrams of the A and E polarizéd
impedances are elongated in perpendicular directions.

No. 10 2005



836

BERDICHEVSKY, LOGUNOVICH

1D D 20
a b
X i Y X
Zp y ¥ ¥ ]
X X X X
Zy ¥ ¥y Y

Fig. 2. Polar diagrams of the A polarized (Zy) and £ polarized (Zg) impedances.
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Examples of polar diagrams of the H and E polar-
ized impedances typical of 1-D, 2-D, and 3-D models
are presented in Fig. 2.

The Z; and Z; diagrams in a 1-D model are circles
of the radius [Z|, where Z is the Tikhonov—Cagniard 1-D
impedance.

Now, we address a 2-D model striking along the x
axis. According to (5), we have

Z,=0,2,=2,2,=-7z, 7 =0,

where Zl and Z* are the longitudinal and transverse
impedances. Substituting (5) into (9) and (13), we find

Zy(0y) = A/|Z"|2sin30:H +1Z7 cos’ oy,
Zg(og) = | > : > (16)
sin"0; Ccos O
o R VA

The polar diagrams of the H and £ polarized imped-
ances have the respective shapes of a regular oval with
a waist and an ellipse. Their principal diameters are ori-

IZVESTIYA, PHYSICS OF THE SOLID EARTH

skewg = 0.32 skewpp,, = 20°

ented along and across the strike of the model and are

" equal to 2|2| and 2|Z*|, respectively. The Z,; and Z dia-

grams in an axisymmetric 3-D model have similar
shapes, with their principal diameters being oriented
along the radial and the tangential directions, respec-
tively.

In a quasi-symmetric 3-D model (3Da) with skews =
skewpyy = 0, the diagrams of Z,; and Z retain a regLElIar
shape and are elongated in perpendicular directions: In
an asymmetric 3-D) model (3Db) with skewg,; # 0, a
regular shape of the Zy and Zp diagrams is preserved
but the angle between their elongation directions can
deviate significantly from a right angle. This is the only
feature of the Z;; and Z diagrams that can be used as an
indicator distinguishing an asymmetric 3-D medium
from a 2-D or an axisymmetric 3-D medium.

4. POLAR DIAGRAMS OF THE PHASE TENSOR

The method of the phase tensor proposed by Cald-
well er al. [2004] 1s one of the most interesting novel
tools of modern magnetotellurics. This method is effec-
tive for eliminating geological noise caused by small
Vol. 41
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shallow heterogeneities and gaining reliable constraints
on deep regional structures of any dimensionality.

We remind the reader of the idea of the phase tensor.
In the range of rather low frequencies, the tensor of
magnetotelluric impedance [Z] distorted by small shal-
low (2-D or 3-D) heterogeneities can be represented as

[Z] = [e][Z"], (17)

where [e] is the real matrix of galvanic distortions of the
electric field,

and [Z"] is the tensor of the undistorted regional imped-
ance reflecting the structure of deep heterogeneous
(2-D or 3-D) zones,

R R
Zyi Zy

R R
Zyx Zyy

[Z2°] =

Here, the low-frequency magnetic anomaly produced
by a shallow local heterogeneity is assumed to be neg-
ligibly small and is not considered.

The real phase tensor

[(D] - (D.rx (b.\'y
®,, @,
is defined as the product of the inverse real tensor
[ReZ]! and the imaginary tensor [ImZ]:

[@] = [ReZ]'[ImZ] = [Rez"]‘j[e]"[e][lmz“]
= [ReZF] ' [ImZ") = [@"]. (=)

It is evident that the phase tensor depends on the
regional structure alone. Using matrix transformations,
we eliminate the effect of shallow local structures {geo-
logical noise):

ReZ,ImZ, —ReZ,ImZ,

(I)x.\‘ = ReZ”ReZ” — RBZU.REZ}’_‘;

3 ReZi,?),ImeI - Rer),Ime_‘
ReZf ReZl —ReZk ReZt,’

Xy

D = ReZ,ImZ,  —ReZ, ImZ,,
W " ReZ.,ReZ,—ReZ ReZ,

B ReZ{f].Ime). - ReZi‘ImZﬁ.
ReZj ReZy,~ ReZpReZ),

(19}
o = ReZ, ImZ, —ReZ, ImZ
o ReZ ,ReZ, —ReZ ReZ,
IZVESTIYA, PHYSICS OF THE SOLID EARTH  Vol. 41

_ ReZ{ImZ}, - ReZ; ImZ},
ReZh ReZy —ReZh ReZb,

ReZ, ImZ —ReZ ImZ,

L —
¥ ReZ,ReZ,—ReZ,ReZ,

B ReZﬁrIme_\, - RerxImey
ReZ'ReZ" —ReZf ReZ",

The technique of polar diagrams developed for the
impedance tensor [Z] can be applied to the phase tensor
[dr] without any structural limitations, but its applica-
tion requires sufficiently low frequencies because, in
determining the phase tensor, we neglect magnetic
anomalies produced by shallow heterogeneities.

If the axes x and v are rotated clockwise through an
angle o, components of the tensor [®] change by the
law

[@(c)] = [R(a)][P][R(e)]™; (20)
hence, we obtain
D (0) = &, + Dysin20 + D,cos2a, 1)
@, (0) = D, + Dycos20. - Dysin2a, -
where
D -D D +D
ch — Xy = }I, q)l — xx 5 \_\’
(Dr\' + q)vx (I).\'.\' - (I)V‘
CI)3=-—'-9 — (1)4:—_..7 "_

Let the values @ (o) = |arctan®, ()] and @, (c) =

|arctan @, ()| be laid off on the x axis. If o varies from

(0 to 2m, the ends of the corresponding vectors describe
the closed curves

0, (0) = |arctan(®, + @;sin 20 + D cos20)|, -

¢, (a) = |arctan (P, + ®,co820.— D,sin2a)|; 22

these curves are the polar diagrams of the phase tensor.
Like the diagrams of the impedance tensor [Z], the dia-
grams of the phase tensor [@] are antisymmetric with
respect to any line passing through the origin of coordi-
nates and assume the shape of regular or irregular ovals
or can have four petals.

Examples of polar diagrams of the phase tensor typ-
ical of 1-D, 2-D, and 3-D models are presented in Fig. 3.
Polar diagrams of the phase tensor, as in the case of the
impedance tensor, are essentially dependent on the
dimensionality and orientation of geoelectric struc-
tures.

For a 1-D model, we have

¢, =®, = tanargZ, @, =P, =0,
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Fig. 3. Polar diagrams ¢, and @y, of the phase tensor [®].
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where Z is the Tikhonov-Cagniard 1-D impedance. In
this case, the @, diagram is a circle of the radius |argZ|
and the @, diagram converges (o zero and vanishes:

. Py = 0. (23)

For a 2-D model striking along the x axis, we have

0. (0) = |argZ

D ., = tan arng, D =

Yy

D, = @, = 0;

tanarg Z .

hence, we obtain

L2 ;.0
(o) = |arctan(tanargZ cos o + tan arg Z' sin a)l,
xx =4 =) Y.

1

¢, (0)= J arclan{(tanarg Z' —tan arg Z") sincicosol}

where Z* and Zl are the transverse and longitudinal
impedances. The @, diagram assumes here the shape of
a regular oval with a distinct waist. Its principal diame-
ters are oriented in the longitudinal and transverse
directions and are equal to the moduli of the doubled
phases of the respective impedances. The ¢, diagram
has the shape of a symmetric four-petal rose. The bisec-
tors of the angles between the petals are oriented in the

[ZVESTIYA, PHYSICS OF THE SOLID EARTH

longitudinal and transverse directions. The polar dia-
grams of the phase tensor in an axisymmetric 3-D
model have similar shapes.

Asymmetry of a 3-D model leads to polar diagrams
of an irregular shape. In the quasi-symmetric case
(3Da) with skewg = 0 and skewp # 0, the phase tensor
diagrams can appear as figure eights with “bows”; in the
general case with skewg # 0 and skewy 2 0 (3Db), they
assume the shape of a figure eight or an oval with a
waist.

5. MAGNETOTELLURIC POLAR
DIAGRAMS OF A MODEL CONTAINING
SHALLOW AND DEEP STRUCTURES

As an example, we address a three-layer model con-
sisting of a conducting sedimentary cover, a high-resistiv-
ity lithosphere, and a well-conducting mantle (Fig. 4a).
The sedimentary layer contains a higher resistivity
small-scale I'-shaped inclusion. The lithosphere con-
tains a regional-scale 2-D rectangular prism of a lower
resistivity elongated along the x axis. The width of the
prism is much larger than the size of the local shallow
Vol. 41
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Fig. 4. Model containing a local shallow T-shaped inclusion and a deep regional 2-D prism: (a) plan view and vertical section of
the medel; (b) longitudinal ()]) and transverse (L) curves of apparent resistivitics and impedance phases above the midpoint of the

regional prism (in the absence of a shallow inclusion).

inclusion. Evidently, the regional field of the prism can
be considered uniform in the area of the inclusion.

The values of the impedance tensor are given at
14 points above and in the vicinity of the inclusion. The
problem is solved by means of the hybrid method pro-
posed in [Berdichevsky and Dmitriev, 1976]. This
method is based on a local-regional (LR) decomposi-
tion of the impedance expressing the tensor [Z] through
the tensor of regional impedance [Z*] and the 2 x 2
matrices of electric and magnetic local distortions [e]
and [h]:

[Z] = [el[Z"1[h]™". (25)

Calculations are performed in three stages.

At the first stage, the problem is solved for the 2-D
regional prism in the absence of the local shallow inclu-
sion. The tensor of the regional impedance

Il
750
is calculated above the midpoint of the prism.

At the second stage, the distortion matrices [e] and
[h] are determined. The shallow I'-shaped inclusion is
placed in the sedimentary cover, and the regional prism

[ZVESTIYA, PHYSICS OF THE SOLID EARTH  Vol. 41

is replaced by an infinite horizontally homogeneous
layer of the same thickness and resistivity. This 3-D
problem is solved in the low frequency approximation
of an § thin layer. We obtain the electric distortion
matrix

€iy €

[e] = |“ “®|. (27)

) x ]
By Eyy

The magnetic distortion matrix is calculated from
the excess current J spreading in the sedimentary cover:

J = SE,-S,EX, (28)

where E_ is the total electric field, Ef is the regional
electric field, and § is the conductance of the sediments,

= h,/p, outside the I"-shaped inclusion

%]

1
——
L bn
| |

= h,/pr inside the I'-shaped inclusion.

The horizontal components of the anomalous magnetic

field Hf produced by the excess current J at the upper

and lower boundaries of the cover coincide in value and
are opposite in sign. We have at the Earth’s surface:
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Fig. 5. Polar diagrams of the impedance tensor above the -shaped inclusion: (a) |Z,[; (b} [Z,,]; (c) largZ,|.

H; ,—,[R( -7/2)]]J 5[R( ~1/2))(SE, - SrE7)
y ) )
= SIR(-/2)1(STe] - S{TINE! = [RIEY,

where

[h] = SIR(-7/2)](STe] - S¢IT),
[R(-1/2)] = {0 ‘1}, 1] = [1 0}
10 01
As a result, we obtain the total magnetic field
H. = [h]H;, (30)

R . . . .
where H_ is the regional magnetic field and [h] is the
magnetic distortion matrix,

h,, hxy . 31)
P Mgy

[h] = [1]+[h][Z"] =

At the final stage, we substitute (26), (27), and (31)
into (25) and synthesize the tensor of the impedance
distorted by the local and regional heterogeneities.

Now, we consider the magnetotelluric polar dia-
grams obtained I'-shaped from the values of [Z] syn-
thesized at T = 640 s. Figure 4b shows that the effect
of the deep conducting prism is well resolved at this
periad.

As noted above, neither structural nor frequency
limitations are imposed on polar diagrams of the ten-
sors of impedance and H and E polarized impedances,
whereas polar diagrams of the phase tensor are con-
structed under the assumption that shallow magnetic
anomalies are negligible.

[ZVESTIYA, PHYSICS OF THE SOLID EARTH

Polar diagrams of the impedance tensor are shown
in Fig. 5. ThL amplitude diagrams of |Z,| and |Z,,| indi-
cate a strong effect of the ]OCdl shallow inclusion. The
behavior of [he |Z,..| diagrams is difficult to interpret: no
regular patterns are observable in variations in their
shape and orientation, and only the inclusion can be
approximately localized. On the other hand, the |Z,,|
diagrams are typically regular ovals with a vanously
narrow waist. The smooth variations in their orientation
indicate that the current flows around the higher resis-
tivity I'-shaped inclusion. Inspecting these diagrams,
we can, to an extent, determine the geometry of the
inclusion and estimate its resistivity. The phase dia-
grams |argZ,., | are most interesting: they are free from
the distorting effect of the shallow inclusion and have
the shape of nearly identical ovals with a noticeable
waist that are elongated across the strike of the regional
prism. The direction of the minimum diameter defines
the strike azimuth of the prism, and the values of the
maximum and minimum half-diameters yield the phase
moduli of the transverse and longitudinal regional
impedances |argZl| and |argZ'|. The uncertainties of
these determinations do not exceed 5°.

Polar diagrams of the H and E polarized impedances
are presented in Fig. 6. The diagrams clearly show the
strong distorting effect of the shallow higher resistivity
I"-shaped inclusion. The Z; diagrams are most informa-
tive: their orientation changes rather sharply at many
points and yields a clear picture of a flow around a high-
resistivity asymmetric body. The 3-D nature of the shal-
low inclusion is additionally emphasized by the fact
that the angle between the elongation directions of the
Zy and Z diagrams shown at several points obviously
differs from /2.

Polar diagrams of the phase tensor are shown in
Fig. 7. At most points, the ¢,, diagrams have the shape
of nearly identical regular ovals with a noticeable waist
that are elongated in a direction close to the strike of the
regional conducting prism. Being analogues of the
Vol. 41
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Fig. 7. Polar diagrams of the phase tensor above the T-shaped inclusion: (1) @y, (B) @y

phase diagrams of the impedance tensor, they are simi-
lar to them in shape but are oriented at a right angle to
them. The direction of the maximum diameters of the
(., diagrams defines the strike azimuth of the prism,
and the values of the minimum and maximum half-
diameters yield estimates for the phase moduli of the
transverse and longitudinal impedances largZ!| and
largZt|. The uncertainties of these determinations do
not exceed 5° at most points but reach 10°-12° at three
points. The ¢, diagrams at nearly all points have the
shape of roses with four more or less identical petals
(the evidence for a 2-D regional structure) and the
bisectors between the petals are directed along and
across the strike of the regional prism. A deviation from
this pattern is observed at two points, apparently,
because shallow anomalies of the magnetic field were
not allowed for there.

IZVESTIYA, PHYSICS OF THE SOLID EARTH  Vol. 41

6. CONCLUSION

The above analysis has clearly demonstrated the fol-
lowing properties of magnetotelluric polar diagrams.
Amplitude diagrams of the impedance tensor |Z| and
|Z..| and diagrams of the H and £ polarized impedances
Zy and Zj reflect the influence of local shallow struc-
tures in a wide range of frequencies. At relatively low
frequencies, phase diagrams of the impedance tensor
largZ,,| and diagrams of the phase tensor ¢,, and @,
characterize regional deep structures, with the distort-
ing influence of local shallow structures being weak.
Therefore, combined analysis of polar diagrams of dif-
ferent magnetotelluric response functions can be suc-
cessfully used for discrimination between local and
regional effects. In the case of a higher resistivity shal-
low inclusion, this analysis is most effective with the
use of E polarized impedance diagrams, clearly charac-
terizing the structure of the near-surface medium, and

No. 10 2005



842

a5 r/ . .\
1—~ y /
.-..._.__* b "-A.._,_‘_. /

Fig. 8. Bahr electric vectors above the T'-shaped inclusion.

phase diagrams of the impedance tensor, providing
fairly reliable constraints on the deep structure.

It would be of interest to compare the method of

polar diagrams with a standard method of the separa-
tion of local and regional effects, for example, with the
method of Bahr [1988]. We remind the reader that the
Bahr method involves the following three limitations:
(a) the frequency must be low enough to neglect the
local magnetic anomaly and the inductive part of the
local electric anomaly produced by a shallow heteroge-
neity, (b) the regional background must be two-dimen-
sional, and (c) the longitudinal and transverse regional
impedances must differ in phase significantly.

The Bahr method is based on relation (17) with a
real matrix of local electric distortion [e] and a regional
2-D impedance [Z®]. If the x axis is oriented along a
regional strike, we have

0 le

1

wi-Z 0

Z Z.r,v e
Lo L

yy

xx exy

(2] =

(e

(32)

L |
—(:’ﬂ,Z EHZ |

’
|
ewzl

~E
where Z,, = -, 7 Z, = -, 7" and Z,, = ¢, 2\, Z,, =
e, ZI. Here, the columns of the matrix [Z] consist of in-
phase or antiphase components that satisfy the condi-
tions

0:
0.

Im{zxx(a)zy.t(a)}

33
Im{Z (a)Z,,(0)} o

Thus, in order to determine the strike of a regional 2-D
structure, we have to find the rotation angle ¢ of the
matrix [Z] providing the solution to system of equa-
tions (33):
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1 I(Z, 7+ Z,.Z,)
O = -arctan = —
2 Im(zuzl’v h Z Z)'.r)

Xy

(34)

where o, determines the regional strike azimuth o,
accurate to 7t/2. Knowing 0., phases of the longitudinal
and transverse regional impedances can easily be calcu-
lated:

Im[zr)‘((xk‘) + Zyy(a‘k)]

Re [ny( (X‘R) + Z\'y( O‘:R)] ’
Im[Z‘\:\'(aR) + Z_y_\'(ak)]

Re[Z, (0g) + Z, (ap)]

argZ" = arctan
(35)

1
argZ = T+ arctan

Along with regional characteristics, we can obtain
certain information on local structures. For example, let
an electric field e” arise when a local structure is excited
by a unit electric field linearly polarized along the
¥ axis, i.e., normal to the strike of the regional structure:

i €. €. 10 €
eJ - xx “xy == Xy .
e, ¢ €.,

yx “yy 1

(36)

Comparing (36) with (32), we find the angle B¥ between
the y axis and the vector ¢. Measuring ¥ clockwise
from the y axis, we have

e, Z Z
B’ = —arctan—= = —arctan ”=—arclanRe-Zix, (37)

Cyy yx »x

where the ratio Z_/Z, is approximated by a positive or
a negative real value. A map characterizing the direc-
tion of the vector e’ can be used to reveal effects of
flowing around and concentration (the current flows
around a higher resistivity body and concentrales in a
lower resistivity body) and classify a shallow structure
with respect to its resistivity.

Now, we return to the model containing a shallow -
shaped inclusion and a regional 2-D prism (Fig. 4).
Applying the Bahr method to this model at the period
T'= 640 s, we find the strike of the regional prism and
the phases of the longitudinal and transverse imped-
ances with an accuracy of no more than 3°. The electric
vectors € determined by the Bahr method are mapped
in Fig. 8. The flow around the shallow inclusion of a
higher resistivity is evident here.

We compare these results with the results obtained
by the method of polar diagrams. Phase diagrams of the
impedance tensor are inferior to the Bahr method as
regards the accuracy of determination of the regional
strike and phases of the regional impedance, but dia-
grams of the £ polarized impedance resolve more effec-
tively the shape of a shallow inclusion of a higher resis-
tivity. Thus, the method of polar diagrams and the Bahr
method complement each other. The combined applica-
tion of these two methods is particularly useful because
the method of polar diagrams is largely free from the
structural and frequency limitations characteristic of
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the Bahr method and other standard methods widely
applied to the separation of local and regional effects.

The Counil-Le Mouel-Menvielle method underly-
ing the construction of polar diagrams of the H and E
polarized impedances is rather rarely applied in the
practice of magnetotellurics. We hope that the results
obtained in our work with the use of these diagrams
will draw the attention of readers to this interesting
method.
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