
Stopwatch Automata-Based Model for Efficient
Schedulability Analysis of Modular Computer

Systems?

Alevtina Glonina and Anatoly Bahmurov

Lomonosov Moscow State University, Moscow, Russia
{alevtina, bahmurov}@lvk.cs.msu.su

Abstract. In this paper we propose a stopwatch automata-based model
of a modular computer system operation. This model provides an ability
to perform schedulability analysis for a wide class of modular computer
systems. It is formally proven that the model satisfies a set of correctness
requirements. It is also proven that all the traces, generated by the model
interpretation, are equivalent for schedulability analysis purposes. The
traces equivalence allows to use any trace for analysis and therefore the
proposed approach is much more efficient than Model Checking, espe-
cially for parallel systems with many simultaneous events. The software
implementation of the proposed approach is also presented in the paper.

Keywords: stopwatch automata, integrated modular avionics, simula-
tion, schedulability analysis

1 Introduction

Nowadays modular approach to computer systems design is replacing the old
federated approach. We consider Integrated Modular Avionics (IMA) [1] systems
as an example of modular computer systems, but the proposed approach can be
also applied for other modular architectures (e.g. [2] and [3]).

An IMA system consists of standardized hardware modules containing mul-
ticore processors connected by a switched network with virtual links. There can
be several module types in a system with different processors performance.

A module hardware resources are shared by several applications, called par-
titions. Every partition is mapped to one of the processing cores. One core can
be shared by several partitions. A partition has its own memory space and ex-
ecution time slots, called windows. A core’s scheduling period is divided into
windows and each window corresponds to one of the core’s partitions.

A partition contains a set of tasks. A task is characterized by priority, period,
deadline and worst case execution time (WCET) on every processor type. Every
task period an instance of the task (called a job) must be executed. There can be
data dependencies between tasks with the same period: current job of receiver

? The work is supported by the RFBR grant 17-07-01566

2

task can’t be executed until it receives data from corresponding jobs of all senders
tasks.

Every partition has its own task scheduler which controls tasks execution.
Schedulers usually work according to dynamic algorithms. The most common
algorithm is fixed-priority preemptive scheduling (FPPS) algorithm. Every job
must complete within its deadline. If a job’s deadline is reached this job can not
be executed anymore.

System configuration contains characteristics of hardware modules and parti-
tions, mapping partitions to cores and windows sets for cores. The configuration
is called schedulable if all the jobs complete within their deadlines. During sys-
tem design multiple potential configurations are considered and for each of them
schedulability analysis must be performed.

There are many schedulability analysis approaches, but some of them do not
consider all modular systems features (e.g. [4]) and others have too high com-
putational complexity (e.g Model Checking [5]). Another approach is generating
system operation trace and then analyzing this trace. Unfortunately, all the
existing tools for it have essential drawbacks: some also do not consider all mod-
ular systems features (e.g [6]), others support only manual model development
(e.g [7]) and almost all do not support any formal proving of model correctness
(e.g. [8]). In this work we propose a general model for modular system operation,
which can be used for required trace generation and overcomes these drawbacks.

As a modular system consists of standardized components, our model also
consists of standardized sub-models. The key idea is to model every compo-
nent type with a parametric stopwatch automaton with specified interface. The
whole model is a parametric Network of Stopwatch Automata (NSA) [9]. System
model for a given configuration can be constructed automatically. The formalism
of NSA allowed us to prove formally that our model satisfies correctness require-
ments necessary for using it for schedulability analysis. We also proved that for
a given configuration all interpretations of the proposed model are equivalent.
This fact allows to use any single model interpretation for schedulability analysis
in contrast to Model Checking where all possible interpretations are considered.

The rest of the paper is structured as follows: in Sect.2 necessary formal
definitions are given and our model is presented, in Sect.3 the model determinism
and correctness are proven and in Sect.4 the software implementation of the
proposed approach is described and experimental results are discussed.

2 The Model of Modular System Operation

2.1 Formal Definitions

A system configuration is a tuple 〈HW,WL,Bind, Sched〉, where

– HW = {HWi}Ni=1 — processing cores; Type : HW → 1, Nt — core type
(Nt ∈ IN — number of core types); Mod : HW → 1, Nm — module number
for a core (Nm ∈ IN — number of modules);

– WL =< Part,G > — workload, where:

3

• Part = {Parti = 〈Ti, Ai〉}Mi=1 — partitions, where:
∗ Ti = {Tij}Ki

j=1 — tasks, each characterized by priority (prij), WCETs

on different core types (Cij = (C1
ij , ..., C

Nt
ij)), period (Pij), dead-

line (Dij);
∗ Ai — scheduling algorithm type;

• G = 〈∪Mi=1Ti, {Msgj}Hj=1〉 — data flow graph, where Msgj corresponds
to a message and is characterized by sender and receiver tasks and max-
imum durations of transfer through memory and through network;

– Bind : Part→ HW — partitions binding to cores;

– Sched = {{〈Startij , Endij〉}
Nw

i
j=1}Mi=1 — partitions schedule, which is re-

peated periodically with a period L equal to the least common multiple
of all the tasks periods; Nw

i ∈ IN — number of windows for the i-th parti-
tion; Startij , Endij ∈ 0, L — start time and end time for j-th window of
i-th partition.

Let CONF be a set of all possible system configurations.

For a task Tij a set of jobs Wij = {wijk}
L/Pij

k=1 is defined.
Let e = 〈Type, Src, t〉 be an event, where Type ∈ {EX,PR,FIN} corre-

sponds to start or continuation of a job execution (EX), job preemption (PR)
and finish of a job execution due to its completion or reaching deadline (FIN);
Src ∈ Wij is a source job for the event; t ∈ 1, L is a timestamp. Let E be a set
of possible events.

A system operation trace is a set of events, therefore it is a subset of E. Let
TR ∈ 2E be a set of all possible traces.

Design problems for IMA systems are commonly being solved under the
following assumptions (e.g. in [8, 10], considering industrial avionics systems):

– Every job’s execution time is equal to its WCET.
– Every message transfer delay is also equal to its worst case; typical avionics

networks (e.g. AFDX) allow to obtain safe estimations for these delays.
– Scheduling algorithms are deterministic (e.g. in ARINC 653 systems [1]).

Under these assumptions system operation is deterministic and corresponds
to a worst-case scenario, i.e. only one trace corresponds to a configuration and
this trace can be used for schedulability analysis. Therefore the mapping Q :
CONF → TR exists and ∀conf ∈ CONF : ∃!Q(conf).

Let Rijk be a number of executing intervals for a job wijk. Then an ordered
subtrace for this job is:

– empty, if Rijk = 0;
– 〈EX,wijk, t0〉, 〈FIN,wijk, t1〉, if Rijk = 1;
– 〈EX,wijk, t0〉, 〈PR,wijk, t1〉, ..., 〈EX,wijk, t2Rijk−2〉, 〈FIN,wijk, t2Rijk−1〉, if

Rijk > 1.

In these terms the schedulability criterion has the following form:

∀wijk, i ∈ 1,M, j ∈ 1,Ki, k ∈ 1, L/Pij :
∑Rijk

r=1 (t2r−1−t2r−2) = C
Type(Bind(Parti))
ij

In this paper we consider the problem of building the system operation model,
the interpretation of which defines the mapping Q. This model is necessary for
checking the schedulability criterion for a given configuration.

4

2.2 Networks of Stopwatch Automata

First of all the mathematical formalism for system operation description must
be chosen. It should meet the following requirements:

– ability to model such aspects of system operation as queues, preemption,
parallel functioning of different schedulers;

– ability to obtain a time trace of model interpretation;
– ability to formalize and check requirements to models;
– existence of software tools for modeling and verification.

We reviewed several formalisms found in the literature and the formalism of
stopwatch automata networks [9, 11] was chosen, as it meets all the requirements
and has the best program support of modeling and verification. Now we give a
brief description of the formalism.

A stopwatch automaton is a finite automaton (denoted graphically by a graph
containing a set of nodes or locations and a set of labeled edges) extended with
integer variables and clocks. Each variable has a bounded domain and an ini-
tial value. A clock is a special real-valued variable, that can be compared with
integer variables or with other clocks, reset to zero, stopped and later resumed
with the same value. All the clocks are initialized with zero and then increase
synchronously (except for the stopped clocks) with the same rate.

An edge represents an action transition and has three labels: a guard label, a
synchronization (will be explained later) label and an update label. A transition
can be taken when clocks and variables satisfy the guard and synchronization
can be performed. During action transitions, synchronizations and updates of
clocks and variables are performed. A location has a label called an invariant,
which is a predicate over variables and clocks. An automaton may remain in a
location as long as the invariant of the location is true. For an automaton an
initial location is defined.

In addition to action transitions, represented by automaton edges, there are
delay transitions, corresponding to synchronous clock increasing by the same
real value. All the clocks (except for the stopped clocks) can be increased by a
value of d if their values increased by d satisfy current location invariant. Some
locations can be labeled as committed. No delay transitions can be performed if
an automaton current location is committed.

A network of stopwatch automata (NSA) is a set of several automata, oper-
ating synchronously. Communications between the automata are performed by
using shared variables and channels.

A channel is a mechanism for automata synchronous communication. Every
automaton edge has a synchronization label, which can be either an empty label
(for internal transitions) or a synchronization action. There are two complemen-
tary types of such actions: sending and receiving a signal through a channel.
And there are two types of channels: binary and broadcast. Two transitions in
different automata can synchronize via a binary channel if the guards of both
transitions are satisfied, and they have complementary synchronization actions.
A transition with binary synchronization action can be performed if and only

5

if the transition in the other automaton with complementary action can be
performed. When synchronization is performed the current locations of both
automata are changed, i.e. the both transitions are performed simultaneously.
N + 1 automata can synchronize via a broadcast channel if the transition with
sending action is enabled and N transitions with receiving action are enabled.

More formally a stopwatch automaton is a tuple 〈L, l0, U, C, V, v0, AU,AS,E,
I, P 〉, where

– L, l0 ∈ L,U ⊆ L — finite set of locations, initial location and set of commit-
ted locations;

– C — set of clocks;
– V, v0 — set of integer variables and their initial values;
– AU,AS — sets of updating and synchronization actions;
– E — set of edges, E ⊆ L×B(C, V)×AU ×AS ×L, where B(C, V) is a set

of predicates over C and V
– I : L→ B(C, V) associates invariants to locations;
– P : L× C → B(∅, V) associates progress conditions to locations and clocks;

Let A = A1|...|An be an NSA, where Ai = 〈Li, l
0
i , Ui, Ci, Vi, v0i , AUi, ASi, Ei, Ii,

Pi〉. A state of the NSA is a tuple 〈l, c, v〉 ∈ (L1× ...×Ln)× IR
|C|
≥0 ×ZZ|V |, where

V = ∪Vi, C = ∪Ci. A sequence (may be infinite) of action and delay transitions
between states 〈l0, c0, v0〉 → 〈l1, c1, v1〉 → ... → 〈li, ci, vi〉 → ... is a run of an
NSA. An NSA usually has many (may be infinitely) possible runs.

2.3 General Model of Modular System Operation

To present our model we have to introduce several definitions.
A parametric stopwatch automata, or concrete automata type, is a tuple

〈L, l0, U, C, V, p, AU,AS,E, I, P 〉, where p is a vector of unknown integer-valued
parameters. An automaton’s shared variables and possible synchronization ac-
tions comprise the automaton interface. Base automata type is a pair of sets
〈Vb, ASb〉, where Vb is a set of shared variables and ASb is a set of synchro-
nization actions. A concrete automata type implements a base automata type if
Vb ⊆ V , ASb ⊆ AS.

A set of base automata types is a general NSA. A set of concrete automata
types is a concrete NSA. A concrete NSA implements a general NSA if each base
automata type in the general NSA is implemented by one or more concrete au-
tomata type in the concrete NSA and logic relations between concrete automata
types corresponds to relations (i.e. rules defining, which implementations of base
automata types must communicate) between base automata types.

Model time is a value of a special clock, which is never stopped or reset.
Synchronization event is a tuple 〈CH,A, t〉, where CH is the channel, A is a set
of automata instances, participating in the synchronization, t is the model time
of synchronization. NSA trace is a set of synchronization events, generated by
the network.

We propose to represent the general model of modular system operation as
a general NSA.

6

The following shared variables and channels are used for automata commu-
nication in the proposed model:

– variables is_readyij , is_failedij , prioij , deadlineij i ∈ 1,M, j ∈ 1,Ki,
each corresponding to a job readiness, reaching its deadline and a task char-
acteristics;

– variables is_data_readyh, h ∈ 1, H, each corresponding to a message deliv-
ery through the hth virtual link;

– channels wakeupi, sleepi, readyi, finishedi i ∈ 1,M , each corresponding
to a window start and finish, a ready job arrival and its finish; a job finishes
either due to its completion or due to reaching its deadline;

– channels execij , preemptij , i ∈ 1,M , j ∈ 1,Ki, each corresponding to a job
execution start (or resumption) and preemption;

– broadcast channels sendij , receiveij , i ∈ 1,M , j ∈ 1,Ki, each correspond-
ing to receiving data from a sender job and sending data to all receiver jobs.

The general NSA consists of the following base automata types:
1. T base automata type modeling a task. As a task deadline is less or equal

to its period, there can be only one active job of a task at a given moment. T is
defined by following interface:

– receiving signals through channels exec and preempt;
– sending signals through channels ready, finished, send, receive;
– changing variables is_ready, is_failed, is_data_readyh;

2. TS base automata type modeling a task scheduler for a partition. It is
defined by following interface:

– receiving signals through channels wakeup, sleep, ready, finished;
– sending signals through channels execj , preemptj ; the j-th channel corre-

sponds to the j-th task of the partition;
– reading variables is_readyj , prioj , deadlinej ; the j-th variable corre-

sponds to the j-th task of the partition.

3. CS base automata type modeling a core scheduler (scheduling partitions
for a core). It is defined by the following interface:

– sending signals through channels wakeupi and sleepi; the i-th channel cor-
responds to the ith partition.

4. L base automata type modeling a virtual link. It is defined by the following
interface:

– receiving signals through a broadcast channel send;
– sending signals through a broadcast channel receive;
– changing variable is_data_ready.

The structure of the proposed general model of modular system operation is
shown on Fig. 1.

7

Fig. 1. The structure of the general NSA type modeling modular system operation.

A concrete NSA implementing the proposed general NSA is a parametric
model of modular system operation. Our concrete NSA has the following concrete
automata types, implementing base automata types: task model, core scheduler
model, virtual link model, FPPS scheduler, FPNPS scheduler and EDF sched-
uler. For a given concrete NSA and a system configuration an NSA instance can
be constructed by the Algorithm 1.

Algorithm 1: An NSA instance construction

Data: conf ∈ CONF , concrete NSA
Result: NSA instance modeling system of conf configuration
begin

for i ∈ 1, N do

for j ∈ 1,M : Bind(Partj) = HWi do
create channels readyj , finishedj , wakeupj , sleepj ;

for k ∈ 1,Ki do
create channels execjk, preemptjk, sendjk, receivejk and variables
is readyjk, priojk, deadlinejk, is data readyh (each corresponding

to a virtual link, where jkth task is a receiver);
create an automaton implementing T, initialize its interface with
channels execjk, preemptjk, sendjk, receivejk, readyj , finishedj

and variables is readyjk, priojk, deadlinejk, is data readyh;

create an automaton implementing TS and corresponding to Aj for
jth partition, initialize its interface with channels execjk, preemptjk,
readyj , finishedj , wakeupj , sleepj and variables is readyjk, priojk,

deadlinejk (k ∈ 1,Ki);

create an automaton implementing CS for ith core and initialize its
interface with corresponding channels wakeupj , sleepj ;

for h ∈ 1, H do
create an automaton implementing L, initialize its interface with
corresponding channels sendj1k1 , receivej2k2 and variable is data readyh.

8

By construction there is an automaton of appropriate type for every system
component and automata interfaces for logical connections between components.
Automata parameters correspond to a system configuration parameters. There-
fore there is unambiguous correspondence between a system configuration and
a model instance.

A system operation trace, which is necessary for checking the schedulability
criterion, can be unambiguously obtained from the corresponding model trace
(i.e. a trace of the NSA instance).

3 Correctness and Determinism

Modular systems specifications contain correctness requirements to system com-
ponents operation and to the whole system operation. These requirements spec-
ify correct events sequences and delays between events of given types. In order
to ensure schedulability analysis correctness, our model must satisfy correctness
requirements, which are applicable at the chosen abstraction level.

We call a model deterministic if a trace generated by its run is uniquely de-
termined. This determinism is crucial for schedulability analysis of large systems
with many simultaneous events, because it allows to use any of the NSA runs
for a trace generation in contrast to model-checking where all possible runs are
to be considered.

Correctness requirements to system components models (i.e. parametric au-
tomata) can be checked automatically by a verifier. For this purpose we chose
”observers” approach [12], which is successfully used in practice.

One observer automaton usually corresponds to one requirement. The ob-
server is an automaton, which operates synchronously with a given automaton
and does not block any synchronization. The observer has one ”bad” location
and all incorrect synchronization event sequences or incorrect delays lead the
observer to the ”bad” location. The reachability of the ”bad” location means
that an incorrect event sequences can be generated by the given automaton and
therefore it does not satisfy the requirement. As the given automaton is paramet-
ric and must operate correctly with all possible parameters values, its observer
non-deterministically sets each parameter to one of possible values.

We derive correctness requirements to system components from system spec-
ifications, construct an observer for each requirement and automatically check
with UPPAAL [11] verifier that ”bad” locations are unreachable. Such proof was
performed for a set of requirements derived from ARINC 653 specification [1]
and the set of concrete automata types described in Sect.2.3.

Let us consider a correctness requirement example and build its observer:

For every partition at any time zero or one job can be executed.

This is the requirement to TS base automata type and all the TS implemen-
tations must satisfy this requirement. In terms of synchronization events, a job
of task Tjk is executed between synchronizations through channels execjk and
preemptjk, and through channels execjk and finishedj . It means that any

9

synchronization through execjk must be followed by a synchronization through
preemptjk or finishedj . The corresponding observer is shown on Fig. 2.

Fig. 2. The observer automaton for the requirement to TS automata

Satisfaction of the requirements to the whole general model can’t be proven
automatically because the number of automata of different types in the model is
unknown in general. Thus, we have to prove the satisfaction of these requirements
manually. This proof implies that all the models instances constructed by the
algorithm 1 satisfy these requirements. Our proof is based on the satisfaction of
the requirements to components models which are proven automatically.

This is an example of a requirement to the whole model and its proof:
If one task depends on another, then start time for any job of the receiver

task is more or equal the completion time for the corresponding job of the sender
task plus the upper bound of the message transfer delay

The satisfaction of the following requirements to components models were
proven automatically:

1. Every job sends data to its output virtual links after its completion.
2. A message transfer delay trough a virtual link is equal to its pessimistic

upper bound.
3. A job of receiver task can’t be executed until it receives data from corre-

sponding jobs of all senders tasks.
The satisfaction of these requirements implies the satisfaction of the given

requirement to the whole model.
The model determinism proof is based on the previously proven satisfaction

of the correctness requirements.
Suppose by contradiction that two different NSA traces can be generated

by the model interpretation for a given configuration. Let the both traces be

10

partially ordered by events time. Thus, a set of events is bound to every time
point in every trace. Let ti be the first time point, which has different events sets
for given traces. It means that at least one event is contained in one event set
and is absent in the other. Suppose that this event is a synchronization through
finishedj . As all previous events sets are equal for the traces, there are two
alternatives:

1. Some job executes on the processor for WCET time units according to the
first trace (where the event is contained). But it means that this job’s cumulative
time of execution on the processor is more than WCET according to the second
trace (where the event is absent).

2. Some job reaches its deadline according to the first trace. But it means
that this job is not removed from the processor after its deadline is reached
according to the second trace.

Both the alternatives are impossible, because they imply violation of the re-
quirements, which satisfaction was previously proven. Therefore the supposition
is impossible. For other events types the proof is similar.

So we proved that the proposed model satisfies correctness requirements and
all the traces generated by its interpretation are equal. It was also shown that
there is unambiguous correspondence between a system configuration and a
generated model instance and between a system trace and a model interpre-
tation trace. Therefore schedulability analysis (checking the criterion specified
in Sect.2.1) performed by using this model is correct.

4 Implementation and Experiments

In order to test the applicability of the proposed approach in practice we im-
plemented it in software. The concrete automata types modeling concrete types
of system components were developed and verified using UPPAAL [11] toolset.
These concrete automata types are contained in an automata components mod-
els library. A user can develop, verify and add to the library own models. As
UPPAAL doesn’t have commandline interface for NSA interpretation, we devel-
oped our own NSA simulation library in C++ and a translator from UPPAAL to
C++ automata representation. The library of automata models for components
was translated to a library of software models. Models from the library compose
the parametric software model of system operation (see Fig. 3).

We compared the proposed approach with Model Checking using the same
NSA. The results of the experiments confirm that our approach is much more
efficient (see Table 1).

Table 1. Execution times for various number of jobs

Number of jobs 10 11 12 13 14 15 16 17 18

Model Checking (seconds) 0.57 1.16 2.22 5.05 10.43 23.51 48.13 112.28 215.91

Proposed Approach (seconds) 0.027 0.027 0.028 0.030 0.031 0.032 0.033 0.035 0.036

11

Fig. 3. The scheme of the parametric modular system operation model organization.

We also integrated the parametric model with an IMA scheduling tool, which
searches the optimum IMA configuration among possible configurations [8]. On
every iteration the scheduling algorithm chooses a configuration to be checked for
schedulability. Then an XML file with the configuration description is generated
and passed to the parametric model. After that a model instance is created and
run and it trace is passed back to the scheduling tool, which performs schedu-
lability analysis. Unschedulable configurations are discarded by the scheduling
algorithm and schedulable ones are considered as candidate solutions. The ex-
periments showed that a model instance construction and interpretation take
about several seconds for configurations of same complexity as configurations
of industrial avionics systems (about 11 seconds for a configuration with 12500
jobs). Thus it was shown that our approach is applicable in practice.

5 Conclusion

We developed a general model of a modular computer system operation based
on the NSA formalism. The model can be used for schedulability analysis of such
systems configurations. It was proven that our model is deterministic and cor-
rect, and therefore the analysis is performed correctly. The model determinism
(in terms of jobs start, finish and preemption) makes our approach is signifi-
cantly more efficient than Model Checking, especially for systems with many
multicore processors operating concurrently. The experiments with the model
implementation showed the applicability of the proposed approach in practice
to real scale systems.

In future work, we plan to extend our components models library with more
models of core and task schedulers and models of switched networks components.
Integration with a scheduling tool which allows user-defined models of system
components is also planned.

12

References

1. Avionics application software standard interface. ARINC specification 653. Aero-
nautical Radio. Annapolis (1997).

2. AUTOSAR. Enabling Innovation, http://www.autosar.org/
3. Obermaisser, R. et al.: DECOS: an integrated time-triggered architecture. Elek-

trotech. Inftech. 123(3), 83–95 (2006). doi:10.1007/s00502-006-0323
4. Marinescu, S. et al.: Timing analysis of mixed-criticality hard real-time applications

implemented on distributed partitioned architectures. In: Proceedings of 2012 17th
IEEE International Conference on Emerging Technologies and Factory Automation
(ETFA 2012), pp. 1–4. Krakow, Poland (2012). doi:10.1109/ETFA.2012.6489720

5. Macariu, G., Cretu, V.: Timed automata model for component-based real-time
systems. In: Proceedings of 2010 17th IEEE International Conference and Work-
shops on Engineering of Computer Based Systems, pp. 121–130. Oxford, UK (2010).
doi:10.1109/ECBS.2010.20

6. Craveiro, J. P., Silveira, R. O., Rufino, J.: hsSim: an extensible interoperable object-
oriented n-level hierarchical scheduling simulator. In: Proceedings of the 3rd Interna-
tional Workshop on Analysis Tools and Methodologies for Embedded and Real-time
Systems (WATERS 2012), pp. 9–14. Pisa, Italy (2012).

7. Khoroshilov, A. et al.: AADL-Based Toolset for IMA System Design and Integration.
SAE Int. J. Aerosp. 5(2), 294–299 (2012). doi:10.4271/2012-01-2146

8. Balashov, V.V., Balakhanov, V.A., Kostenko, V.A.: Scheduling of computational
tasks in switched network-based IMA systems. In: Proceedings of International Con-
ference on Engineering and Applied Sciences Optimization, pp.1001–1014. Athens,
Greece (2014).

9. Cassez, F., Larsen, K.: The impressive power of stopwatches. In: Palamidesi C. (eds.)
CONCUR 2000 — Concurrency Theory. LNCS, vol. 1877, pp. 138–152. Springer,
Heidelberg (2000). doi:10.1007/3-540-44618-4 12

10. Tretyakov, A.: Automation of scheduling for periodic real-time systems (in Rus-
sian). Proceedings of the Institute for System Programming. 22, pp.375–400 (2012).
doi:10.1134/S0361768813050046

11. Bengtsson, J., Y,i W.: Timed automata: Semantics, algorithms and tools. In: Desel
J., Reisig W., Rozenberg G. (eds.) Lectures on Concurrency and Petri Nets. LNCS,
vol. 3098, pp. 87–124. Springer, Heidelberg (2004). doi:10.1007/978-3-540-27755-2 3

12. Andre E.: Observer patterns for real-time systems. In: Proceedings of 2013 18th
IEEE International Conference on Engineering of Complex Computer Systems
(ICECCS), pp. 125–134, Singapore (2013). doi:10.1109/ICECCS.2013.26

