Research Article

Valentin Skvortsov* and Francesco Tulone

A version of Hake's theorem for Kurzweil-Henstock integral in terms of variational measure

https://doi.org/10.1515/gmj-2019-2074
Received December 17, 2017; revised January 19, 2019; accepted January 22, 2019

Abstract

We introduce the notion of variational measure with respect to a derivation basis in a topological measure space and consider a Kurzweil-Henstock-type integral related to this basis. We prove a version of Hake's theorem in terms of a variational measure.

Keywords: Topological measure space, derivation basis, Kurzweil-Henstock integral, variational measure, Hake property

MSC 2010: 26A39, 28C15

A classical Hake theorem in the theory of integration (see for example [10, Lemma 3.1, Chapter VIII]) states that, in contrast to the Lebesgue integral, the Perron integral on a compact interval is equivalent to the improper Perron integral. As the Perron integral on the real line is known to be equivalent to the KurzweilHenstock integral (see [9]), the same property is true for the latter integral. The general idea of computing the improper integral as a limit of the integral over increasing families $\left\{A_{\alpha}\right\}$ of sets can be realized in the multidimensional case in several different ways depending on the type of integral and on what family $\left\{A_{\alpha}\right\}$ is chosen to generalize the compact intervals of the one-dimensional construction. This gives rise to various types of the Hake property. A version of this property for certain Kurzweil-Henstock-type integrals in \mathbb{R}^{n} was studied in $[3,5,8]$.

A generalized Hake theorem in terms of the limit of an integral over increasing families of sets for a Kurzweil-Henstock-type integral on a topological space with respect to an abstract derivation basis was considered in [15]. Another version of the Hake theorem in terms of so-called variational measures generated by an indefinite integral was proved in [11, 12] for the Kurzweil-Henstock integral in \mathbb{R}^{n} and in a metric space, respectively.

In this paper, we obtain a generalization of the latter results to our case of a Kurzweil-Henstock-type integral on a topological space and show that the conditions for the Hake property in terms of increasing families of sets as in [15] and in terms of variational measures as in [11, 12] are in fact equivalent.

The ambient set X in this paper is a Hausdorff topological space with an outer regular Borel measure μ on it. For any set $E \in X$ we use the notation int E, \bar{E} and ∂E for the interior, the closure and the boundary of E, respectively. The notation $\operatorname{int}_{L}(E)$ will mean the interior of $E \subset L$ with respect to the topology in L induced by the topology of the space X.

We use the following version of the general definition of a derivation basis (see [9, 17, 18]): a derivation basis (or simply a basis) \mathcal{B} in (X, \mathcal{M}, μ) is a filter base on the product space $\mathcal{J} \times X$, where \mathcal{J} is a family of closed subsets of X having finite positive measure μ and called generalized intervals or \mathcal{B}-intervals. That is, \mathcal{B} is

[^0]a nonempty collection of subsets of $\mathcal{J} \times X$ so that each $\beta \in \mathcal{B}$ is a set of pairs (I, x), where $I \in \mathcal{J}, x \in X$ and \mathcal{B} has the filter base property: $\emptyset \notin \mathcal{B}$ and for every $\beta_{1}, \beta_{2} \in \mathcal{B}$ there exists $\beta \in \mathcal{B}$ such that $\beta \subset \beta_{1} \cap \beta_{2}$. So, each basis is a directed set with the order given by "reversed" inclusion. We shall refer to the elements β of \mathcal{B} as basis sets. Some particular examples of a derivation basis of topological spaces of various types can be found in $[1,9,13,14,16]$. In this paper, we shall suppose that all pairs (I, x) making up each $\beta \in \mathcal{B}$ are such that $x \in I$, although this is not the case in the general theory (see [6, 9]). We assume that $\mu(\partial I)=0$ for any \mathcal{B}-interval I. We say that two \mathcal{B}-intervals I^{\prime} and $I^{\prime \prime}$ are non-overlapping if $\mu\left(I^{\prime} \cap I^{\prime \prime}\right)=0$. We call a \mathcal{B}-figure a finite union of non-overlapping \mathcal{B}-intervals. We denote by $\operatorname{Sub}(L)$ the collection of all \mathcal{B}-subfigures of L. We suppose that the intersection of two overlapping \mathcal{B}-intervals is a \mathcal{B}-figure, so the intersection of two overlapping \mathcal{B}-figures is also a figure as well as the union of any two \mathcal{B}-figures. For a set $E \subset X$ and $\beta \in \mathcal{B}$ we write
$$
\beta(E):=\{(I, x) \in \beta: I \subset E\} \quad \text { and } \quad \beta[E]:=\{(I, x) \in \beta: x \in E\} .
$$

We refer to $\beta(E)$ as basis sets in E. We call $\{\beta(E)\}_{\beta \in \mathcal{B}}$ the basis in E using the same notation \mathcal{B} for it.
We assume that the basis has the following properties:

- The basis \mathcal{B} ignores no point, i.e., $\beta[\{x\}] \neq \emptyset$ for any point $x \in X$ and for any $\beta \in \mathcal{B}$.
- The basis \mathcal{B} has a local character by which we mean that for any family of basis sets $\left\{\beta_{\tau}\right\}, \beta_{\tau} \in \mathcal{B}$, and for any pairwise disjoint sets E_{τ} there exists $\beta \in \mathcal{B}$ such that $\beta\left[\bigcup_{\tau} E_{\tau}\right] \subset \bigcup_{\tau} \beta_{\tau}\left[E_{\tau}\right]$.
- The basis \mathcal{B} is a Vitali basis by which we mean that for any x and for any neighborhood $U(x)$ of x there exists $\beta_{x} \in \mathcal{B}$ such that $I \subset U(x)$ for each pair $(I, x) \in \beta_{x}$.
For a fixed basis set β, a β-partition is a finite collection π of β, where the distinct elements $\left(I^{\prime}, x^{\prime}\right)$ and ($I^{\prime \prime}, x^{\prime \prime}$) in π have I^{\prime} and $I^{\prime \prime}$ non-overlapping. Let $L \subset X$. If $\pi \subset \beta(L)$, then π is called a β-partition in L. If $\pi \subset \beta[L]$, then π is called a β-partition on L. If $\bigcup_{(I, x) \in \pi} I=L$, then π is called β-partition of L. For a set E and a β-partition π we set $\pi[E]:=\{(I, x) \in \pi:(I, x) \in \beta[E]\}$.

We also assume that the basis \mathcal{B} has the partitioning property by which we mean: (i) for each finite collection $I_{0}, I_{1}, \ldots, I_{n}$ of \mathcal{B}-intervals with $I_{1}, \ldots, I_{n} \subset I_{0}$ being non-overlapping there exists a finite number of \mathcal{B}-intervals I_{n+1}, \ldots, I_{m} such that $I_{0}=\bigcup_{s=1}^{m} I_{s}$, all I_{s} being pairwise non-overlapping \mathcal{B}-intervals; (ii) for each \mathcal{B}-interval I and for any $\beta \in \mathcal{B}$ there exists a β-partition of I.

We note that condition (ii) of the partitioning property in fact implies the existence of a β-partition for any \mathcal{B}-figure. The union of all \mathcal{B}-intervals involved in a β-partition π will be called the \mathcal{B}-figure generated by π.

A typical example of a basis satisfying our condition is the basis formed by usual intervals in \mathbb{R}^{n}. An interesting example of a basis in a metric space formed by closed balls, scalloped balls and their finite intersections was considered in [12].

The following lemma on an extension of a β-partition is a direct consequence of the partitioning property of the basis.

Lemma 1. Let π_{1} be a β-partition in a \mathcal{B}-figure L. Then there exists a β-partition π_{2} in L such that $\pi=\pi_{1} \cup \pi_{2}$ is a β-partition of L.
We call the β-partition π_{2} of the above lemma a β-complementary to π_{1} in L. If F is a \mathcal{B}-figure generated by the partition π_{1}, then the \mathcal{B}-figure generated by the partition π_{2} which is β-complementary to π_{1} in L is called β-complementary to F in L and is denoted by $C_{\beta} F$.

The following lemma is proved in [15].
Lemma 2. For any $\beta \in \mathcal{B}$ in a \mathcal{B}-figure L and any open set $G \subset L$ there exists a basis set $\beta^{\prime} \subset \beta$ in L such that $\beta^{\prime}[G] \subset \beta^{\prime}(G)$, i.e., $I \subset G$ for each $(I, x) \in \beta^{\prime}[G]$.

Definition 3 (see [9]). Let \mathcal{B} be a basis having the partitioning property and let L be a \mathcal{B}-figure. A real-valued function f on L is said to be Kurzweil-Henstock integrable with respect to the basis \mathcal{B} (or $H_{\mathcal{B}}$-integrable) on L with $H_{\mathcal{B}}$-integral A if for every $\varepsilon>0$ there exists $\beta \in \mathcal{B}$ such that for any β-partition π of L we have

$$
\begin{equation*}
\left|\sum_{(I, x) \in \pi} f(x) \mu(I)-A\right|<\varepsilon \tag{1}
\end{equation*}
$$

We denote the integral value A by $\left(H_{\mathcal{B}}\right) \int_{L} f$.

We say that a function f is $H_{\mathcal{B}}$-integrable on a set $E \subset L$ if the function $f \cdot \chi_{E}$ is $H_{\mathcal{B}}$-integrable on L and $\int_{E} f:=\int_{L} f \cdot \chi_{E}$.

We shall need the following result proved in [15].
Proposition 4. A function which is equal to zero almost everywhere on a \mathcal{B}-figure L is $H_{\mathcal{B}}$-integrable on L with integral value zero.

It follows from this proposition that if we change the value of a function f on a set of measure zero, then it does not influence the $H_{\mathcal{B}}$-integrability of f and the value of the integral.

We note that if f is $H_{\mathcal{B}}$-integrable on a \mathcal{B}-figure L, then it is $H_{\mathcal{B}}$-integrable also on any \mathcal{B}-figure $J \subset L$. It can be easily proved that the \mathcal{B}-interval function $\Phi: J \mapsto\left(H_{\mathcal{B}}\right) \int_{J} f$ is additive on the family of all \mathcal{B}-figures and we call it the indefinite $H_{\mathcal{B}}$-integral of f.

An essential part of the classical theory of the Kurzweil-Henstock-type integral is based on the so-called Kolmogorov-Henstock lemma (see [7], the name is justified by the fact that one version of this lemma was stated by Kolmogorov in [4]). This lemma can be extended also to the case of our basis in a topological space.

Lemma 5. If a functionf is $H_{\mathcal{B}}$-integrable on a \mathcal{B}-figure L, with Φ being its indefinite $H_{\mathcal{B}}$-integral, then for every $\varepsilon>0$ there exists $\beta \in \mathcal{B}$ such that for any β-partition π in L we have

$$
\sum_{(I, x) \in \pi}|f(x) \mu(I)-\Phi(I)|<\varepsilon .
$$

Proof. The proof follows the lines of the proof in the classical case of a usual interval basis on \mathbb{R}^{n} (see [6, Theorem 3.2.1] and [9, Theorem 1.6.1]).

Take β for which (1) holds for any β-partition π of L with ε replaced by $\frac{\varepsilon}{4}$. By the additivity of the $H_{\mathcal{B}}$-integral we can rewrite this inequality in the form

$$
\begin{equation*}
\left|\sum_{(I, x) \in \pi}(f(x) \mu(I)-\Phi(I))\right|<\frac{\varepsilon}{4} . \tag{2}
\end{equation*}
$$

Now take any subpartition $\pi_{1} \subset \pi$. Let F_{1} be a figure generated by π_{1} and let F_{2} be the figure β complementary to F_{1} in L. As f is $H_{\mathcal{B}}$-integrable on F_{2}, there exists β_{1} in F_{2} such that for any β_{1}-partition π_{2} of F_{2} we have

$$
\left|\sum_{(I, x) \in \pi_{2}}(f(x) \mu(I)-\Phi(I))\right|<\frac{\varepsilon}{4} .
$$

We can assume that $\beta_{1} \subset \beta\left(F_{2}\right)$. Then $\pi_{1} \cup \pi_{2}$ is a β-partition of L and (2) holds. So we have

$$
\begin{align*}
\mid \sum_{(I, x) \in \pi_{1}} & (f(x) \mu(I)-\Phi(I)) \mid \\
& =\left|\sum_{(I, x) \in \pi_{1} \cup \pi_{2}}(f(x) \mu(I)-\Phi(I))\right|+\left|\sum_{(I, x) \in \pi_{2}}(f(x) \mu(I)-\Phi(I))\right|<\frac{\varepsilon}{4}+\frac{\varepsilon}{4}=\frac{\varepsilon}{2} . \tag{3}
\end{align*}
$$

Now we split π into the two subpartitions

$$
\pi^{+}=\{(I, x) \in \pi: f(x) \mu(I)-\Phi(I) \geq 0\} \quad \text { and } \quad \pi^{-}=\{(I, x) \in \pi: f(x) \mu(I)-\Phi(I)<0\}
$$

and apply (3), taking $\pi_{1}=\pi^{+}$and $\pi_{1}=\pi^{-}$. Then we get

$$
\begin{aligned}
\sum_{(I, x) \in \pi} & |(f(x) \mu(I)-\Phi(I))| \\
& =\sum_{(I, x) \in \pi^{+}}|(f(x) \mu(I)-\Phi(I))|+\sum_{(I, x) \in \pi}|(f(x) \mu(I)-\Phi(I))|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
\end{aligned}
$$

Let Φ be an additive set function on \mathcal{J} and let E be an arbitrary subset of X. For fixed $\beta \in \mathcal{B}$, we set

$$
\operatorname{Var}(E, \Phi, \beta):=\sup _{\pi \subset \beta[E]} \sum|\Phi(I)|
$$

We put also

$$
V_{\Phi}(E)=V(E, \Phi, \mathcal{B}):=\inf _{\beta \in \mathcal{B}} \operatorname{Var}(E, \Phi, \beta)
$$

The extended real-valued set function $V_{\Phi}(\cdot)$ is called a variational measure generated by Φ, with respect to the basis \mathcal{B}.

By following the proof given in [19] for the interval bases in \mathbb{R}, it is possible to show that $V_{\Phi}(\cdot)$ is an outer measure and a metric outer measure in the case of a metric space X (in the latter case the Vitali property of the basis is essential).
Lemma 6. Let f be an $H_{\mathcal{B}}$-integrable function on L and let Φ be its indefinite $H_{\mathcal{B}}$-integral. Let $f(x)=0$ on some set $E \subset L$. Then $V_{\Phi}(E)=0$.

Proof. For an arbitrary $\varepsilon>0$, we choose β according to Lemma 5. Then for any partition $\pi \subset \beta[E]$ we get

$$
\sum_{(I, x) \in \pi}|\Phi(I)|<\varepsilon
$$

Now from the definition of $\operatorname{Var}(E, \Phi, \beta)$ and V_{Φ} we get the assertion of the lemma.
We remind that the variational measure generated by an additive set function Φ is absolutely continuous with respect to the measure μ if $V_{\Phi}(E)=0$ for any set E with $\mu(E)=0$.

Theorem 7. Let f be an $H_{\mathcal{B}}$-integrable function on L and let Φ be its indefinite $H_{\mathcal{B}}$-integral. Then V_{Φ} is absolutely continuous with respect to μ.
Proof. Let $E \subset L$ be any set of measure zero. By Proposition 4 we can assume that $f(x)=0$ if $x \in E$. Now, the absolute continuity of V_{Φ} follows from the preceding lemma.
Now we prove our versions of the Hake-type theorem.
Theorem 8. Suppose that in a \mathcal{B}-interval L there exists a closed set E and an increasing sequence of \mathcal{B} figures $\left\{F_{k}\right\}$ such that $L \backslash E=\bigcup_{k=1}^{\infty} \operatorname{int}_{L} F_{k}$, the function $f(x)$ equals 0 on E and is $H_{\mathcal{B}}$-integrable on any \mathcal{B}-figure $F \subset L \backslash E$, with $H_{\mathcal{B}}$-integral $\Phi(F)=\int_{F} f$. Then f is $H_{\mathcal{B}}$-integrable on L if and only if there exists an extension of the function Φ to $\operatorname{Sub}(L)$ such that $V_{\Phi}(E)=0$. In this case $\int_{L} f=\Phi(L)$.

Proof. The necessity follows from Lemma 6. To prove the sufficiency, suppose that the required extension of Φ with $V_{\Phi}(E)=0$ exists. For an arbitrary $\varepsilon>0$ we choose, according to the definition of a variational measure, β_{0} such that for any $\beta_{0}[E]$-partition π_{0} in L we have

$$
\begin{equation*}
\sum_{(I, x) \in \pi_{0}}|\Phi(I)|<\frac{\varepsilon}{2} \tag{4}
\end{equation*}
$$

Consider the increasing sequence of \mathcal{B}-figures $\left\{F_{k}\right\}$ given by the assumption and put $T_{k}=\operatorname{int}_{L}\left(F_{k}\right) \backslash \operatorname{int} L_{L}\left(F_{k-1}\right)$ (where $F_{0}=\emptyset$). Then $\bigcup_{k}^{\infty} T_{k}=L \backslash E$ and $T_{r} \cap T_{s}=\emptyset$ for every $r \neq s$.

By the assumption, f is $H_{\mathcal{B}}$-integrable on each F_{k} and so, by Lemma 5, there exists a basis set β_{k} in F_{k} such that

$$
\begin{equation*}
\left|\sum_{(I, x) \in \pi_{k}} f(x) \mu(I)-\Phi\left(S_{k}\right)\right| \leq \sum_{(I, x) \in \pi_{k}}|f(x) \mu(I)-\Phi(I)|<\frac{\varepsilon}{2^{k+1}} \tag{5}
\end{equation*}
$$

for any β_{k}-partition π_{k} in F_{k}, where S_{k} is the \mathcal{B}-figure generated by the partition π_{k}. Using Lemma 2 , for each k we define $\beta_{k}^{\prime} \subset \beta_{k}$ such that $I \subset \operatorname{int}_{L} F_{k}$ for each $(I, x) \in \beta_{k}^{\prime}$ with $x \in \operatorname{int} F_{k}$. Now by the local character of \mathcal{B} we determine β in L such that $\beta\left[T_{k}\right] \subset \beta_{k}^{\prime}\left[T_{k}\right]$ for every k and $\beta[E] \subset \beta_{0}[E]$.

Take any β-partition π of L. We can represent π as a union of disjoint subpartitions $\pi[E]$ and $\pi\left[T_{k}\right]$ for a finite number of k. Applying (4) to $\pi_{0}=\pi[E]$ and (5) to each $\pi\left[T_{k}\right]$, we finally get

$$
\begin{aligned}
\left|\sum_{(I, x) \in \pi} f(x) \mu(I)-\Phi(L)\right| & \leq \sum_{(I, x) \in \pi[E]}|\Phi(I)|+\sum_{k}\left|\sum_{(I, x) \in \pi\left[T_{k}\right]}(f(x) \mu(I)-\Phi(I))\right| \\
& \leq \frac{\varepsilon}{2}+\sum_{k=1}^{\infty} \frac{\varepsilon}{2^{k+1}}=\varepsilon
\end{aligned}
$$

which proves that f is $H_{\mathcal{B}}$-integrable and $\Phi(L)$ is the value of the $H_{\mathcal{B}}$-integral of f over L.

Using this theorem, we obtain its generalization stated as follows.
Theorem 9. Suppose that in a \mathcal{B}-interval L there exists an increasing sequence of \mathcal{B}-figures $\left\{F_{k}\right\}$ such that a function f is $H_{\mathcal{B}}$-integrable on each F_{k}, on the set $E=L \backslash\left(\bigcup_{k=1}^{\infty} \operatorname{int}_{L} F_{k}\right)$ and on any \mathcal{B}-figure $F \subset L, F \cap E=\emptyset$, with $H_{\mathcal{B}}$-integral $\Phi(F)=\int_{F} f$. Then f is $H_{\mathcal{B}}$-integrable on L if and only if there exists an extension of the function Φ to $\operatorname{Sub}(L)$ such that $V_{\Phi}(E)=0$. In this case $\int_{L} f=\Phi(L)+\int_{E} f$.
Proof. Set $G=\bigcup_{k=1}^{\infty} \operatorname{int}_{L} F_{k}$ and apply Theorem 8 to the function $f \chi_{G}$. We obtain that this function is $H_{\mathcal{B}}$-integrable with integral value $\Phi(L)$ if and only if there exists an additive \mathcal{B}-interval function Φ for which $V_{\Phi}(E)=0$ and $\Phi(L)=\int_{L} f \chi_{G}$. Since $f=f \chi_{G}+f \chi_{E}$, the $H_{\mathcal{B}}$-integrability of f on L is equivalent, under the condition of the theorem, to the $H_{\mathcal{B}}$-integrability of χ_{G}, and moreover $\int_{L} f=\Phi(L)+\int_{E} f$.
A particular case of the above result is the case where $E=\partial L$. In this case, by our assumption $\mu(\partial L)=0$ and by Theorem 7, we get the following corollary.

Corollary 10. Suppose that in a \mathcal{B}-interval L there exists an increasing sequence of \mathcal{B}-figures $\left\{F_{k}\right\}$ such that a function f is $H_{\mathcal{B}}$-integrable on each F_{k}, on the set int $L=\bigcup_{k=1}^{\infty} \operatorname{int} F_{k}$ and on any \mathcal{B}-figure $F \subset \operatorname{int} L$, with $H_{\mathcal{B}}$-integral $\Phi(F)=\int_{F} f$. Then f is $H_{\mathcal{B}}$-integrable on L if and only if there exists an extension of the function Φ to $\operatorname{Sub}(L)$ such that the variational measure generated by Φ is absolutely continuous with respect to μ. In this case $\int_{L} f=\Phi(L)$.
In [15], the Hake property theorem was formulated using the so-called β-bordering (here we prefer the term β-halo as in [2]).
Definition 11. Given a \mathcal{B}-figure L, a closed set $E \subset L$ and a basis set β in L, we say that a \mathcal{B}-figure $O_{E}=\bigcup_{j=1}^{k} I_{j}$ is a β-halo of E if $E \subset \operatorname{int}_{L} O_{E}$ and O_{E} is generated by the $\beta[E]$-partition $\left\{\left(I_{j}, x_{j}\right)\right\}_{j=1}^{k}$.

It is easy to check, by using Lemma 2 , that for any $\beta \in \mathcal{B}$ in the \mathcal{B}-figure L and a closed set $E \subset L$ there exists a β-halo O_{E}.

Theorem 12 ([15, Theorem 1]). Under the conditions of Theorem 9, the function f is $H_{\mathcal{B}}$-integrable on L with integral value $A+\int_{E} f$ if and only iffor any $\varepsilon>0$ there exists a $\beta \in \mathcal{B}$ such that for any β-halo O_{E} the function f is $H_{\mathcal{B}}$-integrable on a β-complementary \mathcal{B}-figure $C_{\beta}\left(O_{E}\right)$ and the following inequality holds:

$$
\left|\int_{C_{\beta}\left(O_{E}\right)} f-A\right|<\varepsilon .
$$

As a result we get the equivalence of two forms of the Hake-type theorem and we can summarize our results in the following statement.

Theorem 13. Suppose that in a \mathcal{B}-interval L there exist a closed set G and an increasing sequence of \mathcal{B}-figures $\left\{F_{k}\right\}$ such that $L \backslash E=\bigcup \operatorname{int}_{L} F_{k}$, the function is $H_{\mathcal{B}}$-integrable on E with integral value $A+\int_{E} f$ and is $H_{\mathcal{B}}$-integrable on any \mathcal{B}-figure $F \subset L \backslash E$, with $H_{\mathcal{B}}$-integral $\Phi(F)=\int_{F} f$. Then the following assertions are equivalent:
(i) There exists an extension of the function Φ to $\operatorname{Sub}(L)$ such that $V_{\Phi}(E)=0$.
(ii) For any $\varepsilon>0$ there exists $a \beta \in \mathcal{B}$ such that for any β-halo O_{E} the function f is $H_{\mathcal{B}}$-integrable on a β-complementary \mathcal{B}-figure $C_{\beta}\left(O_{E}\right)$ and the following inequality holds:

$$
\left|\Phi\left(C_{\beta}\left(O_{E}\right)\right)-A\right|<\varepsilon .
$$

(iii) The function f is $H_{\mathcal{B}}$-integrable on L with integral value $\int_{L} f=\Phi(L)+\int_{E} f=A+\int_{E} f$.

Note that the equivalence of conditions (i) and (ii) can be established directly. So the results of [12] could be obtained from the results of [15] as a particular case. By the same argument, [11, Theorem 6.1] can be deduced from [8, Theorem 1].

References

[1] S. I. Ahmed and W. F. Pfeffer, A Riemann integral in a locally compact Hausdorff space, J. Aust. Math. Soc. Ser. A 41 (1986), no. 1, 115-137.
[2] A. Boccuto, V. A. Skvortsov and F. Tulone, A Hake-type theorem for integrals with respect to abstract derivation bases in the Riesz space setting, Math. Slovaca 65 (2015), no. 6, 1319-1336.
[3] C.-A. Faure and J. Mawhin, The Hake's property for some integrals over multidimensional intervals, Real Anal. Exchange 20 (1994/95), no. 2, 622-630.
[4] A. Kolmogoroff, Untersuchungen über denIntegralbegriff, Math. Ann. 103 (1930), no. 1, 654-696.
[5] J. Kurzweil and J. Jarník, Differentiability and integrability in n dimensions with respect to α-regular intervals, Results Math. 21 (1992), no. 1-2, 138-151.
[6] P. Y. Lee and R. Výborný, Integral: An Easy Approach After Kurzweil and Henstock, Austral. Math. Soc. Lect. Ser. 14, Cambridge University, Cambridge, 2000.
[7] T. P. Lukashenko, A. Solodov and V. A. Skvortsov, Generalized Integrals (in Russian), URSS, Moscow, 2010.
[8] P. Mal'doni and V. A. Skvortsov, An improper Riemann integral and the Henstock integral in \mathbb{R}^{n} (in Russian), Mat. Zametki 78 (2005), no. 2, 251-258; translation in Math. Notes 78 (2005), no. 1-2, 228-233.
[9] K. M. Ostaszewski, Henstock integration in the plane, Mem. Amer. Math. Soc. 63 (1986), no. 353, 1-106.
[10] S. Saks, Theory of the Integral, Hafner, New York, 1937.
[11] S. P. Singh and I. K. Rana, The Hake's theorem and variational measures, Real Anal. Exchange 37 (2011/12), no. 2, 477-488.
[12] S. P. Singh and I. K. Rana, The Hake's theorem on metric measure spaces, Real Anal. Exchange 39 (2013/14), no. 2, 447-458.
[13] V. A. Skvortsov and F. Tulone, The P-adic Henstock integral in the theory of series in systems of characters of zero-dimensional groups (in Russian), Vestnik Moskov. Univ. Ser. I Mat. Mekh. 2006 (2006), no. 1, 25-29, 70; translation in Moscow Univ. Math. Bull. 61 (2006), no. 1, 27-31.
[14] V. A. Skvortsov and F. Tulone, A Henstock-type integral on a compact zero-dimensional metric space and the representation of a quasi-measure (in Russian), Vestnik Moskov. Univ. Ser. I Mat. Mekh. 2012 (2012), no. 2, 11-17; translation in Moscow Univ. Math. Bull. 67 (2012), no. 2, 55-60.
[15] V. A. Skvortsov and F. Tulone, Generalized Hake property for integrals of Henstock type (in Russian), Vestnik Moskov. Univ. Ser. I Mat. Mekh. 2013 (2013), no. 6, 9-13; translation in Moscow Univ. Math. Bull. 68 (2013), no. 6, 270-274.
[16] V. A. Skvortsov and F. Tulone, Multidimensional dyadic Kurzweil-Henstock- and Perron-type integrals in the theory of Haar and Walsh series, J. Math. Anal. Appl. 421 (2015), no. 2, 1502-1518.
[17] B. S. Thomson, Derivation bases on the real line. I, Real Anal. Exchange 8 (1982/83), no. 1, 67-207.
[18] B. S. Thomson, Derivation bases on the real line. I, Real Anal. Exchange 8 (1982/83), no. 2, 278-442.
[19] B. S. Thomson, Derivates of interval functions, Mem. Amer. Math. Soc. 93 (1991), no. 452, 1-96.

[^0]: *Corresponding author: Valentin Skvortsov, Department of Mathematics, Moscow State University, Moscow 119899, Russia, e-mail: vaskvor2000@yahoo.com
 Francesco Tulone, Department of Mathematics and Computer Science, Palermo University, Palermo, Italy, e-mail: francesco.tulone@unipa.it

