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Abstract: We introduce the notion of variational measure with respect to a derivation basis in a topological
measure space and consider a Kurzweil-Henstock-type integral related to this basis. We prove a version of
Hake’s theorem in terms of a variational measure.
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A classical Hake theorem in the theory of integration (see for example [10, Lemma 3.1, Chapter VIII]) states
that, in contrast to the Lebesgue integral, the Perron integral on a compact interval is equivalent to the
improper Perron integral. As the Perron integral on the real line is known to be equivalent to the Kurzweil-
Henstock integral (see [9]), the same property is true for the latter integral. The general idea of computing the
improper integral as a limit of the integral over increasing families {A,} of sets can be realized in the multidi-
mensional case in several different ways depending on the type of integral and on what family {A,} is chosen
to generalize the compact intervals of the one-dimensional construction. This gives rise to various types of
the Hake property. A version of this property for certain Kurzweil-Henstock-type integrals in R" was studied
in[3, 5, 8].

A generalized Hake theorem in terms of the limit of an integral over increasing families of sets for
a Kurzweil-Henstock-type integral on a topological space with respect to an abstract derivation basis was
considered in [15]. Another version of the Hake theorem in terms of so-called variational measures gener-
ated by an indefinite integral was proved in [11, 12] for the Kurzweil-Henstock integral in R" and in a metric
space, respectively.

In this paper, we obtain a generalization of the latter results to our case of a Kurzweil-Henstock-type
integral on a topological space and show that the conditions for the Hake property in terms of increasing
families of sets as in [15] and in terms of variational measures as in [11, 12] are in fact equivalent.

The ambient set X in this paper is a Hausdorff topological space with an outer regular Borel measure u
on it. For any set E € X we use the notation int E, E and 9E for the interior, the closure and the boundary of E,
respectively. The notation inty (E) will mean the interior of E ¢ L with respect to the topology in L induced by
the topology of the space X.

We use the following version of the general definition of a derivation basis (see [9, 17, 18]): a derivation
basis (or simply a basis) B in (X, M, u) is a filter base on the product space J x X, where J is a family of closed
subsets of X having finite positive measure y and called generalized intervals or B-intervals. That is, B is
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anonempty collection of subsets of I x X so that each 8 € B is a set of pairs (I, x), where I € J, x € X and B has
the filter base property: 0 ¢ B and for every 81, B, € B there exists f € B such that § c 1 N B,. So, each basis
is a directed set with the order given by “reversed” inclusion. We shall refer to the elements 8 of B as basis
sets. Some particular examples of a derivation basis of topological spaces of various types can be found in
[1, 9, 13, 14, 16]. In this paper, we shall suppose that all pairs (I, x) making up each 8 € B are such that x € I,
although this is not the case in the general theory (see [6, 9]). We assume that pu(dI) = O for any B-interval I.
We say that two B-intervals I’ and I" are non-overlapping if u(I' n I'') = 0. We call a B-figure a finite union
of non-overlapping B-intervals. We denote by Sub(L) the collection of all B-subfigures of L. We suppose that
the intersection of two overlapping B-intervals is a B-figure, so the intersection of two overlapping B-figures
is also a figure as well as the union of any two B-figures. For a set E ¢ X and 3 € B we write
BE):={(I,x)eB:IcE} and PBI[E]:={(,x)ep:xe€E}
We refer to B(E) as basis sets in E. We call {(E)}ges the basis in E using the same notation B for it.
We assume that the basis has the following properties:
» The basis B ignores no point, i.e., B[{x}] # @ for any point x € X and for any 8 € B.
o The basis B has a local character by which we mean that for any family of basis sets {8}, 8 € B, and for
any pairwise disjoint sets E; there exists § € B such that B[ J, Er] c U, Br[E7].
o The basis B is a Vitali basis by which we mean that for any x and for any neighborhood U(x) of x there
exists Bx € B such that I c U(x) for each pair (I, x) € By.

For a fixed basis set 8, a B-partition is a finite collection 7 of B, where the distinct elements (I’, x") and
(I",x") in m have I' and I'" non-overlapping. Let L ¢ X. If 7 ¢ B(L), then m is called a B-partition in L. If
7 ¢ B[L], then 7 is called a B-partition on L. If {J; e, I = L, then 7 is called B-partition of L. For a set E and
a B-partition 7r we set i[E] := {(I, x) € m : (I, x) € B[E]}.

We also assume that the basis B has the partitioning property by which we mean: (i) for each finite col-
lection Iy, I, . .., I, of B-intervals with I, ..., I, c I being non-overlapping there exists a finite number
of B-intervals Ip1, . . . , Iin such that Iy = | J5t, Is, all I being pairwise non-overlapping B-intervals; (ii) for
each B-interval I and for any 8 € B there exists a S-partition of I.

We note that condition (ii) of the partitioning property in fact implies the existence of a B-partition for
any B-figure. The union of all B-intervals involved in a -partition 77 will be called the B-figure generated
by m.

A typical example of a basis satisfying our condition is the basis formed by usual intervals in R". An inter-
esting example of a basis in a metric space formed by closed balls, scalloped balls and their finite intersections
was considered in [12].

The following lemma on an extension of a -partition is a direct consequence of the partitioning property
of the basis.

Lemma 1. Let 1 be a S-partition in a B-figure L. Then there exists a -partition 1, in L such that m = 11 U 11,
is a B-partition of L.

We call the S-partition 71, of the above lemma a §-complementary to m; in L. If F is a B-figure generated by the
partition 71, then the B-figure generated by the partition 77, which is S-complementary to 7; in L is called
B-complementary to F in L and is denoted by CgF.

The following lemma is proved in [15].

Lemma 2. For any B € B in a B-figure L and any open set G c L there exists a basis set B' ¢ B in L such that
B'(G] c B'(G),i.e,Ic G foreach (I, x) € B'[G].

Definition 3 (see [9]). Let B be a basis having the partitioning property and let L be a B-figure. A real-valued
function f on L is said to be Kurzweil-Henstock integrable with respect to the basis B (or Hy-integrable) on L
with Hg-integral A if for every € > O there exists § € B such that for any -partition 7 of L we have

Y foou) - Al <e. 1)
(I,x)em

We denote the integral value A by (Hg) IL f.
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We say that a function f is Hp-integrable on a set E c L if the function f- yg is Hp-integrable on L and

Jgf= I, fxe
We shall need the following result proved in [15].

Proposition 4. A function which is equal to zero almost everywhere on a B-figure L is Hg-integrable on L with
integral value zero.

It follows from this proposition that if we change the value of a function f on a set of measure zero, then it
does not influence the Hg-integrability of f and the value of the integral.

We note that if f is Hp-integrable on a B-figure L, then it is Hp-integrable also on any B-figure J c L. It
can be easily proved that the B-interval function @ : J +— (Hg) j] f is additive on the family of all B-figures
and we call it the indefinite Hy-integral of f.

An essential part of the classical theory of the Kurzweil-Henstock-type integral is based on the so-called
Kolmogorov—Henstock lemma (see [7], the name is justified by the fact that one version of this lemma was
stated by Kolmogorov in [4]). This lemma can be extended also to the case of our basis in a topological space.

Lemma 5. Ifa function f is Hg-integrable on a B-figure L, with @ being its indefinite Hy-integral, then for every
& > 0 there exists 8 € B such that for any B-partition i in L we have

Y foud) - o) < &

(Ix)em
Proof. The proof follows the lines of the proof in the classical case of a usual interval basis on R" (see [6,
Theorem 3.2.1] and [9, Theorem 1.6.1]).

Take B for which (1) holds for any B-partition 7 of L with ¢ replaced by £. By the additivity of the
Hg-integral we can rewrite this inequality in the form

£
Y (foou(h - ()| < 5. ®)
(I,x)em
Now take any subpartition m; c 7. Let F; be a figure generated by m; and let F, be the figure S-
complementary to F; in L. As f is Hg-integrable on F,, there exists 8; in F, such that for any §; -partition 7,
of F, we have

y mmmn—®w4<;

(I,x)em,

We can assume that 8; ¢ B(F,). Then m1; U 75 is a B-partition of L and (2) holds. So we have

¥ (f(x)u(l)—cb(l))]
(I,x)em,
£ E

Y (oo -o)|< 7+ =5 3)

| ¥ Gooun-om)|+ 2

(I,x)emUm, (I,x)em,

Now we split 77 into the two subpartitions
at ={I,x)en: fX)u) - ®I) =0} and 7~ ={(, x) € m: fO)ul) - ) < 0}
and apply (3), taking 771; = ¥ and 71y = ™. Then we get

Y 1feou - o)
(I,x)em
= Y 1o - o+ Y GO - Ol < 5+ 5 = & O

(I,x)em* (I,x)em 2

Let @ be an additive set function on J and let E be an arbitrary subset of X. For fixed 8 € B, we set

Var(E, @, B) := sup Y |®(D)].
ncplE]
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We put also
Vo(E) = V(E, @, B) := éng Var(E, @, B).
o

The extended real-valued set function V() is called a variational measure generated by @, with respect to
the basis B.

By following the proof given in [19] for the interval bases in IR, it is possible to show that V(- ) is an outer
measure and a metric outer measure in the case of a metric space X (in the latter case the Vitali property of
the basis is essential).

Lemma 6. Let f be an Hy-integrable function on L and let @ be its indefinite Hy-integral. Let f(x) = 0 on some
setE c L. Then Vg (E) = 0.

Proof. For an arbitrary € > 0, we choose f according to Lemma 5. Then for any partition 71 ¢ S[E] we get
Y o) <e.
(I,x)em

Now from the definition of Var(E, @, 8) and V¢ we get the assertion of the lemma. O

We remind that the variational measure generated by an additive set function @ is absolutely continuous
with respect to the measure u if Vo (E) = 0 for any set E with u(E) = 0.

Theorem 7. Let f be an Hy-integrable function on L and let ®@ be its indefinite Hy-integral. Then Vg, is abso-
lutely continuous with respect to p.

Proof. Let E c L be any set of measure zero. By Proposition 4 we can assume that f(x) = 0 if x € E. Now, the
absolute continuity of V¢ follows from the preceding lemma. O

Now we prove our versions of the Hake-type theorem.

Theorem 8. Suppose that in a B-interval L there exists a closed set E and an increasing sequence of B-
figures {Fy} such that L \ E = | J;2, inty Fi, the function f(x) equals O on E and is Hg-integrable on any B-figure
F c L\ E, with Hg-integral ®(F) = IF f. Then f is Hp-integrable on L if and only if there exists an extension of
the function @ to Sub(L) such that V(E) = 0. In this case ij = O(L).

Proof. The necessity follows from Lemma 6. To prove the sufficiency, suppose that the required extension of @
with Vg (E) = 0 exists. For an arbitrary € > O we choose, according to the definition of a variational measure,
Bo such that for any B [E]-partition 77y in L we have

Y omi<s. @)
(I,x)emg
Consider the increasing sequence of B-figures {Fy} given by the assumption and put Ty = inty (F) \ inty (Fx-1)
(where Fo = 0). Then | Ji° Tx = L\ Eand T, n Ts = 0 for every r # s.
By the assumption, f is Hg-integrable on each Fj and so, by Lemma 5, there exists a basis set B in Fi
such that

Y foun -0 < Y feouh -l < )
(

(I,x)emy Ix)emy 2k+1
for any Bx-partition 7ty in Fi, where Sy is the B-figure generated by the partition r7x. Using Lemma 2, for each k
we define ) ¢ B such that I c int; Fy for each (1, x) € B with x € int Fy. Now by the local character of B we
determine 8 in L such that B[T] c BL[T;(] for every k and B[E] c BolE].
Take any S-partition 77 of L. We can represent 7 as a union of disjoint subpartitions 7[E] and n[Tx] for
a finite number of k. Applying (4) to my = 7[E] and (5) to each 71[Ty], we finally get

D f(X)u(I)—CD(L)Is Yo olemi+)Y| Y (feoud) - o)
(

(I,x)em Lx)en[E] k (Ix)em([Tk]
e S ¢
<—+ z —— =€
k ’
2 k=1 2kt
which proves that f is Hg-integrable and ®(L) is the value of the Hy-integral of f over L. O
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Using this theorem, we obtain its generalization stated as follows.

Theorem 9. Suppose that in a B-interval L there exists an increasing sequence of B-figures {Fy} such that a func-
tion f is Hg-integrable on each Fy, on the set E = L\ (| ;2 int; Fx) and on any B-figure F c L, F n E = 0, with
Hg-integral ®(F) = IF f. Then f is Hp-integrable on L if and only if there exists an extension of the function ®
to Sub(L) such that Vo(E) = 0. In this case ILf =) + fEf.

Proof. Set G = Jj2, int; Fi and apply Theorem 8 to the function fy. We obtain that this function is Hz-inte-
grable with integral value ®(L) if and only if there exists an additive B-interval function @ for which
Vo(E) =0 and ®(L) = IL fxc. Since f = fyc + fxe, the Hp-integrability of f on L is equivalent, under the
condition of the theorem, to the Hx-integrability of fy¢, and moreover jL f=d(L)+ IE f. O

A particular case of the above result is the case where E = 0L. In this case, by our assumption u(oL) = 0 and
by Theorem 7, we get the following corollary.

Corollary 10. Suppose that in a B-interval L there exists an increasing sequence of B-figures {Fy} such that
a function f is Hg-integrable on each Fy, on the set int L = | J2, int F and on any B-figure F c int L, with
Hg-integral ®(F) = fF f. Then f is Hp-integrable on L if and only if there exists an extension of the function ®
to Sub(L) such that the variational measure generated by @ is absolutely continuous with respect to p. In this
case |, f = ®(L).

In [15], the Hake property theorem was formulated using the so-called B-bordering (here we prefer the term
B-halo as in [2]).

Definition 11. Given a B-figure L, a closed set E ¢ L and a basis set § in L, we say that a B-figure O = U]Ilelj
isa B-halo of Eif E c int; O and Og is generated by the [ E]-partition {(}, xj)}]’le.

It is easy to check, by using Lemma 2, that for any 8 € B in the B-figure L and a closed set E c L there exists
a f-halo Og.

Theorem 12 ([15, Theorem 1]). Under the conditions of Theorem 9, the function f is Hy-integrable on L with
integral value A + IE f if and only if for any € > O there exists a 8 € B such that for any B-halo O the function f
is Hy-integrable on a -complementary B-figure Cg(Og) and the following inequality holds:

| J f—A|<£.
Cp(OF)

As a result we get the equivalence of two forms of the Hake-type theorem and we can summarize our results
in the following statement.

Theorem 13. Suppose that in a B-interval L there exist a closed set G and an increasing sequence of B-fig-

ures {Fy} such that L\ E = | Jint, Fy, the function is Hg-integrable on E with integral value A + IE f and is

Hg-integrable on any B-figure F c L\ E, with Hg-integral ©(F) = IF f. Then the following assertions are

equivalent:

(i) There exists an extension of the function ® to Sub(L) such that Vo (E) = 0.

(ii) For any € > O there exists a B € B such that for any B-halo O the function f is Hy-integrable on a B-com-
plementary B-figure Cg(Of) and the following inequality holds:

|D(C(0p)) - Al < e.

(iii) The function f is Hy-integrable on L with integral value |, f = (L) + [ f = A+ [, f.

Note that the equivalence of conditions (i) and (ii) can be established directly. So the results of [12] could
be obtained from the results of [15] as a particular case. By the same argument, [11, Theorem 6.1] can be
deduced from [8, Theorem 1].
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