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Abstract:We introduce the notion of variational measure with respect to a derivation basis in a topological
measure space and consider a Kurzweil–Henstock-type integral related to this basis. We prove a version of
Hake’s theorem in terms of a variational measure.
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A classical Hake theorem in the theory of integration (see for example [10, Lemma 3.1, Chapter VIII]) states
that, in contrast to the Lebesgue integral, the Perron integral on a compact interval is equivalent to the
improper Perron integral. As the Perron integral on the real line is known to be equivalent to the Kurzweil–
Henstock integral (see [9]), the same property is true for the latter integral. The general idea of computing the
improper integral as a limit of the integral over increasing families {Aα} of sets can be realized in the multidi-
mensional case in several different ways depending on the type of integral and onwhat family {Aα} is chosen
to generalize the compact intervals of the one-dimensional construction. This gives rise to various types of
the Hake property. A version of this property for certain Kurzweil–Henstock-type integrals inℝn was studied
in [3, 5, 8].

A generalized Hake theorem in terms of the limit of an integral over increasing families of sets for
a Kurzweil–Henstock-type integral on a topological space with respect to an abstract derivation basis was
considered in [15]. Another version of the Hake theorem in terms of so-called variational measures gener-
ated by an indefinite integral was proved in [11, 12] for the Kurzweil–Henstock integral inℝn and in ametric
space, respectively.

In this paper, we obtain a generalization of the latter results to our case of a Kurzweil–Henstock-type
integral on a topological space and show that the conditions for the Hake property in terms of increasing
families of sets as in [15] and in terms of variational measures as in [11, 12] are in fact equivalent.

The ambient set X in this paper is a Hausdorff topological space with an outer regular Borel measure μ
on it. For any set E ∈ X we use the notation int E, E and ∂E for the interior, the closure and the boundary of E,
respectively. The notation intL(E)will mean the interior of E ⊂ L with respect to the topology in L induced by
the topology of the space X.

We use the following version of the general definition of a derivation basis (see [9, 17, 18]): a derivation
basis (or simply a basis)B in (X,M, μ) is a filter base on the product space I × X, where I is a family of closed
subsets of X having finite positive measure μ and called generalized intervals or B-intervals. That is, B is
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a nonempty collection of subsets of I × X so that each β ∈ B is a set of pairs (I, x), where I ∈ I, x ∈ X andB has
the filter base property: 0 ∉ B and for every β1, β2 ∈ B there exists β ∈ B such that β ⊂ β1 ∩ β2. So, each basis
is a directed set with the order given by “reversed” inclusion. We shall refer to the elements β of B as basis
sets. Some particular examples of a derivation basis of topological spaces of various types can be found in
[1, 9, 13, 14, 16]. In this paper, we shall suppose that all pairs (I, x)making up each β ∈ B are such that x ∈ I,
although this is not the case in the general theory (see [6, 9]). We assume that μ(∂I) = 0 for anyB-interval I.
We say that two B-intervals I󸀠 and I󸀠󸀠 are non-overlapping if μ(I󸀠 ∩ I󸀠󸀠) = 0. We call a B-figure a finite union
of non-overlappingB-intervals. We denote by Sub(L) the collection of allB-subfigures of L. We suppose that
the intersection of two overlappingB-intervals is aB-figure, so the intersection of two overlappingB-figures
is also a figure as well as the union of any twoB-figures. For a set E ⊂ X and β ∈ B we write

β(E) := {(I, x) ∈ β : I ⊂ E} and β[E] := {(I, x) ∈ β : x ∈ E}.
We refer to β(E) as basis sets in E. We call {β(E)}β∈B the basis in E using the same notationB for it.

We assume that the basis has the following properties:
∙ The basisB ignores no point, i.e., β[{x}] ̸= 0 for any point x ∈ X and for any β ∈ B.
∙ The basisB has a local character by which wemean that for any family of basis sets {βτ}, βτ ∈ B, and for

any pairwise disjoint sets Eτ there exists β ∈ B such that β[⋃τ Eτ] ⊂ ⋃τ βτ[Eτ].
∙ The basis B is a Vitali basis by which we mean that for any x and for any neighborhood U(x) of x there

exists βx ∈ B such that I ⊂ U(x) for each pair (I, x) ∈ βx.
For a fixed basis set β, a β-partition is a finite collection π of β, where the distinct elements (I󸀠, x󸀠) and

(I󸀠󸀠, x󸀠󸀠) in π have I󸀠 and I󸀠󸀠 non-overlapping. Let L ⊂ X. If π ⊂ β(L), then π is called a β-partition in L. If
π ⊂ β[L], then π is called a β-partition on L. If⋃(I,x)∈π I = L, then π is called β-partition of L. For a set E and
a β-partition π we set π[E] := {(I, x) ∈ π : (I, x) ∈ β[E]}.

We also assume that the basis B has the partitioning property by which we mean: (i) for each finite col-
lection I0, I1, . . . , In of B-intervals with I1, . . . , In ⊂ I0 being non-overlapping there exists a finite number
of B-intervals In+1, . . . , Im such that I0 = ⋃ms=1 Is , all Is being pairwise non-overlapping B-intervals; (ii) for
eachB-interval I and for any β ∈ B there exists a β-partition of I.

We note that condition (ii) of the partitioning property in fact implies the existence of a β-partition for
any B-figure. The union of all B-intervals involved in a β-partition π will be called the B-figure generated
by π.

A typical example of a basis satisfying our condition is the basis formed by usual intervals inℝn. An inter-
esting example of a basis in ametric space formedby closedballs, scallopedballs and their finite intersections
was considered in [12].

The following lemma on an extension of a β-partition is a direct consequence of the partitioning property
of the basis.

Lemma 1. Let π1 be a β-partition in a B-figure L. Then there exists a β-partition π2 in L such that π = π1 ∪ π2
is a β-partition of L.

We call the β-partition π2 of the above lemma a β-complementary to π1 in L. If F is aB-figure generated by the
partition π1, then the B-figure generated by the partition π2 which is β-complementary to π1 in L is called
β-complementary to F in L and is denoted by CβF.

The following lemma is proved in [15].

Lemma 2. For any β ∈ B in a B-figure L and any open set G ⊂ L there exists a basis set β󸀠 ⊂ β in L such that
β󸀠[G] ⊂ β󸀠(G), i.e., I ⊂ G for each (I, x) ∈ β󸀠[G].

Definition 3 (see [9]). LetB be a basis having the partitioning property and let L be aB-figure. A real-valued
function f on L is said to be Kurzweil–Henstock integrable with respect to the basisB (or HB-integrable) on L
with HB-integral A if for every ε > 0 there exists β ∈ B such that for any β-partition π of L we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∑
(I,x)∈π

f(x)μ(I) − A
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
< ε. (1)

We denote the integral value A by (HB) ∫L f.
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We say that a function f is HB-integrable on a set E ⊂ L if the function f ⋅ χE is HB-integrable on L and
∫E f := ∫L f ⋅ χE.

We shall need the following result proved in [15].

Proposition 4. A function which is equal to zero almost everywhere on aB-figure L is HB-integrable on L with
integral value zero.

It follows from this proposition that if we change the value of a function f on a set of measure zero, then it
does not influence the HB-integrability of f and the value of the integral.

We note that if f is HB-integrable on a B-figure L, then it is HB-integrable also on any B-figure J ⊂ L. It
can be easily proved that the B-interval function Φ : J 󳨃→ (HB) ∫J f is additive on the family of all B-figures
and we call it the indefinite HB-integral of f .

An essential part of the classical theory of the Kurzweil–Henstock-type integral is based on the so-called
Kolmogorov–Henstock lemma (see [7], the name is justified by the fact that one version of this lemma was
stated by Kolmogorov in [4]). This lemma can be extended also to the case of our basis in a topological space.

Lemma 5. If a function f is HB-integrable on aB-figure L, withΦ being its indefinite HB-integral, then for every
ε > 0 there exists β ∈ B such that for any β-partition π in L we have

∑
(I,x)∈π
|f(x)μ(I) − Φ(I)| < ε.

Proof. The proof follows the lines of the proof in the classical case of a usual interval basis on ℝn (see [6,
Theorem 3.2.1] and [9, Theorem 1.6.1]).

Take β for which (1) holds for any β-partition π of L with ε replaced by ε
4 . By the additivity of the

HB-integral we can rewrite this inequality in the form
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∑
(I,x)∈π
(f(x)μ(I) − Φ(I))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
<
ε
4
. (2)

Now take any subpartition π1 ⊂ π. Let F1 be a figure generated by π1 and let F2 be the figure β-
complementary to F1 in L. As f is HB-integrable on F2, there exists β1 in F2 such that for any β1-partition π2
of F2 we have 󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑
(I,x)∈π2
(f(x)μ(I) − Φ(I))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
<
ε
4
.

We can assume that β1 ⊂ β(F2). Then π1 ∪ π2 is a β-partition of L and (2) holds. So we have
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∑
(I,x)∈π1
(f(x)μ(I) − Φ(I))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∑

(I,x)∈π1∪π2
(f(x)μ(I) − Φ(I))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∑
(I,x)∈π2
(f(x)μ(I) − Φ(I))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
<
ε
4
+
ε
4
=
ε
2
. (3)

Now we split π into the two subpartitions

π+ = {(I, x) ∈ π : f(x)μ(I) − Φ(I) ≥ 0} and π− = {(I, x) ∈ π : f(x)μ(I) − Φ(I) < 0}

and apply (3), taking π1 = π+ and π1 = π−. Then we get

∑
(I,x)∈π
|(f(x)μ(I) − Φ(I))|

= ∑
(I,x)∈π+|(f(x)μ(I) − Φ(I))| + ∑(I,x)∈π−|(f(x)μ(I) − Φ(I))| < ε2 + ε2 = ε.

Let Φ be an additive set function on I and let E be an arbitrary subset of X. For fixed β ∈ B, we set

Var(E, Φ, β) := sup
π⊂β[E]
∑|Φ(I)|.
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We put also
VΦ(E) = V(E, Φ,B) := inf

β∈B
Var(E, Φ, β).

The extended real-valued set function VΦ( ⋅ ) is called a variational measure generated by Φ, with respect to
the basisB.

By following the proof given in [19] for the interval bases inℝ, it is possible to show that VΦ( ⋅ ) is an outer
measure and a metric outer measure in the case of a metric space X (in the latter case the Vitali property of
the basis is essential).

Lemma 6. Let f be an HB-integrable function on L and let Φ be its indefinite HB-integral. Let f(x) = 0 on some
set E ⊂ L. Then VΦ(E) = 0.

Proof. For an arbitrary ε > 0, we choose β according to Lemma 5. Then for any partition π ⊂ β[E] we get

∑
(I,x)∈π
|Φ(I)| < ε.

Now from the definition of Var(E, Φ, β) and VΦ we get the assertion of the lemma.

We remind that the variational measure generated by an additive set function Φ is absolutely continuous
with respect to the measure μ if VΦ(E) = 0 for any set E with μ(E) = 0.

Theorem 7. Let f be an HB-integrable function on L and let Φ be its indefinite HB-integral. Then VΦ is abso-
lutely continuous with respect to μ.

Proof. Let E ⊂ L be any set of measure zero. By Proposition 4 we can assume that f(x) = 0 if x ∈ E. Now, the
absolute continuity of VΦ follows from the preceding lemma.

Now we prove our versions of the Hake-type theorem.

Theorem 8. Suppose that in a B-interval L there exists a closed set E and an increasing sequence of B-
figures {Fk} such that L \ E = ⋃∞k=1 intLFk, the function f(x) equals 0 on E and is HB-integrable on anyB-figure
F ⊂ L \ E, with HB-integral Φ(F) = ∫F f . Then f is HB-integrable on L if and only if there exists an extension of
the function Φ to Sub(L) such that VΦ(E) = 0. In this case ∫L f = Φ(L).

Proof. Thenecessity follows fromLemma6. Toprove the sufficiency, suppose that the required extensionofΦ
with VΦ(E) = 0 exists. For an arbitrary ε > 0 we choose, according to the definition of a variational measure,
β0 such that for any β0[E]-partition π0 in L we have

∑
(I,x)∈π0
|Φ(I)| < ε

2
. (4)

Consider the increasing sequence ofB-figures {Fk} given by the assumption andput Tk = intL(Fk) \ intL(Fk−1)
(where F0 = 0). Then⋃∞k Tk = L \ E and Tr ∩ Ts = 0 for every r ̸= s.

By the assumption, f is HB-integrable on each Fk and so, by Lemma 5, there exists a basis set βk in Fk
such that 󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑
(I,x)∈πk

f(x)μ(I) − Φ(Sk)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ ∑
(I,x)∈πk
|f(x)μ(I) − Φ(I)| < ε

2k+1
(5)

for any βk-partition πk in Fk, where Sk is theB-figure generated by the partition πk. Using Lemma2, for each k
we define β󸀠k ⊂ βk such that I ⊂ intL Fk for each (I, x) ∈ β

󸀠
k with x ∈ int Fk. Now by the local character ofBwe

determine β in L such that β[Tk] ⊂ β󸀠k[Tk] for every k and β[E] ⊂ β0[E].
Take any β-partition π of L. We can represent π as a union of disjoint subpartitions π[E] and π[Tk] for

a finite number of k. Applying (4) to π0 = π[E] and (5) to each π[Tk], we finally get
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∑
(I,x)∈π

f(x)μ(I) − Φ(L)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ ∑
(I,x)∈π[E]

|Φ(I)| + ∑
k

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∑

(I,x)∈π[Tk]
(f(x)μ(I) − Φ(I))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
ε
2
+
∞
∑
k=1

ε
2k+1
= ε,

which proves that f is HB-integrable and Φ(L) is the value of the HB-integral of f over L.
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Using this theorem, we obtain its generalization stated as follows.

Theorem 9. Suppose that in aB-interval L there exists an increasing sequence ofB-figures {Fk} such that a func-
tion f is HB-integrable on each Fk, on the set E = L \ (⋃∞k=1 intLFk) and on any B-figure F ⊂ L, F ∩ E = 0, with
HB-integral Φ(F) = ∫F f . Then f is HB-integrable on L if and only if there exists an extension of the function Φ
to Sub(L) such that VΦ(E) = 0. In this case ∫L f = Φ(L) + ∫E f .

Proof. Set G = ⋃∞k=1 intL Fk and apply Theorem 8 to the function fχG. We obtain that this function is HB-inte-
grable with integral value Φ(L) if and only if there exists an additive B-interval function Φ for which
VΦ(E) = 0 and Φ(L) = ∫L fχG. Since f = fχG + fχE, the HB-integrability of f on L is equivalent, under the
condition of the theorem, to the HB-integrability of fχG, and moreover ∫L f = Φ(L) + ∫E f .

A particular case of the above result is the case where E = ∂L. In this case, by our assumption μ(∂L) = 0 and
by Theorem 7, we get the following corollary.

Corollary 10. Suppose that in a B-interval L there exists an increasing sequence of B-figures {Fk} such that
a function f is HB-integrable on each Fk, on the set int L = ⋃∞k=1 int Fk and on any B-figure F ⊂ int L, with
HB-integral Φ(F) = ∫F f . Then f is HB-integrable on L if and only if there exists an extension of the function Φ
to Sub(L) such that the variational measure generated by Φ is absolutely continuous with respect to μ. In this
case ∫L f = Φ(L).

In [15], the Hake property theorem was formulated using the so-called β-bordering (here we prefer the term
β-halo as in [2]).

Definition 11. Given aB-figure L, a closed set E ⊂ L and a basis set β in L, we say that aB-figure OE = ⋃kj=1Ij
is a β-halo of E if E ⊂ intL OE and OE is generated by the β[E]-partition {(Ij , xj)}kj=1.

It is easy to check, by using Lemma 2, that for any β ∈ B in the B-figure L and a closed set E ⊂ L there exists
a β-halo OE.

Theorem 12 ([15, Theorem 1]). Under the conditions of Theorem 9, the function f is HB-integrable on L with
integral value A + ∫E f if and only if for any ε > 0 there exists a β ∈ B such that for any β-halo OE the function f
is HB-integrable on a β-complementaryB-figure Cβ(OE) and the following inequality holds:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

Cβ(OE)

f − A
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
< ε.

As a result we get the equivalence of two forms of the Hake-type theorem and we can summarize our results
in the following statement.

Theorem 13. Suppose that in a B-interval L there exist a closed set G and an increasing sequence of B-fig-
ures {Fk} such that L \ E = ⋃ intLFk, the function is HB-integrable on E with integral value A + ∫E f and is
HB-integrable on any B-figure F ⊂ L \ E, with HB-integral Φ(F) = ∫F f . Then the following assertions are
equivalent:
(i) There exists an extension of the function Φ to Sub(L) such that VΦ(E) = 0.
(ii) For any ε > 0 there exists a β ∈ B such that for any β-halo OE the function f is HB-integrable on a β-com-

plementaryB-figure Cβ(OE) and the following inequality holds:

|Φ(Cβ(OE)) − A| < ε.

(iii) The function f is HB-integrable on L with integral value ∫L f = Φ(L) + ∫E f = A + ∫E f .

Note that the equivalence of conditions (i) and (ii) can be established directly. So the results of [12] could
be obtained from the results of [15] as a particular case. By the same argument, [11, Theorem 6.1] can be
deduced from [8, Theorem 1].
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