
Making Large-Scale Systems Observable — Another

Inescapable Step Towards Exascale

Dmitry Nikitenko1, Sergey Zhumatiy1, Pavel Shvets1

c© The Authors 2016. This paper is published with open access at SuperFri.org

The effective mastering of extremely parallel HPC system is impossible without deep under-

standing of all internal processes and behavior of the whole diversity of the components: computing

processors and nodes, memory usage, interconnect, storage, whole software stack, cooling and so

forth in detail. There are numerous visualization tools that provide information on certain compo-

nents and system as a whole, but most of them have severe issues that limit appliance in real life,

thus becoming inacceptable for the future system scales. Predefined monitoring systems and data

sources, lack of dynamic on-the-fly reconfiguration, inflexible visualization and screening options

are among most popular issues. The proposed approach to monitoring data processing resolves

the majority of known problems providing a scalable and flexible solution based on any available

monitoring systems and other data sources. The approach implementation is successfully used in

every-day practice of the largest in Russia supercomputer center of Moscow State University.

Keywords: scalable monitoring visualization, situational screen, supercomputer state visual-

ization, joint monitoring sources, supercomputer dashboard, HPC instrument control board.

Introduction

The effective mastering of large-scale supercomputer systems that includes many aspects

of management and administering is impossible without deep understanding of peculiarities of

system behavior on all levels. Most of existing techniques and tools require extensive tuning

to fit even present system scales and tasks. Taking steps towards Exascale predetermines the

strong need for effective highly-scalable and flexible techniques and algorithms that support

simultaneous use of a number of data sources with diverse output formats with a dynamical

reconfiguration feature as well as means for visualization of obtained data in user-defined com-

binations and a variety of screening cases and templates, including implementation for mobile

devices. At present numerous monitoring systems and visualization tools are available. The most

of them were developed for a certain purpose like network monitoring without taking into the

account extreme parallelism of observed objects and strict scalability requirements.

Zabbix system of monitoring for network services and applications [1] with comprehensive

facilities for visualization of observed object state and history of changes. The developers declare

support for 10 000+ observed objects and more, but with a consequent reduced monitoring

rate to once per several minutes for every attribute, that is hardly acceptable even for present

scales of supercomputers, say nothing of Exascale. Moreover there are issues with simultaneous

visualization of multiple characteristics and lack of HPC-specific component support ”out of the

box” like resource managers support, queuing systems, etc. Some of the issues cannot be fixed

by system Zabbix design.

Nagios network services availability monitoring system [2]. The system is characterized to

have a wider support for different modules due to log evaluation history. Basic Nagios has very

poor tools for visualization, so external tools are used that are usually designed to meet certain

requirements and rarely flexibly configurable. Moreover the declared scalability is even worse

just thousands of objects. There is Nagios-based commercial software with mature visualization

facilities and some HPC-relevant modules, but still as limited in scalability as the original version.

1Research Computing Center M.V. Lomonosov Moscow State University



Moreover, there are many other monitoring systems and data collectors with different vi-

sualization facilities: Ganglia, Collectd, Cacti, OpenNMS, Munin, Monit, NetXMS, etc. All of

them have demerits in flexibility of visualization configuration and difficulties introducing new

data sources.

Among others one should notice Open Lorenz by Lawrence Livermore National Laboratory.

This tool allows every user designing his own web-page with information on latest and forth-

coming events, job queue state, overall system load rate and some other info. Every data type is

available in separate portlet visual element. As for now, custom configuration of portlet combi-

nation and positions is available. The number of available characteristics is rather small and the

majority of those available do not suit most other supercomputers, fitting the specific certain

HPC center workflow. It is very promising that the project is open source and one can expect

further development both in functionality extension introducing new portlets, but there were

not many changes during last 1,5 years [3, 4].

Another interesting project is developed by National Center for Supercomputing Applica-

tions, University of Illinois. It is aimed at visualization data on certain jobs behavior screening

characteristics of network usage, CPU utilization, etc. and is oriented to users, lacking valuable

info on infrastructure or queuing that is important for system administrators. Unfortunately the

project is not publicly available [5]. As we see, the need for efficient HPC dashboard exists and

there are attempts to develop such tools. At present, most approaches lack flexibility, portabil-

ity and poor support for diverse data sources and visualization schemes not to mention critical

scalability issues.

1. Design Principles

In our approach we put emphasis on development of portable, configurable and scalable

algorithms and principles aimed to provide flexible all-round methods of control over supercom-

puter complex of any scale. The analysis of many-year experience of running and supporting

large HPC systems provided us basic principles that the development has to follow.

1. It is imperative to permanently keep track on all components that influence

efficiency of large-scale system output. It is totally wrong to control only compute

nodes, real life imposes much more complicated set of observed objects:

• Computing hardware: nodes, CPUs, memory stack, disks and storage hierarchy, net-

works, etc.

• Infrastructure hardware: this part of hardware is rarely paid enough attention, but it is

much more fault-tolerance critical, than compute hardware. It includes cooling system:

chillers, heat exchangers, air conditioners; piping, pumps; a set of components of the

power system in conjunction with an uninterruptible power supply; fire safety systems

and smoke removal; access control; etc.

• Whole software stack: OS parameters, package and license usage rates and limitations,

etc.

• Dynamics and resource utilization of all user applications.

• Job queuing from different points of view: currently run jobs study and analysis of the

queued jobs structure including issues of simultaneous jobs interference.

• Users. At one hand, all HPC systems are designed for users, and on the other job

queue structure, application peculiarities and as a total an output of supercomputer is

determined by user activity.



2. Support extreme levels of parallelism. One of the distinctive features of the modern

computer world is a rapidly growing degree of parallelism in all elements of architecture.

Even today, the number of processor cores in the largest system of more than 3 million.

Many other options like networks interfaces are in a close range, too. These levels must

be supported as a starting point, keeping in mind forthcoming Exascale concurrency levels

that are expected to be at least thousands times higher. It is related both to scalable

algorithms for data analysis that comes from a huge number of objects, and to the means

of visualization.

3. Minimal induced overhead. Auxiliary tools must not be integrated deeply into a system

and must not be able to influence its functionality. Hence, it is best not to be integrated

with monitoring system and data collector agents on compute nodes.

4. The general and the particular points of view. At one hand system must provide

summary statistics for the whole machines in a space-effective (on a single display) manner,

and on the other providing detailed reports on any and every component just in a few clicks,

including support of wide range of display types: wide display panels, notebook and desktop

displays, tablets and other mobile devices.

5. Flexible configuration of data sources. It means easy introduction of new data collector

of any output format supporting most popular data types and protocols (http, json, csv,

etc.), but not limited to any set of those.

2. Implementation

A variety of monitoring systems and data collectors can serve as data source. The developed

system of data acquisition runs over HTTP request via PUT methods. The data is submitted

in json or csv format. Thus the data transmission can be performed even by a simple script

with a common curl or wget. Most monitoring systems support exporting data via HTTP in

json format. If not, an external program (or perl, ruby, python, etc. script) is used to export

data which allows using HTTP and json. At present we use information that is acquired from:

Collectd monitoring system, epilogue scripts of SLURM resource manager, Octoshell cluster

management system [6], Octotron fault-tolerance system [7]. General dataflow is shown as fig. 1.

Figure 1. LapLang general dataflow



Incorporation of a new data source is done easily, but the thing one should be aware of

is data size. Large-scale systems already include ∼ 104 of nodes, so saving and processing of

the raw data from numerous per-node sensors with high granularity can hang the system. This

scalability issue can be resolved with on-the-fly filtering and aggregation. As a rule, real raw

data is not too important for visualization and must correspond to the resolution limitations or

analysis purposes. After aggregation and filtering the data size is reduced significantly and can

easily be stored for reference and post-processing.

Efficient on-the-fly aggregation and filtration is a challenge, and LapLang (LAPTA [8] Lan-

guage) tool was developed to tackle it. The main difference from other similar tools is ability

of dynamical on-the-fly changing of data processing architecture without restarting. To run a

LapLang program, a daemon service is started. LapLang program consists of named nodes (here-

inafter ll-nodes) for data processing that run simultaneously in low resource conditions). Data

can be passed from one ll-node to another, generating command pipes. It is allowed to pass data

from one ll-node to several, all data flows can be filtered.

Every ll-node processes data portions one by one in FIFO order. Besides data, ll-node can

send and receive commands: to create a new ll-node joining with parent ll-node, to delete

specified ll-node with all its links; set filter on the link of two ll-nodes; delete filter from the

two ll-nodes link; create link between two specified ll-nodes; delete link between two ll-nodes,

get information on all ll-nodes, links and filters (executed only by a head ll-node), finish service

(executed by the head ll-node), sent signal ”end-of-data” instead of data.

At the current stage of implementation, the following ll-nodes functionality is available: avg,

min, max, file (csv read), http csv (csv http read), exec (reads program output), outcsv (writes

csv to file), slice (sends end-of-data periodically or by condition), agr/grid (aggregation types),

sort, join, db save.

Figure 2. LapLang command pipe aggregating and calculating averages

An example of command pipe that gets min, max and avg for some dynamical characteristic

of a job is illustrated in fig. 2. The master ”head” ll-node performs no processing, ”h” ll-

node obtains data from monitoring system and passes it to three children — job avg 778899,

job min 778899, and job max 778899. Only filtered data is passed (bold arrows shown on figure

represent filtering by set of ll-nodes). Every filter performs own aggregation by a specified field of

data. Later, all three aggregators pass data to job join 778899 ll-node, that joins tuples in a new

tuple, containing min, max, and avg for a period of time. Next, job 778899 ll-node saves data

to the database. When job finishes, ll-nodes job avg 778899, job min 778899, job max 778899,

job join 778899 and job 778899 are killed after processing last portions of data.

All the data that passed aggregation is saved to database and is immediately available for

visualization via web-server. The data is transmitted in a json type and can be easily immediately

interpreted by web-client, typically, a web-browser. This allows uniform display methods on

diverse hardware from mobile phones to widescreen panels just with a difference in templates

and preferences. Authorization and authentication allows granting access in different scenarios

for various user groups and use cases.



Web-page design doesn’t require experience in web-programming and even HTML knowl-

edge. Most portlets are already prearranged, so one just has to add a few lines of slim code

into a template. As an example the following code is used to display a set of available queues

as controls, queue load graph and average number of CPU (cores) utilization. The resulting

template is shown as fig. 3.

== slim :header, locals: {link: ’/v1/display/queues’}

== slim :’components/partitions’, locals: {link: ’/v1/display/queues’}

- unless @partition

== @partition=’all’

div[class="queue" style="height:500px" class="tvz_elem" id="rq"

tvz_source="queues_rq"

tvz_display="queues_rq"

tvz_partition="#{@partition}"

tvz_title=t("charts.q_rq")

tvz_labels=t("charts.q_rq_labels")]

div[class="queue" style="height:500px" class="tvz_elem" id="ctbf"

tvz_source="queues_ctbf"

tvz_display="queues_ctbf"

tvz_partition="#{@partition}"

tvz_title=t("charts.q_ctbf")

tvz_labels=t("charts.q_ctbf_labels")]

An example of slim-based code to display a set of available queues as controls, queue load

graph and average number of CPU (cores) utilization

Figure 3. ”Lomonosov” system visualization sample: jobs in a queue and utilized core number

timeline

The next example illustrates the temprature distribution according to the formal model of

the HPC system that includes information on aisles and infrastructure racks location, see fig. 4.

Temperature sensors are mapped to the racks. The can be a total of four sensors located on



each rack: two upper-mounted and two bottom-mounted. The racks with no sensors are actually

racks with compute nodes.

Figure 4. ”Lomonosov” system visualization sample: aisles temperatures

The example shown as fig. 5 illustrates the timeline of warning and errors, revealed by

OctoTron resilience system.

Figure 5. ”Lomonosov” system visualization sample: warnings and failures timeline

The developed system also provides data on user activity. As a result of integration with

user management system administrator can get in a few clicks user, project or organization



details as well as detailed information on any job, including means to reveal categories of user

job runs by resource utilization and many other factors.

3. Conclusions

As a result, the proposed approach allows visualizing diverse data obtained from various

data sources on supercomputer functionality, including user activity, hardware state and fault-

tolerance notification. The prototype that is being evaluated at supercomputer center of Moscow

State University can be deployed at any HPC center with minimal efforts providing a scalable

and flexibly configurable tool both for users and system administrators and managers. The

software is developed as open source and will be available for public commits as soon as all

the planned features and templates are implemented. The variety of supported data collectors,

functionality and visualization templates are definitely to be extended further as the need for

such tools on the road to Exascale will only ascend.

The work is partially funded by the Russian Foundation for Basic Research, grants 13-07-

12206, 2016-07-01199 and by the Ministry of Education and Science of the Russian Federation,

Agreement No. 14.607.21.0006 (unique identifier RFMEFI60714X0006).

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Zabbix — The Enterprise-class Monitoring Solution for Everyone, http://www.zabbix.com

2. Nagios — The Industry Standard in IT Infrastructure Monitoring, http://www.nagios.org

3. Long J.W. Lorenz: Using the Web to Make HPC Easier. 2013. 15.

4. OpenLorenz — Web-Based HPC Dashboard and More, https://github.com/hpc/OpenLorenz

5. Showerman M. Real Time Visualization of Monitoring Data for Large Scale HPC Systems //

2015 IEEE International Conference on Cluster Computing. IEEE, 2015. Pp. 706-709.

6. Dmitry Nikitenko, Vladimir Voevodin, and Sergey Zhumatiy. Octoshell: Large Supercom-

puter Complex Administration System // Russian Supercomputing Days International Con-

ference, Moscow, Russian Federation, 28-29 September, 2015, Proceedings. CEUR Workshop

Proceedings, 2015. Vol. 1482. pp. 69-83.

7. Pavel Shvets, Vladimir Voevodin, Sergey Sobolev, Vadim Voevodin, Konstantin Stefanov,

Sergey Zhumatiy, Artem Daugel-Dauge, Alexander Antonov and Dmitry Nikitenko. An Ap-

proach for Ensuring Reliable Functioning of a Supercomputer Based on a Formal Model.

Parallel Processing and Applied Mathematics. 11th International Conference, PPAM 2015,

Krakow, Poland, September 6-9, 2015. Revised Selected Papers, Part I (2016), vol. 9573 of

LECTURE NOTES IN COMPUTER SCIENCE, Springer International Publishing, pp. 12-

22.



8. Vladimir Voevodin, Anadrey Adinets, Pyotr Bryzgalov, Vadim Voevodin, Sergey Zhumatiy,

Dmitry Nikitenko, and Konstantin Stefanov. Job Digest - approach to analysis of application

dynamic characteristics on supercomputer systems. Numerical Methods and Programming.

2012. Vol. 13. pp. 160-166.

9. Dmitry Nikitenko, Vladimir Voevodin, Sergey Zhumatiy, Konstantin Stefanov, Alexey

Teplov, Pavel Shvets, and Vadim Voevodin. Supercomputer Application Integral Charac-

teristics Analysis for the Whole Queued Job Collection of Large-Scale HPC Systems. Parallel

Computational Technologies (PCT’2016): Proceedings of the International Scientific Confer-

ence. Chelyabinsk, Publishing of the South Ural State University, 2016. pp. 20-30.


