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system, which is accepted for operation by one of the leading Russian aircraft design companies. 
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1. INTRODUCTION 

Onboard embedded systems for aircraft and naval purposes 

are responsible for control of vehicle subsystems and for 

processing of control tasks such as navigation, collision 

avoidance, etc. Instead of having federated architecture with 

dedicated hardware and software for each logical subsystem, 

the current trend for onboard systems is to run the software of 

multiple subsystems on a unified platform with standard API 

and modular hardware, which constitute integrated modular 

architecture (Wind River / IEEE, 2008). Such integrated 

modular onboard embedded systems (IMOES) include from 

several to dozens of modules, each usually containing a 

multicore CPU. Modules are connected by a network, 

typically a switched one with support for virtual channels 

(Schaadt, 2007). Workload for such system consists of a set 

of periodic tasks with data dependencies. A dependency 

between tasks corresponds to a message to be transferred 

between the sender task and the receiver task. In this paper 

we consider partitioned task sets in which tasks are grouped 

into subsets (partitions), each of which represents an 

application. 

As IMOES are inherently multiprocessor systems with 

unified interface for application tasks, a problem of workload 

scheduling arises, which includes distribution of partitions to 

CPU cores and construction of partitions execution 

schedules. IMOES of a modern aircraft runs several hundred 

tasks with complex data dependencies, so the scheduling 

problem needs tool support. 

In this paper we present a tool system for scheduling of 

computations in IMOES and describe the scheduling 

 

 

algorithms implemented in this system.  

Results of tool and algorithms evaluation are also presented, 

both for synthetic tasks sets and a task set from a real-world 

IMOES. 

2. STRUCTURE OF THE SCHEDULE 

A two-level scheduling scheme is used in IMOES. On the top 

level, partitions execution is organized via static schedule. 

For each partition, there is a set of execution windows, i.e. 

time intervals in which tasks from the partition are executed. 

We consider systems in which every partition is statically 

bound to a specific CPU core, thus all execution windows for 

the partition belong to that core. Partitions binding to CPU 

cores, as well as the set of execution windows, are to be 

constructed in advance, prior to the target system startup. 

Within an execution window, tasks from the corresponding 

partition are scheduled dynamically according to their fixed 

priorities. This constitutes the bottom level of the scheduling 

scheme. A task which depends on data from another task with 

the same frequency (from the same or from another partition) 

can start only after data arrival. This is a synchronous 

dependency between tasks. A data dependency between tasks 

with different frequencies does not force the receiver task to 

wait for input data (asynchronous dependency). 

There is a set of constraints on the partitions execution 

windows defined by the target system (IMOES) specifics. 

For instance, there can be lower and upper limits on the 

execution window duration. 

3. SCHEDULING PROBLEM 

The scheduling problem for a given IMOES and workload 

(set of periodic tasks grouped into partitions) breaks down 

into following subproblems: 

This work is partially supported by the Russian Foundation for Basic 
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1) distribute the workload, i.e. bind the partitions to CPU 

cores; 

2) construct the schedule of partitions execution windows. 

There are following constraints on partitions binding:  

 binding for some partitions can be restricted to a subset 

of CPU cores, e.g. cores of a specific module; 

 total load for a core must not exceed a given limit, which 

can be defined individually for each core; 

 each partition must be bound do a single CPU core. 

In course of IMOES evolution, the set of partitions can be 

extended. So the algorithms for workload distribution must 

support incremental mode in which previously constructed 

binding for partitions (all or some of them) cannot be altered. 

CPU core load by a partition is calculated as a sum  
i

ii cf , 

where if  is the task frequency and ic  is its worst case 

execution time (WCET). For every task, its WCET is a part 

of input data for the scheduling problem; for different types 

of CPU cores used in the target system, WCET for the same 

task may be different. 

We consider workload distribution as an optimization 

problem with network load as the objective function to be 

minimized. The network load is calculated as the total size of 

messages transferred between modules during a single 

iteration of the schedule, the duration of which is estimated as 

the least common multiple of the tasks’ periods. Messages 

between tasks running on the same module are transferred 

through the module’s local memory and do not contribute to 

the network load. 

Constraints on the schedule of partitions execution windows 

are as follows. For each core, the execution windows must 

not overlap; exactly one partition can be assigned to an 

execution window; for each core, only partitions bound to 

this core can be assigned to execution windows for this core; 

there are lower and upper limits on the execution window 

duration, common for all cores; the set of execution windows 

for all cores of the same module must be the same. 

The exact set of constraints on workload distribution and on 

the schedule of partitions execution windows is determined 

by the specifics of the target IMOES and may vary from 

system to system. The constraints described above 

correspond to an IMOES of a modern Russian aircraft and 

can be considered typical for an onboard computer system. 

As the tasks within execution windows are scheduled 

dynamically, the schedule of windows must guarantee that all 

of the tasks’ executions are performed within deadlines under 

control of a given dynamic scheduler. Single execution of a 

periodic task is called a job. If T is the task period (reciprocal 

of its frequency), i is the number of task iteration (numbering 

starts from 1), then the deadline interval for the job is 

 TiTi  ;)1( . 

In terms of jobs, the schedule of windows must guarantee that 

all jobs of all tasks are executed within corresponding 

deadline intervals. This can be checked via construction of a 

job execution sequence taking into account tasks’ priorities 

and data dependencies, and assuming that each job’s 

execution duration (not counting preemption and waiting for 

input data) equals to task’s WCET. 

4. OVERVIEW OF EXISTING SOLUTIONS 

Since the scheduling problem for IMOES is divided into two 

sufficiently different subproblems (workload distribution and 

execution windows schedule construction), we will consider 

existing solutions for these subproblems separately. 

The workload distribution problem for IMOES resembles the 

multiple container packing problem (MCPP). The latter is the 

problem of choosing several disjoint subsets of n items to be 

packed into distinct containers, such that the total value of the 

selected items is maximized, without exceeding the capacity 

of each of the containers (Raidl, 1999). In our case partitions 

correspond to items, CPU cores correspond to containers. 

Item’s volume is the partition’s contribution to the CPU core 

utilization; item’s cost is the part of traffic which becomes 

“internal” for the module when the item is placed in the 

container (i.e. the partition is assigned to a CPU core). 

However the problem statement differs from traditional 

MCPP (with fixed volumes and costs of objects). First, the 

volume of an item depends on the choice of the container, as 

a task can have different WCETs for different types of CPU 

cores. Second, the value of an item depends on the 

container’s contents, i.e. the set of other items in the 

container. 

Due to this difference in the problem statement, existing 

algorithms for solving of MCPP cannot be used “as is”. 

Following approaches applicable to MCPP were taken as the 

base for our workload distribution algorithms: 

 greedy heuristic search – a common way to quickly find 

an acceptable solution when the constraints are not too 

strict; see (Crainic et al, 2012) for example of its 

application to MCPP; 

 branch-and-bound method – looks for the exact optimal 

solution, working time and scalability greatly depends on 

the quality of search space pruning; applied to MCPP in 

(Fukunaga et al, 2007); 

 genetic algorithms – chosen for presumably good 

scalability (opposite to branch-and-bound) and ability to 

avoid dead ends during the search (opposite to greedy 

heuristics); applied to MCPP in (Raidl, 1999). 

These basic approaches were modified to match the workload 

distribution problem stated above; see Section 5 for 

description of the resulting algorithms. 

As IMOES, including ARINC 653-based avionics systems, 

are becoming more widely adopted, there is an increasing 

amount of research on the techniques for schedule 

construction for such systems. However in most of the 

published approaches either the workload is analysed in 



 

 

     

 

insufficient level of detail, or some important constraints are 

not taken in account. 

In (Goltz, H.-J., 2009) the workload is represented as a set of 

partitions, and individual tasks within partitions are not 

considered. Each partition has a period (however in real 

systems, some partitions include tasks with different periods); 

data dependencies between partitions are not taken in 

account. The scheduling problem in this paper is stated as a 

constraint satisfaction problem, and solved using techniques 

of constraint logic programming. 

The level of detail for workload representation in (Al Sheikh, 

2010) is similar, with no individual tasks taken in account, 

but the data dependencies between partitions are accounted 

for. This makes the proposed approach more realistic, yet it 

remains too coarse-grain for our problem, as in fact a specific 

task, not a whole partition, has to wait for input data arrival. 

So the mixed integer linear programming approach proposed 

by the authors is hardly applicable in our case. 

In (Easwaran et al, 2009) the workload is analysed in more 

detail. Individual tasks are described in terms of priority, 

period, execution time, deadline interval and release jitter. 

The authors propose to express data dependencies in terms of 

deadline intervals of dependent tasks. This makes the 

proposed approach incomplete, as there is a distinct problem 

of deriving the deadline intervals from the dependency graph 

without making the results too constraining for the main 

scheduling problem. In the paper, only partitions with 

aliquant periods are considered; this is not the case for 

complex IMOES with partitions corresponding to different 

logical subsystems. More recent papers by the same research 

group (see http://repository.upenn.edu/) do not solve this 

issue, focusing on scheduling of mixed-criticality task sets on 

systems with multiple modes of operation. 

The author of the thesis (Craveiro, 2013) proposes a 

complicated approach to multi-level scheduling of workload 

in partitioned systems. The two-level scheme used in IMOES 

is a particular case of such problem. The proposed scheduling 

framework describes the set of target system’s resources; 

scheduling is performed with respect to tasks’ demand for the 

resources. The scheduling algorithms are flexible enough to 

support concurrent execution of tasks from the same partition 

on several CPU cores. The approach proposed in the thesis 

does not take in account data dependencies between tasks, 

and such dependencies cannot be expressed via shared 

resources within the described framework. The reason is that 

this framework does not allow specification of resource 

access sequence, e.g. “the receiver can access the resource 

message only after the sender”. 

The MASIW toolset (Buzdalov et al, 2014) developed by the 

Institute for System Programming of the Russian Academy of 

Sciences includes a scheduling subsystem. The problems of 

workload distribution and scheduling of partitions are both 

solved by the algorithms implemented in MASIW. However 

the problem of partitions scheduling is stated in a very 

specific way, requiring any task to be started exactly in the 

beginning of its period (maybe with some constant offset), 

and to use at least one CPU tick before being (possibly) 

preempted by a different task. For non-aliquant period of 

tasks from different partitions, this requirement is too 

constraining, leading to local peaks of switching between 

very small windows. The requirement to have the same grid 

of execution windows for all cores of the same module makes 

the situation even worse. Also, the requirement to start the 

tasks in precisely defined time instants is not well compatible 

with priority-based dynamic scheduling used in many real 

IMOES, including those based on ARINC 653 standard. 

Finally, data dependencies between tasks are not taken in 

account by MASIW partitions scheduler. 

Several commercial tools for IMOES development also 

include scheduling subsystems, with no detailed description 

of the implemented algorithms. 

The conclusion from the overview is that to the date there is 

no published approach to scheduling of IMOES workload 

which solves the problem stated in Section 3 and takes in 

account the real-world constraints listed in that section. 

5. PROPOSED SCHEDULING ALGORITHMS 

5.1 Algorithms for workload distribution 

As mentioned in the previous section, three approaches were 

selected as a base for solving the workload distribution 

subproblem: greedy heuristics, branch-and-bound, and 

genetic algorithms. All algorithms presented in this 

subsection minimize a common objective function, which is 

the total size of messages transferred between modules 

through the duration of the scheduling interval. Intensity of 

communication between a pair of partitions is estimated in 

the same way. 

The greedy algorithm attempts to minimize the objective 

function by assigning most intensely interacting 

(communicating) partitions to CPU cores of same modules, 

while it is still possible without exceeding the limits on core 

load. The algorithm operates according to the following 

scheme: 

1) choose an unassigned partition P which has most intense 

interaction with already assigned partitions (if no partitions 

are assigned, choose the partition which most intense total 

interaction with all other partitions); 

2) find the module M, assigning P to which maximizes 

interaction between P and partitions previously assigned to 

cores of the same module; 

3) choose a CPU core in M, to which P can be assigned 

without exceeding the limit on core load; 

if such core exists in M, assign P to this core and go to step 6; 

// in case there is no such core in M 

4) try to redistribute partitions previously assigned to M 

between cores of M in order to offload one of the cores so 

that P could be assigned to it;  

if redistribution is successful, assign P to this core and go to 

step 6; 



 

 

     

 

// in case M is not suitable for P 

5) exclude M from the list of modules to which P can be 

bound; if the list is empty, stop (unsuccessful completion); 

else go to step 6; 

6) if all partitions are assigned to CPU cores, then stop, else 

go to step 1. 

Computational complexity of this algorithm mainly depends 

on the numbers of partitions (NP), modules (NM), and cores 

(NC). The order of the algorithm’s complexity is  

O(NP  (NP  NM + NC)). 

This greedy algorithm (with limited enumeration on step 4) 

can quickly find a solution of the workload distribution 

problem. Its drawback is that for highly loaded systems 

and/or systems with high number of partitions and cores, it 

often produces significantly suboptimal results, or even fails 

to find correct solution. 

To resolve this issue, we apply the branch-and-bound method 

using the greedy approach for pruning of the search space. 

The branch-and-bound based algorithm incrementally 

constructs the workload distribution by implicitly traversing a 

tree of partial solutions. Root of the tree is the empty partial 

solution. An arc from a vertex to another vertex corresponds 

to assignment of a partition to a CPU core. Arcs from a 

vertex of Nth level correspond to assignment of Nth partition 

(in some fixed ordering) to different (as a total, all) CPU 

cores. Kth arc from a vertex corresponds to assignment of a 

partition to the Kth core (in a continuous numbering of cores). 

The tree is traversed depth-first. Search space pruning is 

performed as follows. If going through some arc leads to an 

incorrect partial solution (i.e. one that violates the constraints 

on CPU core load or contains non-allowed binding), the 

subtree starting from vertex for that partial solution is not 

traversed. If going through some arc leads to a partial 

solution with value of objective function greater than for best 

of the previously found correct and complete solutions 

(leaves of the tree), the subtree starting from vertex for that 

partial solution is not traversed. 

Efficiency of this scheme substantially depends on the quality 

of search space pruning, which in turn depends on the order 

of tree traversal. In worst case, the branch-and-bound scheme 

is almost as poorly efficient as complete enumeration. 

To improve the efficiency of search space pruning, we sort 

the partitions according to the criterion similar to the one 

used in the greedy algorithm. The list of partitions is 

composed so that the Nth partition in the list is one which has 

most intense interaction with (N-1) partitions already put in 

the list. The original greedy criterion assumes that assignment 

of those (N-1) partitions to cores is known, so this criterion 

cannot be used “as is”. 

The improved branch-and-bound scheme also uses a 

modified criterion of choosing an arc from the current vertex 

(the level of which defines the partition): the arcs (i.e. cores) 

are ordered by decrease of the amount of current partition’s 

interaction with partitions bound to a corresponding core. 

This criterion is also inherited from the greedy algorithm 

described above. 

Rough estimation of complexity for this algorithm is  

)( pN

cNO , which is expectable for an exact algorithm. 

The weak point of the branch-and-bound based algorithm is 

its scalability (see Section 7 for details). With total number of 

partitions and cores over several dozens, its working time for 

a modern CPU exceeds 105 seconds (more than one day), so 

in current state it is applicable to moderate scale systems 

only. For really complex IMOES, with 50 to 100 total 

number of partitions and cores, better scalability is needed. 

To cope with the scalability issue, we use evolutionary 

algorithms (EA). In order to apply the evolutionary scheme to 

a specific problem, following properties must be defined 

(Sivanandam, 2010): fitness function; solution encoding; 

selection, crossover and mutation operators; stopping 

condition. 

The fitness function in our EA is the same as the objective 

function of the workload distribution problem (see 

Section 3). Solution is encoded as an array in which the 

position of an element corresponds to the number of partition, 

and the value of an element corresponds to the core to which 

the partition is bound. This encoding was selected to simplify 

the crossover and mutation operators. Selection is performed 

according to tournament scheme, as it has lesser tendency to 

prematurely converge than the proportional and the roulette-

wheel schemes, which intensely prefer solutions with good 

value of objective function and discard other solutions. 

Uniform crossover is used, as it allows the population to 

quickly expand into previously unexplored areas of the 

search space, in comparison to single point crossover. To 

avoid frequent generation of invalid solutions (with 

overloaded CPU cores), we use a combination of simple 

mutation (some random partition migrates to another core) 

and exchange mutation (if simple mutation overloads the 

target core, then some other partition migrates in opposite 

direction). The algorithm stops after a specified number of 

iterations. General scheme of an evolutionary algorithm, as 

well as description of particular types of operators (uniform 

crossover, etc) selected for our workload distribution 

algorithm, can also be found in (Sivanandam, 2010). 

For better performance on multicore computers, the island 

model was implemented (Whitley, 1999) which splits the 

population into several groups, performs a given number of 

“conventional” EA iterations within each group as a separate 

population, then migrates some solutions between groups; 

these two steps are performed in a loop, until the total 

number of “conventional” iterations reaches the given limit. 

Order of complexity for the evolutionary algorithm is  

)( 222

iterpopP NNNO  , where Npop is the population size, Niter 

is the number of iterations. 

All workload distribution algorithms described above can be 

used in incremental mode, in which there is a set of partitions 



 

 

     

 

initially assigned to CPU cores, and their reassignment is 

prohibited. 

5.2 Algorithm for scheduling the execution of partitions 

This algorithm constructs a static schedule of partitions 

execution windows for each CPU core of the target IMOES. 

It takes the task set description and workload distribution as 

input. 

The general idea of the algorithm is to construct a temporary 

multi-processor static schedule of jobs execution (jobs 

schedule) for the duration of the scheduling interval and, in 

parallel, determine the bounds of the execution windows. The 

jobs schedule is constructed concurrently for all processor 

cores of the target system. For each i-th core (in a continuous 

numbering of all processor cores), a “current time” counter ti 

is maintained. Each ti starts from 0 and can only grow 

through the algorithm’s execution. Jobs for the i-th core can 

only be scheduled at ti or later. 

A job is considered ready for scheduling on the i-th core, if 

its partition is assigned to this core, ti belongs to the job’s 

deadline interval, and all synchronous input messages for this 

job have arrived. On each iteration the algorithm processes 

the core with minimum ti. For this core the algorithm chooses 

a ready job with maximum priority (among ready jobs for 

this core); if the current execution window is shorter than 

minimum duration, only jobs from the current partition are 

considered. The chosen job is scheduled on the current core. 

If the job belongs to a different partition than the previous job 

scheduled on the same core, a new window is opened (the 

current window is closed), and the job starts in it. On all other 

cores of the same module, new windows are also opened (and 

current ones are closed). After a job is scheduled, arrival 

times for all its output messages are calculated, taking in 

account the delays for data transfer between modules (start 

deadlines of the dependent jobs are corrected accordingly); ti 

is shifted to the job’s finish time, and the algorithm starts a 

new iteration. If no job is chosen and scheduled on an 

iteration (this means that no jobs are ready for the i-th core), 

the algorithm shifts ti to the minimum time at which a ready 

job will be available at any core, plus one minimum time 

increment if that job is from another core. The jobs that failed 

to be scheduled within their deadline intervals are moved to 

the set of unscheduled jobs. If the current window reaches the 

maximum allowed duration, a new window is opened on 

every core of the module, possibly for the same partition as 

the previous window. 

This fixed priority scheme of dynamic task scheduling inside 

the windows is identical to one used in the target class of 

ARINC 653 based IMOES. So we assume that if the jobs 

schedule constructed by the algorithm is complete (includes 

all jobs, with durations equal to WCET) and correct (all jobs 

meet their deadlines), then the scheduler on the target system 

will also schedule the jobs within their deadlines. In the tool 

system (see Section 6) this assumption is verified by 

simulation of the dynamic scheduler operation. 

6. SCHEDULING TOOL SYSTEM 

The scheduling algorithms presented in this paper were 

implemented in a tool system for scheduling of computations 

in IMOES. The target platform for the tool system is 

ARINC 653 based operating system developed in Russia for 

use in modular onboard avionics systems for airplanes and 

helicopters. 

The tool system has following essential features: import of 

input data (task set and target system description) from the 

project database; automatic distribution of workload to 

modules and CPU cores, with support for manual correction; 

automatic construction of partition execution schedules (sets 

of windows), with support for manual correction; 

visualization of the task set structure as a graph; hierarchical 

visualization of workload distribution to modules and CPU 

cores; visualization of the schedule as a time diagram; 

generation of customizable reports on input data and on 

results of tool application; export of output data as a part of 

target OS configuration. The tool system supports iterative 

workflow, in which the next version of the target system 

configuration (task set, workload distribution, etc) is based on 

the previous version, and the scheduling algorithms are used 

in incremental mode. The tool system is written in C++ and 

uses QT 5.x GUI library. The system runs both on Windows 

(XP and later) and Linux. 

The tool system is accepted for operation by one of the 

leading Russian aircraft design companies and integrated into 

the toolchain for onboard systems development. 

7. EVALUATION OF ALGORITHMS AND THE TOOL 

7.1 Scalability of the workload distribution algorithms 

As mentioned in Section 5, the major drawback of both the 

greedy algorithm and the branch-and-bound based algorithm 

is their poor scalability to large systems (with over several 

dozens of partitions and CPU cores), while they are 

applicable to systems of lesser scale. Experiments were 

performed on synthetic input data to explore scalability of all 

three algorithms (including the evolutionary one). Data sets 

were randomly generated, with expected CPU core load of 

approximately 50%, synchronous dependencies between 

tasks from different partitions, and an average of 2 partitions 

per core. The number of iterations for the evolutionary 

algorithm was set to 1000 (100 iterations between migrations; 

10 migrations). Population size was set to 1000. The number 

of cores on PC for EA execution (and thus, islands) was 8. 

Figure 1 shows the relative deviation of the objective 

function on the solution from the estimated optimum, which 

is the function’s value on the best solution found by 100 

sequential runs of the evolutionary algorithm on the same 

data. Diamond-shaped markers corresponds to the solution 

found by the greedy algorithm; round markers corresponds to 

the worst solution found by the EA during those 100 runs. If 

a point is present on the graph for the EA but missing on the 

graph for the greedy algorithm, then for this data set the 

greedy algorithm failed to find a solution. 



 

 

     

 

 

Figure 1 

Figure 2 shows the growth of algorithms execution time with 

the scale of target system. Execution time for the greedy 

algorithm is not shown, as it finishes within one or several 

seconds. 

 

Figure 2 

The two figures demonstrate that the EA is significantly more 

scalable than two other algorithms, which are applicable only 

to moderate scale systems (e.g. the system from 

subsection 7.2). 

7.2 Evaluation on data for a real target system 

The tool system was tested on several data sets for real 

onboard systems. The task set for one of the target systems 

included over 10 partitions with a total of approximately 200 

periodic tasks with synchronous dependencies. Frequencies 

(and thus periods) of the tasks were generally not aliquant, 

e.g. there were tasks with frequencies of 12.5 Hz and 10 Hz. 

Highest frequency of a task was 100 Hz, and the lowest 

frequency was 1 Hz. The target system contained 3 modules 

with several processor cores on each module. 

All three workload scheduling algorithms found good 

solutions; greedy and evolutionary algorithms produced 

nearly optimal solutions in approximately one second, and 

branch-and-bound found the optimum for reasonable time 

(less than one minute on a Core i5 CPU). The partitions 

scheduling algorithm, running for several seconds, 

successfully constructed a correct schedule of partition 

execution windows. 

8. CONCLUSIONS AND FUTURE WORK 

Future work on the scheduling algorithms and the tool system 

includes: improving scalability of the branch-and-bound 

based algorithm for workload distribution, to enable finding 

optimum solutions for larger scale systems; development of 

formal methods to prove that the constructed schedule of 

partitions execution guarantees correct (i.e. within deadlines) 

operation of the target system with task execution times less 

than WCET; integration of the tool system with an external 

IMOES simulation tool (which is under development) to 

provide independent verification of constructed schedules. 
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