

Tool System and Algorithms for Scheduling of Computations in

Integrated Modular Onboard Embedded Systems

Vasily V. Balashov*, Valery A. Kostenko*, Vadim A. Balakhanov*, Sergei A. Tutelian*

* Department of Computational Mathematics and Cybernetics,

Lomonosov Moscow State University,

Leninskie Gory, MSU, 1, Bldg. 52, Room 764, Moscow, Russia,

(e-mail: {hbd, kost, baldis}@lvk.cs.msu.su, sergei.tutelian@yandex.ru)

Abstract: Scheduling of computations is an essential step in the process of real-time systems design. In

this paper, the scheduling problem is addressed for integrated modular onboard embedded systems

(IMOES). This class of systems uses a mix of static and dynamic scheduling. A family of algorithms for

workload distribution and schedule construction for IMOES is presented, along with the results of their

experimental evaluation on synthetic and real-world data. The algorithms are implemented in a tool

system, which is accepted for operation by one of the leading Russian aircraft design companies.

Keywords: Real-Time Multiprocessor Systems; Microprocessor Based Control Systems;

Scheduling Algorithms; Design Tools and Application Software.

1. INTRODUCTION

Onboard embedded systems for aircraft and naval purposes

are responsible for control of vehicle subsystems and for

processing of control tasks such as navigation, collision

avoidance, etc. Instead of having federated architecture with

dedicated hardware and software for each logical subsystem,

the current trend for onboard systems is to run the software of

multiple subsystems on a unified platform with standard API

and modular hardware, which constitute integrated modular

architecture (Wind River / IEEE, 2008). Such integrated

modular onboard embedded systems (IMOES) include from

several to dozens of modules, each usually containing a

multicore CPU. Modules are connected by a network,

typically a switched one with support for virtual channels

(Schaadt, 2007). Workload for such system consists of a set

of periodic tasks with data dependencies. A dependency

between tasks corresponds to a message to be transferred

between the sender task and the receiver task. In this paper

we consider partitioned task sets in which tasks are grouped

into subsets (partitions), each of which represents an

application.

As IMOES are inherently multiprocessor systems with

unified interface for application tasks, a problem of workload

scheduling arises, which includes distribution of partitions to

CPU cores and construction of partitions execution

schedules. IMOES of a modern aircraft runs several hundred

tasks with complex data dependencies, so the scheduling

problem needs tool support.

In this paper we present a tool system for scheduling of

computations in IMOES and describe the scheduling

algorithms implemented in this system.

Results of tool and algorithms evaluation are also presented,

both for synthetic tasks sets and a task set from a real-world

IMOES.

2. STRUCTURE OF THE SCHEDULE

A two-level scheduling scheme is used in IMOES. On the top

level, partitions execution is organized via static schedule.

For each partition, there is a set of execution windows, i.e.

time intervals in which tasks from the partition are executed.

We consider systems in which every partition is statically

bound to a specific CPU core, thus all execution windows for

the partition belong to that core. Partitions binding to CPU

cores, as well as the set of execution windows, are to be

constructed in advance, prior to the target system startup.

Within an execution window, tasks from the corresponding

partition are scheduled dynamically according to their fixed

priorities. This constitutes the bottom level of the scheduling

scheme. A task which depends on data from another task with

the same frequency (from the same or from another partition)

can start only after data arrival. This is a synchronous

dependency between tasks. A data dependency between tasks

with different frequencies does not force the receiver task to

wait for input data (asynchronous dependency).

There is a set of constraints on the partitions execution

windows defined by the target system (IMOES) specifics.

For instance, there can be lower and upper limits on the

execution window duration.

3. SCHEDULING PROBLEM

The scheduling problem for a given IMOES and workload

(set of periodic tasks grouped into partitions) breaks down

into following subproblems:

This work is partially supported by the Russian Foundation for Basic

Research under grant №16-07-01237.

1) distribute the workload, i.e. bind the partitions to CPU

cores;

2) construct the schedule of partitions execution windows.

There are following constraints on partitions binding:

 binding for some partitions can be restricted to a subset

of CPU cores, e.g. cores of a specific module;

 total load for a core must not exceed a given limit, which

can be defined individually for each core;

 each partition must be bound do a single CPU core.

In course of IMOES evolution, the set of partitions can be

extended. So the algorithms for workload distribution must

support incremental mode in which previously constructed

binding for partitions (all or some of them) cannot be altered.

CPU core load by a partition is calculated as a sum
i

ii cf ,

where if is the task frequency and ic is its worst case

execution time (WCET). For every task, its WCET is a part

of input data for the scheduling problem; for different types

of CPU cores used in the target system, WCET for the same

task may be different.

We consider workload distribution as an optimization

problem with network load as the objective function to be

minimized. The network load is calculated as the total size of

messages transferred between modules during a single

iteration of the schedule, the duration of which is estimated as

the least common multiple of the tasks’ periods. Messages

between tasks running on the same module are transferred

through the module’s local memory and do not contribute to

the network load.

Constraints on the schedule of partitions execution windows

are as follows. For each core, the execution windows must

not overlap; exactly one partition can be assigned to an

execution window; for each core, only partitions bound to

this core can be assigned to execution windows for this core;

there are lower and upper limits on the execution window

duration, common for all cores; the set of execution windows

for all cores of the same module must be the same.

The exact set of constraints on workload distribution and on

the schedule of partitions execution windows is determined

by the specifics of the target IMOES and may vary from

system to system. The constraints described above

correspond to an IMOES of a modern Russian aircraft and

can be considered typical for an onboard computer system.

As the tasks within execution windows are scheduled

dynamically, the schedule of windows must guarantee that all

of the tasks’ executions are performed within deadlines under

control of a given dynamic scheduler. Single execution of a

periodic task is called a job. If T is the task period (reciprocal

of its frequency), i is the number of task iteration (numbering

starts from 1), then the deadline interval for the job is

 TiTi ;)1(.

In terms of jobs, the schedule of windows must guarantee that

all jobs of all tasks are executed within corresponding

deadline intervals. This can be checked via construction of a

job execution sequence taking into account tasks’ priorities

and data dependencies, and assuming that each job’s

execution duration (not counting preemption and waiting for

input data) equals to task’s WCET.

4. OVERVIEW OF EXISTING SOLUTIONS

Since the scheduling problem for IMOES is divided into two

sufficiently different subproblems (workload distribution and

execution windows schedule construction), we will consider

existing solutions for these subproblems separately.

The workload distribution problem for IMOES resembles the

multiple container packing problem (MCPP). The latter is the

problem of choosing several disjoint subsets of n items to be

packed into distinct containers, such that the total value of the

selected items is maximized, without exceeding the capacity

of each of the containers (Raidl, 1999). In our case partitions

correspond to items, CPU cores correspond to containers.

Item’s volume is the partition’s contribution to the CPU core

utilization; item’s cost is the part of traffic which becomes

“internal” for the module when the item is placed in the

container (i.e. the partition is assigned to a CPU core).

However the problem statement differs from traditional

MCPP (with fixed volumes and costs of objects). First, the

volume of an item depends on the choice of the container, as

a task can have different WCETs for different types of CPU

cores. Second, the value of an item depends on the

container’s contents, i.e. the set of other items in the

container.

Due to this difference in the problem statement, existing

algorithms for solving of MCPP cannot be used “as is”.

Following approaches applicable to MCPP were taken as the

base for our workload distribution algorithms:

 greedy heuristic search – a common way to quickly find

an acceptable solution when the constraints are not too

strict; see (Crainic et al, 2012) for example of its

application to MCPP;

 branch-and-bound method – looks for the exact optimal

solution, working time and scalability greatly depends on

the quality of search space pruning; applied to MCPP in

(Fukunaga et al, 2007);

 genetic algorithms – chosen for presumably good

scalability (opposite to branch-and-bound) and ability to

avoid dead ends during the search (opposite to greedy

heuristics); applied to MCPP in (Raidl, 1999).

These basic approaches were modified to match the workload

distribution problem stated above; see Section 5 for

description of the resulting algorithms.

As IMOES, including ARINC 653-based avionics systems,

are becoming more widely adopted, there is an increasing

amount of research on the techniques for schedule

construction for such systems. However in most of the

published approaches either the workload is analysed in

insufficient level of detail, or some important constraints are

not taken in account.

In (Goltz, H.-J., 2009) the workload is represented as a set of

partitions, and individual tasks within partitions are not

considered. Each partition has a period (however in real

systems, some partitions include tasks with different periods);

data dependencies between partitions are not taken in

account. The scheduling problem in this paper is stated as a

constraint satisfaction problem, and solved using techniques

of constraint logic programming.

The level of detail for workload representation in (Al Sheikh,

2010) is similar, with no individual tasks taken in account,

but the data dependencies between partitions are accounted

for. This makes the proposed approach more realistic, yet it

remains too coarse-grain for our problem, as in fact a specific

task, not a whole partition, has to wait for input data arrival.

So the mixed integer linear programming approach proposed

by the authors is hardly applicable in our case.

In (Easwaran et al, 2009) the workload is analysed in more

detail. Individual tasks are described in terms of priority,

period, execution time, deadline interval and release jitter.

The authors propose to express data dependencies in terms of

deadline intervals of dependent tasks. This makes the

proposed approach incomplete, as there is a distinct problem

of deriving the deadline intervals from the dependency graph

without making the results too constraining for the main

scheduling problem. In the paper, only partitions with

aliquant periods are considered; this is not the case for

complex IMOES with partitions corresponding to different

logical subsystems. More recent papers by the same research

group (see http://repository.upenn.edu/) do not solve this

issue, focusing on scheduling of mixed-criticality task sets on

systems with multiple modes of operation.

The author of the thesis (Craveiro, 2013) proposes a

complicated approach to multi-level scheduling of workload

in partitioned systems. The two-level scheme used in IMOES

is a particular case of such problem. The proposed scheduling

framework describes the set of target system’s resources;

scheduling is performed with respect to tasks’ demand for the

resources. The scheduling algorithms are flexible enough to

support concurrent execution of tasks from the same partition

on several CPU cores. The approach proposed in the thesis

does not take in account data dependencies between tasks,

and such dependencies cannot be expressed via shared

resources within the described framework. The reason is that

this framework does not allow specification of resource

access sequence, e.g. “the receiver can access the resource

message only after the sender”.

The MASIW toolset (Buzdalov et al, 2014) developed by the

Institute for System Programming of the Russian Academy of

Sciences includes a scheduling subsystem. The problems of

workload distribution and scheduling of partitions are both

solved by the algorithms implemented in MASIW. However

the problem of partitions scheduling is stated in a very

specific way, requiring any task to be started exactly in the

beginning of its period (maybe with some constant offset),

and to use at least one CPU tick before being (possibly)

preempted by a different task. For non-aliquant period of

tasks from different partitions, this requirement is too

constraining, leading to local peaks of switching between

very small windows. The requirement to have the same grid

of execution windows for all cores of the same module makes

the situation even worse. Also, the requirement to start the

tasks in precisely defined time instants is not well compatible

with priority-based dynamic scheduling used in many real

IMOES, including those based on ARINC 653 standard.

Finally, data dependencies between tasks are not taken in

account by MASIW partitions scheduler.

Several commercial tools for IMOES development also

include scheduling subsystems, with no detailed description

of the implemented algorithms.

The conclusion from the overview is that to the date there is

no published approach to scheduling of IMOES workload

which solves the problem stated in Section 3 and takes in

account the real-world constraints listed in that section.

5. PROPOSED SCHEDULING ALGORITHMS

5.1 Algorithms for workload distribution

As mentioned in the previous section, three approaches were

selected as a base for solving the workload distribution

subproblem: greedy heuristics, branch-and-bound, and

genetic algorithms. All algorithms presented in this

subsection minimize a common objective function, which is

the total size of messages transferred between modules

through the duration of the scheduling interval. Intensity of

communication between a pair of partitions is estimated in

the same way.

The greedy algorithm attempts to minimize the objective

function by assigning most intensely interacting

(communicating) partitions to CPU cores of same modules,

while it is still possible without exceeding the limits on core

load. The algorithm operates according to the following

scheme:

1) choose an unassigned partition P which has most intense

interaction with already assigned partitions (if no partitions

are assigned, choose the partition which most intense total

interaction with all other partitions);

2) find the module M, assigning P to which maximizes

interaction between P and partitions previously assigned to

cores of the same module;

3) choose a CPU core in M, to which P can be assigned

without exceeding the limit on core load;

if such core exists in M, assign P to this core and go to step 6;

// in case there is no such core in M

4) try to redistribute partitions previously assigned to M

between cores of M in order to offload one of the cores so

that P could be assigned to it;

if redistribution is successful, assign P to this core and go to

step 6;

// in case M is not suitable for P

5) exclude M from the list of modules to which P can be

bound; if the list is empty, stop (unsuccessful completion);

else go to step 6;

6) if all partitions are assigned to CPU cores, then stop, else

go to step 1.

Computational complexity of this algorithm mainly depends

on the numbers of partitions (NP), modules (NM), and cores

(NC). The order of the algorithm’s complexity is

O(NP (NP NM + NC)).

This greedy algorithm (with limited enumeration on step 4)

can quickly find a solution of the workload distribution

problem. Its drawback is that for highly loaded systems

and/or systems with high number of partitions and cores, it

often produces significantly suboptimal results, or even fails

to find correct solution.

To resolve this issue, we apply the branch-and-bound method

using the greedy approach for pruning of the search space.

The branch-and-bound based algorithm incrementally

constructs the workload distribution by implicitly traversing a

tree of partial solutions. Root of the tree is the empty partial

solution. An arc from a vertex to another vertex corresponds

to assignment of a partition to a CPU core. Arcs from a

vertex of Nth level correspond to assignment of Nth partition

(in some fixed ordering) to different (as a total, all) CPU

cores. Kth arc from a vertex corresponds to assignment of a

partition to the Kth core (in a continuous numbering of cores).

The tree is traversed depth-first. Search space pruning is

performed as follows. If going through some arc leads to an

incorrect partial solution (i.e. one that violates the constraints

on CPU core load or contains non-allowed binding), the

subtree starting from vertex for that partial solution is not

traversed. If going through some arc leads to a partial

solution with value of objective function greater than for best

of the previously found correct and complete solutions

(leaves of the tree), the subtree starting from vertex for that

partial solution is not traversed.

Efficiency of this scheme substantially depends on the quality

of search space pruning, which in turn depends on the order

of tree traversal. In worst case, the branch-and-bound scheme

is almost as poorly efficient as complete enumeration.

To improve the efficiency of search space pruning, we sort

the partitions according to the criterion similar to the one

used in the greedy algorithm. The list of partitions is

composed so that the Nth partition in the list is one which has

most intense interaction with (N-1) partitions already put in

the list. The original greedy criterion assumes that assignment

of those (N-1) partitions to cores is known, so this criterion

cannot be used “as is”.

The improved branch-and-bound scheme also uses a

modified criterion of choosing an arc from the current vertex

(the level of which defines the partition): the arcs (i.e. cores)

are ordered by decrease of the amount of current partition’s

interaction with partitions bound to a corresponding core.

This criterion is also inherited from the greedy algorithm

described above.

Rough estimation of complexity for this algorithm is

)(pN

cNO , which is expectable for an exact algorithm.

The weak point of the branch-and-bound based algorithm is

its scalability (see Section 7 for details). With total number of

partitions and cores over several dozens, its working time for

a modern CPU exceeds 105 seconds (more than one day), so

in current state it is applicable to moderate scale systems

only. For really complex IMOES, with 50 to 100 total

number of partitions and cores, better scalability is needed.

To cope with the scalability issue, we use evolutionary

algorithms (EA). In order to apply the evolutionary scheme to

a specific problem, following properties must be defined

(Sivanandam, 2010): fitness function; solution encoding;

selection, crossover and mutation operators; stopping

condition.

The fitness function in our EA is the same as the objective

function of the workload distribution problem (see

Section 3). Solution is encoded as an array in which the

position of an element corresponds to the number of partition,

and the value of an element corresponds to the core to which

the partition is bound. This encoding was selected to simplify

the crossover and mutation operators. Selection is performed

according to tournament scheme, as it has lesser tendency to

prematurely converge than the proportional and the roulette-

wheel schemes, which intensely prefer solutions with good

value of objective function and discard other solutions.

Uniform crossover is used, as it allows the population to

quickly expand into previously unexplored areas of the

search space, in comparison to single point crossover. To

avoid frequent generation of invalid solutions (with

overloaded CPU cores), we use a combination of simple

mutation (some random partition migrates to another core)

and exchange mutation (if simple mutation overloads the

target core, then some other partition migrates in opposite

direction). The algorithm stops after a specified number of

iterations. General scheme of an evolutionary algorithm, as

well as description of particular types of operators (uniform

crossover, etc) selected for our workload distribution

algorithm, can also be found in (Sivanandam, 2010).

For better performance on multicore computers, the island

model was implemented (Whitley, 1999) which splits the

population into several groups, performs a given number of

“conventional” EA iterations within each group as a separate

population, then migrates some solutions between groups;

these two steps are performed in a loop, until the total

number of “conventional” iterations reaches the given limit.

Order of complexity for the evolutionary algorithm is

)(222

iterpopP NNNO , where Npop is the population size, Niter

is the number of iterations.

All workload distribution algorithms described above can be

used in incremental mode, in which there is a set of partitions

initially assigned to CPU cores, and their reassignment is

prohibited.

5.2 Algorithm for scheduling the execution of partitions

This algorithm constructs a static schedule of partitions

execution windows for each CPU core of the target IMOES.

It takes the task set description and workload distribution as

input.

The general idea of the algorithm is to construct a temporary

multi-processor static schedule of jobs execution (jobs

schedule) for the duration of the scheduling interval and, in

parallel, determine the bounds of the execution windows. The

jobs schedule is constructed concurrently for all processor

cores of the target system. For each i-th core (in a continuous

numbering of all processor cores), a “current time” counter ti

is maintained. Each ti starts from 0 and can only grow

through the algorithm’s execution. Jobs for the i-th core can

only be scheduled at ti or later.

A job is considered ready for scheduling on the i-th core, if

its partition is assigned to this core, ti belongs to the job’s

deadline interval, and all synchronous input messages for this

job have arrived. On each iteration the algorithm processes

the core with minimum ti. For this core the algorithm chooses

a ready job with maximum priority (among ready jobs for

this core); if the current execution window is shorter than

minimum duration, only jobs from the current partition are

considered. The chosen job is scheduled on the current core.

If the job belongs to a different partition than the previous job

scheduled on the same core, a new window is opened (the

current window is closed), and the job starts in it. On all other

cores of the same module, new windows are also opened (and

current ones are closed). After a job is scheduled, arrival

times for all its output messages are calculated, taking in

account the delays for data transfer between modules (start

deadlines of the dependent jobs are corrected accordingly); ti

is shifted to the job’s finish time, and the algorithm starts a

new iteration. If no job is chosen and scheduled on an

iteration (this means that no jobs are ready for the i-th core),

the algorithm shifts ti to the minimum time at which a ready

job will be available at any core, plus one minimum time

increment if that job is from another core. The jobs that failed

to be scheduled within their deadline intervals are moved to

the set of unscheduled jobs. If the current window reaches the

maximum allowed duration, a new window is opened on

every core of the module, possibly for the same partition as

the previous window.

This fixed priority scheme of dynamic task scheduling inside

the windows is identical to one used in the target class of

ARINC 653 based IMOES. So we assume that if the jobs

schedule constructed by the algorithm is complete (includes

all jobs, with durations equal to WCET) and correct (all jobs

meet their deadlines), then the scheduler on the target system

will also schedule the jobs within their deadlines. In the tool

system (see Section 6) this assumption is verified by

simulation of the dynamic scheduler operation.

6. SCHEDULING TOOL SYSTEM

The scheduling algorithms presented in this paper were

implemented in a tool system for scheduling of computations

in IMOES. The target platform for the tool system is

ARINC 653 based operating system developed in Russia for

use in modular onboard avionics systems for airplanes and

helicopters.

The tool system has following essential features: import of

input data (task set and target system description) from the

project database; automatic distribution of workload to

modules and CPU cores, with support for manual correction;

automatic construction of partition execution schedules (sets

of windows), with support for manual correction;

visualization of the task set structure as a graph; hierarchical

visualization of workload distribution to modules and CPU

cores; visualization of the schedule as a time diagram;

generation of customizable reports on input data and on

results of tool application; export of output data as a part of

target OS configuration. The tool system supports iterative

workflow, in which the next version of the target system

configuration (task set, workload distribution, etc) is based on

the previous version, and the scheduling algorithms are used

in incremental mode. The tool system is written in C++ and

uses QT 5.x GUI library. The system runs both on Windows

(XP and later) and Linux.

The tool system is accepted for operation by one of the

leading Russian aircraft design companies and integrated into

the toolchain for onboard systems development.

7. EVALUATION OF ALGORITHMS AND THE TOOL

7.1 Scalability of the workload distribution algorithms

As mentioned in Section 5, the major drawback of both the

greedy algorithm and the branch-and-bound based algorithm

is their poor scalability to large systems (with over several

dozens of partitions and CPU cores), while they are

applicable to systems of lesser scale. Experiments were

performed on synthetic input data to explore scalability of all

three algorithms (including the evolutionary one). Data sets

were randomly generated, with expected CPU core load of

approximately 50%, synchronous dependencies between

tasks from different partitions, and an average of 2 partitions

per core. The number of iterations for the evolutionary

algorithm was set to 1000 (100 iterations between migrations;

10 migrations). Population size was set to 1000. The number

of cores on PC for EA execution (and thus, islands) was 8.

Figure 1 shows the relative deviation of the objective

function on the solution from the estimated optimum, which

is the function’s value on the best solution found by 100

sequential runs of the evolutionary algorithm on the same

data. Diamond-shaped markers corresponds to the solution

found by the greedy algorithm; round markers corresponds to

the worst solution found by the EA during those 100 runs. If

a point is present on the graph for the EA but missing on the

graph for the greedy algorithm, then for this data set the

greedy algorithm failed to find a solution.

Figure 1

Figure 2 shows the growth of algorithms execution time with

the scale of target system. Execution time for the greedy

algorithm is not shown, as it finishes within one or several

seconds.

Figure 2

The two figures demonstrate that the EA is significantly more

scalable than two other algorithms, which are applicable only

to moderate scale systems (e.g. the system from

subsection 7.2).

7.2 Evaluation on data for a real target system

The tool system was tested on several data sets for real

onboard systems. The task set for one of the target systems

included over 10 partitions with a total of approximately 200

periodic tasks with synchronous dependencies. Frequencies

(and thus periods) of the tasks were generally not aliquant,

e.g. there were tasks with frequencies of 12.5 Hz and 10 Hz.

Highest frequency of a task was 100 Hz, and the lowest

frequency was 1 Hz. The target system contained 3 modules

with several processor cores on each module.

All three workload scheduling algorithms found good

solutions; greedy and evolutionary algorithms produced

nearly optimal solutions in approximately one second, and

branch-and-bound found the optimum for reasonable time

(less than one minute on a Core i5 CPU). The partitions

scheduling algorithm, running for several seconds,

successfully constructed a correct schedule of partition

execution windows.

8. CONCLUSIONS AND FUTURE WORK

Future work on the scheduling algorithms and the tool system

includes: improving scalability of the branch-and-bound

based algorithm for workload distribution, to enable finding

optimum solutions for larger scale systems; development of

formal methods to prove that the constructed schedule of

partitions execution guarantees correct (i.e. within deadlines)

operation of the target system with task execution times less

than WCET; integration of the tool system with an external

IMOES simulation tool (which is under development) to

provide independent verification of constructed schedules.

REFERENCES

Al Sheikh, A., Brun, O., and Hladik, P.E. (2010). Partition

scheduling on an IMA platform with strict periodicity

and communication delays. Proc. 18th International

Conference on Real-Time and Network Systems,

179–188.

Buzdalov, D.V., Zelenov, S.V., Kornykhin, E.V.,

Petrenko, A.K., Strakh, A.V., Ugnenko, A.A., and

Khoroshilov, A.V. (2014). Tools for System Design of

Integrated Modular Avionics. Proc. Institute for System

Programming, 26 (1), 201–230.

Crainic, T.G., Perboli, G., and Tadei, R. (2012). Recent

advances in multi-dimensional packing problems.

In New Technologies – Trends, Innovations and

Research, 91–110. Intech, Croatia.

Craveiro, J.P. (2013). Real-Time Scheduling in Multicore

Time- and Space-Partitioned Architectures. Ph.D. thesis,

University of Lisbon.

Easwaran, A., Lee, I., Sokolsky, O., and Vestal, S. (2009).

A Compositional Framework for Avionics (ARINC 653)

Systems. Proc. IEEE Real-Time Computing Systems and

Applications, 371–380.

Fukunaga, A.S., Korf, R.E. (2007). Bin Completion

Algorithms for Multicontainer Packing, Knapsack, and

Covering Problems. Journal of Artificial Intelligence

Research, 28, 393–429.

Goltz, H.-J., Pieth, N. (2009). A Tool for Generating Partition

Schedules of Multiprocessor Systems. Proc. 23rd

Workshop on (Constraint) Logic Programming,

167–176.

Raidl, G.R. (1999). The multiple container packing problem:

a genetic algorithm approach with weighted codings.

ACM SIGAPP Applied Computing Review, 7 (2), 22–31.

Schaadt, D. (2007). AFDX/ARINC 664 Concept, Design,

Implementation and Beyond. SYSGO AG White Paper.

Sivanandam, S.N., Deepa, S.N. (2010). Introduction to

Genetic Algorithms. Springer Berlin Heidelberg,

Germany.

Whitley, D., Rana, S., Heckendorn, R.B. (1999). The Island

Model Genetic Algorithm: On Separability, Population

Size and Convergence. Journal of Computing and

Information Technology, 7, 33–47.

Wind River / IEEE (2008). ARINC 653 – An Avionics

Standard for Safe, Partitioned Systems. Wind River

Systems / IEEE Seminar.

[http://www.computersociety.it/wp-

content/uploads/2008/08/ieee-cc-arinc653_final.pdf]

