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Abstract. Many glacier-related hazards are well typified and
studied, but some events stand out from conventional clas-
sifications. The Kolka-Karmadon catastrophic event on 20
September 2002 in North Ossetia, North Caucasus, Russia is
used as an example of a complex glacier failure exhibiting
characteristics such as high mobility, long runout, ultrara-
pid movement and multiphase behaviour. We consider ter-
minology protocol for glacier hazard classification and then,
using the Kolka-Karmadon event and several other examples
from around the world, we propose a new term for this family
of events. Catastrophic glacier multi-phase mass movement
(CGMM) is described and further illustrated by eight ma-
jor events from Russia, Georgia, Peru, Chile, and Canada.
CGMM have a combination of specific features: extraor-
dinary velocities and long-distance runout despite low path
angle; progressive fluidisation along travel path; supereleva-
tion and run-up of the moving mass, air blast wave in the
avalanche flow phase; entrainment of available materials in
its path, and the repeated nature of the event. CGMM events
may affect areas remote from glaciers which were previously
considered as safe.

1 Introduction

Glacial hazards are highly dangerous and hardly predictable
natural hazards, characteristic for many mountain regions
(Evans and Clague, 1994). They pose threat to population,
infrastructure, human activities and economic development.
The earliest known evidence of devastating glacial hazards in
the Alps dates back to the medieval ages (Richard and Gay,
2003). In the Cordillera Blanca range, Peru, glacier hazards
have killed more than 30 000 people since 1702, when the
town of Huaraz was inundated by a glacial flood. Increased
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use of alpine regions in recent decades intensifies the inher-
ent conflict between glacial hazards and human activity. It
is expected that the frequency, and in some cases the magni-
tude, of glacial hazards will increase due to global warming
and consequent glacier retreat (Reynolds, 2003). As a result,
glacial hazards may affect areas that were previously consid-
ered safe or have no historical record of this hazard.

Many glacier-related hazards such as lake outbursts (and
consequent floods and debris flows), ice avalanches, glacier
surges are well studied and typified. But some events stand
out from conventional classifications (Kääb et al., 2005;
Richardson and Reynolds, 2000; Reynolds, 2003) as excep-
tions or special cases. For example, the Kolka-Karmadon
catastrophic event on 20 September 2002 in North Osse-
tia, North Caucasus, Russia has been described by vari-
ous authors as a rock avalanche (Reynolds, 2003), a debris
flow (Kotlyakov et al., 2004), and a glacier surge (Dessinov,
2004). Different attributions of this event show an absence
of common opinion which could lead to mistakes in mod-
elling and in evaluation of risk-prone zones. Such “uncon-
ventional” glacier hazards are rare but potentially devastating
phenomena. Only a few such events have been documented
in the mountain ranges of the world. Usually beginning as
rock/ice avalanches, or slides, they transform into ultra-high-
speed flows (more than 30 m/s) which may destroy areas at a
distance of some tens of kilometers downstream from glacier
limits. These flows often turn into a typical debris flow and
then, in turn, into a debris flood which can travel many kilo-
meters away from its source. Unpredictable and highly dan-
gerous, these events may lead to numerous casualties and
substantial destruction of downslope populated areas. Such
phenomena call for special scientific attention and a specific
research approach.
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Our research is focussed on the analysis of these “uncon-
ventional” glacial hazards. We determine their distinctive
features, attempt to explain these features and examine them
in detail, using in particular the most recent and most stud-
ied case of the 2002 Kolka-Karmadon catastrophic event in
Russia.

2 Terminology

As noted above, the Kolka-Karmadon catastrophic event
has had no agreed definitive name to characterise the phe-
nomenon. In fact, it was a complex type of hazard, which
had features of both an ice/rock avalanche and a debris flow.
The same naming problem also applies to the Huascaran dis-
asters (Peru) in 1962 and 1970, where the terms “avalanche”
and “debris flow” have both been used. In this paper, we try
to select a suitable term to characterise these events in accor-
dance with established terminology.

Glacier hazards are usually divided into mass movements,
glacier floods and length/volume change (Reynolds, 2003;
Kääb et al., 2005). Undoubtedly the studied phenomena fall
into the class of glacier mass movements. Mass movement
is usually defined as a rapid movement of debris, rocks or
ice material from its source detachment area downslope. In
the glacier environment mass movements include ice and
rock avalanches, debris flows (Reynolds, 2003), rockslides
and lahars (K̈aäb et al., 2005). Both the Kolka-Karmadon
and Huascaran events were defined by some authors as rock
avalanches, i.e., a high velocity transport of a fractured rock
mass (Reynolds, 2003). What in fact was observed during
these events was a high-velocity transport of fractured ice
and rock mass, water and some surficial material (debris and
snow) which transformed to an ultra-high speed flow due to
fluidization. The Kolka-Karmadon event is difficult to assign
to existing sediment-water flow or landslide classifications,
and actually does not correspond to classical rock avalanches
in various aspects (Huggel et al., 2005).

We propose to use a new termcatastrophic glacier
(glacial) multi-phase mass movement (CGMM)for this fam-
ily of events. The most important stage of a CGMM is an
ultra-high speed flow. This flow is an intermediate stage
between an avalanche and a debris flow, and has features
of both of these phenomena. So another termavalanche
flow may be suitable to emphasise its specific parameters.
Avalanche flowis an extremely high velocity transport of
fractured ice/rock mass/surficial material, characterised by
an air blast wave, a flow-like turbulent movement, superel-
evations and run-ups of the moving mass, a low path angle
and long-distance runout.

Features of CGMM events and typical cases of avalanche
flows are highlighted below in some examples.

3 Case studies

3.1 Kolka-Karmadon catastrophic event

The Kolka-Karmadon glacier disaster (20 September 2002,
North Ossetia, Russia) is the largest documented CGMM in
the world by volume of transported material. The origin of
the event, its mechanism and consequences have been widely
discussed (e.g., Haeberli et al., 2004; Huggel et al., 2005;
Kääb et al., 2003; Kotlyakov et al., 2004; Petrakov et al.,
2004; Popovnin et al., 2003; Tutubalina et al., 2005; Mu-
raviev, 2004; Berger, 2007).

To analyse the origin of this event and characterise its fea-
tures several methods were used. In 2001–2006 the authors
organized twelve field trips to the disaster area. Field map-
ping and surveying, glaciological and geomorphological de-
scriptions of the area were made. Beside the field research,
we have analysed maps, previous studies of Kolka glacier
and a large number of remotely-sensed images (taken from
helicopters, by Landsat ETM+, Terra ASTER, IRS LISS/Pan
QuickBird satellite sensors, and by a digital camera onboard
the International Space Station). Seismic records as well as
eye-witness accounts were used for velocity calculations and
the assessment of pre-catastrophe conditions.

This catastrophe was triggered, with a time lag, by
a series of ice-rock falls/collapses from northern face of
Mt. Dzhimarai-khokh onto the rear part of Kolka Glacier.
The collapses started two months before the event took place,
and their total volume was about 18 M m3 (most of this fell
before 20 September 2000). Some rockfalls continued after
the event. We hypothesise that tension in the glacier body in-
creased due to surface overload. A satellite image taken 8.5
hours before the disaster shows instability within the glacier
body: in the upper part of the Kolka snout, some ice dis-
placement was observed, but glacier terminus was still sta-
tionary (Tutubalina et al., 2005). The main part (80 M m3)

of Kolka glacier detached (Fig. 1a) and travelled up to 19 km
downstream with an extraordinary average velocity of 50 m/s
(Drobyshev, 2006; Huggel et al., 2005; Petrakov et al., 2004).

It is hard to define how exactly the start of the glacier de-
tachment occurred. Reduction of friction at the base of the
glacier body and the reduction in the mass strength of the
glacier due to increase of tension and displacement of ice
layers may have led to sliding. Some authors hypothesize
that the trigger was an under-glacier volcanic gas explosion
(Muraviev, 2004) or that the event was a culmination of a
fast gas-induced glacier movement (Berger, 2007). What we
can conclude with certainty is that just before the event the
glacier was unstable and apparently ready for catastrophic
movement.

In its first stage the movement was of a slide-type with rel-
atively small water content. The ice/rock mass polished the
moraine surfaces down the valley and created boulder pave-
ments. Rocks on the moraine slopes were covered by stria-
tions up to 3 mm deep, and the directions of these recorded
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Fig. 1. (A) Kolka glacier cirque after the disaster (photo by
A. P. Polkvoi). 1 – origination area of initial collapses, 2 – for-
mer Kolka glacier, 3 – areas with striations, 4 – Maili glacier snout.
(B) striations on moraine deposits (photo by D. A. Petrakov).

the direction of the flow (Fig. 1a and b) typical for glacier
erosion. A few kilometers downstream the striations disap-
pear, and we conclude that the ice mass fluidized due to com-
plete disintegration and basal melting.

During the second and main stage of the movement, the
ice/water/rock mass moved from one valley side to the other
within a belt 400–500 m wide. The moving mass left asym-
metric superelevations up to 250 m in height (Fig. 2a). A

Fig. 2. (A) travel path of the Kolka-Karmadon glacier avalanche
flow (photo by I. V. Galushkin).(B) Karmadon depression filled by
debris-covered ice, two years after the disaster (photo by S. S. Cher-
nomorets).

layer of wind-borne debris, 10–20 m wide and 3–10 cm
thick, was deposited on vegetated slopes above the super-
elevations. Debris under 10 cm in size were prevalent with
single pieces reaching 30–40 cm. On the right side of the val-
ley trees were felled by the air blast wave and also covered
by wind-borne dust and debris. According to calculations
of Drobyshev (2006), based on geodetic measurements of
superelevation geometry, the maximum velocity of the flow
reached 70 m/s, the average was about 50 m/s, while Huggel
et al. (2005) reported average velocity as 90 m/s.

120 M m3 of ice and debris were transported to the Kar-
madon depression 19 km downstream from the source. A
narrow gorge of the Skalistyi Range (Fig. 2b) stopped most
of the mass movement. Bodies of birds were found smashed
into the steep south face of the mountain range immediately
after the disaster, indicating an air blast wave. Run-up of
about 20 m high (above the surface of the moving mass) was
also observed at the same place, so the halt of the flow was
sudden and forced.
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Table 1. Typical cases of multi-phased glacial hazards (Casassa and Marangunic, 1993; Evans, 2004; Evans et al., 1989; Evans et al., 2007;
Mokievsky-Zubok, 1978; Morales, 1966; Plafker and Ericksen, 1978; Popovnin et al., 2003; Statkowsky, 1877; Stoeber, 1903).

Event Phases Year Volume estimate, Height of Length of H/L Path angle, Deaths Velocity,
M m3 path H, km path L, km degrees m/s

Devastation GS-AF-DF 1975 13–30 1.22 7 0.17 10 4 30
Devdorak GS-AF 1832 15 0.95 7.5 0.13 7 42
Huascaran IRA-AF-DF 1962 13 3.60 15.52 0.23 13 4000 50
Huascaran IRA-AF-DF 1970 60 3.85

6
(total)

15.6
175
(total)

0.25 14 18 000 97

Kolka-Karmadon GS-AF 1902 75–110 1.7 14 0.12 7 32 22–33
Kolka-Karmadon IRA-GS-AF-DF 2002 140 2

2.5
(total)

19
36
(total)

0.11
0.07

6 4 125 50

Pandemonium RA-DF 1959 7 2 8.6 0.23 13 100 (max.)
Parraguirre RS-DF 1987 15 3.4 57 0.06 3.5 37 19

Abbreviations: AF – avalanche flow, DF – debris flow, GS – glacier slide, IRA – ice-rock avalanche, RA – rock avalanche, RS – rockslide.

Despite a low travel path angle (6◦) the ice/debris/water
mass had enough energy for further movement. As a result,
during the third movement stage, a distal debris flow trav-
elled for an additional 17 km downstream. The total area di-
rectly affected by the disaster was 12.7 km2, and at least 125
people perished.

Similar catastrophes have been observed in the Genaldon
River valley prior to 2002. In 1902 the CGMM from Kolka
glacier stopped 6 km upstream of the Skalistyi Range (Stoe-
ber, 1903). There is also some evidence of similar pre-1902
events, recorded both in local legends and surficial deposits
in the valley.

The 2002 Kolka-Karmadon event had many distinctive
features. Briefly, they are as follows; 1) multi-phase move-
ment with transformation from a glacier slide to a debris
flow; 2) extremely high velocities and long runout despite
a low travel path angle, 3) fluidization and superelevation of
the moving mass along the travel path, 4) a dramatic air blast
wave, and 5) a complete detachment of the main part of the
glacier from its bed. Therefore, this event cannot be defined
as either an avalanche or a debris flow but has features of
both. We define it as a CGMM event in which the main stage
flow during the mass movement may be termed an avalanche
flow.

3.2 Other events

We analyzed a number of previously documented glacial
hazard events with similar features to the Kolka-Karmadon
and which we consider to be CGMM events. Summary statis-
tics of these events, together with the 1902 and 2002 Kolka-
Karmadon events are presented in Table 1. Below we give a
brief characterisation of the six additional events.

3.2.1 Devastation Glacier slide (British Columbia, Canada,
22 July 1975)

This event resulted from the displacement of volcanic rocks
below the glacier bed, and a part of the glacier snout with vol-
ume about 2.5 M m3 moved downstream. During travel the
slide transformed into a debris flow highly saturated with wa-
ter and ice. Due to entrainment its volume grew significantly,
and superelevations reached 100 m. No volcanic or seismic
activities were recorded on that day, so the slide was trig-
gered mainly due to the action of glacier melt water (Evans,
2004; Mokievsky-Zubok, 1978).

3.2.2 Devdorak Glacier (Caucasus, Georgia and Russia)

The surging-type Devdorak Glacier was probably the most
famous glacier of the Russian Empire in the 19th century.
The well known “Kazbek blockages” stopped transportation
between Russia and Georgia, which at the time had just
joined the Russian Empire. In 1832, for example, the Terek
River was blocked for 8 h, the ice blockage was up to 100 m
in height. “Kazbek blockages” were triggered by the advance
of the Devdorak glacier along a narrow gorge (Statkowsky,
1877). The valley of the Amilishka River, which flows from
the Devdorak glacier, was blocked by glacier ice. After
this, on a number of occasions, hydrodynamic impact led to
glacier snout detachment, its slide down valley and transfor-
mation to an avalanche flow due to fluidisation. Not all of
these glacier surges resulted in a blockage, e.g. this did not
happen during surges in 1843, 1855 (Statkowsky, 1877).
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3.2.3 1962 and 1970 Huascaran events (Cordillera Blanca,
Peru)

The catastrophic glacial events of 1962 and especially of
1970 in the Cordillera Blanca of Peru were the worst glacier
disasters of the twentieth century. The towns of Ranrahirca
and Yungay were buried by thick layers of mud and debris in
1962 and 1970 respectively. A total of 25 000 people were
killed. In 1962, as well as in 1970, the event started as an
ice-rock avalanche (IRA) from the western face of the north
summit of Mt. Huascaran (6654 m a.s.l.). In 1970 the disas-
ter was triggered by a M7.9 earthquake, while the nature of
the trigger in 1962 is not clear. Below the steep wall (65◦)
the ice-rock avalanche fell onto Glacier 511. The avalanche
travelled down with accelerating velocity due to low friction,
its material pulverized and fluidised. Below the glacier the
avalanche transformed into an avalanche flow and entrained
moraine debris into a catastrophic mass movement (Evans
et al., 2007) (Fig. 3). Velocities of the avalanche flow were
extremely high. Run-ups and superelevations were observed.
As a result, in 1970 part of the flow jumped over the Cerro del
Aira ridge (230 m height) and overwhelmed the town of Yun-
gay. In Huashao settlement, a unique phenomenon ofstone
hailstormwas observed. Some rocks were over 1 tonne in
weight, 50 people were killed. Blocks of rock flew for up to
4 km, and so their velocity in the starting point should be no
less then 850 km/h (Stadelmann, 1983). A typical air blast
wave was observed before the village of Matacoto, where
trees were thrown down and a 40 m run-up was registered
(Plafker and Ericksen, 1978). A distal debris flow along Rı́o
Santa travelled all the way to Pacific Ocean (Evans et al.,
2007).

3.2.4 1959 Pandemonium Creek rock avalanche (Coast
Mountains, British Columbia, Canada)

The 1959 Pandemonium Creek event was one of fastest
events documented. Its extremely high velocity may be a re-
sult of travelling over glacier surface (Evans et al., 1989). A
rock avalanche 4–6 M m3 in volume collapsed onto a glacier
and travelled down valley to the main channel of the Pan-
demonium Creek. The run-up in Pandemonium Creek val-
ley reached 335 m, and superelevations reached up to 70 m
high further downstream as the mass transformed into a de-
bris flow. It reached velocities of 80–100 m/s just before the
run-up, and these fell to 20–40 m/s on exiting the Pandemo-
nium Creek valley.

3.2.5 1987 Parraguirre event (Andes, Chile)

The Parraguirre event began as a rockslide with a volume
of 6 M m3 and the process quickly transformed into a rock
avalanche (Casassa and Marangunic, 1993; Hauser, 2002).
Within 5 km from its source the avalanche developed into
a great debris flow due to incorporation of glacier ice and

Fig. 3. Huascaran glacier disaster of 31 May 1970: typical case of
a glacial multi-phase mass movement. Photo by W. Welsch (from
Patzelt, 1983).

segregated ice near the source area, and snow along the travel
path. The debris flow claimed at least 37 lives during its
rapid movement down the Rı́o Colorado. Flow frontal waves
were 20–30 m high. The exceptionally abundant snowfalls
during the winter of 1987 and a high November snowmelt
rate were listed as possible triggers, as well as progressive
failure due to an earthquake in 1985 as a possible secondary
factor (Casassa and Marangunic, 1993; Hauser, 2002).

In summary, each of the described events has unique fea-
tures, but all of them are multi-phase movements resulting
from a series of transformations in movement mode during
travel. Extremely high velocities and long distance runout
are typically manifested throughavalanche flowcharacter of
mass movements.

4 Discussion

4.1 Stages of multi-phase mass movements

We have tried to determine the main phases of CGMM
events. Results are presented in Table 1 and in Fig. 4. Differ-
ent colors in Fig. 4 signify different events.

The initiation mechanisms of CGMM events may be very
different. Usually the initial failure begins as an avalanche
or a slide (Fig. 4). Their causes vary, but undoubtedly re-
quire a poor mechanical stability of rocks or ice. A seis-
mic trigger may act immediately (e.g., Huascaran in 1970)
as well as, possibly, with delay of months (Kolka-Karmadon
in 2002) or years (Parraguirre in 1987). Melt or rain water,
and snow overload, as well as permafrost melt or hanging
glaciers shrinkage may further amplify slope instability.

For preparation of the main body displacement (a first
main stage of a CGMM) a combination of factors is usu-
ally necessary. Initial failure may be the first step of the
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Fig. 4. Main stages of catastrophic glacial multi-phase mass movements (CGMM).

Abbreviations: AF – avalanche flow, DF – debris flow, GS – glacier slide, IRA – ice-rock avalanche, RA – rock avalanche, RS – rockslide.
Coloured arrows correspond to events: red – Devdorak, rose – Devastation, blue – Kolka-Karmadon, yellow – Huascaran, grey – Pandemo-
nium, dark blue – Parraguirre. Photos on the left:(A) glacier slide (Devastation Glacier),(B) avalanche flow (Kolka-Karmadon, photo by
D. A. Petrakov),(C) debris flow (Kolka-Karmadon, photo by S. S. Chernomorets).

immediate main body displacement as it was in the Devas-
tation Glacier case, or may act just as destabilising factor,
e.g. ice and rock avalanches on Kolka Glacier in 2002 two
months before the event. We suggest that the main mass has
to be in the state of “preparedness” for catastrophic move-
ment before the final trigger. Preparation may continue for
many years and include accumulation of potential moving
mass and/or disagregation of rocks and glacier ice, as well
as formation of rupture planes. Without preliminary prepa-
ration even the impact of a high magnitude earthquake may
not lead to a mass movement.

In the majority of cases we have studied, an avalanche
or a slide quickly transforms into an avalanche flow (AF).
Absence of this stage in the Pandemonium and Parraguirre
events may be explained by a negligible content of glacier
ice in the moving mass. For the development of an avalanche
flow, a completefracturing andfluidisationof moving mass
is necessary. Due to fracturing, the ice mass disaggregates
and the movement type transforms from laminar to turbu-
lent. Snow and ice contained in the flow melts, leading to a
decrease of flow strength and thus an increase in runout dis-
tance. However, water content in an avalanche flow may vary
significantly. This phenomena was noted in the Parraguirre

event where a “dry flow” travelled for a few kilometers. Wa-
ter content in the flow was not enough for a fully-fluidised
movement (Casassa and Marangunic, 1993). Most likely,
the same phenomena occurred during the Kolka-Karmadon
event. Fluidisation allows avalanche flows to travel over
low path angles. Normally for ice avalanches the path angle
should be over 17◦ (Alean, 1985; Huggel et al., 2004). Some-
times the angle may be slightly less (Huggel and Caplan-
Auerbach, 2007) but without fluidisation the runout distance
is restricted. Whether fluidisation will occur or not during an
event is very difficult to predict: this may depend on such fac-
tors as the volume of ice involved in the mass movement, the
total volume of the moving mass, the influence of topogra-
phy, and the availability of wet entrainable material or snow
in the path.

Avalanche flow may lead to drastic entrainment of path
deposits. Entrainment depends on the forces acting on the
available deposits which are defined mostly by the path an-
gle, flow velocities and the flow density. If the flow density is
low (such as in the Kolka-Karmadon event) the flow volume
may increase by some tens of percent, but if the flow density
is high (such as the Huascaran events) the flow volume may
increase by as much as an order of magnitude.
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The last stage of a CGMM event is typically a debris flow
(Fig. 4). Fluidisation due to the ice/snow melt increases wa-
ter content of the flow. Avalanche/avalanche flow may trans-
form to a debris flow entirely or just produce a distal debris
flow immediately after the main mass stops. Distal debris
flows may impact areas tens of kilometres downstream. This
situation was observed in all studied events. Damming of
rivers, and formation of debris-dammed lakes may lead to
outburst floods and debris flows following a CGMM.

4.2 Features of multi-phase mass movements

All of the glacial mass movements noted above were com-
plex events with rapid transformation of an initial failure
mass into a devastating avalanche flow. All these mass
movements originated from glaciers or near-glacier environ-
ments as avalanches or slides and finished their movements
as flows. The main feature of a multi-phase mass move-
ment (CGMM) is transformation of the movement mecha-
nism. This transformation is mainly a result of some type of
fluidisation. The main stage of a multi-phase mass movement
is an avalanche flow. Avalanche flow has several distinctive
features combining elements of both avalanches and debris
flows:

1. Extremely high velocities, (up to 100 m/s and more), de-
spite the low travel angle, are much higher than debris
flow velocities and comparable with avalanches;

2. A direct consequence of extraordinary velocities is an
air blast wave – a typical avalanche feature observed
during most avalanche flows. For example, during the
1902 Kolka-Karmadon event a woman standing at a dis-
tance of 200 m from the path was blown away and in-
jured. Earlier, in the same region, according to oral his-
tory, the settlement of Genal was destroyed by a similar
air blast wave. An air blast wave was also observed
during the 1962 (Morales, 1966) and 1970 (Plafker and
Ericksen, 1978; Stadelmann, 1983) Huascaran events;

3. Superelevations and run-ups of the mass along its travel
path are results of extraordinary velocities and turbulent
flow-type movement;

4. CGMM events have low travel path angles and as a re-
sult a long-distance runout. Their path angle is much
lower than the path angle of avalanches and is com-
parable to path angles of debris flows. Sometimes the
path angle of a CGMM event is lower then the typical
path angle for debris flows (11◦ according to Haeberli
(1983)) and comparable to the path angle of a debris
flood;

5. Entrainment observed during CGMM is more similar to
debris flows than to avalanches. The entrainment ratio
may be up to 10.

Catastrophic glacial multi-phase mass movements as a
whole have other important features. They repeat from time
to time in the same area, but no clear return periods have been
identified. This characteristic is very important for hazard
assessment. Catastrophic events from Devastation Glacier
were registered three times in the 20th century (Evans, 2004),
at Kolka Glacier events occurred in 2002, 1902 and ear-
lier, at Huascaran events in 1962, 1970 were preceded by a
pre-Colombian event (Plafker and Ericksen, 1978). Kazbek
blockages from Devdorak were registered six times, and an-
cient CGMM deposits were found in the Parraguirre event
area (Casassa and Marangunic, 1993). Volume, distance and
velocity of CGMM events may differ within at least one or-
der of magnitude.

CGMM events usually have a complex trigger mechanism.
Glacier ice and snow play an important role in the formation
of CGMM events. Incorporated in mass movement they de-
crease flow resistance of the debris, melt and decrease fric-
tion due to fluidisation. The slide of debris over glacier sur-
faces leads to friction decrease and an increase in velocity
and travel distance (Evans and Clague, 1988). In the final
part of their travel path CGMM events may form temporary
debris/ice dams which are usually very unstable.

5 Conclusions

The catastrophic events examined in this paper were multi-
phase mass movements originating from glaciers or near-
glacier environments. All these movements are complex
events involving transformation of movement type from ice-
rock avalanche or glacier slide, to avalanche flow and finally
to debris flow due to fluidisation. Hazard evaluation for these
types of mass movements is extremely difficult because of
their special features in contrast to avalanches and debris
flows. These features are as follows: extraordinary velocities
and long-distance runout despite low path angle; progressive
fluidisation along travel path; superelevation and run-up of
the moving mass, air blast wave in the avalanche flow phase;
incorporation (entrainment) of available materials in its path
(which may include snow), and the repeated nature of the
event. CGMM events may affect areas remote from glaciers
which were previously considered as safe. Careful evalu-
ation of this rare phenomena, especially of its main stage
(avalanche flow) is needed in order to prevent loss of life and
destruction in populated areas.
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