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ELEMENTARY PARTICLES AND FIELDS
Experiment

Elimination of Diurnal, Annual, and Solar Variations
in the Matrix Observations of the URAGAN Muon Hodoscope
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Abstract—A method for elimination of periodical diurnal, annual, and 27-day and 11-year solar variations
in the matrix observations of the URAGAN muon hodoscope was developed. The analysis of the parameters
of these variations in the time and frequency domains was performed. Two-dimensional bandpass filtering of
sequences of muon hodoscope matrix observations was implemented. The structure of a two-dimensional
filter is developed, based on the operation of elementwise matrix multiplications and additions. Examples of
eliminating variations in the URAGAN muon hodoscope matrix observations are discussed.
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1. INTRODUCTION

The elimination of periodic components in the se-
quences of matrix observations is in demand for many
applications of experimental physics related to the
separation of processes of different scales in time and
space. For example, this procedure is applied: in the
analysis of periodical secular and seasonal processes
of ice formation in the polar regions; in considering
the effect of cyclic solar activity on slow climatic
changes in given regions of the Earth’s surface; in
separation of tidal modulations and sea level wind
surges in aerial photographs, etc. Here an application
is discussed, related to the task of processing the peri-
odical muon fluxes (MF) variations in the URAGAN
MH [1, 2] matrix observation data. Two-dimensional
filtering, implemented here, refers to the growing field
of digital signal processing [3, 4].

MF, reaching the MH aperture-type detector, are
subject to temporal and spatial variations [5] which
can be divided into: periodical, related to the Earth’s
daily rotation; annual, caused by the Earth’s motion
in the solar orbit; solar—due to the 11-year activity
cycle and the 27-day one caused by the Sun’s ro-
tation [6]; and aperiodical, from Forbush decreases
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[7] and the atmosphere’s impact [8, 9]. This article
substantially developed the results described in the
publication [10].

2. MH DATA ANALYSIS IN TEMPORAL
AND SPATIAL DOMAINS

The judgment on diurnal, 27-day, annual and 11-
year components in matrix data from MH can be
made based on temporal and spectral analysis of MH
data.

2.1. Spatial Domain Analysis

Let us analyze the oscillatory components in the
data from MH using the temporal domain analysis.
Let Ma(i, j, Tk) be the sequence of matrix hourly
data, where i = 1, ..., N1, j = 1, ..., N2, and N1, N2
are the MH aperture-type detector dimensions, and
k = 1, ..., kf represents the time interval. We intro-
duce the averaged muon flux intensity S(Tk), whose
physical significance is obvious:

S(Tk) =
1

N1N2

N1∑

i=1

N2∑

j=1

Ma(i, j, Tk),

k = 1, ..., kf .

On Fig. 1, the function S(Tk) is presented, made
from the data from MH during February 6, 2007,
11:00 UT–December 31, 2018, 23:00 UT. The men-
tioned period corresponds to a 12-year observation
interval, approximately; the number of observations
kf = 105320. From this figure, the annual (seasonal)
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Fig. 1. Hourly averaged muon flux intensity function
S(Tk) plot for a 12-year interval.

periodicity of the S(Тk) is clearly seen. The number
of points in a year is, approximately, Ny = 24 × 30 ×
12 = 8640, and the analyzed period includes about 12
annual oscillations of the considered intensity func-
tion. On Fig. 2, the plot for the S(Tk) function
for nearly a month corresponding to the time period
June 29, 2015–July 31, 2015, between k1 = 74800
and k2 = 75600, is presented.

Figure 2 clearly displays the S(Tk) function diur-
nal periodicity. As the number of points in the day is
Nc = 24, the considered 800-point interval includes
about 32 diurnal oscillations. Figure 1 nearly de-
picts the 11-year solar activity cycle waveform. It is
known that the solar activity maximum was in 2014,
to which the S(Тk) minimum refers; the solar activity
minimum was in 2008, to which the S(Тk) maximum
refers.

2.2. Frequency Domain Analysis
Let us analyze the oscillatory components in the

data from MH using the frequency domain analysis.
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Fig. 2. Hourly averaged muon flux intensity function
S(Tk) plot for a 1-month interval.

Here we use the discrete Fourier transform (DFT).
Let Nbe the number of points on which the DFT is
performed. We calculate the complex DFT spectral
coefficients C0(n):

С0(n) =
1

N

N−1∑

s=0

S(Ts) exp(−jns/N),

where n = 0, 1, ..., N − 1, and j denotes the imagi-
nary unit for disambiguation.

For an easiest spectra visualization, we introduce
a logarithmic scale LC(n):

LC(n) = 20 log10(C(n)),

where C(n) = C∗
0 (n)C0(n).

Let us calculate the spectral estimates. First we
implement the sliding: N1l = N0(l − 1) + 1, N2l =
N1l +N − 1, l = 1, 2, ...,m, where N0 is a sliding
step. The spectrum resolution is Δf = 1/NT . The
coefficnents for the spectrum are the following:

Cl(n) = C∗
0l(n)C0l(n),

C0l(n) =
1

N

N2l∑

n=N1l

S(Ts) exp(−jns/N),

and the sum is C(n) = 1
m

∑m
l=1 Cl(n).

Let us assume, for example, N = 16384 × 4,
N0 = 4096, and m = 7. The day period is Tc =
24Т seconds, and fc = 1/Tc = 1/24T . Then, nc =
fc/Δf = NT/24T = 16384 × 4/24 ≈ 2731 is the
1st harmonic number for a diurnal component. On
Fig. 3, the calculated spectrum LC(n) is presented,
n = 0, 1, ..., 9999.
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Fig. 3. The calculated spectrum LC(n), n = 0, 1, . . . ,
9999.
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Three harmonics for the diurnal frequency are
seen, and the 2nd and the 3rd harmonics are about
100 times smaller in amplitude than the first one.

For the annual component we calculate the num-
ber of the first harmonic. Ty = 365 × 24Т seconds,
fy = 1/Ty = 1/365 × 24T and the 1st harmonic
number for the annual component is ny = fy/Δf =
NT/Ty = 16384 × 4/Ty ≈ 7. Figure 4 shows the
calculated spectrum LC(n), n = 0, 1, ..., 249. The
harmonics at 7, 14, and 21 can be easily seen.

It is seen that the harmonic, which determines the
11-year solar component, has the number ns0 = 1.
For a more accurate spectral analysis of this com-
ponent, it is necessary to have observations over a
time interval of at least 50–100 years. The first
harmonic number for the component associated with
the rotation of the Sun, every 27 days, can be easily
determined: ns = nc/27 ≈ 102. It is easy to see that
the amplitudes of these components are commensu-
rate with the amplitudes of the diurnal components.

The considered observation of hourly MH matrices
for the period 2007–2018 in the time and frequency
domains confirms the presence of the indicated com-
ponents. Let us assume that the average frequency of
variations in the muon fluxes is generally lower than
that of the diurnal ones but higher than that of the 27-
day solar ones.

3. TWO-DIMENSIONAL BANDPASS
FILTERING FOR MH MATRIX

OBSERVATIONS

Let us consider eliminating the mentioned pe-
riodical components using digital two-dimensional
bandpass filtering. According to our conclusions
from the variation analysis, the relative cutoff fre-
quencies for the applied filters will be Wc1 = α1/24 ×
27, Wc2 = α2/24, where α1 ≈ 1.05 and α2 ≈ 0.95
are the assignable coefficients. Let us select the
Butterworth bandpass filter [11]. We will filter for
each functionMa(i, j, Tk), k = 1, ..., kf , and the total
number of filtering operations will be N1N2. We apply
the standard procedures of digital one-dimensional
filtering with weights, which are presented in general
form—br(i, j), r = 1, ..., r0, as(i, j), s = 0, ..., s0; let
us formulate the one-dimensional difference equa-
tion, where Ma,F (i, j, Tk) is the digital filter output.

Ma,F (i, j, Tk) (1)

= −
r0∑

r=1

br(i, j)Ma,F (i, j, T (k − r))

+

s0∑

s=0

as(i, j)Ma(i, j, T (k − s)).
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Fig. 4. The calculated spectrum LC(n), n = 0, 1, . . . , 249.
The peaks at n = 7, 14, and 21 indicate the harmonics
corresponding to the annual component.

The use of digital one-dimensional filters in the
form of (1) for the task posed involves two problems:
1. the need to ensure small time costs to perform
N1N2 one-dimensional filtering operations according
to (1); 2. the need to eliminate the emerging phase
shifts occurring in Ma,F (i, j, Tk) due to the influence
of recurrence relations in (1). We implement the
filtering for the time series of matrices Ma(Tk) from
MH based on a two-stage approach.

At the first stage we will create the matrices
B1, ..., Br0 , A0, ..., Ak consisting of weight elements
br, as for (1). Using them, we form the two-
dimensional filter structure based on the one-dimen-
sional difference equation in the matrix form:

Ma,F (Tk) = −
r0∑

r=1

Br ◦Ma,F (T (k − r)) (2)

+

s0∑

s=1

As ◦Ma,F (T (k − s)),

where “◦” denotes the Hadamar product (an opera-
tion of entrywise multiplication for matrices). Using
the capabilities of Matlab, we realize the ultrafast
elementwise multiplication of matrices. The matrix
sequence Ma,F (Tk) is the filter (2) output.

At the second stage, we will eliminate phase
shifts. We introduce the function of total intensity
SF (Tk) for Ma,F (Tk). Let us form the functional
F (S, SF , kd) and find the optimal phase shift k◦d

k◦d = arg

{
min

1�kd�kd0
F (S, SF , kd)

}
,
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Fig. 5. The result of matrix data filtering—the elimination
of diurnal variations for June 29–July 31, 2015. The
result (solid line) is overlayed on the initial data for a better
comparison.
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Fig. 6. The result of matrix data filtering (the elimination
of diurnal, annual, solar 11-year and 27-day variations)
for a 132-day period. The resulting curve contains only
aperiodic muon flux variations.

where

SF (Tk) =
1

N1N2

N1∑

i=1

N2∑

j=1

Ma,F (i, j, Tk),

and

F (S, SF , kd) (3)

=

k2∑

k=k1

(S(Tk)− SF (T (k − kd))
2.

The result of filtering at the second stage is defined as
the sequence of matrices in which the shift correction
is made k◦d : Ma,F0(i, j, Tk) = Ma,F (i, j, T (k − k◦d)).

4. TESTING THE METHOD
OF TWO-DIMENSIONAL BANDPASS

FILTERING OF MH MATRIX DATA
For illustrative purposes, an example of eliminat-

ing diurnal variations in the MH matrix data was
considered. A one-dimensional high-pass filter with
a cutoff frequency Wc = α2/24 was used for filter-
ing. Based on it, the B1, ..., Br0 , A0, ..., Ak ma-
trices were created, consisting of the weight ele-
ments br, as for (1), and, using them, the two-
dimensional filter (2) structure was formed, and the
matrices Ma,F (Tk) and the functions Ma,F (i, j, Tk)
were obtained. The phase shift was corrected based
on (3) and the Ma,F0(i, j, Tk) functions were formed.

On Fig. 5, the original function S(Tk) and the
filtering result SF0(Tk), k = 1, ..., kf (solid line),
formed from the function Ma,F0(i, j, Tk) set are
shown for the period of time June 29, 2015–July 31,
2015. It is seen that the daily components in the
matrix data were eliminated.

It was established on the basis of computational
experiments that: the time spent on the proposed
filtering method with an appropriate ratio of N1,
N2, kf parameters is on average 5–10 times less
than the time spent for filtering on the basis of one-
dimensional filters; errors in estimating phase shifts
are about 1◦ to 2◦.

The elimination of periodic diurnal, annual, solar
27-day and 11-year variations in the MH matrix ob-
servation data was implemented. A bandpass filter
with cutoff frequencies. Wc1 = α1/24 × 27, Wc2 =
α2/24 was applied. Figure 6 shows the filtering result
for the interval within the points k1 = 73600, k2 =
76800 (132 days). In the filtered function SF0(Tk),
only aperiodic MF variations were left.

5. CONCLUSIONS
1. The proposed method for eliminating periodic

diurnal, annual, and solar variations in the matrix ob-
servations of the URAGAN muon hodoscope based
on two-dimensional band-pass filtering appeared to
be workable.

2. It is established on the basis of computational
experiments that: the time costs of the proposed fil-
tering method, with appropriate ratios of parameters,
are on average 5–10 times less than the time spent for
filtering on the basis of one-dimensional filters. Phase
shift correction errors are of the order of 1◦–2◦.

3. The proposed method can be applied to many
problems of experimental physics, associated with the
elimination in the sequences of matrix observations of
the components of periodic variations.
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