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We derive analytical expressions for external fields of a relativistic bunch of charged particles
with a circular and an elliptical cross section under different boundary conditions and interaction
of the fields with an accelerator structural elements. The particle density in the bunch is assumed
to be uniform as well as non-uniform.At distances far apart from the bunch, in free space the field
reduces to the relativistic modified Coulomb form for a pointlike charge and at small distances
the expressions reproduce the external fields of a continuous beam. In an ultra-relativistic limit
the longitudinal components of the internal and external electric fields of the bunch are strongly
suppressed by the Lorentz factor. If the bunch is surrounded by conducting surfaces, the bunch
self-fields are modified. Image fields generated by a bunch between two parallel conducting
plates are studied in detail. Exact summation of the electric, Ey, and magnetic, Bx, image field
components allows the infinite series to be represented in terms of elementary trigonometric
functions. The new expressions for modified fields are applied to study image forces acting on
the bunch constituents and the bunch as a whole. The coherent and incoherent tune shifts for an
arbitrary bunch displacement from the midplane are calculated in the framework of an improved
linear theory, for both infinite and finite parallel flat surfaces. Moreover, the developed method
allows us to generalize the Laslett image coefficients ε1, ε2, ξ1, ξ2 to the case of an arbitrary
bunch offset and reveal relationships between these coefficients. Appendix C provides a brief
historical background of the development of the method of electrical images.
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1. Introduction

In an accelerator, the charged beam is influenced by the environment matter (a beam pipe, accelerator
gaps, magnets, collimators, etc.), and a high-intensity bunch of particles induces surface charges or
currents into this environment. This modifies the electric and magnetic fields around the bunch.
There is a relatively simple method to account for the effect of the environment by introducing
image charges and currents. The mathematical technique of electrical images was developed by W.
Thomson (Lord Kelvin) [1–3]. The method of images has found application in various branches of
physics, in particular, in hydrodynamics [4–6]. Appendix C provides a brief historical background
on the subject1.

1 20th century textbooks on classical electrodynamics do not specify the author of the method of electrical
images.
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Over fifty years ago Laslett [7,8] analyzed the influence of the transverse space-charge phenomena,
due to image forces, on the instability of the coherent transverse motion of an intense beam. Methods
of image field summation are described in his paper [7], which presented some field coefficients
calculated for infinite parallel plate vacuum chambers, magnet poles, and vacuum chambers with
elliptical cross sections and variable aspect ratios. The resulting image fields were calculated only in
the linear approximation and depend linearly on the deviations ȳ and y of the bunch center and the
position of a test particle, respectively, from the axis (see Fig. 4). They act therefore like a quadrupole
causing a coherent tune shift. The approximation used is incorrect if the field observation point y is
located far from the bunch or if the bunch center ȳ is close to a conducting wall.

In the present paper we consider this classical problem summation of fields of images once again
for a very simple geometry, namely, an ultra-relativistic bunch moving between infinitely wide
parallel perfectly conducting plates. The problem is far from being purely academic. In applications,
in particular, in the study of dynamics of photoelectrons in the beam transport system [9] and the
electron cloud effect intensified by electron field emission in the flat collimator [10], it is important
to know the distribution of electromagnetic fields not only in the vicinity of the bunch, but in the
whole collimator gap. We have not found publications with attempts to sum up the series (34) (see
Sect. 4) in an approximation beyond the linear one. In Sects. 4 and 5 we present exact 1D solutions
of the problem for electric and magnetic image fields. The preliminary results were presented in Ref.
[11]. 1D solutions are canonically used in the calculation of tune shifts2.

Before we solve the problem formulated above, in Sect. 2 we first derive expressions for the
external electric and magnetic fields generated by a cylindrical and an elliptical bunch of charged
particles. The task is specified as follows.

The external radial electric field �Er and azimuthal magnetic induction �Bφ for a round unbunched
relativistic beam of radius a and a uniform charge density are described by [12–14]

Er = κ
2qλ

r
, (1)

Bφ = μ0

4π

2qλ

r
cβ, (2)

where κ = 1/4πε0, λ is the linear beam density, q is the charge, β = v/c is a normalized velocity
of the beam constituents, and c the velocity of light3. In many applications, Eqs. (1) and (2) are
used to describe fields of an individual bunch too. However, in the form (1), (2) the bunch fields do
not depend on the bunch energy and at large distances do not follow the Coulomb asymptotic. This
contrasts sharply with the fields produced (at t = 0) by a rapidly moving single charge q:

�E = κ
q γ

r2

[ 1 − β2

1 − β2 sin2 θ

]3/2 r̃

r
, c�B ∼ �β × �E, (3)

where θ is the angle that the vector �r makes with the z-axis. Along the direction of motion the electric
field becomes weaker in γ 2 times, while in the transverse direction the electric field is enhanced by

2 Exact 2D solutions by the method of images and other applications will be presented elsewhere.
3 In Ref. [13], the azimuthal component Bφ , Eqs. (18.51)–(18.52), includes the minus sign, in contradiction

to Eq. (18.28) and the expression of cylindrical coordinates of a vector field by Cartesian coordinates (Ref.
[15], p. 630): Bφ = −Bx sin φ + By cosφ.
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the factor γ :

Er = κ
q γ

r2 . (4)

Here, γ denotes the particle Lorentz factor.
This paper is organized as follows. In the next section, we demonstrate how, when summing up

the elementary electromagnetic fields generated by charged relativistic particles, effective external
beam fields are formed. We derive expressions for the transverse and longitudinal components of the
bunch electric field, where the defects indicated above are rectified, and find the conditions at which
the bunch fields are represented by Eqs. (1) and (2). Here we consider bunches shaped as a cylinder
with a circular and an elliptical cross section. In Sect. 3 we discuss fields generated by a bunch with
an arbitrary linear particle density and make a statement that in the ultra-relativistic limit γ → ∞
the electric field takes a universal form.

Sections 4 and 5 are devoted to the problem of finding exact analytic expressions for the electric
and magnet fields generated by a bunch moving between infinitely wide parallel conducting plates
and magnet poles.

In Sect. 6 we discuss image forces acting on the bunch constituents and the bunch as a whole and
calculate in the framework of an improved linear approximation the coherent and incoherent tune
shifts for an arbitrary bunch displacement from the midplane. In Sect. 6.3, a practical example is
considered as gradients of image fields in a finite-size collimator affecting the betatron frequency
of the beam. Conclusions are drawn in Sect. 7. Here we also compare results obtained by different
authors with the use of various techniques. Detailed derivations of the obtained results are placed in
Appendixes A and B.

2. Self-fields of a charged cylinder with an elliptical cross section

Let us consider a bunch of charged particles uniformly distributed with a density ρ within a cylinder
of length L and an elliptical cross section. The ellipsoid semi-axes in the x–y plane are a and b and
the coordinate z-axis is along the bunch axis. Suppose that the bunch is moving along the z-axis with
a relativistic velocity �v = c �β.

To compute the radial electric field of such a rapidly moving bunch, we have to sum up fields of
the type (3), generated by the bunch constituents. In this way we get [16]

E⊥(r, ξ , z) = κργ
[
zI1 + (L − z)I2

]
(5)

with

I1 =
∫ ∫ [r − σ cos(ξ − φ)] σdσdφ

[r2 + σ 2 − 2rσ cos(ξ − φ)][γ 2z2 + r2 + σ 2 − 2rσ cos(ξ − φ)]1/2 (6)

I2 =
∫ ∫ [r − σ cos(ξ − φ)] σdσdφ

[r2 + σ 2 − 2rσ cos(ξ − φ)][γ 2(L − z)2 + r2 + σ 2 − 2rσ cos(ξ − φ)]1/2 (7)

where σ is the distance in the x–y plane from the z-axis to the elementary charged volume and

0 < σ ≤ (φ) = b√
1 − e2 cos2 φ

, 0 < φ < 2π , (8)

3/29

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article-abstract/2020/1/013G

01/5714869 by guest on 24 January 2020



PTEP 2020, 013G01 B. B. Levchenko

where e = √
1 − b2/a2 is the eccentricity of an ellipse and a > b. Equation (5) represents the radial

electric field at instant t = 0 as observed at a distance r from the bunch axis, at an angle ξ relative
to the x-axis and at a distance z from the bunch tail.

In Ref. [16] integrals I1 and I2 were estimated only numerically, because the integrands were taken
as they are. However, the integrands are easy to simplify if the bunch is ultra-relativistic, γ 	 1,
and we would now like to calculate the field in the vicinity of the bunch but at distances much larger
than the bunch radius, r 	 a.

To simplify this, we make use of the notations

A = σ/r, B = A cos(ξ − φ), Y = A2 − 2B,

C1 =
[
1 + γ 2z2/r2

]−1
, X = C1 · Y

and the integrand of I1 can be written as

(r2 + γ 2z2)−1/2A(1 − B)(1 + Y )−1(1 + X )−1/2 . (9)

Now we expand the above expression in a power series by using A as a small parameter and keeping
only terms up to the power A4 at each step.

2.1. Finite circular cylinder with a uniform particle density

For a bunch shaped as a circular cylinder, a = b, we may set ξ = 0. Due to the fact that∫ 2π

0
cos2k+1 φ dφ = 0, (10)

all odd powers of B vanish after integration over φ. This greatly simplifies the series generated from
Eq. (9). After lengthy algebraic manipulations with Eq. (9), we get

(r2 + γ 2z2)−1/2A
[
1 − (1 + 1

2
C1)A

2 + (2 + C1 + 3

2
C2

1 )B
2
]
. (11)

Substituting this expression in Eq. (6), one gets

I1 = πa2

r
√

r2 + γ 2z2

(
1 + 3

8
C2

1
a2

r2

)
. (12)

By changing z2 to (L − z)2 in Eq. (12), we obtain for I2 the following result:

I2 = πa2

r
√

r2 + γ 2(L − z)2

(
1 + 3

8
C2

2
a2

r2

)
, (13)

where C2 =
[
1 + γ 2(L − z)2/r2

]−1
. Notice that for particles uniformly distributed in the bunch

volume, ρ = qNb/πa2nbL = qλ/πa2, where Nb is the total number of particles in the beam, nb

the number of bunches, and λ the linear particle density. Substituting Eqs. (12)–(13) in Eq. (5), we
finally arrive at

E⊥(r, z) = κ
qλγ

r

[ z√
r2 + γ 2z2

(
1 + 3

8

a2

r2 C2
1

)
+ L − z√

r2 + γ 2(L − z)2

(
1 + 3

8

a2

r2 C2
2

)]
. (14)

This equation describes the transverse component of the electric field produced by a rapidly moving
circular bunch. For γ 	 1 the correction factors C1 and C2 can be neglected. In that case at the
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Fig. 1. (a) The transverse profile of the electric field generated by a relativistic bunch of a circular cross section.
The vertical dash-dotted line indicates the crossover point of the curve (4) and (1). Here L = √

2πσz and σz

denoting the r.m.s. bunch length. (b) The radial field variation with z near the bunch tail at fixed r = 1.0 cm.
For comparison, the dashed line shows the field from a proton bunch at the energy 450 GeV. Calculations are
performed with parameters corresponding to the LHC proton beam (see Table 1).

bunch surface, r = a, Eq. (14) exactly matches the equation for the internal field [16]. Therefore, the
condition r 	 a used to derive Eq. (14) can be weakened and Eq. (14) is valid in the region r ≥ a.

The field of a relativistic bunch described by Eq. (14) has different behavior at distances far away
from the bunch and for r < Lγ /2. Figure 1(a) shows the radial field profile as follows from Eq.
(14). The parameters of the bunch correspond to the nominal scenario of the LHC proton beam [17].
At very large distances, r 	 Lγ /2, Eq. (14) reduces to the Coulomb form (4) with q replaced by
qNb/nb. Calculations show that for a proton bunch at 7 TeV the Coulomb law is restored only at a
distance of several kilometers from the bunch. On the other hand, for r � Lγ /2, Eq. (14) simplifies
to a form independent of the z-coordinate, which coincides with the external field (1) of a continuous
beam with λ = Nb/nbL.

The magnitude of the electric field varies drastically in the head and tail parts of the bunch. For
instance, in a very narrow transition region beyond the bunch tail, z < 0, |z| � r/γ , the field strength
decreases with z as follows:

E⊥(r, z) ≈ κ
qλ

r

[
1 − r2

2γ 2(L − z)2

]
. (15)

However, at larger |z|, the suppression of the radial field by the Lorentz factor becomes dominant:

E⊥(r, z) ≈ κ
qλr

2γ 2

L(L − 2z)

z2(L − z)2
. (16)

This is shown in Fig. 1(b). The field strength decreases to more than three orders of magnitude at a
distance of 4 μm beyond the bunch. One finds from Eq. (14) that at z ≥ L the field magnitude tends
to zero in a similar way.
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The longitudinal part of the electric field reaches the maximum value on the bunch axis, so that on
axis the longitudinal electric field is given by [16]

Ez(0, z) = κ
2πρ

γ
{
√

a2 + γ 2(L − z)2 −
√

a2 + γ 2z2 + γ |z| − γ |L − z|}. (17)

At γ 	 1, the field magnitude outside the bunch is given by

Ez(0, z) = κ
qλ

γ 2

[ 1

|L − z| − 1

|z|
]
. (18)

Equation (18) shows that the longitudinal field is independent of the bunch radius and strongly
suppressed along the line of motion of the bunch.

The main result of this consideration is that due to features (16) and (18), the space-time distribution
of the electric field around an ultra-relativistic circular bunch with a uniform particle density is well
approximated by a step-like form:

E(r, z, t) = κ
2qλ

r

[
θ(z − βct)− θ(z − βct − L)

]
. (19)

Similarly, we can show that the azimuthal magnetic induction of the bunch is

Bφ(r, z, t) = μ0

4π

βc

κ
E⊥(r, z, t). (20)

2.2. Finite elliptical cylinder with a uniform particle density

Let us now consider a bunch shaped as an elliptical cylinder. We make use of the same notations as
in the previous subsection. In the ultra-relativistic scenario, the correction factors C1 and C2 should
be neglected from the beginning. By expanding the integrand of I1 in a power series as above, we
get

(r2 + γ 2z2)−1/2
{ kmax∑

k=0

A2k+1 cos[2k(ξ − φ)]

+ A2 cos(ξ − φ)
[
1 − A2(1 − cos[2(ξ − φ)])+ A4(1 − 2 cos[2(ξ − φ)] + 2 cos[4(ξ − φ)])

− A6(1 − 2 cos[2(ξ − φ)] + 2 cos[4(ξ − φ)] − 2 cos[6(ξ − φ)])]+ · · ·
}

. (21)

It can be proven that for an even function fn(φ)∫ 2π

0
dφ cos2k+1(ξ − φ)

∫ (φ)

0
dσAn = bn+1

(n + 1)rn

∫ 2π

0
fn(φ) cos2k+1(ξ − φ)dφ = 0, (22)

where k = 0, 1, 2, . . . . In our consideration

fn(φ) = (1 − e2 cos2 φ)−(n+1)/2. (23)

The integral (6) now can be solved with respect to σ and φ by direct substitution of Eq. (21) and
the use of Eq. (22):

I1 = πab

r
√

r2 + γ 2z2

√
1 − e2

π

kmax∑
k=0

b2k

(2k + 2)r2k
· Dk · cos(2kξ). (24)
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The condition (22) causes all even terms in A to vanish. Here,

Dk =
∫ 2π

0

cos(2kφ) dφ

(1 − e2 cos2 φ)k+1
= dk · πe2k

(1 − e2)k+1/2
, (25)

with numerical coefficients dk = (2, 1, 3/4, 5/8, 35/64, 63/128, 231/524, 429/1024, . . .). By
changing z2 to (L − z)2 in Eq. (24), one finds I2 too.

For particles uniformly distributed in the elliptical bunch volume, ρ = qλ/πab with λ = Nb/nbL
the linear particle density. Substituting equations for I1 and I2 in Eq. (5), we finally arrive at

E⊥(r, z) = κ
qλγ

r

( z√
r2 + γ 2z2

+ L − z√
r2 + γ 2(L − z)2

)[
1 + 1

4

(ae

r

)2
cos(2ξ)

+ 1

8

(ae

r

)4
cos(4ξ)+ 5

64

(ae

r

)6
cos(6ξ)+ 7

128

(ae

r

)8
cos(8ξ)+ · · ·

]
. (26)

This equation describes the transverse component of the electric field produced by a rapidly moving
elliptical bunch of length L. The transverse part is modulated by an angular factor that takes into
account the ellipticity of the bunch. The dimensions of the ellipse enters only via the ratio ae/r.

The arguments used in deriving Eq. (19) are also applicable here. The electric field of an ultra-
relativistic elliptical bunch is therefore well approximated by a step-like form:

E(r, z, ξ , t) = κ
2qλ

r

[
θ(z − βct)− θ(z − βct − L)

][
1 + 1

4

(ae

r

)2
cos(2ξ)

+ 1

8

(ae

r

)4
cos(4ξ)+ 5

64

(ae

r

)6
cos(6ξ)+ 7

128

(ae

r

)8
cos(8ξ)+ · · ·

]
. (27)

The representation (27) with such “separation of variables” (r, ξ) is useful in an analytic calculation,
including a differentiation and an integration. The number of terms, kmax, in Eqs. (24), (27) to be
taken into account depends on the required precision.

The approximate formula (27) can now be contrasted with an exact expression of the electric field
for a uniformly charged elliptical beam. There is a compact formula [18,19] in the complex (x, y)
plane, z = x + iy, in the term of the “complex electric field”:

E(z) ≡ Ex(z)+ iEy(z) = 4κqλ

a2 − b2 (z̄ −
√

z̄2 − a2 + b2). (28)

However, in the real components the formula is more complicated. Outside the beam, the
x-component of the field is

Ex = 4κqλ

(ae)2

{
x − sign(x)√

2

[
u +

√
u2 + (2xy)2

]1/2}
, (29)

while the y-component can be obtained from this by exchanging x ↔ y and a ↔ b. Here u =
x2 − y2 − (ae)2. Thus,

E⊥(r, ξ) =
√

E2
x (r, ξ)+ E2

y (r, ξ) (30)

with x = r cos ξ and y = r sin ξ .
We are now in a position to evaluate the number of terms in Eq. (27) that need to be taken into

account in order to get the precision, say, to better than 5%, if compared with the exact formula (30).
Figure 2(a) shows the variation of the ratio of Eq. (27) to Eq. (30) with the azimuthal angle ξ in
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(a) (b)

Fig. 2. (a) The ratio of electrical field (27) to electrical field (30) as a function of ξ in the first quadrant. The
calculation is done at r/ae = 1 (full curve) and r/ae = 2 (dashed curve) with kmax = 7 (see Eq. (24)). (b) The
ratio of the electrical field (27) created by an elliptical bunch (e = 0.5 and a = 17μm) to the electrical field
(19) created by a circular bunch (a = 17μm) as a function of the radial distance at the azimuthal angle ξ = 0
and ξ = π/2.

the first quadrant. We observe that at r/ae = 1 (full curve) the desired precision is almost reached
at kmax = 7, except for the area near ξ = 0. In this area, it is necessary to account for terms with
kmax > 7 to achieve the required precision. At the same time, at r/ae = 2 and kmax = 7 (dashed
curve), the accuracy is better than 1% in the entire area of ξ .

The azimuthal field variation is essential only at r ∼ a. For instance, for a flat beam and at r = a,
the field is concentrated at ξ = 0 and π . However, at larger r (say, r > 5a) the angular dependence
vanishes rapidly and the electric field of an ultra-relativistic elliptical bunch converges to the universal
form (19). The last statement is illustrated by Fig. 2(b).

3. Universality of a bunch external fields

The uniform particle density considered in the last section is an idealization. In reality, the linear
particle density, λ(z), varies considerably along the bunch. As an example, Fig. 3(a) shows the
current profile of electron bunches in the XFEL accelerator [20]. Electrons of energy 17.5 GeV
form bunches with a charge of 1 nC and a peak current of 5 kA. The current distribution is well
fitted by a sum of two Gaussian distributions and a polynomial pedestal. Certainly, these bunches
are ultra-relativistic since γ = 3.2 × 104. Now the question arises of how to calculate the electric
field of the bunch for a given distribution of the current density J (z) = qβcλ(z).

We will now argue that in the asymptotic limit γ → ∞ the problem has a simple solution.
The main conclusion that we can draw from the previous consideration is that at a distance of

several bunch radii, the electric field of the bunch is independent of the transverse geometry of the
bunch. Without loss of generality let us consider again a bunch with a circular cross section. The
distribution J (z) can be well approximated by a histogram Ji = qβcλi, as shown in Fig. 3(b). Let
us imagine that the bunch is a set of layers with a thickness of �zi. Suppose that in the transverse
direction particles are distributed uniformly and the linear particle density varies from one layer
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Fig. 3. (a) The current profile of an electron bunch in the XFEL accelerator [20] and (b) its representation as
a histogram with a variable bin size �zi.

to the next in accordance with λi. Thus, each layer is a cylinder with a uniform particle density
acting as an independent field source. The complete field of the bunch is a sum of elementary field
sources (19):

E(r, z) = κ
2q

r

∑
i

[
θ(z − zi)− θ(z − zi −�zi)

]
λi = κ

2q

r
λ(z, t). (31)

Here we have used

lim
�zi→0

θ(z − zi)− θ(z − zi −�zi)

�zi
�zi = δ(z − zi)dzi,

and the sum is replaced by an integration. We obtain the same result (31) even if we consider a bunch
with a variable cross section and a uniform transverse density in each slice �zi.

We conclude with a statement that summarizes the obtained results:

Theorem 1 In the ultra-relativistic limit, γ → ∞, the external electric field of a bunch with a linear
particle density λ(z) is governed by the universal law

E(r, z, t) = κ
2q

r
λ(z, t). (32)

It is instructive to compare the strength of the electric field created by a cylindrical bunch with a
uniform particle density λU = N/L and a bunch with the Gaussian particle distribution λG(z). The
ratio of the fields is

EG

EU
= λG(z)

λU
= L

Leff
exp

(
− z2

2σ 2
z

)
. (33)

Thus, if L is equal to the effective length of the Gaussian bunch Leff = √
2πσz, the field strengths in

both cases are equal at the maximum of λG(z). Note, however, that in a more general case, as in Fig. 3,
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λ1

λ2

λ3

λ-1

λ-2

λ-3

Fig. 4. The electric field seen by a particle at location y on the y-axis is generated by the direct source-charge
λ0 at ȳ and the successive image charges λ±i at locations d±k and d±m (see explanation in the text).

that conclusion is not correct, even if L = Leff . For instance, with the parameters of an XFEL bunch
[20], one finds Leff = 0.217 mm and at the maximum of the current density EXFEL/EU = 3.63.

So far, we have considered fields in free space. In an accelerator, the charged beam is influenced by
an environment and a high-intensity bunch induces surface charges or currents into this environment.
This modifies the electric and magnetic fields around the bunch. There is a relatively simple method
to account for the effect of the environment by introducing image charges and currents.

4. Fields from image charges

“Definition of an electrical image. An electrical image is an electrified point or system of points on
one side of a surface which would produce on the other side of that surface the same electrical action
which the actual electrification of that surface really does produce” [21].

Following Laslett [7,8], we consider a relativistic bunch between infinitely wide conducting plates
placed at y = h and y = −h. Suppose that the constituents of the bunch are positively charged. For
full generality, let the bunch be displaced by (0, ȳ, 0) from the midplane (x, 0, z), and the observation
point of the field be at (0, y, 0) between conducting parallel plates. The boundary condition for the
electric field on perfectly conducting plates is Ez(±h) = 0 and is satisfied if the image charges
change sign from image to image.

The electric field seen by a particle at location y on the y-axis is generated by the direct source-
charge λ0 and the successive image charges λ±i [14,22], as shown in Fig. 4. For instance, the image
charges λ1 and λ−1 are generated by λ0 due to reflection in plates +h and −h, respectively. The image
charges λ2 and λ−2 are generated by λ−1 and λ1 due to reflection in plates +h and −h, respectively,
and so on. With the help of Fig. 4, one can easily calculate the distance between the image charge
position and the observation point. So, for odd images, k = 1, 3, 5, . . . , the distances between λ±k

and the point y are d±k = 2kh ∓ y1. For even images, m = 2, 4, 6, . . . , the distances between λ±m

and the point y are d±m = 2mh ∓ y2. Here y1 = y + ȳ and y2 = y − ȳ.
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Suppose that the distance between plates is of the order 10a. Thus, the electric field of each image
is described by Eq. (32). To calculate the image electric field component Ey,im(y) in front of the
plate, we add the contributions from all image fields in the infinite series [7,8,13,22]:

Ey,im(y, ȳ, z, t) = 2κqλ(z, t)[(2h − y1)
−1 − (2h + y1)

−1 − (4h − y2)
−1 + (4h + y2)

−1

+ (6h − y1)
−1 − (6h + y1)

−1 − (8h − y2)
−1 + (8h + y2)

−1

+ (10h − y1)
−1 − (10h + y1)

−1 − (12h − y2)
−1 + (12h + y2)

−1 + · · · ]. (34)

The representation (34) keeps the same form irrespective of the relative position of the bunch center
and the observation point between plates, (ȳ ≥ 0, y ≥ ȳ, y < ȳ) or (ȳ < 0, y ≤ ȳ, y > ȳ). These
image fields must be added to the direct field of the bunch (32) to meet the boundary condition that
the electric field enters conducting surfaces perpendicularly.

In the original paper [7] (see also Refs. [13,22]), the series (34) was summed up only in the linear
approximation in y and ȳ:

Ey,im(y, ȳ) = κ
4qλ

h

ε1

h
(y + 2ȳ). (35)

The coefficient ε1 = π2/48 is known as the Laslett coefficient (or form factor) for infinite parallel
plate vacuum chambers. The approximation (35), widespread in textbooks and lectures, is, however,
incorrect if the deviation of the bunch center from the axis is large (ȳ ∼ h) or if the field observation
point y is located far off the bunch. Therefore, below we present the exact solution of the problem.

In Appendix A it is proven that the exact summation of the series (34) gives

Ey,im(y, ȳ, z, t) = κ
4qλ(z, t)

h
�(δ, δ̄), (36)

where the electric image field structure function � depends only on scaled variables δ = y/h,
δ̄ = ȳ/h in the form

�(δ, δ̄) = 1

2

[π
2

· cos(π2 δ̄)

sin(π2 δ)− sin(π2 δ̄)
− 1

δ − δ̄

]
. (37)

We have shown in Appendix A that the truncated linear approximation (36) recovers the part (35)
derived by Laslett.

We shall now calculate values of �(δ, δ̄) at several particular points along the y-axis.
δ = 1: the observation point is located at the plate, y = h. In this case, the structure function

depends only on the bunch center position between plates, δ̄. From Eq. (37) one gets

�(1, δ̄) = 1

2

[π
2

1 + sin(π2 δ̄)

cos(π2 δ̄)
− 1

1 − δ̄

]
. (38)

Equation (38) is singular at δ̄ → 1 and shows that the conducting plate attracts the bunch with a
force increasing with the bunch displacement from the midplane. The phenomenon, involving the
transverse movement of the bunch as a whole, arises from image forces and could lead to a transverse
instability of the beam. This is discussed further in Sect. 6.
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Fig. 5. The electric field strength distribution in a gap between parallel conducting plates (solid curves) and in
free space (dashed curves) at several values of the bunch offset δ̄. (a) The LHC nominal proton beam scenario
with parameters as they are given in Table 1. (b) An ILC-like positron beam, N = 2.0 × 1010, a = 17μm, σz

= 300μm, and h = 1.4 cm.

δ̄ = 0, δ = 1: the bunch is in the midplane and the observation point is at the plate, y = h:

�(1, 0) = 1

2
(
π

2
− 1). (39)

The image field (36) must be added to the direct field of the bunch (32) to meet the boundary
condition at conducting surfaces. It is interesting to note that the last term in Eq. (37) is opposite
in sign to the direct field contribution outside the bunch and cancels it. As a result, the electric field
distribution between parallel conducting plates is given by

Ey,tot(y, ȳ, z, t) = Ey,dir + Ey,im = κ
qλ(z, t)

h

π · cos(π2 δ̄)

sin(π2 δ)− sin(π2 δ̄)
. (40)

In particular, a bunch moving in the midplane generates the field described by

Ey,tot(y, 0, z, t) = κ
2qλ(z, t)

h
· π/2

sin(π2 δ)
. (41)

In other words, in the presence of conducting plates the electric field in front of the plate is enhanced
by the factor π/2 (Fig. 5).

If now we do not assume that the bunch offset δ̄ is small then the full linear approximation in δ
can be derived by means of Eqs. (A.8) and (A.14) from Appendix A. Thus, the vertical component
of the electric field seen by a test particle in the vicinity of the bunch (|δ − δ̄| � 1 ) is given by

Ey,tot(y, ȳ, z, t) ≈ κ
2qλ(z, t)

h

[ 1

δ − δ̄
+ π

4
tan(

π

2
δ̄)+ 2ε1(δ̄)(δ − δ̄)

]
. (42)
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Here we have introduced a generalization of the Laslett electric image coefficient ε1 in the case of
an arbitrary offset:

ε1(δ̄) = π2

32

[ 1

cos2(π2 δ̄)
− 1

3

]
, ε1(0) = π2

48
. (43)

This approximation has to be compared with an alternative representation of Eq. (40) in the form
(A.8):

Ey,tot(y, ȳ, z, t) = κ
2qλ(z, t)

h

π

4

{
tan

[π
4
(δ + δ̄)

]
+ cot

[π
4
(δ − δ̄)

]}
, (44)

to show the origin of each term in Eq. (42). The potential function of the field (44) is

Utot(y, ȳ) = 2qκλ
{

ln cos
[π

4
(δ + δ̄)

]
− ln sin

[π
4
(δ − δ̄)

]}
, (45)

with Ey,tot = −∂U/∂y.
In the linear approximation one can obtain the horizontal component of the electric image field

directly from

∇ �Eim = ∂Ex,im

∂x
+ ∂Ey,im

∂y
= 0, (46)

with the use of Eqs. (A.14) and (36). Thus,

Ex,im(x, ȳ, z, t) ≈ −κ 4qλ(z, t)

h
ε1(δ̄y)δx, (47)

Ey,im(y, ȳ, z, t) ≈ κ
4qλ(z, t)

h

[π
8

tan(
π

2
δ̄y)+ ε1(δ̄y)(δy − δ̄y)

]
, (48)

with δx = x/h, δy = y/h, and δ̄y = ȳ/h. As follows from Eqs. (35) and (36), the image fields produce
defocusing forces in the y-direction. On the other hand, due to Eq. (47), the corresponding forces in
the x-direction produce focusing forces.

Equations (42) and (44) tell us that with an increase of δ̄y, the field strength near the bunch
and the field gradient across the bunch, ∂Ey,im/∂y ∼ 1/ cos2(π2 δ̄y), significantly increase. This is
illustrated by Fig. 5, which shows that with an increase of δ̄y the field distribution between plates
becomes more and more asymmetric. At the opposite ends of the bunch diameter the difference in
the value of the field, �Ey,tot(δ̄y), grows as the displacement increases. For the LHC beam one gets
�Ey,tot(0.1) = 4360V/cm,�Ey,tot(0.5) = 27 290V/cm, and for the ILC beam�Ey,tot(0.1) = 13 640
V/cm and �Ey,tot(0.5) = 85 340 V/cm, respectively. In Sect. 6 we discuss how this effect modifies
the tune shifts.

5. Magnetic images

In the above, we have discussed electric image fields created by an ultra-relativistic bunch. Magnetic
images can be treated in much the same way [13,22]. Let the ferromagnetic boundaries be represented
by a pair of infinitely wide parallel plates at y = +g and y = −g. The magnetic field lines must enter

13/29

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article-abstract/2020/1/013G

01/5714869 by guest on 24 January 2020



PTEP 2020, 013G01 B. B. Levchenko

the magnet pole faces perpendicularly. For magnetic image fields we distinguish between DC andAC
image fields. The DC field penetrates the metallic vacuum chamber and reaches the ferromagnetic
poles. In the case of bunched beams the AC fields are of rather high frequency, and we assume that
they do not penetrate the thick metallic vacuum chamber. The DC Fourier component of a bunched
beam current is equal to twice the average beam current J = qcβλB [13], where B is the Laslett
bunching factor.

A magnetic field, seen by a particle at location y on the y-axis, is generated by successive image
currents with the same sign as the beam itself. In Appendix B it is proven that the resulting field is
described by

Bx,im,DC(y, ȳ, z) = 4κqβλ(z)

gc
B · H (ηy, η̄y). (49)

Here we have made the replacement μ0 = 1/(ε0c2) and used the scaled variables ηy = y/g and
η̄y = ȳ/g; B = nbL/2πR is the bunching factor, nb the number of bunches, R the average accelerator
radius. The structure function H is of the form

H (ηy, η̄y) = 1

2

[ 1

ηy − η̄y
− π

2
· cos(π2 ηy)

sin(π2 ηy)− sin(π2 η̄y)

]
. (50)

In the functional sense, H (ηy, η̄y) = �(η̄y, ηy), as can be noticed by comparing Eqs. (50) and (37).
In the linear approximation in y and ȳ one obtains from the exact formula (50) (see Appendix B

for details)

Bx,im,DC(y, ȳ) � 4κqβλ(z)

g2c
Bε2 · (y + 1

2
ȳ), (51)

where ε2 = π2/24 is the Laslett form factor for infinite parallel plate magnet poles4. As above for
electric images, we define a generalized form of ε2 for an arbitrary offset η̄y as follows:

ε2(η̄y) = π2

32

[ 1

cos2(π2 η̄y)
+ 1

3

]
, ε2(0) = π2

24
. (52)

Thus, the complete linear approximations in ηx and ηy (see Appendix B) are given by

Bx,im,DC(y, ȳ, z) � 4κqβλ(z)

gc
B
[π

8
tan(

π

2
η̄y)+ ε2(η̄y)(ηy − η̄y)

]
(53)

and

By,im,DC(x, ȳ, z) � 4κqβλ(z)

gc
Bε2(η̄y)ηx. (54)

For further applications, we point out that on the bunch axis, ηy = η̄y, from Eq. (B.5) one gets

H (η̄y, η̄y) = π

8
tan(

π

2
η̄y). (55)

4 In Ref. [13] Eq. (18.57) should be read with the factor (y + ȳ/2) as in Eq. (51).
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The contribution of the magnetic AC image field due to eddy currents in vacuum chamber walls is
similar to electric image fields,

Bx,im,AC(y, ȳ, z) = −4κqβλ(z)

hc
(1 − B) ·�(δy, δ̄y), (56)

and therefore

By,im,AC(x, ȳ, z) = −4κqβλ(z)

hc
(1 − B)ε1(δ̄y)δx, (57)

where the factor (1 − B) accounts for the subtraction of the DC component. Thus, at δx = 0 the net
AC field is tangential to the surface.

The magnetic image fields must be added to the direct magnetic field (2) to meet the boundary
condition at ferromagnetic surfaces. That is, the summary horizontal component of the magnetic
field between the conducting plates is

Bx,tot(y, ȳ) = Bx,dir + Bx,im,DC + Bx,im,AC

= −πκqβλ

hc

{(1 − B) cos[(π/2)δ̄y]θ(1 − δy)

sin[(π/2)δy] − sin[(π/2)δ̄y]
+ h

g
· B cos[(π/2)ηy]

sin[(π/2)ηy] − sin[(π/2)η̄y]
}

. (58)

The step function θ(1−δy) accounts for the fact that the AC fields do not penetrate the thick metallic
vacuum chamber. For a more detailed discussion of the subject see Refs. [23,24].

6. Image forces and tune shifts

Direct space-charge fields, as well as fields due to image charges and currents, shift the betatron
frequencies (tunes). We have to distinguish between coherent tune shifts, which express a change
of the betatron frequency when the bunch oscillates as a whole, and incoherent tune shifts, which
change the single particle tune. In this section we again assume the bunch to have a circular cross
section of radius a and a uniform density.

In the next two subsections we restrict our analysis to an idealized case of a vacuum chamber
and/or ferromagnetic poles as two infinite parallel plates and the motion of a bunch in the vertical
y-direction5. Infinite parallel plates are a good approximation for finite-width collimator parallel
plates, given the small transverse beam size in modern accelerators. Our equations for tune shifts
are valid at an arbitrary bunch offset and presented in notations as given in Refs. [14] and [25]. This
allows us to compare results obtained by different authors. In Sect. 6.3 we consider a more realistic
example of a finite-length collimator with parallel conducting jaws.

6.1. Coherent motion and tune shift

The motion of the bunch center δ̄(s) in the absence of an external focusing force is described by the
equation

d2δ̄(s)

ds2 = Fy,im

Mbγ hβ2c2 , (59)

5 For this reason, below we omit the subscripts x and y for variables δ and η. If there are no ferromagnetic
poles, one has to set g = ∞ in each equation below.
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Fig. 6. Numerical solutions of Eqs. (59) and (62). The dependence of the bunch trajectory along the beam path
on the initial value δ̄0. (a) The linear focusing is switched off, transverse motion only under the influence of
the image forces. The bunch impacts the plate at δ(si) = 1. (b) The coherent oscillation of the bunch under the
influence of the linear focusing and image forces (solid lines). The dashed line shows the betatron oscillation
at δ̄0 = 0.8 without taking account of the image forces, I = 0.

where s = βct and the Lorentz force is of the form

Fy,im = Qb(Ey,im + βcBx,im)

= 4κQbqλ

h

[( 1

γ 2 + β2B
)
�(δ, δ̄)+ β2(h/g)BH (η, η̄)

]
. (60)

Here we have applied the results of the previous section; Mb = Nmp is the bunch mass, Qb = Nq
the bunch charge. On the bunch axis, the electric and magnetic structure functions are

�(δ̄, δ̄) = π

8
tan(

π

2
δ̄), H (η̄, η̄) = π

8
tan(

π

2
η̄). (61)

Under the influence of the force (60) the bunch is attracted by a conducting plate and at some point
si hits the plate. The actual position of the impact point depends on the initial value constraints, in
particular, the bunch offset δ̄(0) = δ̄0. Figure 6(a) shows the numerical solutions of Eq. (59) with a
set of initial conditions (δ̄0, δ̄′0 = 0) at δ̄0 = 0.1, 0.5, 0.8. For example, let protons in the bunch be
at the energy 7 TeV and the machine parameters are as in Table 1 [26]. Then the impact points si(δ̄0)

are located at distances si(0.1) = 453.3 m, si(0.5) = 164.2 m, and si(0.8) = 61.0 m, respectively.
It should be noted that Eq. (59) is true in the approximation, when the bunch velocity along the

z-axis is constant, and much larger than the drift velocity in the y direction, vz � βc 	 vy. In this
case, the bunch path is a smooth curve, as shown in Fig. 6(a). However, with a more rigorous account
of the effect of crossed electric and magnetic fields from the images, it is necessary to solve together
a system of two coupled differential equations for movements along the z and y directions. In this
case, the bunch trajectory is a cycloid-like curve.
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The coherent motion of the bunch in the y-direction is significantly altered in the presence of the
linear focusing provided by quadrupoles and described by the equation

d2δ̄(s)

ds2 + K2
0 δ̄(s)− I

{π
2

( 1

Bβ2γ 2 + 1
)

tan[π
2
δ̄(s)] + πh

2g
tan[πh

2g
δ̄(s)]

}
= 0. (62)

Here

K2
0 =

(ν0

R

)2
, I = rpλB

h2γ
,

where rp = κq2/mpc2 is the classical proton radius and the meaning of the other parameters is
explained in Table 1. With the values of the parameters6 from Table 1, K2

0 = 2.041 × 10−4 m−2 and
I = 1.73 × 10−5 m−2. Thus, for small δ̄0 the linear focusing is a driving force.

Figure 6(b) shows numerical solutions of Eq. (62) for the same initial conditions as above. The
dashed line shows a solution of the betatron equation (62) in the absence of the image effects, I = 0.
A comparison of the two curves at δ̄0 = 0.8 demonstrates how big the influence of images on the
coherent tune shift is.

To derive an analytical expression for the coherent tune shift for an arbitrary offset we proceed in
the standard way [14,22,23]. In the linear theory, we assume that the forces are proportional to the
displacement. Therefore, we expand the structure functions � and H (61) in a power series in the
neighborhood of δ̄0, δ̄ = δ̄0 +�, keeping only terms up to first order in �:

�(δ̄0,�) = π

8
tan

[π
2
(δ̄0 +�)

]
≈ π

8
tan

(π
2
δ̄0

)
+ ξ1(δ̄0)�(s), (63)

H (η̄0,�) ≈ π

8
tan

(π
2
η̄0

)
+ h

g
ξ2(η̄0)�(s). (64)

Here we have introduced generalized Laslett coherent tune shift form factors,

ξ1(δ̄) = π2

16 cos2(π2 δ̄)
, ξ1(0) = π2

16
,

ξ2(η̄) = π2

16 cos2(π2 η̄)
, ξ2(0) = π2

16
, (65)

for the image fields from the vacuum chamber and the magnet pole. Substituting expressions for
�(δ̄0,�) and H (η̄0,�) in Eq. (62), we get7

�ν(coh)
y (δ̄0) = − R〈β̂〉

2mpc2γβ2

∂Fy,im

∂y
= − 2rpJR〈β̂〉

qβcγ

[( 1

Bβ2γ 2 + 1
)ξ1(δ̄0)

h2 + ξ2(η̄0)

g2

]
. (66)

One must note that the image coefficients ε1 and ξ1, as well as ε2 and ξ2, are not independent
but are rooted in the same function �(δ, δ̄) and H (η, η̄), correspondingly. Therefore, in the linear
approximation these functions are related via

ε1(δ̄) = 1

2

[
ξ1(δ̄)− π2

48

]
, ε2(η̄) = 1

2

[
ξ2(η̄)+ π2

48

]
. (67)

6 With νy0 � νx0 = ν0.
7 We add a hat to the amplitude function β̂ to avoid confusion with the relativistic velocity β.
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Table 1. The LHC machine and beam parameters [26] used in calculation of the coherent and
incoherent tune shifts.

h, collimator half-gap [m] 1.2 × 10−3

g, magnet poles half-gap [m] 4.0 × 10−2

N , bunch population 1.15 × 1011

σz, r.m.s. bunch length [m] 7.55 × 10−2

a, r.m.s bunch radius [m] 1.67 × 10−5

B, bunching factor 0.1993
λ = N/

√
2πσz, linear density

J = qβcλB, average beam current
mp, proton mass [GeV] 0.938
γ , Lorentz factor 7463
ν0 = R/〈β̂〉, betatron tune 60.61
〈β̂〉, average β̂-function [m] 70
2πR, ring circumference [m] 26 658.883

6.2. Incoherent tune shifts

Let us now evaluate the effect of the image forces on the betatron oscillation of the particles in a
bunch. The motion of a test particle in a displaced bunch in the presence of the space-charge force
and the image fields is described by the equation

d2δ

ds2 + K2
0 δ = (Fy,sc + Fy,im)

mhγβ2c2 . (68)

Here Fy,sc = 2κq2λy/a2γ 2 is the Lorentz force due to the bunch space-charge [13] and Fy,im is
defined in Eq. (60). Inserting the linear approximations (A.14) and (B.7) into Eq. (68), in the same
manner as above one gets a vertical tune shift:

�ν(inc)
y (δ̄)=− 2rpJR〈β〉

qβcγ

[ 1

Bβ2γ 2

( 1

2a2 + ε1(δ̄)

h2

)
+ ε1(δ̄)

h2 + ε2(δ̄)

g2

]
. (69)

The above analysis can be carried out similarly for the x-motion. The result is

�ν(inc)
x (δ̄)= 2rpJR〈β〉

qβcγ

[ 1

Bβ2γ 2

(ε1(δ̄)

h2 − 1

2a2

)
+ ε1(δ̄)

h2 + ε2(δ̄)

g2

]
. (70)

Equations (66), (69), and (70) generalize the Laslett tune shifts to the case of the arbitrary bunch
offset between parallel conducting plates and ferromagnetic poles.

As numerical examples, with machine and beam parameters from Table 1, let us compare the
contribution of each term in Eq. (69) at two distinct values of δ̄, δ̄ = 0 and δ̄ = 0.8:

�ν(inc)
y (0) = −(3.8 × 10−4 + 1.9 × 10−7 + 2.113 + 3.8 × 10−3) ≈ −2.117,

�ν(inc)
y (0.8)=−(3.8 × 10−4 + 2.9 × 10−6 + 32.136 + 3.81 × 10−3) ≈ −32.14 .

Thus, the third term gives the main contribution that increases with δ̄, and the transverse particle
dynamics in a bunch is defined by the influence of electric images.

6.3. Collimator of a finite length

The representation of a vacuum chamber and magnetic poles in the form of infinite parallel plates
is a very useful mathematical abstraction. However, in real accelerators, all components are finite in

18/29

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article-abstract/2020/1/013G

01/5714869 by guest on 24 January 2020



PTEP 2020, 013G01 B. B. Levchenko

size and at the same time some of these components include elements that are structurally designed
as parallel conductive and ferromagnetic flat surfaces. In circular accelerators such as LHC [26] and
the future HL-LHC [27], flat parallel surfaces are parts of different types of collimators, the normal
conducting separator and orbit correction dipole magnets8. As a rule, collimator jaws have a length
of 600–1400 mm, and their width is about 50 mm. Similarly, the poles of a dipole magnet have a
length of 2000–3400 mm and a pole width of 60 mm [27]. With transverse beam sizes as small as
200μm, the representation of collimators and dipole magnets in the form of infinite parallel plates
is a good approximation for these elements and it is legitimate to apply here the results obtained in
the previous sections.

Suppose that the accelerator ring only includes one collimator at point s0. A collimator is a short
straight section of an accelerator and does not have a guide magnetic field. The motion of the bunch
center δ̄ in the collimator is therefore described by Eq. (59), with Fy,im from Eq. (60), where we set
g = ∞. In the rest of a circular accelerator the motion of the bunch is described by Eq. (62) with
I = 0.

Now we would like to derive in the framework of linear theory an analytical expression for the
coherent tune shift due to the image effects in a finite-size collimator. For more than a single collimator
one would simply add the individual contribution from each collimator to find the total tune shift.

The image fields Ey,im and Bx,im,AC act along the same line, so we introduce the effective field Beff

and decompose it into dipole-like and quadrupole-like parts with the use of Eqs. (36), (56), and (63),

Beff = Bx,im,AC + Ey,im/βc = BD + Geff ·�(s), (71)

where

BD = κ
πqλβB

2hc

(
1 + 1

Bβ2γ 2

)
tan

(π
2
δ̄0

)
, Geff = κ

4qλβB
hc

(
1 + 1

Bβ2γ 2

)
ξ1(δ̄0). (72)

Image fields act as a perturbation on the betatron oscillation of the bunch. Thus, the equation of
motion of the perturbation�(s) of the transverse coordinate of the bunch with the offset δ̄ = δ̄0 +�
takes the form

�
′′ − KQ�(s) = KD, (73)

with

KD = π

2
I
(

1 + 1

Bβ2γ 2

)
tan

(π
2
δ̄0

)
, KQ = 4I

(
1 + 1

Bβ2γ 2

)
ξ1(δ̄0). (74)

As the analysis in Ref. [13], Sect. 12.1.1 shows, dipole terms of the type KD cause a shift in the
beam path without affecting the focusing properties of the beam line. In contrast, terms that depend
linearly on the transverse bunch offset from the orbit will affect focusing and the stability of the
transverse motion of the beam, because these perturbations act like quadrupoles.

The longitudinal size of the collimator lc is small in comparison with the wavelength of betatron
oscillations, so we consider the collimator as a point source of perturbation. Let us assume that such

8 A list of collimators for the LHC Run 2 (in 2015) includes 108 items and is shown on p. 151 of the technical
design report “High-Luminosity Large Hadron Collider (HL-LHC)” [27].
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a perturbation at point (s0, δ̄0) is created by a thin lens of the focusing strength σim = g ∗ lc [13,28].
Here g = qGeff /hmpcβγ , with Geff from Eq. (72).

The evolution of a bunch through elements of an accelerator is most clearly described by the
product of transfer matrices [13,28,29]. The transfer matrix for a full revolution is M = MpM0,
where for the lens

Mp =
(

1 0
σim 1

)
(75)

and for the unperturbed part of the ring

M0 =
(

cos(ψ0) β̂0 sin(ψ0)

− 1
β̂0

sin(ψ0) cos(ψ0)

)
. (76)

Here ψ0 = 2πν0 is the unperturbed phase advance per turn and β̂0 is the unperturbed betatron
function at the location of the perturbation, s = s0. On the other hand, the perturbed transfer matrix
M can also be written in the form (76) if we replace β̂0 by β̂ and ν0 by ν, where ν is the the betatron
tune in the presence of the field gradient, Geff , from images.

By equating the traces of the perturbed matrix and the transfer matrix for a full revolution, Tr(M) =
Tr(MpM0), with setting ν = ν0 + �ν and |�ν| � ν0/2π , we get the tune shift due to this
perturbation:

�ν(im)(δ̄0, h, lc, β̂0) = − β̂0σim

4π
= − β̂0

π
I
(

1 + 1

Bβ2γ 2

)
ξ1(δ̄0) · lc. (77)

The total tune shift is the sum of the individual contribution from each collimator:

�ν
(im)
tot =

nc∑
i=1

�ν(im)(δ̄0i, hi, lci, β̂0i), (78)

where nc is the number of collimators along the accelerator circumference.
As stated in Ref. [26], p. 100, the β̂-functions at the collimators range from 27–360 m and the

range of collimator half-gaps h is 4.7–11.1 mm for the injection optics and 1.2–3.8 mm for the
squeezed optics. On evaluating with Eq. (77) the numerical values of �νc(δ̄0), we set these values
of β̂0, h = 1.2 mm, lc = 1 m, and the machine and beam parameters from Table 1. The results are
presented in Fig. 7.

Figure 7 shows that at δ̄0 < 0.6 the total tune shift due to the quadrupole-type image fields
in collimators, ∼ nc · |�νim(δ̄0)|, nc ∼ 100, does not exceed the safe value of the order of 0.1.
However, if the beam offset accidentally exceeds δ̄0 ≈ 0.6 ÷ 0.7, it is possible to develop transverse
instability and shift the betatron frequency into the resonance region.

7. Summary

This paper presents new analytical expressions for electric and magnetic self-fields produced by a
bunch shaped as a cylinder with a circular and an elliptical cross section. Calculations are done in the
relativistic limit. These expressions show the correct Coulomb asymptotic and in the near-field zone
coincide with the external self-fields of a continuous beam. In the ultra-relativistic limit, external
fields of a bunch takes the universal form (32) and (20).
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Fig. 7. Variation of |�νc(δ̄0)| with the bunch offset at β̂0 = 23 m and β̂0 = 360 m.

We reanalyzed the problem summation of image fields generated by a charged bunch between
infinitely wide parallel conducting plates and/or ferromagnetic poles. The exact 1D solutions for
resulting electric and magnetic image fields are represented by the structure functions �(δ, δ̄) and
H (η, η̄), respectively.

The new expressions for modified fields are applied to study the coherent and incoherent tune shifts
for both infinite and finite parallel flat surfaces and allow within an improved linear approximation
generalization of the Laslett image coefficients in the case of an arbitrary bunch offset δ̄. These image
coefficient functions, ε1(δ̄) and ξ1(δ̄), as well as ε2(η̄) and ξ2(η̄), are not now independent but are
rooted in the functions �(δ, δ̄) and H (η, η̄), correspondingly. Equation (77) and Fig. 7 allow us to
evaluate how the gradient of image fields in a finite-size collimator affects the betatron frequency of
the beam. In particular, if the beam offset in collimators accidentally exceeds δ̄0 ≈ 0.6 ÷ 0.7, it is
possible to develop transverse instability and shift the betatron frequency into the resonance region.

After a first version of the present paper became public [30] the author learned9 about the old
textbook [31] and article [32], where only the scalar potential function of the electric field generated
by a line charge between parallel earthed conducting planes is calculated with the use of conformal
mapping. In addition, in Ref. [32] are calculated incoherent and coherent image coefficients. The
results of Ref. [32] for the image coefficients and tune shifts were rederived in Ref. [33] and several
misprints are corrected. This allows us to directly compare the results obtained by different methods.

Let us set, in Eq. (3) from Sect. 4.20 of Ref. [31], a = 2h, b = h + ȳ, and x = 0 (transition to a 1D
problem). Then, by expressing hyperbolic sinh via trigonometric functions sin and cos, one exactly
recovers Eq. (45). Similarly, if one sets, in Eq. (27) of Ref. [32], x = x1 = 0 and y1 = ȳ and applies
the double angle formula for cos, one gets Eq. (45). The field coefficients (29), (30), and (32) of
Ref. [32] match Eqs. (43), (65), and (52) of the present paper. However, expressions for the resulting
electric and magnetic fields between the conducting plates (40), (44), (58) and the relations of type
(67) between image coefficients and their origin were not revealed in Ref. [32].

9 Special thanks to the anonymous reader for providing Refs. [31,32] and useful comments.
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The two parallel infinite plates is a particular case of a rectangular vacuum chamber when the width
to height w/h of the rectangle goes to infinity. In Ref. [33] this limit was considered only for a centered
beam, δ̄ = 0. The electric and magnetic image coefficients as well as the tune shift coefficients are of
the same values as ε1,2(0) and ξ1,2(0) above. The equations for the vertical and horizontal, incoherent
and coherent betatron tune shifts [33], after some rearrangements and neglecting the neutralization
factor, take the same form as Eqs. (66), (69), and (70) at δ̄ = η̄ = 0.

Tune shifts and Laslett coefficients for a rectangular and a circular beam pipe were also calculated
in Refs. [24,34]. Due to the fact that the radial and vertical betatron oscillations are coupled in
general, the tune shift and image coefficients accordingly form second-rank tensors. We can state a
guess that the relations of type (67) are somehow connected with this fact; see Eq. (15) in Ref. [34].
However, in Ref. [34] explicit formulas have been given only for a square vacuum chamber, w = h;
therefore the passage to the limit of parallel plates is impossible.

To conclude, the results presented here can serve as a starting point in applying the method of
images to find exact solutions in 2D problems, calculating the field emission current in a collimator
and a study of beam-induced multipacting. All these problems are relevant for the High-Luminosity
Large Hadron Collider under construction [35].
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Appendix A. Electric image fields

Here we derive the formula (37).
Let us split the contribution of all image fields (34) given in braces into two parts,

(2h − y1)
−1 − (2h + y1)

−1 − (4h − y2)
−1 + (4h + y2)

−1

+ (6h − y1)
−1 − (6h + y1)

−1 − (8h − y2)
−1 + (8h + y2)

−1

+ (10h − y1)
−1 − (10h + y1)

−1 − (12h − y2)
−1 + (12h + y2)

−1 + · · · (A.1)

=
∞∑
k

�
(−)
k (y1, h)−

∞∑
m

�(+)m (y2, h), (A.2)

where �(−)k represents the contribution from the negatively charged images and �
(+)
m is the

contribution from the positively charged images:

�
(−)
k (y1, h) = 1

2kh − y1
− 1

2kh + y1
= 2

h
· δ1

(2k)2 − δ2
1

, (A.3)

�(+)m (y2, h) = 1

2mh − y2
− 1

2mh + y2
= 2

h
· δ2

(2m)2 − δ2
2

. (A.4)

Here and hereinafter, indexes k and m have odd, k = 1, 3, 5, . . . , and even, m = 2, 4, 6, . . . , values,
δ1 = y1/h and δ2 = y2/h.
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Now it is evident that the space structure of the image fields between plates is described by a
specific function �(δ1, δ2); we term this the structure function:

∞∑
k

�
(−)
k −

∞∑
m

�(+)m = 2

h
�(δ1, δ2), (A.5)

with

�(δ1, δ2) = δ1

∞∑
k

1

(2k)2 − δ2
1

− δ2

∞∑
m

1

(2m)2 − δ2
2

. (A.6)

The structure function � depends only on the scaled variables.
To proceed further, recall the decompositions (1.421) [36]

tan(
π

2
z) = 4

π
z

∞∑
n=1

1

(2n − 1)2 − z2 ,

cot(πz) = 1

πz
− 2z

π

∞∑
n=1

1

n2 − z2 . (A.7)

After some algebraic manipulation and the use of Eq. (A.7), we get from Eq. (A.6) a new exact and
compact expression of the structure function:

�(δ1, δ2) = 1

2

[π
4

tan(
π

4
δ1) + π

4
cot(

π

4
δ2) − 1

δ2

]
. (A.8)

Now, if we recall that δ1 = (y + ȳ)/h = δ + δ̄ and δ2 = (y − ȳ)/h = δ − δ̄, we obtain

�(δ, δ̄) = 1

2

[π
2

· cos(π2 δ̄)

sin(π2 δ)− sin(π2 δ̄)
− 1

δ − δ̄

]
. (A.9)

For some applications it is more practical to use the relations between the Bernoulli numbers and
the trigonometric functions. To do this, recall the decompositions (1.411) [36]

z · tan(z) =
∞∑

n=1

(22n − 1)(2z)2n

(2n)! |B2n|,

z · cot(z) = 1 −
∞∑

n=1

(2z)2n

(2n)! |B2n|, (A.10)

where B2n are Bernoulli numbers, B2 = 1/6, B4 = −1/30, B6 = 1/42 etc. After substituting Eq.
(A.10) in Eq. (A.8), we find the following form of the structure function:

�(δ1, δ2) = 1

2

∞∑
n=1

[
(22n − 1)δ2n−1

1 − δ2n−1
2

] π2n

22n(2n)! |B2n| . (A.11)

Using only the linear terms, we recover the part derived by Laslett [7] (see Eq. (35)):

�(δ, δ̄) = 1

h
· ε1(y + 2ȳ). (A.12)

23/29

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article-abstract/2020/1/013G

01/5714869 by guest on 24 January 2020



PTEP 2020, 013G01 B. B. Levchenko

An inspection of Eq. (A.11) shows that the contributions of negatively charged images are enhanced
by the factor 22n−1, as compared with the contributions from the positively charged images. Equation
(A.11) also shows that for y on the bunch axis, i.e., δ2 = 0, the contributions from the positively
charged images vanish.

At first glance, Eqs. (A.8) or (A.9) are singular at δ2 = 0 or δ = δ̄, respectively. However, this is
not the case. Starting once again from Eq. (A.11) with δ2 = 0 and taking Eq. (A.10) into account,
we formally get

�(δ̄, δ̄) = π

8
tan

(π
2
δ̄
)
. (A.13)

Knowing the exact form of�(δ, δ̄), one is able to develop a variety of approximation. For instance,
to study particle dynamics in a bunch with a significant offset, one needs to decompose Eq. (A.8)
assuming δ2 � 1. The result is

�(δ̄, δ2) � �(δ1, δ2)|δ2=0 + ∂�

∂δ2

∣∣∣
δ2=0

· δ2 = π

8
tan(

π

2
δ̄)+ π2

32

[ 1

cos2(π2 δ̄)
− 1

3

]
δ2. (A.14)

Appendix B. Magnetic image fields

Let the boundary of magnet pole faces be represented as two parallel plates located at y = ±g. A
magnetic field, seen by a particle at location y on the y-axis, is generated by the successive image
currents with the same sign as the beam itself [14,22]. Therefore, instead of the series (A.1) we get

(2g − y1)
−1 − (2g + y1)

−1 + (4g − y2)
−1 − (4g + y2)

−1

+ (6g − y1)
−1 − (6g + y1)

−1 + (8g − y2)
−1 − (8g + y2)

−1

+ (10g − y1)
−1 − (10g + y1)

−1 + (12g − y2)
−1 − (12g + y2)

−1 + · · · (B.1)

=
∞∑
k

�k(y1, g)+
∞∑
m

�m(y2, g)

= 2

g
H (η1, η2) (B.2)

where �k and �m are of the same functional form as Eqs. (A.3) and (A.4) with an interchange of
variables h → g, δ1 → η1 = y1/g, δ2 → η2 = y2/g. Indexes k and m have odd, k = 1, 3, 5, . . . ,
and even, m = 2, 4, 6, . . . , values, respectively.

Now, if we are to proceed in the same manner as in Appendix A, we obtain from Eq. (B.2) an
expression for the structure function of the image magnetic fields:

H (η1, η2) = 1

2

∞∑
n=1

[
(22n − 1)η2n−1

1 + η2n−1
2

] π2n

22n(2n)! |B2n| . (B.3)

For |y| � g and |ȳ| � g, this gives, to first order in η1 and η2,

H (y, ȳ) = ε2

g
· (y + 1

2
ȳ) = ε2(η + 1

2
η̄). (B.4)

The use of Eq. (A.10) in Eq. (B.3) gives the magnetic structure function that we are looking for:

H (η1, η2) = 1

2

[π
4

tan(
π

4
η1) − π

4
cot(

π

4
η2) + 1

η2

]
. (B.5)
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Now, if we recall the relationships η1 = (y + ȳ)/g = η+ η̄ and η2 = (y − ȳ)/h = η− η̄, we obtain

H (η, η̄) = 1

2

[ 1

η − η̄
− π

2
· cos(π2 η)

sin(π2 η)− sin(π2 η̄)

]
. (B.6)

With the same reasoning as in Appendix A, the full linear approximation in η2 is given by

H (η, η̄) � π

8
tan(

π

2
η̄) + ε2(η̄)(η − η̄), (B.7)

where ε2(η̄) is defined in Eq. (52).

Appendix C. “The principle of electric images”

Throughout his long and fruitful scientific life, William Thomson (later Lord Kelvin) was in active
correspondence with his father, the well known mathematician James Thomson, as well as with
leading scientists in Great Britain and Europe. The topics of the letters were both personal and
discussion of the latest scientific news and emerging new ideas. In addition, at the insistence of his
father, W. Thomson kept diaries in mathematics and physics. These letters and diaries have been
preserved and published [37,38], allowing us to trace the roots of ideas and the time of their origin.

As follows from the mathematical diary of 21-year-old W. Thomson [38], the story of “the prin-
ciple of electric images” began in 1845, during his four-month stay in Paris. This trip abroad had
several objectives. First, to improve the physical condition and also personally get acquainted with
the leading French mathematicians (Liouville, Cauchy, Sturm), physicists (Arago, Biot, Pouillet),
chemists (Regnault) and attend their lectures at the École Polytechnique and the Collège de France
[38]. Before Thomson had been a month in Paris he sent to Liouville’s Journal de Mathématiques
(vol. X. p. 137, 1845) a paper entitled “Démonstration d’un théorème d’analyse”, which two years
later he expanded in the Cambridge and Dublin Mathematical Journal (vol. II. p. 109, March 1847)
under the title: “On certain definite integrals suggested by problems in the theory of electricity”.
This article allowed Thomson to demonstrate his skills as a mathematician and identified his area of
interest as a natural philosopher.

During long conversations and discussions of the results of Faraday’s experiments and problems in
the development of the mathematical theory of electricity, J. Liouville engaged W. Thomson to write
a memoir for the Institute, with his vision of their solution [38]. Common interests in mathematics
and physics made friends of Thomson and Liouville. Liouville’s friendship meant much to Thomson.
To Liouville he confided his ideas about electric images.

From the mathematical diary ([38], p. 126): “March 15, 1845—I am occupied the whole day in
Regnault’s physical laboratory at the Collège de France. At spare times I have been reading Poisson’s
memoirs on electricity, which I find among the Memoirs of the Institute in Regnault’s cabinet. I have
applied my ideas on induction in spheres and the principle of successive influence, and get a very
simple solution, in the form Poisson gives it, for two spheres. I think I can work it out for i spheres
…The image of an exterior point, in a conducting sphere, is a p. in the interior, with opposite electr.”

In a footnote added in 1872 to one of his 1848 articles, Thomson describes this period as follows
(Ref. [3], p. 52):

“…A complete exposition of the principle of electrical images (of which a short account was
read at the late meeting of the British Association at Oxford) has not yet been published; but
an outline of it was communicated by me to M. Liouville in three letters, of which extracts
are published in the Journal de Mathématiques (1845 and 1847, vols. X., XII.). A full and
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elegant exposition of the method indicated, together with some highly interesting applications
to problems in geometry not contemplated by me, are given by M. Liouville himself, in an
article written with reference to those letters, and published along with the last of them. I
cannot neglect the present opportunity of expressing my thanks for the honour which has thus
been conferred upon me by so distinguished a mathematician, as well as for the kind manner
in which he received those communications, imperfect as they were, and for the favourable
mention made of them in his own valuable memoir.”

Thomson does not seem to have made the acquaintance of G. G. Stokes till after his return from
Paris in May 1845; at least Stokes’s name never occurs in Thomson’s earlier letters or in his diary.
Yet he was settled in Pembroke as a junior fellow, having been Senior Wrangler in 1841. It seems
that it was the task of editing the Cambridge and Dublin Mathematical Journal that brought them
together; and Stokes’s penchant for experimenting led Thomson often to seek his advice. Stokes was
indeed guide, philosopher, and friend to his eager and enthusiastic disciple. Many years later Lord
Kelvin said (Ref. [39], p. 318): “For sixty years of my own life, from 1843 to 1903, I looked up to
Stokes as my teacher, guide, and friend.” For more than fifty years (1846–1903) each was in the
habit of communicating to the other the progress of his ideas.

On June 20, 1847, Thomson writes from Peterhouse to his father about the approaching meeting
of the British Association (Ref. [38], p. 204): “…I have been getting out various interesting pieces
of work, along with Stokes, connected with some problems in electricity, fluid motion, etc., that I
have been thinking on for years, and I am now seeing my way better than I could ever have done by
myself, or with any other person than Stokes.”

In July 1847, Thomson and Stokes attended the meeting of the British Association at Oxford with
talks entitled “On Electrical Images” (by W. Thomson) and “On the Resistance of a Fluid to two
Oscillating Spheres” (by G. G. Stokes). One year later the Report of the Seventeenth Meeting of the
British Association was published; however, the results of Thomson and Stokes were presented by
short abstracts. Some extracts from these abstracts follow.

W. Thomson [2]:

“There is no branch of natural philosophy of which the elementary laws are more simple than
those which regulate the distribution of electricity upon conducting bodies; yet its impractica-
bility has always been the reproach of the mathematical theory of electricity. Very few of the
varied and interesting problems which it presents have been made subjects for investigation, on
account of the apparently extreme complexity of the conditions to be satisfied; and even when
results have been forced from it by the analytical skill and energy of a Poisson, the physical
interest has been almost lost in the struggle with mathematical difficulties, and the complexity
of the solution has eluded that full interpretation without which the mind cannot be satisfied
in any analytical operations having for their object the investigation or expression of truth in
natural philosophy …

The subject of this communication is ‘the principle of electrical images,’ which is suggested
by Green’s elementary propositions, as the proper way of treating a great variety of problems
that present themselves with reference to the distribution of electricity on spherical conductors.
The effect of a body electrified in any given manner upon an uninsulated sphere is shown to be
completely represented by what may be called ‘the image of the electrified body in the sphere,’
and a simple geometrical construction is given by which this image may be described. When
an electrified body is placed in the neighbourhood of two uninsulated spheres, an inductive
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effect is produced which may be represented by an infinite series of ‘successive images’ in
each sphere. An algebraic expression of this result leads to solutions, by means of converging
series, of the various problems which occur with reference to the distribution of the induced
electricity, and the attractions exerted by the two spheres. When a single conductor bounded
by segments of two spherical surfaces cutting at an angle which is a submultiple of two right
angles is electrified by the influence of a charged body, the effect may be represented by means
of a finite number of images disposed in a symmetrical manner in the circumference of a circle
passing through the exciting body, and cutting the two spherical surfaces at right angles. The
principle of electrical images, as applied in these two cases, may be illustrated by a reference
to the successive images of a candle placed between two parallel plane mirrors, and to the
symmetrically arranged images which are seen in the kaleidoscope.”

G. G. Stokes [4]:

“The object of this communication was to shew the application of Professor Thomson’s method
of images to the solution of certain problems in hydrodynamics …

The investigation mentioned in the preceding paper arose out of the communication to me by
Sir William Thomson of his beautiful method of electrical images before he had published it.
Having myself paid more attention to the motion of fluids than to electricity, I endeavoured to
find if it would in any manner apply to the solution of problems in the motion of fluids. I found
that what is called above a singular point of the second order10 had a perfect image in a sphere
when its axis was in the direction of a radius, which led to a complete solution of the problem
mentioned in the paper when one sphere lay wholly outside or inside the other.”

Many years later, an extended version of this report was published in Ref. [40]. After this article,
the method of images became one of the problem-solving techniques in hydrodynamics [5,6].

It should be noted that the technique of electrical images is described by Thomson fragmentary
and scattered across articles of different years. The most consistent presentation of this method with
use of the idea of the potential and of equipotential surfaces is given in “A Treatise on Electricity and
Magnetism” by Maxwell [21]. This is how Maxwell begins to introduce the reader to the principle
of image charges:

“…In applying this method to the most elementary case of a sphere under the influence of
a single electrified point, we require to expand the potential due to the electrified point in a
series of solid harmonics, and to determine a second series of solid harmonics which express
the potential, due to the electrification of the sphere, in the space outside. It does not appear
that any of these mathematicians observed that this second series expresses the potential due
to an imaginary electrified point, which has no physical existence as an electrified point, but
which may be called an electrical image, because the action of the surface on external points
is the same as that which would be produced by the imaginary electrified point if the spherical
surface were removed.

This discovery seems to have been reserved for Sir W. Thomson, who has developed it into
a method of great power for the solution of electrical problems, and at the same time capable
of being presented in an elementary geometrical form …” [21]

10 Currently called a doublet or dipole.
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Thus, the method of image charges and currents allows us to solve problems on the distribution
of real charges and fields not only due to the conductive surface of the simplest geometric form, a
plane, but also for conductors of more complex geometric shapes.
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