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RATIONAL AGENCY FROM

A TRUTH-FUNCTIONAL PERSPECTIVE

Abstract. The aim of the present paper is to introduce a system, where
the epistemic state of an agent is represented truth-functionally. In order
to obtain this system, we propose a four-valued logic, that we call the
logic of rational agent, where the fact of knowing something is formalized
at the level of valuations, without the explicit use of epistemic knowledge
operator. On the basis of this semantics, a sound and complete system with
two distinct truth-functional negations (an “ontological” and an “epistemic”
one) is provided. These negations allow us to express the statements about
knowing or not knowing something at the syntactic level. Moreover, such
a system is applied to the analysis of knowability paradox. In particular,
we show that the paradox is not derivable in terms of the logic of rational
agent.

Keywords: many-valued logics; generalized truth values; Church-Fitch’s
paradox

1. Introduction

It is common to formalize the expressions of the form “agent a knows
that p” by the use of an epistemic operator: Ka p. Hintikka [13] provides
a non-functional semantic interpretation of this operator in terms of
possible worlds semantics. His interpretation is intuitively clear when
the formalization of the fact of knowing something is represented as
syntactic operator Ka. But sometimes the use of this operator may
bring to logical anomalies, for example, to the Knowability Paradox. We
ask then if the use of Ka-operator is the only way to represent the fact
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of knowing or not knowing something in formal system. The aim of the
present paper is to introduce a system, where the epistemic operator for
knowledge (Ka-operator) does not appear, but the fact of knowing or not
knowing some truths (or the falsity of some statement) can be defined
truth-functionally. There are two principal sources behind this paper.

On the one hand, it contributes to a project of generalized truth val-
ues and corresponding logics, more specifically, to its brand new branch
labeled as “logics of generalized classical truth values”. The underpinning
idea and the first appearance of a logic of generalized truth values dates
back to the famous “useful four-valued logic” introduced by J. M. Dunn
and N. Belnap in the seventies (cf. [7, 3, 4]), though the method was
finalized well after by Y. Shramko et al. [28]. An underlying generalized
valuation system is a result of generalization procedure, followed by a
construction of power set of an initial set of truth values introduced with
relevant generalization of valuation function to supply a mapping from
formulas into generalized values. Over the past decade, such method
has grown into powerful philosophical logic tool (cf. Y. Shramko and
H. Wansing [29, 30, 31], S. Odintsov and H. Wansing [22]).

Applied to classical truth values, this approach was proposed by
Y. Shramko and D. Zaitsev [39] and developed in Zaitsev [40] and S. Win-
tein and R. A. Muskens [37]. In contrast with Fregean logical tradition
truth values are considered to be structured entities each consisting of
two truth components: ontological and epistemological ones. Ontolog-
ical, or referential, truth corresponds to an abstract object denoted by
sentence, while epistemological, or inferential, truth represents a prop-
erty preserved from premises to conclusion in correct reasoning. Logic
defined on this semantical basis appeared to be a kind of generalized clas-
sical logic with additional expressive power. In particular, its vocabulary
contains two specific logical terms for referential and inferential nega-
tions. These negations correspond to two operations of semi-Boolean
(semi-classical) complementations, where one of them presupposes a
changeover only of the referential component without changing the in-
ferential component, while the other one changes inferential truth and
leaves the referential truth unaltered. Interestingly, each negation pos-
sessing only half of Boolean properties for complementation, whilst in su-
perposition, they give a full-fledged classical (Boolean) complementation.

As typically of negation-stories, this one appeared to be cliff-hanger.
Among a number of intriguing issues one concerns the possibility of a
logic whose values also consist of two components, but these components
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are interpreted in a different way. In what follows such a logic with
compound epistemically flowered truth values will be presented.

On the other hand, this logic within the manifold of logics of gen-
eralized classical values can be deemed as arising from a very different
origin. There is a general consensus on it being a rejection of the principle
of bivalence that leads to many-valued logic. Without challenging this
opinion, it is worth mentioning that there are at least two representations
of this principle  a weak and a strong one. The strong formulation of
the principle of bivalence states that each sentence is either true or false,
that is,

(SPB) Each sentence takes as its value precisely one of two truth values:

truth or falsehood.

This formulation is indeed strong; in fact it implicitly concomitantly
contains three principles. The weak formulation of the principle of biva-
lence:

(WPB) There are exactly two possible truth values of a sentence: truth

and falsehood.

The (WPB) characterizes the set of possible values, where the following
two principles govern the behavior of valuation function.

The principle of excluded underdetermined values is often confused
with the law of excluded middle:

(PEU) Every sentence takes as its value at least one of two truth values:

truth or falsehood.

And there is a dual principle of excluded overdetermined values, which
rejects contradictory assignments:

(PEO) Every sentence takes as its value at-most-once of two truth val-

ues: truth or falsehood.

This consideration with respect to many-valued logic provides an op-
portunity subtly delineate any logics on the ground of principles they
neglect. For example, stimulated by the philosophical problem of fu-
ture contingencies, Łukasiewicz intentionally and explicitly rejected the
(WPB) in favor of another logical value different from truth and false-
hood and complementing two classical values (the value “Possible”). A
completely different interpretation of many-valuedness is due to Kleene.
He was motivated by his research on partial recursive relations, which
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sometimes appear to be undefined. To fix this vague situation, he in-
troduces a third value “undefined”. In [15] Kleene makes it explicit that
the third value should be understood “neither as possible”, “nor true
and false”, “nor neither true, nor false”. Rather it should be perceived
of as the “absence of information” or “unknown”. He does not question
the assumption that every proposition is true or false, but assumes that
there are propositions whose truth values we do not know at the present
moment. In so doing, he saves in a certain sense the (WPB) but rejects
the (PEU), the valuation function in his logic is undetermined.

The motivating idea for a logic we present further is to develop
Kleene’s intuition and consider a valuational system whose values al-
low capturing into the knowledge state of a rational agent. And it is at
that point, when Harry met Sally, the logic under construction is (1) an
extension of Kleene’s logic presented as (2) a logic of generalized truth
values, also known as Logic of Rational Agent (LRA).

In Section 2, LRA will be presented semantically within a broader-
context generalized values. Section 3 focuses on axiomatization of LRA
and a completeness proof for it. Section 4 deals with some useful ap-
plication of this new epistemic logic: in particular, we propose a formal
consideration of the famous Knowability Paradox (also known as Church-
Fitch’s paradox).

2. Semantics for LRA

We construct a many-valued logic that do not reject the weak formulation
of bivalence principle, the (WPB), but introduce the distinction between
known and unknown truths (or falsities) on the level of valuations. We
start our analyze by consideration that there are four possible values for
every proposition. These truth values consist of two components: the
first component is the value “true” or “false”, ‘T’ or ‘F’, respectively.
The second one is a characteristic of the epistemic state of the agent 
“known” or “unknown”, ‘1’ or ‘0’, respectively. We multiply our two
sets, {T,F} and {1, 0}, and we have a set of four possible values Q :=
{T1,T0,F1,F0}. The value of a true proposition, that the agent knows,
is ‘T1’; of a true proposition of which the truth is unknown by the agent,
is ‘T0’; of a false proposition of which the falsity is known by the agent,
is ‘F1’; and ‘F0’ for a false proposition of which the value is unknown by
the agent. The set of designated values would be {T1}, the truths that
are known to be true.
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On the syntactic level we take language L that consists of the propo-
sitional variables p, q, r, s, etc. Now we define logical connectives of the
language L. The first 3 connectives are the classical ones: conjunction,
disjunction and negation. Let φ and ψ be arbitrary formulas. The binary
connectives of conjunction and disjunction are defined by the following
truth-tables:

φ ∧ ψ T1 T0 F0 F1

T1 T1 T0 F0 F1

T0 T0 T0 F0 F1

F0 F0 F0 F0 F1

F1 F1 F1 F1 F1

φ ∨ ψ T1 T0 F0 F1

T1 T1 T1 T1 T1

T0 T1 T0 T0 T0

F0 T1 T0 F0 F0

F1 T1 T0 F0 F1

The ontological part of the values (T or F) for conjunctive or disjunctive
formulas behaves in the same way that the values t and f in classical
logic. A conjunction is true iff its both conjuncts are true. A disjunction
is true iff at least one of its disjuncts is true. What does it happen
with the epistemic part of the values? We suppose that the agent knows
classical logic. By this we mean that in some cases he can calculate
the truth value of a formula even if he does not know the value of both
conjuncts (or disjuncts) of the given formula. For example, if we have
a conjunctive formula (φ ∧ ψ), and an agent knows that φ is false (this
means that the value of the sub-formula φ is F1), but he does not know
the value of the formula ψ, then this agent must know however that the
value of the whole formula is F1 (i.e., it is false and it is known to be
false), by the properties of the classical conjunction. We use the same
considerations to define disjunction.

The negation operator (we label it the ontological negation) is un-
derstood also classically. A proposition is false iff its negation is true.
This type of negation does not concern the component that describes the
epistemic state of an agent (‘1’ or ‘0’). If a proposition is known to be
true (i.e., if it takes the value ‘T1’), then its negation should be false, but
the agent will still know the falsity of the proposition in consideration
(i.e., the value would be ‘F1’). The resulting truth-table goes as follows
in truth-table:

φ ¬φ

T1 F1

T0 F0

F0 T0

F1 T1
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The connectives defined by the above truth-tables are not sufficient to
express four values on the syntactic level. In order to obtain the stronger
system we need to introduce a new connective ‘∼’ (epistemic negation).
The definition is given in the following truth-table:

φ ∼φ

T1 T0

T0 T1

F0 F1

F1 F0

The connective ‘∼’ changes the epistemic state of an agent from known
(‘1’) to unknown (‘0’) and vice versa, this is the reason we call it later in
the text the epistemic negation. The crucial point here is that this oper-
ator is not the analogue of “unknown” (i.e., ‘¬ Ka φ’ in terms of epistemic
logic). We do not give interpretation of this connector ‘∼’ in the natural
language, we just apply it to some formula and give the interpretation
after the application. For example, suppose that a formula φ takes value
T1 (i.e., φ is true and the agent knows it), then ∼φ would take the value
T0 (i.e., φ in this case is true, but ∼φ indicates that the agent does not
know that φ is true). In this case ∼φ may be associated with “φ and
not-known that φ”, but we can not generalize this interpretation to any
formula. Suppose that φ takes value T1, then ∼∼φ takes also the value
T1. Of course in this case ∼∼φ can not be interpreted as “not-known
that not-known that φ”, but as “φ is true and the agent knows it”. This
observation makes clear the difference between ∼φ in the language of
the logic of rational agent and ¬ Ka φ in epistemic systems. This under-
lines the difference between our approach and “classical” formalization
of statements containing information about epistemic state of an agent.
We do not want to give a new interpretation to modal operators, but
we are aiming to find an alternative formalization of statements about
knowing or not-knowing something.

So we have constructed a valuation system as the matrix VLRA :=
〈Q, {T1}, C〉, where C is the set of functions that are interpretations
of propositional connectives defined by the above four truth-tables (of
course, Q is the set of the considered values and {T1} is the set of
designated values of this matrix).

We’ve described some semantical considerations about the logic of
rational agent. Now to introduce a logic in a strict sense we need to de-
fine the entailment relation. There are many ways to define it, the choice
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depends on which considerations we take as the fundamental ones. In
this paper we want to introduce the entailment relation that captures the
following features. First of all, we would like to define a truth-preserving
entailment relation. But if we define the entailment relation in a clas-
sical way (true premisses should entail true conclusion), we obtain the
classical logic, where the distinction between known and unknown truths
is absent. So our second consideration is to define the entailment not as
“any truth” preserving, but “known truths” preserving. Thus, for the
language L we introduce an entailment relation as the standard conse-
quences relation for the matrix VLRA, i.e., for arbitrary formulas φ and
ψ we put:

φ |=VLRA
ψ

df
⇐⇒ ∀h ∈ hom(L,VLRA)(h(φ) = T1 ⇒ h(ψ) = T1),

where hom(L,VLRA) is the set of all homomorphisms from L into VLRA

such that for any h ∈ hom(L,VLRA) and all formulas φ, ψ ∈ L we have:

(∧1) h(φ ∧ ψ) = T1 iff both h(φ) = T1 and h(ψ) = T1;
(∧2) h(φ ∧ ψ) = T0 iff either (i) both h(φ) = T0 and h(ψ) = T1, or

(ii) both h(φ) = T1 and h(ψ) = T0, or (iii) h(ψ) = T0 = h(ψ);
(∧3) h(φ ∧ ψ) = F0 iff either (i) both h(φ) = F0 and h(ψ) 6= F1, or

(ii) both h(ψ) = F0 and h(φ) 6= F1;
(∧4) h(φ ∧ ψ) = F1 iff either h(φ) = F1 or h(ψ) = F1.
(∨1) h(φ ∨ ψ) = T1 iff either h(φ) = T1 or h(ψ) = T1;
(∨2) h(φ ∨ ψ) = T0 iff either (i) both h(φ) 6= T1 and h(ψ) = T0, or

(ii) both h(φ) = T0 and h(ψ) 6= T1;
(∨3) h(φ ∨ ψ) = F0 iff either (i) h(φ) = F0 = h(ψ), or (ii) both h(φ) =

F0 and h(ψ) = F1, or (iii) both h(φ) = F1 and h(ψ) = F0;
(∨4) h(φ ∨ ψ) = F1 iff both h(φ) = F1 and h(ψ) = F1;
(¬1) h(¬φ) = T1 iff h(φ) = F1;
(¬2) h(¬φ) = T0 iff h(φ) = F0;
(¬3) h(¬φ) = F0 iff h(φ) = T0;
(¬4) h(¬φ) = F1 iff h(φ) = T1.
(∼1) h(∼φ) = T1 iff h(φ) = T0;
(∼2) h(∼φ) = T0 iff h(φ) = T1;
(∼3) h(∼φ) = F0 iff h(φ) = F1;
(∼4) h(∼φ) = F1 iff h(φ) = F0.

The corresponding logical system, the system LRA, would be pre-
sented in the next section.
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3. System LRA

We determine the logical system that corresponds to the entailment rela-
tion |=VLRA

and to the model M. For the language L we introduce some
first degree consequence system, which we call LRA. The system is a pair
〈L,⊢LRA〉, where ⊢LRA is a binary relation1 in L which is the reflexive
and transitive closure of the following principles (inference schemes):2

φ ∧ ψ ⊢ φ (3.1)

φ ∧ ψ ⊢ ψ (3.2)

φ ⊢ ψ and φ ⊢ χ implies φ ⊢ ψ ∧ χ (3.3)

φ ⊢ φ ∨ ψ (3.4)

ψ ⊢ φ ∨ ψ (3.5)

φ ⊢ χ and ψ ⊢ χ implies φ ∨ ψ ⊢ χ (3.6)

φ ∧ (ψ ∨ χ) ⊢ (φ ∧ ψ) ∨ (φ ∧ χ) (3.7)

φ ⊣⊢ ¬¬φ (3.8)

∼φ ⊣⊢ ∼¬¬φ (3.9)

¬(φ ∧ ψ) ⊣⊢ ¬φ ∨ ¬ψ (3.10)

¬(φ ∨ ψ) ⊣⊢ ¬φ ∧ ¬ψ (3.11)

∼¬(φ ∨ ψ) ⊣⊢ ∼(¬φ ∧ ¬ψ) (3.12)

φ ⊣⊢ ∼∼φ (3.13)

¬φ ⊣⊢ ¬∼∼φ (3.14)

∼¬φ ⊣⊢ ¬∼φ (3.15)

φ ∧ ¬φ ⊢ ψ (3.16)

φ ∧ ∼φ ⊢ ψ (3.17)

φ ∧ ∼¬φ ⊢ ψ (3.18)

φ ⊢ ψ ∨ ¬ψ ∨ ∼ψ ∨ ∼¬ψ (3.19)

(∼φ ∧ ψ) ∨ (φ ∧ ∼ψ) ∨ (∼φ ∧ ∼ψ) ⊣⊢ ∼(φ ∧ ψ) (3.20)

(∼φ ∧ ∼ψ) ∨ (∼¬φ ∧ ∼ψ) ∨ (∼φ ∧ ∼¬ψ) ∨

∨ (¬φ ∧ ∼ψ) ∨ (∼φ ∧ ¬ψ) ⊣⊢ ∼(φ ∨ ψ)
(3.21)

(∼¬φ ∧ ψ) ∨ (∼¬φ ∧ ∼ψ) ∨ (∼¬φ ∧ ∼¬ψ) ∨

∨ (∼φ ∧ ∼¬ψ) ∨ (φ ∧ ∼¬ψ) ⊣⊢ ∼¬(φ ∧ ψ)
(3.22)

1 Here and later we use ‘⊢’ instead of ‘⊢LRA’ to simplify the reading.
2 We use ‘φ ⊣⊢ ψ’ as a shorthand for ‘φ ⊢ ψ and ψ ⊢ φ’.
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Notice that the postulates that do not contain the epistemic negation
‘∼’ are postulates of Kleene’s strong logic K3. This observation shows
that we follow the initial motivation of taking Kleene’s intuition about
propositions which truth values are unknown.

The system LRA is consistent and complete respect to the entailment
relation |=LRA. The proof of consistency of LRA is a routine check of
the inference schemes of LRA. We omit this demonstration here.

Theorem 1 (Consistency). For all φ, ψ ∈ L: if φ ⊢LRAψ then φ |=LRAψ.

To prove completeness we need to construct a canonical model. Let
an LRA-theory be any subset of L which is closed under ⊢ and ∧. More
precisely, a subset α of L is LRA-theory iff for all φ, ψ ∈ L:

1. if φ ∈ α and φ ⊢ ψ, then ψ ∈ α,
2. if φ, ψ ∈ α, then φ ∧ ψ ∈ α.

We say that an LRA-theory α is prime iff for all φ, ψ ∈ L: if φ ∨ ψ ∈ α,
then either φ ∈ α or ψ ∈ α. Usually, we say that an LRA-theory
is decisive (or complete) iff for each sentence φ ∈ L, either φ ∈ α or
¬φ ∈ α. Moreover, similarly we usually say that an LRA-theory α is
consistent iff there is no φ ∈ L such that φ,¬φ ∈ α.

We define two special properties adopted for the logic of rational
agent (LRA). We say that an LRA-theory is 4-decisive iff for each sen-
tence φ ∈ L either φ ∈ α, or ¬φ ∈ α, or ∼φ ∈ α, or ∼¬φ ∈ α. Moreover,
we say that a theory α is 4-consistent iff there is no φ ∈ L such that
either φ,¬φ ∈ α, or φ,∼φ ∈ α, or φ,¬∼φ ∈ α, or ∼φ,¬φ ∈ α. This
condition of 4-consistency has the same sense as traditional consistency
(restriction of having a sentence with its negation in a theory), but in
definition of 4-consistency we take in account that there are two distinct
negations. The following lemma due to (3.3) refers to the 4-consistency
on the syntactic level:

Proposition 1. For all φ, ψ ∈ L we have:

¬φ ∧ ∼φ ⊢ ψ (∗)

∼φ ∧ ¬∼φ ⊢ ψ (∗∗)

¬φ ∧ ¬∼φ ⊢ ψ (∗∗∗)

Thus, by the above schemas and (3.16)–(3.18), (3.6), for all φ, ψ ∈ L we

obtain:

(φ∧¬φ)∨(φ∧∼φ)∨(φ∧¬∼φ)∨(¬φ∧∼φ)∨(∼φ∧¬∼φ)∨(¬φ∧¬∼φ) ⊢ ψ



10 E. Kubyshkina and D. V. Zaitsev

Proof. Ad (∗): First, ¬φ∧ ∼φ ⊢ ¬φ and ¬φ ⊢ ∼¬∼φ, by (3.1), (3.14),
(3.15), and the transitivity of ⊢, respectively. Thus, by the transitivity of
⊢, we have ¬φ ∧ ∼φ ⊢ ∼¬∼φ. Second, by (3.2), we have ¬φ∧ ∼φ ⊢ ∼φ.
Hence, by (3.3), we obtain ¬φ ∧ ∼φ ⊢ ∼φ ∧ ∼¬∼φ. According to (3.18)
we have ∼φ ∧ ∼¬∼φ ⊢ ψ. So, applying the transitivity of ⊢, we have
¬φ ∧ ∼φ ⊢ ψ.

Ad (∗∗): it is a substitutional case of the inference scheme (3.16).
Ad (∗∗∗): it follows from ¬φ ∧ ∼¬φ ⊢ ψ  a substitutional case of

the inference scheme (3.17), transitivity of ⊢ and schemes (3.1), (3.2),
(3.15), and (3.3).

The following lemma is an analogue of the Lindenbaum’s Lemma.

Lemma 1. Let φ 0LRA ψ. Then there is a prime 4-decisive and 4-

consistent theory α such that φ ∈ α and ψ /∈ α.

Proof. The existence of a prime LRA-theory α that satisfies the lem-
ma’s conditions can be proved in an analogous way as it has been done
by Dunn for the system RFDE in [8], p. 13. We omit this demonstration
here. Below we show that α is both 4-decisive and 4-consistent.

First, it is easy to see that α is 4-decisive. Indeed, by (3.19), since α
is an LRA-theory and φ ∈ α, so ψ∨ ¬ψ∨ ∼ψ∨ ∼¬ψ ∈ α. So also ψ ∈ α,
or ¬ψ ∈ α, or ∼ψ ∈ α, or ∼¬ψ ∈ α, since α is also a prime LRA-theory.
Thus α is a 4-decisive theory.

To show that α is 4-consistent assume towards contradiction that
there is a formula χ such that either χ,¬χ ∈ α, or χ,∼χ ∈ α, or
χ,¬∼χ ∈ α, or ∼χ,¬χ ∈ α. By the fact that α is a prime LRA-theory
we have that (χ ∧ ¬χ) ∨ (χ ∧ ∼χ) ∨ (χ ∧ ¬∼χ) ∨ (¬χ ∧ ∼χ) ∈ α. Hence
ψ ∈ α, by (3.3) and Proposition 1, since α is an LRA-theory. Thus α is
4-consistent.

Now for any prime 4-decisive and 4-consistent LRA-theory α we de-
fine the canonical valuation c for any propositional variable π as follows:

c(π) = T1 ⇐⇒ π ∈ α ,

c(π) = T0 ⇐⇒ ∼π ∈ α ,

c(π) = F0 ⇐⇒ ∼¬π ∈ α ,

c(π) = F1 ⇐⇒ ¬π ∈ α .

This valuation c we standardly extend to the homomorphism hc of L
into the matrix VLRA. Notice that we obtain:
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Lemma 2. For any φ ∈ L:

hc(φ) = T1 ⇐⇒ φ ∈ α ,

hc(φ) = T0 ⇐⇒ ∼φ ∈ α ,

hc(φ) = F0 ⇐⇒ ∼¬φ ∈ α ,

vc(φ) = F1 ⇐⇒ ¬φ ∈ α .

Proof. We use induction on the construction of formulas.
hc(φ ∧ ψ) = T1 iff hc(φ) = T1 and hc(ψ) = T1 iff φ ∧ ψ ∈ α iff

φ∧ψ ∈ α; since α is an LRA-theory and, respectively, by (∧1), inductive
hypothesis, (3.1), and (3.2).

hc(φ ∧ ψ) = T0 iff either both hc(φ) = T0 and hc(ψ) = T1, or
both hc(φ) = T1 and hc(ψ) = T0, or hc(ψ) = T0 = hc(ψ) iff either
∼φ, ψ ∈ α, or φ,∼ψ ∈ α, or ∼φ,∼ψ ∈ α iff either ∼φ ∧ ψ ∈ α, or
φ∧ ∼ψ ∈ α, or ∼φ∧ ∼ψ ∈ α iff (∼φ∧ψ) ∨ (φ∧ ∼ψ) ∨ (∼φ∧ ∼ψ) ∈ α iff
∼(φ∧ψ) ∈ α; since α is a prime LRA-theory and, respectively, by (∧2),
inductive hypothesis, (3.1), (3.2), (3.20), and (3.4).

hc(φ ∧ ψ) = F0 iff either both hc(φ) = F0 and hc(ψ) 6= F1, or
both hc(ψ) = F0 and hc(φ) 6= F1 iff either (both hc(φ) = F0 and either
hc(ψ) = T1, or hc(ψ) = T0, hc(ψ) = F0), or (both hc(ψ) = F0 and either
hc(φ) = T1, or hc(φ) = T0, or hc(φ) = F0) iff either both hc(φ) = F0

and hc(ψ) = T1, or both hc(φ) = F0 and hc(ψ) = T0, or hc(φ) = F0 =
hc(ψ), or both hc(ψ) = F0 and hc(φ) = T1, or both hc(ψ) = F0 and
hc(φ) = T0 iff either ∼¬φ, ψ ∈ α, or ∼¬φ,∼ψ ∈ α, or ∼¬φ,∼¬ψ ∈ α,
or ∼¬ψ, φ ∈ α, or ∼¬ψ,∼φ ∈ α iff either ∼¬φ ∧ ψ ∈ α, or ∼¬φ ∧
∼ψ ∈ α, or ∼¬φ ∧ ∼¬ψ ∈ α, or ∼¬ψ ∧ φ ∈ α, or ∼¬ψ ∧ ∼φ ∈ α iff
(∼¬φ∧ψ) ∨ (∼¬φ∧ ∼ψ) ∨ (∼¬φ∧ ∼¬ψ) ∨ (∼φ∧ ∼¬ψ) ∨ (φ∧ ∼¬ψ) ∈ α
iff ∼¬(φ ∧ ψ) ∈ α; since α is a prime LRA-theory and, respectively, by
(∧3), inductive hypothesis, (3.1), (3.2), (3.4), and (3.22).

hc(φ∧ψ) = F1 iff either hc(φ) = F1 or hc(ψ) = F1 iff either ¬φ ∈ α or
¬ψ ∈ α iff ¬φ∨¬ψ ∈ α iff ¬(φ∧ψ) ∈ α; , since α is a prime LRA-theory
and, respectively, by (∧4), inductive hypothesis, (3.4), and (3.10).

hc(φ ∨ ψ) = T1 iff either hc(φ) = T1 or hc(ψ) = T1 iff either φ ∈ α
or ψ ∈ α iff φ ∨ ψ ∈ α; since α is a prime LRA-theory and, respectively,
by (∨1), inductive hypothesis, and (3.4).

hc(φ ∨ ψ) = T0 iff either both hc(φ) 6= T1 and hc(ψ) = T0, or both
hc(φ) = T0 and hc(ψ) 6= T1 iff either (both hc(ψ) = T0 and either
hc(φ) = T0, or hc(φ) = F0, or hc(φ) = T1), or (both hc(φ) = T0 and
either hc(ψ) = T0, or hc(ψ) = F0, or hc(ψ) = F1) iff either ∼φ,∼ψ ∈ α,
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or ∼¬φ,∼ψ ∈ α, or ¬φ,∼ψ ∈ α, or ∼φ,∼ψ ∈ α, or ∼φ,∼¬ψ ∈ α, or
∼φ,¬ψ ∈ α iff either ∼φ ∧ ∼ψ ∈ α, or ∼¬φ ∧ ∼ψ ∈ α, or ¬φ ∧ ∼ψ ∈ α,
or ∼φ ∧ ∼¬ψ ∈ α, or ∼φ ∧ ¬ψ ∈ α iff (∼φ ∧ ∼ψ) ∨ (∼¬φ ∧ ∼ψ) ∨
(¬φ ∧ ∼ψ) ∨ (∼φ ∧ ∼¬ψ) ∨ (∼φ ∧ ¬ψ) ∈ α iff ∼(φ ∨ ψ) ∈ α; since α
is a prime LRA-theory and, respectively, by (∨2), inductive hypothesis,
(3.1), (3.2), (3.4), and (3.21).

hc(φ∨ψ) = F0 iff either hc(φ) = F0 = hc(ψ), or both hc(φ) = F0 and
hc(ψ) = F1, or both hc(φ) = F1 and hc(ψ) = F0 iff either ∼¬φ,∼¬ψ ∈
α, or ∼¬φ,¬ψ ∈ α, or ¬φ,∼¬ψ ∈ α iff either ∼¬φ∧∼¬ψ ∈ α, or ∼¬φ∧
¬ψ ∈ α, or ¬φ∧∼¬ψ ∈ α iff (∼¬φ∧¬ψ)∨(¬φ∧∼¬ψ)∨(∼¬φ∧∼¬ψ) ∈ α
iff ∼(¬φ∧¬ψ) ∈ α iff ∼¬(φ∨ψ) ∈ α; since α is a prime LRA-theory and,
respectively, by (∨3), inductive hypothesis, (3.1), (3.2), (3.4), (3.20), and
(3.12).

hc(φ∨ψ) = F1 iff hc(φ) = F1 = hc(ψ) iff ¬φ,¬ψ ∈ α iff ¬φ∧ ¬ψ ∈ α
iff ¬(φ ∨ ψ) ∈ α; since α is an LRA-theory and, respectively, by (∨4),
inductive hypothesis, (3.1), (3.2), and (3.11).

hc(¬φ) = T1 iff hc(φ) = F1 iff ¬φ ∈ α; respectively by (¬1) and
inductive hypothesis.

hc(¬φ) = T0 iff hc(φ) = F0 iff ∼¬φ ∈ α; respectively by (¬2) and
inductive hypothesis.

hc(¬φ) = F0 iff hc(φ) = T0 iff ∼φ ∈ α iff ¬∼¬φ ∈ α iff ∼¬¬φ ∈ α;
since α is an LRA-theory and, respectively, by (¬3), inductive hypothe-
sis, (3.9), and (3.15).

hc(¬φ) = F1 iff hc(φ) = T1 iff φ ∈ α iff ¬¬φ ∈ α; since α is an
LRA-theory and, respectively, by (¬4), inductive hypothesis, and (3.8).

hc(∼φ) = T1 iff hc(φ) = T0 iff ∼φ ∈ α; since α is an LRA-theory
and, respectively, by (∼1) and inductive hypothesis.

hc(∼φ) = T0 iff hc(φ) = T1 iff φ ∈ α iff ∼∼φ ∈ α; since α is an LRA-
theory and, respectively, by (∼2), inductive hypothesis, and (3.13).

hc(∼φ) = F0 iff hc(φ) = F1 iff ¬φ ∈ α iff ∼¬∼φ ∈ α; since α is an
LRA-theory and by (∼3), inductive hypothesis, (3.14), (3.15), respec-
tively.

hc(∼φ) = F1 iff hc(φ) = F0 iff ∼¬φ ∈ α iff ¬∼φ ∈ α; since α is an
LRA-theory and by (∼4), inductive hypothesis, (3.15), respectively.

Now we can prove the completeness of the system RA.

Theorem 2 (Completeness). For all φ, ψ ∈ L:

if φ |=LRAψ then φ ⊢LRAψ.
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Proof. By contraposition. Assume that φ 0LRA ψ. Then, by Lemma 1,
there exists a 4-decisive, 4-consistent prime theory α that both φ ∈ α
and ψ /∈ α. Now, by Lemma 2, for the canonical valuation c in this
theory we have hc(φ) = T1 and hc(ψ) 6= T1. So φ 6|=LRA ψ.

4. Knowability paradox

The system LRA can serve as a truth-functional basis for a new approach
to formalization of the statements about an agent’s knowledge and ig-
norance. We propose to apply this promising tool to a widely discussed
epistemological issue, known as the Knowability Paradox.

The Knowability Paradox (also known as Fitch’s paradox or Church-
Fitch’s paradox) is a logical argument suggesting that if every true propo-
sition is knowable (the knowability principle), then all true propositions
are already known (the omniscience principle).

More precisely, the proof of the paradox is based on the assumption
that there is a truth that is not known yet (so called, unknown truth).
In terms of epistemic logic we can formalize this assumption as follows3:

p ∧ ¬ Ka p, (⋆)

where p is an arbitrary true proposition, Ka is an epistemic operator
that applied to a sentence p denotes “the proposition p is known (to be
true) by an agent a”. Thus the formula (⋆) can be interpreted as: “p is
the case, but the agent doesn’t know it”.

Next goes the principle that every true statement is capable of being
known to be true (the knowability principle):

p → 3Ka p, (KP)

where ‘3’ is a modal operator of possibility. Now consider the application
of the above principle to (⋆), which leads to:

3Ka(p ∧ ¬ Ka p).

So, by distribution of the operator ‘Ka’ over conjunction, one gets:

3(Ka p ∧ Ka ¬ Ka p).

3 We provide here only a sketch of the proof in propositional language without
quantifying, as the proof in terms of epistemic logic with appellation to possible-worlds
semantics does not make the subject of the current paper.
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The formula ‘Ka ¬ Ka p’ can be reduced to ‘¬ Ka p’ according to “factivity
principle”, which states that if we know some fact, it takes place (i.e.,
‘Ka q → q’). Thus we arrive at:

3(Ka p ∧ ¬ Ka p).

The last formula is a substitutional case of ‘3⊥’, that contradicts the
commonly accepted principle of the impossibility of contradiction (i.e.,
‘¬3⊥’). Summing up, our assumption (⋆) appeared to lead to contra-
diction and must be discharged:

¬(p ∧ ¬ Ka p).

Applying PC we can transform the last formula into:

p → Ka p, (OP)

where the former means that if the proposition p is true, then its truth
is already known (the omniscience principle).

Quite predictably, there is a huge number of possible solutions to the
paradox. Schematically we can divide the solution strategies into three
categories (we follow here the classification given by Maffezioli, Naibo
and Negri in [19]):

1. There is a suggestion to restrict the knowability principle. This ap-
proach is developed by Dummet [9], Tennant [32], [33], Restall [26].

2. One can also try to reformulate the knowability principle (see e.g.
Edgington [11], Martin-Löf [21], Burgess [5], Proietti and Sandu [25]).

3. One may revise the logical framework to avoid the paradox (see e.g.
Williamson [35], Beall [1], [2], Wansing [34], Dummet [10], Priest
[24]).

In what follows we reformulate the knowability principle in terms of
the logic of rational agent. So partially we follow the second strategy,
but in so doing we also revise the logical system, as it was proposed by
the representatives of the third approach.

For a start, let us list the epistemological and logical principles used
in the paradox formulation. Among those, the knowability principle,
the principle of distribution of knowledge over conjunction, the factivity
principle and the impossibility of contradiction. Our first aim is thus
to show that accepting the knowability principle does not lead to the
omniscience principle. The second aim of this section is to analyze the
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other principles involved in the “classical” derivation of the paradox in
terms of LRA.

As noted above, the knowability principle has been formalized in
epistemic logic as (KP): p → 3Ka p. What does it mean? Literally, “if
the proposition is true, then we have a possibility to know it”. In the
logic of rational agent it can be reformulated as “if the truth value of the
proposition was ‘T1’ or ‘T0’ (the proposition is true without connection
to the knowledge the agent may have or not about proposition in con-
sideration), then it is possible for this proposition to be true and known
to be true (to take value ‘T1’)”.

Having two negations (the “ontological” one and the “epistemic” one)
at hand, in the system LRA, we have a tool to formalize the fact of
knowing or not knowing something by an agent on the syntactic level.
To formalize the possibility of knowing something we should introduce
modal operators of possibility and necessity with corresponding possible
worlds semantics. The resulting language is denoted by L32. We fix a set
of possible worlds W and a binary accessibility relation R in W , which is
a reflexive, transitive and symmetric. Moreover, we use relational models

of the form 〈W,R, V 〉, where V is a valuation function from L32 × W
into {T1,T0,F0,F1} such that for ‘¬’, ‘∼’, ‘∧’, and ‘∨’ the valuation V
satisfies the same inductive conditions for homomorphisms given on the
page 7 and moreover:

(21) V (2φ, w) = T1 iff ∀u(wRu ⇒ V (φ, u) = T1);
(22) V (2φ, w) = T0 iff ∀u(wRu ⇒ (V (φ, u) = T1 or V (φ, u) = T0))

and ∃u(wRu and V (φ, u) = T0);
(23) V (2φ, w) = F1 iff ∃u(wRu and V (φ, u) = F1);
(24) V (2φ, w) = F0 iff ∀u(wRu ⇒ V (φ, u) 6= F1) and ∃u(wRu and

V (φ, u) = F0).
(31) V (3φ, w) = T1 iff ∃u(wRu and V (φ, u) = T1);
(32) V (3φ, w) = T0 iff ∀u(wRu ⇒ V (φ, u) 6= T1) and ∃u(wRu and

V (φ, u) = T0);
(33) V (3φ, w) = F1 iff ∀u(wRu ⇒ V (φ, u) = F1);
(34) V (3φ, w) = F0 ⇔ ∀u(wRu ⇒ (V (φ, u) = F1 or V (φ, u) = F0))

and ∃u(wRu and V (φ, u) = F0).

Of course, we have V (3φ, w) = V (¬2¬φ, w). Thus, ‘3’ could be
defined by means of ‘2’.

By introducing interpretations of modal operators we limit the way
of the informal reading of four values of the logic of rational agent. More
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precisely, the values read as “true and known to be true” (T1) and others
refer only to formulas having non-modal operators as the main functor.
For the modal operators, the reading of the values is defined as above.
For example, V (3p, w) = T1 does not mean “the possibility of p is true
and known to be true in the world w”, but it means that there exists an
accessible from w world, where p is true and known to be true, or “it is
possible that p is true and known”.

For an axiomatization to be full-fledged, one definitely needs to add
to LRA the inference schemes corresponding to appropriate deductive
postulates. However, it is a topic in its own right, and we will not address
it here. In what follows we use the semantical entailment |=LRA32

that
always leads from ‘T1’ to ‘T1’ and is an extension of |=LRA.

As noted above, the knowability principle states that if some propo-
sition is true, then it is possible that this proposition would be known
to be true. In terms of LRA semantics, this means that if the value of
some proposition φ is ‘T1’ or ‘T0’ in the (actual) world w, then there
exists an accessible from w world u, where V (φ, u) = T1 (that is the
condition for V (3φ, w) = T1). Taking in account interpretations, the
former statement (KP) can be put as follows:

φ ∨ ∼φ |=LRA32
3φ, (KP′)

If the left part of the inference takes value ‘T1’ (it is the case only if
φ takes value ‘T1’ or ‘T0’), then 3φ takes value “T1” (there exists an
accessible world, where φ is true and known to be true). With this
formulation of the knowability principle in mind, we can reconstruct the
derivation of the paradox, now in terms of the logic of rational agent.
We start with the same assumption, that there is a proposition that is
true and unknown by an agent: ∼p. If ∼p is true and known, then p is
true, independently of the agent’s state of knowledge:

∼p |=LRA32
p ∨ ∼p.

After we apply the knowability principle (KP′):

p ∨ ∼p |=LRA32
3p

and by this we have:

∼p |=LRA32
3p (†)

that means that if p is true and unknown, then there exists an accessible
world, where p is true and known to be true (takes value ‘T1’).
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Possible objection can raise on the ground that even if application
of the knowability principle to the assumption that there is an unknown
truth does not lead us to the omniscience principle, it does not mean that
the omniscience principle is not derivable in LRA. Fortunately, it is not
the case. First, we consider omniscience principle as it can be presented
by means of LRA, and then we show it to be underivable in LRA.

The omniscience principle states that all truths are known. In other
words, if some proposition is true (‘φ ∨ ∼φ’ takes value ‘T1’), then it is
known to be true (then φ takes value ‘T1’):

φ ∨ ∼φ ⊢ φ . (OP′)

However, it is obvious that this inference is not LRA-valid (let φ to take
the value ‘T0’, then the premise takes value ‘T1’, while conclusion takes
value ‘T0’). Nevertheless, it may still be possible that (KP) together
with modal extension of LRA can validate it. As we remarked before
the enrichment of LRA by modal operators is left for the future work. In
what follows we consider that such an extension should be conservative
with respect to the present semantics. Thus, if one considers only conser-
vative extensions of LRA, the principle (OP’) will remain not LRA-valid.

As our considerations of knowability and omniscience in terms of
LRA has shown, some important logical and epistemological principles
involved in standard form of the paradox remain untouched upon. Mean-
while, these principles are often considered as basic and important for
philosophy and epistemology. It gives rise to a reasonable question,
whether these principles are valid in the logic we propose. The answer
is positive, in as much as they can be presented by means of the logic of
rational agent. Let’s take a closer look at them.

The principle of distributivity of knowledge over conjunction states
that if an agent knows that both φ and ψ, then he knows that φ and he
knows that ψ. The acceptability of this principle is still under intense
discussion (for detail, consult e.g. Nozick [20], Williamson [36], Duc [6]).
The best way to avoid such a discussion is to note that this principle
is not only admissible in LRA, but corresponding inference schemes are
exactly deductive postulates (3.1) and (3.2) of LRA. These inferences
mean that if φ ∧ ψ is true and known to be true, then φ is true and
known to be true, and ψ is true and known to be true.

The factivity principle, as avowed above, states that if something is
known to be true, then it is true. The same idea may be expressed in
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LRA as follows (see (3.4)):

φ ⊢LRA φ ∨ ∼φ

If φ is true and known to be true (takes value ‘T1’), then it is true
independently of the state of the agent’s knowledge (i.e., φ ∨ ∼φ takes
value ‘T1’). Thus, the factivity principle in such formulation is also a
core principle of LRA.

The last principle to analyze is the impossibility of contradiction
(¬3⊥). To clarify the status of this principle in LRA we should define
the contradiction (⊥) in the system LRA and its modal extension. The
definition of contradiction (or logical falsity) in many-valued logics is an
open question. S. Gottwald [12] explicits two possibilities of generalizing
the notion of contradiction from classical logic to many-valued logic:
one can take as logical falsities all those formulas φ for which ¬φ is a
logical truth (takes the designated truth-value); or one can take as logical
falsities all those formulas φ which assume only antidesignated truth
degrees. For the reason of simplicity, we prefer to use the first method
to define the contradiction. Having the set of designated values {T1},
logical falsities may be defined as all formulas φ for which h(¬φ) = T1,
that gives us h(φ) = F1. Following this way, one may define ⊥ as a
formula that takes the truth-value ‘F1’ in all possible worlds for the
modal extension of LRA. Having this definition, it is obvious that for an
arbitrary formula φ, φ |=LRA32

¬3⊥, that means that such an extension
validates the principle of the impossibility of contradiction.

In this section we have shown that we can not derive the omniscience
principle from the knowability principle in some conservative modal ex-
tension of LRA and that the system contains the other important philo-
sophical and epistemological principles, that are used in the derivation of
the knowability paradox. Summing up, in LRA, the knowability princi-
ple does not lead to the omniscience, while other important philosophical
and epistemological principles involved in knowability paradox are pre-
served.

5. Conclusion

In this paper, we have introduced a generalization of classical truth val-
ues applied to Kleene’s idea of undefined values. This generalization
gives rise to a four-valued logic, that we label as “logic of rational agent”
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(LRA). In so doing, we presented a sound and complete formalization
the system LRA of our semantical considerations.

It appeared that the system LRA may be seen as a sort of epis-
temic logic, taking in account the fact that it provides a formalization of
the statements about knowledge and ignorance. We do not insist that
the logic we propose must replace “classical” epistemic logic. However,
we consider our approach as a possible step towards the clarification
of important epistemological and philosophical problems related to the
notions of knowledge and ignorance. We have shown that the logic of
rational agent as presented above is free from Knowability Paradox.

The future work concerns, first, a choice of intuitively suitable axioms
for modal version of LRA and proof of its semantical adequacy; and
secondly, further exploring the other possible formalizations of the logic
of rational agent, which may be useful in philosophical analyses of the
notions of knowledge and ignorance.
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